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Chapter 7.

Hochschild homology of
polynomial algebras

In Definition 6.2.1.2 we defined a monoidal functor

HHMixed : Alg(D(k))→Mixed

that thus induces a functor

AlgE2
(D(k)) ≃ Alg(Alg(D(k)))→ Alg(Mixed)

that we will also denote by HHMixed.
An important collection of examples of commutative (so in particular E2-)

algebras in D(k) is given by polynomial algebras, i. e. algebras of the form
k[X] for X a set1, and the goal of this chapter is to describe HHMixed of
polynomial algebras as algebras in Mixed. Concretely, given a setX, we would
like to obtain a strict model for HHMixed(k[X]), as an object of Alg(Mixed),
i. e. an object A in Alg(Mixedcof) such that there is an equivalence

HHMixed(k[X]) ≃ Alg(γMixed)(A)

in Alg(Mixed). We would also like A to be as efficient (i. e. small) as possible.
By the results of Section 6.3.4 we know that the standard Hochschild com-

plex C(k[X]) of a polynomial k-algebra k[X], considered as either a commu-
tative differential graded algebra, or a strict mixed complex, represents HH
and HHMixed of k[X], respectively. However, we have no comparison result
available that compares C(k[X]) and HHMixed(k[X]) as associative algebras
of mixed complexes – while the standard Hochschild complex is a strict mixed
complex as well as a differential graded algebra, it satisfies the Leibniz rule
only up to homotopy, so we can not even consider it as a strict algebra in
strict mixed complexes2! Even without this obstacle, C(k[X]) would not be
the kind of strict model we hope for, as it is not very efficient.

The first step on the road to finding a small strict model for HHMixed(k[X])
as an object of Alg(Mixed) thus needs to be to define an object in Alg(Mixed)

1See Definition 7.0.0.1 for a definition.
2See Warning 6.3.2.13
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that we later hope to prove is such a strict model. For R a commutative k-
algebra we will thus in Section 7.1 review the definition of the strict mixed
complex of de Rham forms on R, denoted by Ω•

R/k, which has a very concise
description. Indeed, as the underlying complex has no non-zero boundary
operators, so it is not possible to find a “smaller” quasiisomorphic chain
complex.

Our goal, which we will only be able to prove if |X| ≤ 2, and which is
formulated as Conjecture B, is then to produce an equivalence

HHMixed(k[X]) ≃ Alg(γMixed)
(
Ω•
k[X]/k

)

in Alg(Mixed), i. e. to show that Ω•
k[X]/k is a strict model for HHMixed(k[X])

as an object of Alg(Mixed).
In Section 7.2 we will begin comparing Ω•

k[X]/k with Hochschild homology
of k[X] by constructing a quasiisomorphism ϵX from Ω•

k[X]/k to the normal-
ized standard Hochschild complex C(k[X]). This quasiisomorphism is multi-
plicative, so as we already know that C(k[X]), and hence also C(k[X]), is a
strict model for HH(k[X]) as an object of Alg(D(k)), we can conclude that
Ω•
k[X]/k is so as well.
To show that Ω•

k[X]/k is also a strict model for HHMixed(k[X]) as an ob-
ject of Mixed it would suffice to show that ϵX is even a morphism of strict
mixed complexes. This is unfortunately not the case, but we can instead up-
grade ϵX to a strongly homotopy linear quasiisomorphism3, and will do so in
Section 7.3.

The partial results regarding only the algebra and only the mixed structure
from Sections 7.2 and 7.3 will then be used as input in Section 7.4, where we
will show that Ω•

k[X]/k is even a strict model for HHMixed(k[X]) as an object
of Alg(Mixed) as long as |X| ≤ 2.

Suppose now that X is a set with |X| ≤ 2 and f an element of k[X].
Denote the morphism of commutative k-algebras k[t]→ k[X] that maps t to
f by F . Now that we know that Ω•

k[t]/k represents HHMixed(k[t]) and Ω•
k[X]/k

represents HHMixed(k[X]) we can ask whether the induced morphism Ω•
F/k

also represents the morphism HHMixed(F ) in Alg(Mixed). We are thus asking
for a commutative square

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

HHMixed(k[Y ]) Alg(γMixed)
(
Ω•
k[Y ]/k

)

≃

HHMixed(F ) Alg(γMixed)(Ω•
F/k)

≃

3See Section 4.2.3 for this notion.
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in Alg(Mixed) such that the two horizontal morphisms are equivalences. We
will formulate the claim that such a square exists for F as Conjecture C,
and prove this conjecture for |X| ≤ 1, as well as for |X| = 2 as long as 2 is
invertible in k, in Section 7.5. We will also discuss Conjecture D, which is
very closely related to Conjecture C and will be an essential ingredient in the
results of later chapters.

We end the introduction to this chapter by fixing some notation concerning
polynomial algebras.

Definition 7.0.0.1. Let X be a set. Then k[X] denotes the polynomial k-
algebra generated by X, i. e. the free commutative k-algebra generated by X.
Its underlying k-module is free, and a basis is given by elements of the form4

x
#–

i with #–

i an element of Z×X
≥0 such that all but finitely many components are

zero. We also use notation such as k[x1, . . . , xn] for the polynomial k-algebra
that is generated by n formal variables x1, . . . , xn, and trust that this will
not lead to confusion.

Note that as the underlying k-module of a polynomial k-algebra is free, a
polynomial k-algebra is cofibrant when considered as a chain complex con-
centrated in degree 0.5 ♦

7.1. The mixed complex of de Rham forms
Given a commutative k-algebra R, we denote by Ω1

R/k the k-module of
Kähler differentials – for a definition see [Lod98, 1.1.9 and 1.3.7 to 1.3.9]. One
then defines [Lod98, 1.3.11] ΩnR/k for n ≥ 0 to be the exterior product ΛnRΩ1

R/k.
Equipping Ω•

R/k with the zero boundary operator we obtain a commutative
differential graded algebra. Ω1

R/k also comes with a derivation [Lod98, 1.3.8]
d : Ω0

R/k = R→ Ω1
R/k, and the unique extension of d to an operator of degree

1 on Ω•
R/k that satisfies d ◦ d = 0 and the Leibniz rule makes Ω•

R/k into an
object of CAlg(Mixed)6, called the mixed complex of de Rham forms of R.
Elements of ΩnR/k are of the form r0 d r1 · · · d rn, with

d(r0 d r1 · · · d rn) = d r0 d r1 · · · d rn
and

(r0 d r1 · · · d rn) · (r′0 d r′1 · · · d r′m) = r0r
′
0 d r1 · · · d rn d r′1 · · · d r′m

describing the differential and multiplication [Lod98, 1.3.11 and 2.3.1]. This
construction is functorial in morphisms of commutative k-algebras f : R→ R′

– there is a unique morphism in CAlg(Mixed) from Ω•
R/k to Ω•

R′/k that is given
by f in degree 0.

4See Section 2.3 (32) for this notation.
5See [Hov99, 2.3.6]
6See Remark 4.2.1.12.
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For R = k[X] for some set X, the k[X]-module Ω1
k[X]/k is free with basis

given by { dx | x ∈ X } – see [Lod98, 1.3.10 and 1.3.11]. It follows that we can
identify Ω•

k[X]/k with k[X]⊗ Λk(k · { dx | x ∈ X }), where k · { dx | x ∈ X }
is the chain complex that is freely generated by { dx | x ∈ X }, where we
give the elements dx chain degree 1. In particular, Ω•

k[X]/k is levelwise free
as a k-module, and hence cofibrant by [Hov99, 2.3.6]. We can thus make the
following definition.

Definition 7.1.0.1. We denote by

Ω•
−/k : CAlg(LModk(Ab))→ CAlg(Mixed)

the functor sending a k-algebra R to the commutative algebra in strict mixed
complexes Ω•

R/k discussed above. We also denote by7

Ω•
k[−]/k : Set→ CAlg(Mixedcof)

the functor sending a set X to Ω•
k[X]/k. ♦

Remark 7.1.0.2. Ω•
−/k is also functorial in k: For φ : k → k′ a morphism of

commutative rings and R a k-algebra, there is an evident isomorphism

k′ ⊗k Ω
•
R/k
∼= Ω•

k′⊗kR/k′

a⊗ (r0 d r1 · · · d rn) 7→ (a⊗ r0) d(1⊗ r1) · · · d(1⊗ rn)

in CAlg(Mixedk′) that is natural in R and exhibits

CAlg(LModk(Ab)) CAlg(Mixedk)

CAlg(LModk′(Ab)) CAlg(Mixedk′)

k′⊗k−

Ω•
−/k

k′⊗k−

Ω•
−/k′

as a commutative diagram in Cat. ♦

7.2. De Rham forms as a strict model in
CAlg(Ch(k))

The reason the mixed complex of de Rham forms is relevant for us is the
close relationship with the (normalized) standard Hochschild complex that
we will discuss in this section.

In Section 6.3.2.1 we discussed the bar resolution CBar(A) of an associa-
tive algebra A and saw in Proposition 6.3.2.4 that the standard Hochschild

7See Definition 4.2.1.2 for a definition of Mixedcof.
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complex of A is given by the relative tensor product A ⊗A⊗Aop CBar(A). In
Section 7.2.1 we will, for a set X, construct a morphism ϵ̃X of left-k[X]⊗k[X]-
modules (in chain complexes) Csm(X) → CBar(k[X]). Tensoring with k[X]
over k[X]⊗ k[X] we then obtain a morphism of chain complexes that we will
be able to identify with a morphism Ω•

k[X]/k → C(k[X]). In this manner we
will obtain a natural transformation

ϵ : Ω•
k[−]/k → C(k[−])

of functors Set→ CAlg(Ch(k)cof) that will turn out to be a pointwise quasi-
isomorphism, thereby providing a convenient multiplicative model Ω•

k[X]/k

for HH(k[X]). This will be discussed in Section 7.2.2.
While ϵX (for a set X) is a morphism of differential graded algebras, it is

not a morphism of strict mixed complexes. However ϵX can be upgraded to
a strongly homotopy linear morphism in the sense of Section 4.2.3. This will
be shown in the next section, Section 7.3.

7.2.1. A smaller replacement for the bar complex
In this section we will in Construction 7.2.1.1 first construct Csm(X) and

ϵ̃X , before showing in Proposition 7.2.1.2 that they have good homotopical
properties.

Construction 7.2.1.1 ([Lod98, 3.2.2]). Let X be a set. We will construct a
commutative triangle of left-k[X]⊗ k[X]-modules in Ch(k)

Csm(X) CBar(k[X])

k[X]

ϵ̃X

(7.1)

where CBar(k[X]) refers to the bar resolution as constructed in Construc-
tion 6.3.2.1, and the right diagonal morphism is the one also defined in Con-
struction 6.3.2.1. We will use notation from Section 2.3 (34).

Definition of Csm(X) as a graded left-k[X]⊗ k[X]-module: We define

Csm(X)n := k[X]⊗ Λn(k ·X)⊗ k[X]

and the action of k[X]⊗ k[X] as follows, with l′, r′, l, r elements of k[X] and
x1, . . . , xn elements of X.

(l′ ⊗ r′) · (l ⊗ x1 · · ·xn ⊗ r) := l′l ⊗ x1 · · ·xn ⊗ rr
′

Note that if there exist i 6= j with xi = xj , then the right hand side is also 0,
so the action is well-defined8.

8See (29) in Section 2.3 for a definition of the exterior algebra Λ(k ·X).

355



Chapter 7. Hochschild homology of polynomial algebras

Definition of the boundary operator on Csm(X): We make the following
definition for l, r elements of k[X] and x1, . . . , xn elements of X.

∂(l ⊗ x1 · · ·xn ⊗ r) :=
n∑

i=1

(−1)i−1
(
(lxi ⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ r)

− (l ⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ xir)
)

For well-definedness, assume that 1 ≤ j < j′ ≤ n such that xj = xj′ . We
then have to check that the formula just given for ∂(l ⊗ x1 · · ·xn ⊗ r) is zero.
One can immediately see that the summands for i /∈ {j, j′} vanish, as the
middle tensor factor x1 · · ·xi−1 · xi+1 · · ·xn then contains both xj and xj′ as
factors. Thus we are left with the following sum.

(−1)j−1(lxj ⊗ x1 · · ·xj−1 · xj+1 · · ·xn ⊗ r)

− (−1)j−1(l ⊗ x1 · · ·xj−1 · xj+1 · · ·xn ⊗ xjr)

+ (−1)j
′−1(lxj′ ⊗ x1 · · ·xj′−1 · xj′+1 · · ·xn ⊗ r)

− (−1)j
′−1(l ⊗ x1 · · ·xj′−1 · xj′+1 · · ·xn ⊗ xj′r)

To see that this is zero, we will argue that the first and third terms cancel, the
argument for the second and fourth term canceling is completely analogous.
For this, we carry out the following calculation.

(−1)j−1(lxj ⊗ x1 · · ·xj−1 · xj+1 · · ·xn ⊗ r)

= (−1)j−1(lxj ⊗ x1 · · ·xj−1 · xj+1 · · ·xj′−1 · xj′ · xj′+1 · · ·xn ⊗ r)

Using that xj′ = xj .
= (−1)j−1(lxj′ ⊗ x1 · · ·xj−1 · xj+1 · · ·xj′−1 · xj · xj′+1 · · ·xn ⊗ r)

Now we move the factor xj in the inner tensor factor to the spot between
xj−1 and xj+1. This involves moving past j′ − j − 1 other factors, so incurs
a sign (−1)j

′−j−1.

= (−1)j−1(−1)j
′−j−1(lxj′ ⊗ x1 · · ·xj′−1 · xj′+1 · · ·xn ⊗ r)

= −(−1)j
′−1(lxj′ ⊗ x1 · · ·xj′−1 · xj′+1 · · ·xn ⊗ r)

It is clear from the definition that ∂ is compatible with the left-k[X]⊗k[X]-
module structure.
∂ squares to zero on Csm(X): For l, r elements of k[X] and x1, . . . , xn

elements of X we obtain the following calculation9, where we use 1j>i as ad

9x1 · · ·xj−1 · xj+1 · · ·xi−1 · xi+1 · · ·xn is to be as interpreted as the product from x1 to
xn while omitting xj and xi, also when j > i.
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hoc notation for 0 if j ≯ i and 1 if j > i.

∂(∂(l ⊗ x1 · · ·xn ⊗ r))

= ∂

(
n∑

i=1

(−1)i−1((lxi ⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ r))

)

− ∂

(
n∑

i=1

(−1)i−1((l ⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ xir))

)

The indices in the sums below range from 1 to n.

= +
∑

i 6=j

(
(−1)i−1(−1)j−1j>i−1

· (lxixj ⊗ x1 · · ·xj−1 · xj+1 · · ·xi−1 · xi+1 · · ·xn ⊗ r)
)

−
∑

i 6=j

(
(−1)i−1(−1)j−1j>i−1

· (lxi ⊗ x1 · · ·xj−1 · xj+1 · · ·xi−1 · xi+1 · · ·xn ⊗ xjr)
)

−
∑

i 6=j

(
(−1)i−1(−1)j−1j>i−1

· (lxj ⊗ x1 · · ·xj−1 · xj+1 · · ·xi−1 · xi+1 · · ·xn ⊗ xir)
)

+
∑

i 6=j

(
(−1)i−1(−1)j−1j>i−1

· (l ⊗ x1 · · ·xj−1 · xj+1 · · ·xi−1 · xi+1 · · ·xn ⊗ xjxir)
)

The second and third line cancel by pairing the summand within the second
line indexed by (i, j) with the summand within the third line indexed by (j, i),
as the sign arising from the 1j>i expression will differ between the two terms.
Furthermore, the first and fourth line each already vanish individually, which
one sees by pairing the summand indexed by (i, j) with the one indexed by
(j, i).

Definition of Csm(X)→ k[X] as a morphism of graded k[X]⊗k[X]-modules:
We define this morphism to be given by

(l ⊗ x1 · · ·xn ⊗ r) 7→

{
l · r if n = 0

0 otherwise

for l, r elements of k[X] and x1, . . . , xn elements of X. It is clear that this is
well-defined and compatible with the k[X]⊗ k[X]-action.

Compatibility of Csm(X) → k[X] with ∂: Let l and r be elements of k[X]
and x an element of X. We have to show that ∂(l⊗x⊗ r) is mapped to zero.
But we have ∂(l⊗ x⊗ r) = lx⊗ r− l⊗ xr, which is mapped to lxr− lxr = 0.
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Definition of ϵ̃X as a morphism of graded k[X]⊗ k[X]-modules: For l and
r elements of k[X] and x1, . . . , xn elements of X, we make the following
definition.

ϵ̃X(l ⊗ x1 · · ·xn ⊗ r) :=
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

To see that this is well-defined on k[X]⊗Λn(k ·X)⊗ k[X], we need to verify
that the formula on the right hand side is 0 if xi = xj for some 1 ≤ i < j ≤ n.
But we can split up Σn as the union of left cosets of the subgroup {id, (i j)}
in Σn, where (i j) denotes the transposition that exchanges i and j, and thus
carry out the following calculation.

∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

=
∑

[σ]∈Σn/(i j)

(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ sgn(σ ◦ (i j))l ⊗ x(i j)(σ−1(1)) ⊗ · · · ⊗ x(i j)(σ−1(n)) ⊗ r
)

As xi = xj , we can simplify the indices of x in the second summand. We also
use that sgn((i j)) = −1.

=
∑

[σ]∈Σn/(i j)

(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

− sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r
)

= 0

That the definition of ϵ̃X is compatible with the left-k[X] ⊗ k[X]-module
structures is clear.

Some comments on how to relate ϵ̃X with actions of Σn: We can define
an action of the symmetric group Σn on CBar(k[X])n that is given by per-
muting the inner n tensor factors, i. e. we make the following definition for
y0, . . . , yn+1 elements of k[X].

σ · (y0 ⊗ y1 ⊗ · · · ⊗ yn ⊗ yn+1) := y0 ⊗ yσ−1(1) ⊗ · · · ⊗ yσ−1(n) ⊗ yn+1

In particular we can then write ϵ̃X as follows, where l, x1, . . . , xn, r are ele-
ments of k[X].

ϵ̃X(l ⊗ x1 · · ·xn ⊗ r) =
∑

σ∈Σn

sgn(σ)(σ · (l ⊗ x1 · · ·xn ⊗ r))

Finally, let us note that if S is a set with n elements and we write an
element of CBar(k[X])n as l⊗ yφ(1) ⊗ · · · ⊗ yφ(n) ⊗ r for φ : {1, . . . , n} → S a
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bijection and l, yφ(1), . . . , yφ(n), r elements of k[X], then the action of σ ∈ Σn
takes the following form.

σ ·
(
l ⊗ yφ(1) ⊗ · · · ⊗ yφ(n) ⊗ r

)
= l ⊗ yφ(σ−1(1)) ⊗ · · · ⊗ yφ(σ−1(n)) ⊗ r (∗)

Compatibility of ϵ̃X with ∂: We carry out the following calculation, for l
and r elements of k[X] and x1, . . . , xn elements of X.

∂(ϵ̃X(l ⊗ x1 · · ·xn ⊗ r))

= ∂

(∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

)

We apply the formula for the boundary operator of CBar(k[X]) as defined in
Construction 6.3.2.1, writing the summands for i = 0 and i = n as separate
terms.

=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+

n−1∑

i=1

(−1)i
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i)xσ−1(i+1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

We now split up the set Σn the sum in the second line is indexed over as
the union of the right cosets of the subgroup generated by the transposition
(i i+ 1). Note that the right cosets have the form {σ, (i i+ 1)σ}.

=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+

n−1∑

i=1

(−1)i
∑

[σ]∈(i i+1)\Σn(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i)xσ−1(i+1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ sgn((i i+ 1) ◦ σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i+1)xσ−1(i) ⊗ · · · ⊗ xσ−1(n) ⊗ r
)

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r
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=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+

n−1∑

i=1

(−1)i
∑

[σ]∈(i i+1)\Σn(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i)xσ−1(i+1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

− sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i+1)xσ−1(i) ⊗ · · · ⊗ xσ−1(n) ⊗ r
)

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

The middle summands now cancel, using that xσ−1(i) and xσ−1(i+1) commute
in k[X].

=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

Now let σ′ be an element of Σn and assume that i is such that σ′(i) = 1.
Then σ = σ1→n ◦ σ

′ ◦ σn→i fixes n, so that we can consider σ as an element
of10 Σn−1. The upshot is that if σ′ maps i to 1, then we can write it uniquely
as σ′ = σn→1 ◦ σ ◦ σi→n for σ an element of Σn−1. Analogously, if σ′ maps
i to n, then we can write it uniquely as σ′ = σ ◦ σi→n for σ an element of
Σn−1.

Continuing the calculation from above, we can now rewrite the sums as
follows.

=

n∑

i=1

∑

σ∈Σn−1

(
sgn(σn→1 ◦ σ ◦ σi→n)

· lx(σn→1◦σ◦σi→n)
−1(1) ⊗ x(σn→1◦σ◦σi→n)

−1(2)

⊗ · · · ⊗ x(σn→1◦σ◦σi→n)
−1(n) ⊗ r

)

+ (−1)n
n∑

i=1

∑

σ∈Σn−1

(
sgn(σ ◦ σi→n)

· l ⊗ x(σ◦σi→n)
−1(1) ⊗ · · · ⊗ x(σ◦σi→n)

−1(n−1) ⊗ x(σ◦σi→n)
−1(n)r

)

10We consider Σn−1 as a subset of Σn by extending with n 7→ n.
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The sign of σj→j′ is (−1)j−j
′ , as one can see by writing σj→j′ as the compo-

sition of transpositions ((j′ + 1) j′)◦ ((j′ + 2) j′ + 1) · · · ◦ (j (j − 1)) if j > j′,
and similarly if j′ > j.

=
n∑

i=1

∑

σ∈Σn−1

(
(−1)n−1+i−n sgn(σ)

· lxσn→i(σ−1(σ1→n(1))) ⊗ xσn→i(σ−1(σ1→n(2)))

⊗ · · · ⊗ xσn→i(σ−1(σ1→n(n))) ⊗ r
)

+ (−1)n
n∑

i=1

∑

σ∈Σn−1

(
(−1)i−n sgn(σ)·

l ⊗ xσn→i(σ−1(1)) ⊗ · · · ⊗ xσn→i(σ−1(n−1)) ⊗ xσn→i(σ−1(n))r
)

=

n∑

i=1

∑

σ∈Σn−1(
(−1)i−1 sgn(σ)lxi ⊗ xσn→i(σ−1(1)) ⊗ · · · ⊗ xσn→i(σ−1(n−1)) ⊗ r

)

−
n∑

i=1

∑

σ∈Σn−1(
(−1)i−1 sgn(σ)l ⊗ xσn→i(σ−1(1)) ⊗ · · · ⊗ xσn→i(σ−1(n−1)) ⊗ xir

)

We can now apply (∗).

=

n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)
(
σ ·
(
lxi ⊗ xσn→i(1) ⊗ · · · ⊗ xσn→i(n−1) ⊗ r

))

−
n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)
(
σ ·
(
l ⊗ xσn→i(1) ⊗ · · · ⊗ xσn→i(n−1) ⊗ xir

))

We now evaluate σn→i in the indices.

=

n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)

· (σ · (lxi ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ r))

−
n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)

· (σ · (l ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ xir))
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=
∑

σ∈Σn−1

sgn(σ)

·

(
σ ·

(
n∑

i=1

(−1)i−1lxi ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ r

))

−
∑

σ∈Σn−1

sgn(σ)

·

(
σ ·

(
n∑

i=1

(−1)i−1l ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ xir

))

We can now plug in the definition of the boundary operator on Csm(X).

=
∑

σ∈Σn−1

sgn(σ)(σ · (∂(l ⊗ x1 ⊗ · · · ⊗ xn ⊗ r)))

Finally, we can use the definition of ϵ̃X .

= ϵ̃X(∂(l ⊗ x1 ⊗ · · · ⊗ xn ⊗ r))

Commutativity of diagram (7.1): Clear from the definitions. ♦

We next show that ϵ̃X is an equivalence between cofibrant replacements of
k[X] in LModk[X]⊗k[X](Ch(k)).

Proposition 7.2.1.2. For X a set the following hold.

(1) Csm(X) as defined in Construction 7.2.1.1 is cofibrant as an object
in the model category LModk[X]⊗k[X](Ch(k)) with respect to the model
structure of Theorem 4.2.2.1 (where Ch(k) carries the model structure
of Fact 4.1.3.1).

(2) The morphism of chain complexes ϵ̃X : Csm(X)→ CBar(X) as defined
in Construction 7.2.1.1 is a quasiisomorphism. ♥

Proof. Proof of claim (1): The category of left-k[X]⊗k[X]-modules in Ch(k) is
isomorphic to Ch(k[X]⊗k[X]). We can equip Ch(k[X]⊗k[X]) with the projec-
tive model structure from Fact 4.1.3.1, and comparing weak equivalences and
fibrations we then see that the isomorphism between LModk[X]⊗k[X](Ch(k))
and Ch(k[X]⊗k[X]) is even an isomorphism of model categories. As Csm(X)
is concentrated in nonnegative degrees and is levelwise free as an k[X]⊗k[X]-
module we can then apply [Hov99, 2.3.6], which shows the claim.

Proof of claim (2): The proof of this claim follows the ideas of [Lod98,
3.2.2]. Considering only the underlying chain complexes, it follows directly
from the definitions that morphisms in diagram (7.1) are natural in the set
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X. We thus obtain a commutative triangle

Csm(−) CBar(k[−])

k[−]

ϵ̃

p

of natural transformations of functors Set→ Ch(k). That the right diagonal
morphism is a quasiisomorphism has been shown in Proposition 6.3.2.2, so it
suffices to show that for any set X the left diagonal morphism

pX : Csm(X)→ k[X]

is a quasiisomorphism.
Both k[−] as well as Λn(k · −), considered as functors

Set→ LModk(Ab)

preserve filtered colimits.11 Colimits of chain complexes are detected levelwise,
the tensor product commutes with colimits in each variable separately, and
if J is a filtered category and n ≥ 0 an integer, then the diagonal functor
J → Jn is cofinal [HTT, 5.3.1.22 and 4.1.1.8]. This implies that Csm(−) and
k[−] preserve filtered colimits as functors Set → Ch(k). Homology preserves
filtered colimits as well [Wei94, 2.6.15], so quasiisomorphisms are closed under
filtered colimits. As any set can be written as the filtered colimit of its finite
subsets, this implies that it suffices to show that p : Csm(−) → k[−] is a
quasiisomorphism on finite sets.
11One can prove this by directly checking the universal property. We sketch this for

Λn(k · −). So let J be a filtered category, F : J → Set a functor, Y a k-module,
and gi : Λ

n(k · F (i)) → Y a morphism of k-modules for each object i of J such that
gi ◦ (Λn(k · F (f))) = gj for every morphism f : j → i in J. Then we have to check
that there exists a unique morphism of k-modules g : Λn(k · (colimF )) → Y such that
g ◦ (Λn(k · ιi)) = gi for every object i in J, where ιi : F (i) → colimF is the morphism
that exhibits colimF as a colimit. The k-module Λn(k · (colimF )) is free, with basis
given by elements of the form x1 · · ·xn with x1, . . . , xn elements of colimF such that
xa 6= xb for a 6= b. For such x1, . . . , xn, there must be (as J is filtered) an object i of J
and elements x′

1, . . . , x
′
n of F (i) such that xa = ιi(x

′
a) for 1 ≤ a ≤ n (filteredness was

used to find a single such i that works for all n elements at once). But then we must
have g(x1 · · ·xn) = (g ◦ (Λn(k · ιi)))(x′

1 · · ·x
′
n) = gi(x

′
1 · · ·x

′
n). This shows uniqueness.

If i′ is a different object of J and x′′
1 , . . . , x

′′
n elements of F (i′) such that xa = ιi′ (x

′′
a)

for 1 ≤ a ≤ n, then, as J is filtered, there must exist morphisms f : i → j and f ′ : i′ → j

in J such that F (f)(x′
a) = F (f ′)(x′′

a) for 1 ≤ a ≤ n. We thus obtain

gi
(
x′
1 · · ·x

′
n

)
= (gj ◦ (Λn(k · F (f))))

(
x′
1 · · ·x

′
n

)
= gj

(
F (f)(x′

1) · · ·F (f)(x′
n)

)

= gj
(
F (f ′)(x′′

1 ) · · ·F (f ′)(x′′
n)

)
=

(
gj ◦ (Λn(k · F (f ′)))

)(
x′′
1 · · ·x′′

n

)
= gi′

(
x′′
1 · · ·x′′

n

)

so that the above formula for g(x1 · · ·xn) is independent of the choice of x′
1, . . . x

′
n,

which implies that this defines a morphism g that is compatible with the gi as required.
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Now suppose that the set X is the disjoint union of Y and Y ′, with
ι : Y → X and ι′ : Y ′ → X the inclusions. We obtain a commutative dia-
gram of chain complexes as follows, to be explained below.

Csm(Y )⊗ Csm(Y ′) Csm(X)

k[Y ]⊗ k[Y ′] k[X]

pY ⊗pY ′ pX

The top horizontal morphism is defined by k-linearly extending the assign-
ment

(l ⊗ y1 · · · yn ⊗ r)⊗ (l′ ⊗ y′1 · · · y
′
n ⊗ r

′)

7→ k[ι](l) · k[ι′](l′)⊗ ι(y1) · · · ι(yn) · ι
′(y′1) · · · ι

′(y′n)⊗ k[ι](r) · k[ι
′](r′)

where l, r are elements of k[Y ], y1, . . . yn are elements of Y , l′, r′ are elements
of k[Y ′], and y′1, . . . , y

′
n are elements of Y ′. It is immediate that this is well-

defined, and checking compatibility with the boundary operator requires only
unpacking the definitions and using that k[X] is commutative. The bottom
horizontal morphism is given by composing k[ι]⊗k[ι′] with the multiplication
k[X]⊗ k[X]→ k[X].

Both the horizontal morphisms in the above diagram are isomorphisms,
as one can easily see by considering the respective bases consisting of ten-
sor products of monomials. To show that pX is a quasiisomorphism, it thus
suffices to show that pY ⊗ pY ′ is a quasiisomorphism.

Assume for the moment that pY and pY ′ are quasiisomorphisms. As k[Y ]
and k[Y ′] are concentrated in degree 0, we can read off their homology and can
thus conclude that Csm(Y ), Csm(Y ′), k[Y ], and k[Y ′] are all chain complexes
that have free homology. The Künneth spectral sequences12 that converge to
the homology of the tensor products Csm(Y )⊗Csm(Y ′) and k[Y ]⊗k[Y ′] thus
collapse already on the second page, from which we can deduce that pY ⊗pY ′

is also a quasiisomorphism.
It thus suffices to show that pY and pY ′ are quasiisomorphisms in order to

conclude that pX is a quasiisomorphism as well, if X is the disjoint union of
Y and Y ′. As every finite set can be written as the disjoint union of sets that
have exactly one element, we have thus reduced the claim to showing that
p{x} is a quasiisomorphism.

We now show that p{x} is a chain homotopy equivalence. Note that the
chain complex Λ(k · {x}) is free with basis 1 in degree 0, free with ba-
sis x in degree 1, and zero in other degrees. We can define a section s of
p{x} by s(r) = 1 ⊗ r, so it suffices to construct a morphism of k-modules
h : k[x] ⊗ k[x] → k[x] ⊗ k · {x} ⊗ k[x] that satisfies ∂ ◦ h = id − s ◦ p{x} on

12See for example [Rot08, 10.90].
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elements of degree 0 and h◦∂ = id on elements of degree 1. For this we define
h as follows on basis elements, where n,m ≥ 0.

h(xn ⊗ xm) :=

n−1∑

i=0

xi ⊗ x⊗ xn+m−i−1

Then we obtain the following calculation for the first identity.

∂(h(xn ⊗ xm))

=

n−1∑

i=0

∂
(
xi ⊗ x⊗ xn+m−i−1

)

=

n−1∑

i=0

(
xi+1 ⊗ xn+m−i−1 − xi ⊗ xn+m−i

)

=
n∑

i=1

xi ⊗ xn+m−i −
n−1∑

i=0

xi ⊗ xn+m−i

= xn ⊗ xm − 1⊗ xn+m

=
(
id− s ◦ p{x}

)
(xn ⊗ xm)

The following calculation shows the second identity.

h(∂(xn ⊗ x⊗ xm))

= h
(
xn+1 ⊗ xm

)
− h
(
xn ⊗ xm+1

)

=

n∑

i=0

xi ⊗ x⊗ xn+m−i −
n−1∑

i=0

xi ⊗ x⊗ xn+m−i

= xn ⊗ x⊗ xm

= id(xn ⊗ x⊗ xm)

This proves the claim.

7.2.2. A quasiisomorphism between de Rham forms and
the standard Hochschild complex

In this section we define and discuss ϵ, a natural quasiisomorphism from
Ω•
k[−]/k to C(k[−]).

Construction 7.2.2.1. For every set X we are going to construct a mor-
phism of chain complexes

ϵX : Ω•
k[X]/k → C(k[X])

where C refers to the normalized standard Hochschild complex defined in
Proposition 6.3.1.10.
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So let X be a set. We define ϵX as a composition as follows, where we will
explain the individual morphisms below.

Ω•
k[X]/k C(k[X])

k[X]⊗ Λ(k ·X) C(k[X])

k[X]⊗k[X]⊗k[X] Csm(X) k[X]⊗k[X]⊗k[X] CBar(k[X])

ϵX

ϵ′X
∼=

ϵ′′X
∼=

k[X]⊗k[X]⊗k[X] ϵ̃X

ϵ′′′X
∼=

In k[X] ⊗ Λ(k ·X) the elements of X in the exterior product are to have
degree 1, and we make the resulting graded k-module into a chain complex by
equipping it with the zero boundary operator. The isomorphism ϵ′X is then
the one suggested in Section 7.1, its inverse is defined by

l ⊗ x1 · · ·xn 7→ l · dx1 · · · dxn

where l is an element of k[X] and x1, . . . , xn are elements of X.
Csm(X) is as in Construction 7.2.1.1, so is given by k[X]⊗Λ(k ·X)⊗ k[X]

as a graded k-module. We can thus define ϵ′′X as

l ⊗ x1 · · ·xn 7→ l ⊗ (1⊗ x1 · · ·xn ⊗ 1)

where l is an element of k[X] and x1, . . . , xn are elements of X, and it is clear
that this is an isomorphism of graded k-modules. We still have to check that
ϵ′′X is a morphism of chain complexes, i. e. is compatible with the boundary
operators, which the following calculations shows it is.

∂(l ⊗ (1⊗ x1 · · ·xn ⊗ 1))

=

n∑

i=1

(−1)i−1l ⊗
(
xi ⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ 1

− 1⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ xi
)

=

n∑

i=1

(−1)i−1 (xil ⊗ (1⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ 1)

−lxi ⊗ (1⊗ x1 · · ·xi−1 · xi+1 · · ·xn ⊗ 1))

=

n∑

i=1

(−1)i−10 = 0
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ϵ̃X was defined in Construction 7.2.1.1, and the lower horizontal morphism
is just the induced one. The isomorphism ϵ′′′X is to be the isomorphism from
Proposition 6.3.2.4, given by

a⊗ (a0 ⊗ · · · ⊗ an+1) 7→ (an+1 · a · a0)⊗ a1 ⊗ · · · ⊗ an

with a, a0, . . . , an elements of k[X]. Finally, the morphism from the standard
Hochschild complex to the normalized standard Hochschild complex is the
quotient morphism from Proposition 6.3.1.10.

Going through all the definitions, ϵX is described by the following formula13

ϵX(r · dx1 · · · dxn) =
∑

σ∈Σn

sgn(σ)r ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

=
∑

σ∈Σn

sgn(σ)σ · (r ⊗ x1 ⊗ · · · ⊗ xn)

where r is an element of k[X] and x1, . . . , xn are elements of X. ♦

Proposition 7.2.2.2. The following statements hold regarding the mor-
phisms constructed in Construction 7.2.2.1.

(1) Let X be a set, x1, . . . , xn elements of X, and r an element of k[X].
Then ϵX maps the element r dx1 · · · dxn of Ωnk[X]/k to the element
r dx1 · · · dxn of Cn(k[X]).

(2) Let X be a set. Then ϵX is a morphism of commutative differential
graded algebras, with respect to the commutative algebra structure on
the normalized standard Hochschild complex from Proposition 6.3.2.11.

(3) The morphisms ϵX assemble to a natural transformation

ϵ : Ω•
k[−]/k → C(k[−])

of functors Set→ CAlg(Ch(k)).

(4) For every set X the chain complexes Ω•
k[X]/k and C(k[X]) are cofibrant,

so the natural transformation ϵ : Ω•
k[−]/k → C(k[−]) from claim (3) can

be lifted to a natural transformation of functors Set→ CAlg(Ch(k)cof).

(5) Let φ : k → k′ be a morphism of commutative rings. Then the diagram

k′ ⊗k Ω
•
k[−]/k k′ ⊗k C(k[−])

Ω•
k′[−]/k′ C(k′[−])

∼=
∼= (7.2)

13For the action of Σn on C(k[X]), see Definition 6.3.2.9.
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of natural transformations of functors Set→ CAlg(Ch(k′)cof) commutes,
where the horizontal functors are induced by ϵ, the left natural isomor-
phism is the one from Remark 7.1.0.214, and the right natural isomor-
phism is the one from Remark 6.3.1.11.

(6) For every set X, the morphism ϵX is a quasiisomorphism. ♥

Proof. Proof of claim (1): If x is an element of X, then we can consider x
as an element of k[X] and thus of C0(k[X]). By Proposition 6.3.1.10 we then
have dx = 1⊗ x in C1(k[X]), and using Proposition 6.3.2.10 we obtain that
for x1, . . . , xn and r as in the claim the equation

r · dx1 · · · dxn =
∑

σ∈Σn

sgn(σ)r ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

holds in Cn(k[X]), which shows the claim, as the right hand side is the formula
for ϵX(r · dx1 · · · dxn) given in Construction 7.2.2.1.

Proof of claim (2): Follows immediately from claim (1).
Proof of claim (3): Let f : X → Y be a map of sets, and denote by F = k[f ]

the induced morphism of commutative k-algebras k[X] → k[Y ]. We have to
show that C(F ) ◦ ϵX = ϵY ◦ Ω

•
F/k. So let x1, . . . , xn be elements of X and r

an element of k[X]. We first evaluate the left hand side on r dx1 · · · dxn. By
(1), ϵX maps r dx1 · · · dxn to r dx1 · · · dxn. As C(F ) is compatible with the
strict mixed structure as well as multiplication, and given by F on degree 0
(see Propositions 6.3.1.10, 6.3.2.7 and 6.3.2.11) we obtain the following.

(C(F ) ◦ ϵX)(r dx1 · · · dxn) = F (r) d f(x1) · · · d f(xn)

We now evaluate ϵY ◦ Ω•
F/k on r dx1 · · · dxn. The morphism Ω•

F/k maps
this element to F (r) d f(x1) · · · d f(xn). It is crucial to note at this point that
this description of this element is again of the form that allows us to apply
(1), i. e. f(xi) is an element of the set Y , not merely an element of k[Y ], see
also Warning 7.2.2.5. We can thus apply (1) to conclude that

(ϵY ◦ Ω
•
F/k)(r dx1 · · · dxn) = F (r) d f(x1) · · · d f(xn)

which shows the claim.
Proof of claim (4): For Ω•

k[X]/k this is discussed before Definition 7.1.0.1.
For C(k[X]), note that k[X] and (k[X]) = k[X]/(k · 1) are free k-modules
with bases

{
x

#–

j
∣∣∣ #–

j ∈ Z×X
}

and
{
x

#–

j
∣∣∣ #–

j ∈ Z×X ,
#–

j 6=
#–

0
}

, respectively,
and thus C(k[X]) is cofibrant by Proposition 6.3.1.10 and [Hov99, 2.3.6].

Proof of claim (5): It suffices to check that the square commutes when
evaluated at a set X, which can be checked by writing a generic element of
14Composed with the natural isomorphism Ω•

k′⊗kk[−]/k
∼= Ω•

k′[−]/k
that is induced by the

natural isomorphism k′ ⊗k k[−] ∼= k′[−] that is given by l ⊗ r 7→ l · φ[−](r).
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the upper left chain complex as r′ ⊗ (r dx1 · · · dxn) for x1, . . . , xn elements
of X, r an element of k[X], and r′ an element of k′, and verifying that the
images in the lower right along the two compositions agree, by applying claim
(1) in a manner similar to the proof of claim (3).

Proof of claim (6): ϵX is defined as the composite of five morphisms in
Construction 7.2.2.1. Three of those were already remarked to be isomor-
phisms in Construction 7.2.2.1, and a fourth morphism is the quotient mor-
phism C(k[X])→ C(k[X]), which was shown in Proposition 6.3.1.10 to be a
quasiisomorphism. It thus remains to show that the fifth involved morphism,
k[X]⊗k[X]⊗k[X] ϵ̃X , is a quasiisomorphism as well.

For this, we note as in the proof of claim (1) of Proposition 7.2.1.2 that the
model categories LModk[X](Ch(k)) and LModk[X]⊗k[X](Ch(k)) are isomorphic
to Ch(k[X]) and Ch(k[X]⊗ k[X]), respectively. The functor

k[X]⊗k[X]⊗k[X] − : LModk[X]⊗k[X](Ch(k))→ LModk[X](Ch(k))

can be identified with the extension of scalars functor along the multipli-
cation morphism k[X] ⊗ k[X] → k[X] and is thus by Fact 4.1.5.1 a left
Quillen functor and hence preserves weak equivalences between cofibrant ob-
jects by [Hov99, 1.1.12]. But ϵ̃X is a quasiisomorphism by claim (2) of Propo-
sition 7.2.1.2, Csm(X) is cofibrant as an object of LModk[X]⊗k[X](Ch(k)) by
claim (1) of Proposition 7.2.1.2, and CBar(k[X]) is cofibrant as an object of
LModk[X]⊗k[X](Ch(k)) by Proposition 6.3.2.3.

As an immediate conclusion of Proposition 7.2.2.2 we obtain the following
result showing that Ω•

k[X]/k is a strict multiplicative (but not mixed) model
for HH(k[X]).

Corollary 7.2.2.3. Let X be a set. Then there is an equivalence

HH(k[X]) ≃ CAlg(γ)
(
Ω•
k[X]/k

)

in CAlg(D(k)). Concretely, such an equivalence is given by the composition15

HH(k[X]) CAlg(γ)(C(k[X])) CAlg(γ)
(
C(k[X])

)
CAlg(γ)

(
Ω•
k[X]/k

)
≃ ≃ ≃

where the left equivalence is the one from Proposition 6.3.4.3, the middle one
is induced by the quotient morphism from Propositions 6.3.1.10 and 6.3.2.11,
and the right equivalence is induced from ϵX as constructed in Construc-
tion 7.2.2.1. ♥

Proof. Follows directly from Propositions 6.3.4.3, 6.3.1.10 and 6.3.2.11 in
combination with Proposition 7.2.2.2 (2), (4), and (6).
15If we later refer to “the equivalence from Corollary 7.2.2.3” we mean this specific one.
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Proposition 7.2.2.4. Let φ : k → k′ be a morphism of commutative rings
and X a set. Then there is a commutative square

k′ ⊗k HH(k[X]) k′ ⊗k CAlg(γ)
(
Ω•
k[X]/k

)

HH(k′ ⊗k k[X]) CAlg(γ)
(
k′ ⊗k Ω

•
k[X]/k

)

HH(k′[X]) CAlg(γ)
(
Ω•
k′[X]/k′

)

≃

≃ ≃

≃ ≃

≃

(7.3)

in CAlg(D(k′)), where the two horizontal equivalences are (induced from)
those from Corollary 7.2.2.3, the top left vertical equivalence is the one from
Remark 6.2.1.6, the bottom left vertical equivalence is induced from the iso-
morphism k′⊗k k[X] ∼= k′[X] that is given by including both tensor factors in
k′[X] and then multiplying, the top right vertical equivalence is the one from
Remark 4.4.1.3, and the bottom right equivalence is induced by the isomor-
phism that is given by applying the unit in the first tensor factor and Ω•

ιk[X]/k

in the second, and then multiplying. ♥

Proof. Consider the following diagram in CAlg(D(k′)) that will be explained
below. To save space we write γ for CAlg(γ) in this diagram.

k′ ⊗k HH(k[X]) HH(k′ ⊗k k[X]) HH(k′[X])

k′ ⊗k γ(C(k[X])) γ(k′ ⊗k C(k[X])) γ(C(k′[X]))

k′ ⊗k γ
(
C(k[X])

)
γ
(
k′ ⊗k C(k[X])

)
γ
(
C(k′[X])

)

k′ ⊗k γ
(
Ω•
k[X]/k

)
γ
(
k′ ⊗k Ω

•
k′[X]/k

)
γ
(
Ω•
k′[X]/k

)

≃

≃ ≃

≃

≃

≃ ≃

≃ ≃

≃ ≃

≃k′⊗kCAlg(γ)(ϵX)

≃ ≃

≃CAlg(γ)(k′⊗kϵX) ≃CAlg(γ)(ϵX)

The big outer rectangle is exactly given by the transpose of diagram (with-
out a filler so far) (7.3), after replacing the horizontal equivalences by their
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definition in Corollary 7.2.2.3. The middle vertical morphisms are all induced
by the quotient morphism from the standard Hochschild complex to the nor-
malized standard Hochschild complex, see Propositions 6.3.1.10 and 6.3.2.11.
The two middle left horizontal equivalences are the ones from Remark 4.4.1.3,
the middle right horizontal equivalences are the ones from Remarks 6.3.1.7
and 6.3.1.11, combined with the equivalence k′ ⊗k k[X] ∼= k′[X] that was
already mentioned in the statement.

It now suffices to give a filler for all the small squares and rectangles in the
above diagram. The top rectangle has a filler by Remark 6.3.4.4 and minor
considerations regarding the isomorphism k′⊗kk[X] ∼= k′[X] using naturality
of the equivalence Proposition 6.3.4.3. The middle left and bottom left squares
have fillers by naturality of the equivalences from Remark 4.4.1.3. The middle
right square has a filler by Remark 6.3.1.11. The bottom right square has a
filler by Proposition 7.2.2.2 (5).

Warning 7.2.2.5. Let X be a nonempty set. Then ϵX is not not strictly
compatible with the strict mixed structures on domain and codomain. Indeed,
if x is an element of X, then we have

d
(
ϵX
(
x2
))

= d
(
x2
)
= 1⊗ x2

which is not equal (though homologous) to the following.

ϵX
(
d
(
x2
))

= ϵX(2x dx) = 2x⊗ x

In Section 7.3 we will however see that ϵ can be upgraded to a strongly
homotopy linear morphism. ♦

Warning 7.2.2.6. A previous version of this text claimed that ϵ as defined
in Construction 7.2.2.1 can even be considered as a natural transformation
Ω•

−/k → C(−) of functors from the full subcategory of the category of k-
algebras spanned by the polynomial algebras, to CAlg(Ch(k)cof), a claim that
fed into the eventual proof of the main result Theorem A.

That claim is however incorrect, as was pointed out by Thomas Nikolaus.
Indeed, if we consider the morphism of commutative rings φ : Z[x] → Z[y]
that maps x to y2, then the diagram

Ω•
Z[x]/Z C(Z[x])

Ω•
Z[y]/Z C(Z[y])

Ω•
ϕ/Z

ϵ{x}

C(φ)

ϵ{y}

does not commute, as one can check using the element dx of the top left;
The composition along the top right maps this element to 1⊗ y2 in the bot-
tom right, whereas the composition along the bottom left maps this element
to 2y ⊗ y. This phenomenon is closely related to ϵ failing to preserve the
differential, see Warning 7.2.2.5. ♦
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7.3. De Rham forms as a strict model in Mixed
LetX be a set. As a conclusion to Section 7.2 we showed in Corollary 7.2.2.3

that Ω•
k[X]/k is a strict model for HH(k[X]) as an object in CAlg(D(k)). In

this section we show that it is also a model for HHMixed(k[X]) as an object
in Mixed.

To do so we show that ϵX can be upgraded to a strongly homotopy linear
morphism in the sense of Section 4.2.3. We will define the data necessary for
this, i. e. morphisms ϵ(l)X for l ≥ 0 (where ϵ(0)X = ϵX), in Section 7.3.1, and the
rest of the section will then be devoted to proving that this makes ϵX into a
strongly homotopy linear morphism.

As Ω•
k[X]/k has zero boundary operator, this amounts to

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X (7.4)

holding for l ≥ 1. We will be able to use the partial Leibniz rule for d
on the normalized standard Hochschild complex that we proved in Proposi-
tion 6.3.2.14 to reduce to only needing to show the above identity for elements
of degree 0. This will make up the bulk of this section.

A general pattern that will occur many times in this verification will be
that we are given a sum of two sums, each of which are indexed over somewhat
complicated indexing sets. We then produce a bijection between those two
sets and show that the summands that correspond along this bijection agree,
perhaps up to sign. The strategy to show that (7.4) holds will thus be to write
both sides as sums over some indexing set, then to subdivide the respective
indexing sets sufficiently to be able to pairwise match up the subsets; some
will match up on the same side of (7.4) and cancel, others from one side
will match with the other side. As the indexing sets we consider will often
involve permutations, we will make heavy use of notation and definitions from
Section 2.3 (34).

We now give a short overview over the main steps of the proof.
In Section 7.3.2 we will begin by writing the left hand side of (7.4) as a

sum indexed by a set I. We then write I as a disjoint union of various subsets,
some of which have “cancel” in their notation, and show that the sums over
those subsets vanish.

In Section 7.3.3 we begin by considering ϵ
(l−1)
X ◦ d, and immediately sub-

divide the resulting summands into two types. We will also match up the
summands of the first type with sums over some subsets of I, i. e. with sum-
mands from the left hand side of (7.4). In Section 7.3.4 we will then turn
towards the summands of the second type, and rewrite them as a sum over
a new indexing set Id that is better suited for later simplifications. In Sec-
tion 7.3.5 we consider d◦ϵ(l−1)

X and write this as a sum over a indexing set I1.
We then sum up the progress made so far in showing (7.4) in Section 7.3.6.

While Id and I1 are defined using similar notions, this does not hold for I,
so in Section 7.3.7 we replace the remaining subsets of I (those over which the

372



7.3. De Rham forms as a strict model in Mixed

sums have not been matched up yet) by sets I∂even and I∂odd that are defined
in a way similar to Id and I1.

In Section 7.3.8 we then write I∂even, I∂odd, Id, and I1 as disjoint unions
of various subsets. In Section 7.3.9 we show how the sums over some of the
subsets of Id cancel with each other, and in Section 7.3.10 we show how the
remaining sums match up with each other.

Finally, we put everything together in Section 7.3.11 to prove that ϵ(•)X
indeed upgrades ϵX to a strongly homotopy linear morphism.

7.3.1. Definition of the higher homotopies
Construction 7.3.1.1. Let X be a totally ordered set. We will construct
morphisms of Z-graded k-modules

ϵ
(l)
X : Ω•

k[X]/k → C(k[X])

of degree 2l for every l ≥ 0, such that ϵ(0)X = ϵX , where ϵX is as defined in
Construction 7.2.2.1.

The construction and later verifications that we will need to do to show
that ϵ(•)X forms a strongly homotopy linear morphism are somewhat involved,
so we begin by introducing some auxiliary notation and definitions.

First let l ≥ 1 be an integer. Then we let El be the following subset of the
symmetric group Σ2l

16, where we consider σ to be extended by σ(0) = 0.

El :=
{
σ ∈ Σ2l

∣∣ ∀ 0 ≤ i ≤ l − 1: σ cyclically preserves the

ordering of {2i, 2i+ 1, 2i+ 2}
}

Note that as σ(0) was defined to be 0 the condition in particular implies that
σ(1) < σ(2).

Next, if l,m ≥ 0 are integers, then we first define a set C(l,m) as follows.

C(l,m) :=
{
(c1, . . . , cl+1) ∈ {1, . . . ,m+ 1}l+1

∣∣ cl+1 = m+ 1 and

ci + 1 ≤ ci+1 − 1 for 1 ≤ i ≤ l
}

Let l,m ≥ 0 be integers, y1, . . . , ym elements of k[X], and (c1, . . . , cl+1) an
element of C(l,m). Then we define an element T ((y1, . . . , ym), (c1, . . . , cl+1))
in C2l(k[X]) as follows.

T ((y1, . . . , ym), (c1, . . . , cl+1)) :=

c1−1∏

j=1

yj⊗yc1⊗
c2−1∏

j=c1+1

yj⊗· · ·⊗ycl⊗

cl+1−1∏

j=cl+1

yj

16The symmetric group Σ2l is the group of bijections of the set {1, . . . , 2l}.
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Note that as cl+1−1 = m+1−1 = m, the last tensor factor does not contain
undefined factors. The condition ci+1 ≤ ci+1− 1 in the definition of C(l,m)

is made precisely to ensure that the products
∏ci+1−1
j=ci+1 yj are not 1 and thus

that T ((y1, . . . , ym), (c1, . . . , cl+1)) is not zero. We will furthermore use the
notation T ((y1, . . . , ym), (c1, . . . , cl+1))i, where 0 ≤ i ≤ 2l, for the i-th tensor
factor of T ((y1, . . . , ym), (c1, . . . , cl+1)).

We can now define ϵ(l)X on degree 0, where we can prescribe the value on
monomials in X and then extend k-linearly. Every monomial in X can be
written uniquely as

∏m
j=1 yj where m ≥ 0, each yj is an element of X, and

such that j < j′ implies yj < yj′ . For example if X = {x1, x2, x3} with
x1 < x2 < x3, then the monomial x21x2x33 would be written as the product
x1 · x1 · x2 · x3 · x3 · x3. On elements of this form we define ϵ(l)X as

ϵ
(l)
X




m∏

j=1

yj


 =

∑

σ∈El

sgn(σ) · σ ·




∑

(c1,...,cl+1)
∈C(l,m)

T ((y1, . . . , ym), (c1, . . . , cl+1))




Note that in the case l = 0 the set El consists only of the identity, C(l,m) only
of the 1-tuple (m+1), and that T ((y1, . . . , ym), (m+1)) =

∏m
j=1 yj . The above

definition of ϵ(0)X thus recovers the definition of ϵX from Construction 7.2.2.1
on elements of degree 0.

To define ϵ(l)X in degrees other than 0, we set

ϵ
(l)
X (f dx1 · · · dxn) := ϵ

(l)
X (f) · ϵX(dx1 · · · dxn)

for f an element of k[X] and x1, . . . , xn elements of X, and extend k-linearly.
Note that Proposition 7.2.2.2 (2) implies that ϵ(0)X = ϵX . ♦

7.3.2. Simplification of the boundary
We begin the verification that

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

holds for l ≥ 1 by subdividing the left side, and showing that some parts
cancel directly.

Definition 7.3.2.1. Let X be a set. Then we define for integers 0 ≤ i ≤ n

a morphism of k-modules

∂i : Cn(k[X])→ Cn−1(k[X])

as the k-linear extension of

∂i : x
#–v0 ⊗ x

#–v1 ⊗ · · · ⊗ x
# –vn 7→ x

#–v0 ⊗ · · · ⊗ x
#     –vi−1 ⊗ x

#–vi+
#     –vi+1 ⊗ x

#     –vi+2 ⊗ · · · ⊗ x
# –vn
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for 0 ≤ i ≤ n− 1 and
∂n : x

#–v0 ⊗ x
#–v1 ⊗ · · · ⊗ x

# –vn 7→ x
# –vn+

#–v0 ⊗ x
#–v1 ⊗ · · · ⊗ x

#       –vn−1

for i = n, with #–v0, . . . ,
# –vn elements of ZX≥0 (with all but finitely many compo-

nents zero) such that #–v1, . . . ,
# –vn are non-zero. ♦

Remark 7.3.2.2. Let X be a totally ordered set. Then it follows directly
from the definition of the boundary operator on the normalized standard
Hochschild complex of k[X] in Propositions 6.3.1.9 and 6.3.1.10 that for n ≥ 1

∂ : Cn(k[X])→ Cn−1(k[X])

is given by the following sum.

∂ =

n∑

i=0

(−1)i∂i

This implies in particular the following formula, where l ≥ 1, and y1, . . . , ym
and other notation is as in Construction 7.3.1.1.

∂


ϵ(l)X




m∏

j=1

yj




 =

∑

0≤i≤2l,
σ∈El

#–c ∈C(l,m)

(−1)i · sgn(σ) · ∂i(σ · T ((y1, . . . , ym), #–c ))

♦

Definition 7.3.2.3. In this definition we will use notation from Construc-
tion 7.3.1.1. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. We will define several subsets of the set

I := {0, . . . , 2l} × El × C(l,m)

that by Remark 7.3.2.2 is the indexing set of a sum that ∂(ϵ(l)X (
∏m
j=1 yj)) can

be expressed as.
For 1 ≤ i ≤ 2l − 1 we define the following set.

Icanceli :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and for all 0 ≤ p ≤ l − 1 it holds that

{σ−1(i), σ−1(i+ 1)} * {2p, 2p+ 1, 2p+ 2}
}

For i = 0 and i = 2l we make the following definitions.

Icancel0 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = 0 and σ−1(1) 6= 1
}

Icancel2l :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = 2l and σ−1(2l) 6= 2
}
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The above three subsets of I cover the large part of I where σ−1(i) and
σ−1(i + 1) do not take certain special values. We now define a number of
additional subsets to deal with the remaining elements. We begin with the
case in which i is neither 0 nor 2l, and where 2p+ 1 is involved. So we make
the following definitions for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1.

Icanceli,2p,2p+1 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 2p

and σ−1(i+ 1) = 2p+ 1

and cp+1 + 1 < cp+2 − 1
}

Icanceli,2p+1,2p+2 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 2p+ 1

and σ−1(i+ 1) = 2p+ 2

and cp + 1 < cp+1 − 1
}

While p = 0 would be impossible in the definition of Icanceli,2p,2p+1, it is possible
for Icanceli,2p+1,2p+2, though we need a slightly different definition, as there is no
c0. So we make the following definition for 1 ≤ i ≤ 2l − 1.

Icanceli,1,2 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 1 and σ−1(i+ 1) = 2

and 0 < c1 − 1
}

Now we consider the case where 2p+1 is not involved. We make the following
definition for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1.

Ii,2p+2,2p :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 2p+ 2

and σ−1(i+ 1) = 2p
}

We next consider the cases i = 0 and i = 2l.17

Icancel0,0,1 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = 0 and σ−1(1) = 1 and c1 + 1 < c2 − 1
}

I0,0,1 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = 0 and σ−1(1) = 1 and c1 + 1 = c2 − 1
}

I2l,2,0 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = 2l and σ−1(2l) = 2
}

We now need to cover the left over complement. So we make the following
definition for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1.

Ii,2p,2p+1 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 2p

and σ−1(i+ 1) = 2p+ 1

and cp+1 + 1 = cp+2 − 1
}

Ii,2p+1,2p+2 :=
{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 2p+ 1

and σ−1(i+ 1) = 2p+ 2
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and cp + 1 = cp+1 − 1
}

Finally, we define the following for 1 ≤ i ≤ 2l − 1.
Ii,1,2 :=

{
(i′, σ, #–c ) ∈ I

∣∣ i′ = i and σ−1(i) = 1 and σ−1(i+ 1) = 2

and c1 = 1
}

Still with l, m, and y1, . . . , ym as above, we also introduce the following
shorthand notation. For (i, σ, #–c ) an element of I we define

B((i, σ, #–c )) := (−1)i · sgn(σ) · ∂i(σ · T ((y1, . . . , ym), #–c ))

so that we with Remark 7.3.2.2 have the following concise formula for the
boundary of ϵ(l)X (

∏m
j=1 yj).

∂


ϵ(l)X




m∏

j=1

yj




 =

∑

v∈I

B(v)

♦

Proposition 7.3.2.4. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then I is the
disjoint union of the following subsets.

Icanceli for 0 ≤ i ≤ 2l

Icanceli,2p,2p+1 for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1

Icanceli,2p+1,2p+2 for 1 ≤ i ≤ 2l − 1 and 0 ≤ p ≤ l − 1

Ii,2p+2,2p for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1

Ii,2p,2p+1 for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1

Ii,2p+1,2p+2 for 1 ≤ i ≤ 2l − 1 and 0 ≤ p ≤ l − 1

Icancel0,0,1

I0,0,1

I2l,2,0 ♥

Proof. We provide a proof here, but even the very diligent reader that oth-
erwise reads all proofs might prefer to go through the case distinctions for
themselves rather than reading the proof. The only arguments appearing
apart from nested case distinctions is to look into the definitions of El and
C(l,m) to see how they exclude certain values, e. g. σ−1(i) can not be 0 if
i > 0 or σ(2p) = σ(2p+ 1) + 1 is not possible.
17Note that l ≥ 1 implies that c2 is well-defined.
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In all listed subsets there is a unique integer occurring as the first compo-
nent of the elements. We can thus consider the possible values for the first
component separately.

We begin with the value 0. So let (0, σ, #–c ) be an element of I. We have to
show that (0, σ, #–c ) is an element of exactly one of the subsets Icancel0 , Icancel0,0,1 ,
and I0,0,1. If σ−1(1) 6= 1, then the element lies in Icancel0 but not in the other
two subsets. If instead σ−1(1) = 1, then the element lies in Icancel0,0,1 if and only
if c1+1 < c2− 1 and in I0,0,1 if and only if c1+1 = c2− 1. As c1+1 ≤ c2− 1
by the definition of C(l,m), this covers all cases.

We next consider elements for which the first component is 2l. So let
(2l, σ, #–c ) be an element of I. We have to show that (0, σ, #–c ) is an element of
exactly one of the subsets Icancel2l and I2l,2,0. But the element is in Icancel2l if
and only if σ−1(2l) 6= 2, and in I2l,2,0 otherwise.

Now let 1 ≤ i ≤ 2l− 1 and (i, σ, #–c ) an element of I. We have to show that
this element lies in precisely one of the following subsets of I.

Icanceli

Icanceli,2p,2p+1 for 1 ≤ p ≤ l − 1

Icanceli,2p+1,2p+2 for 0 ≤ p ≤ l − 1

Ii,2p+2,2p for 1 ≤ p ≤ l − 1

Ii,2p,2p+1 for 1 ≤ p ≤ l − 1

Ii,2p+1,2p+2 for 0 ≤ p ≤ l − 1

We first note that (i, σ, #–c ) is an element of Icanceli if and only if for all
0 ≤ p ≤ l − 1 it holds that {σ−1(i), σ−1(i + 1)} * {2p, 2p + 1, 2p + 2}.
It thus remains to show that (i, σ, #–c ) is an element of one of the other
subsets listed above if and only if there exists a 0 ≤ p ≤ l − 1 such that
{σ−1(i), σ−1(i+1)} ⊆ {2p, 2p+1, 2p+2}. It follows directly from the defini-
tions that if (i, σ, #–c ) is an element of one of those subsets, then there exists
such a 0 ≤ p ≤ l − 1.

We thus assume that 0 ≤ p ≤ l − 1 is such that

{σ−1(i), σ−1(i+ 1)} ⊆ {2p, 2p+ 1, 2p+ 2}

and what we need to show is that (i, σ, #–c ) is an element of exactly one of the
subsets of I listed below.

Ii,2p+2,2p for 1 ≤ p ≤ l − 1

Icanceli,2p,2p+1 for 1 ≤ p ≤ l − 1

Ii,2p,2p+1 for 1 ≤ p ≤ l − 1

Icanceli,2p+1,2p+2 for 0 ≤ p ≤ l − 1

Ii,2p+1,2p+2 for 0 ≤ p ≤ l − 1
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By definition of El it must hold either that

σ(2p) < σ(2p+ 1) < σ(2p+ 2)

or
σ(2p+ 2) < σ(2p) < σ(2p+ 1)

or
σ(2p+ 1) < σ(2p+ 2) < σ(2p)

which implies that it is not possible to have one of the following three equal-
ities.

σ(2p+ 1) = σ(2p+ 2) + 1

σ(2p+ 2) = σ(2p) + 1

σ(2p) = σ(2p+ 1) + 1

This means that we must be in precisely one of the following three cases.

(a) σ−1(i) = 2p+ 2 and σ−1(i+ 1) = 2p.

(b) σ−1(i) = 2p and σ−1(i+ 1) = 2p+ 1.

(c) σ−1(i) = 2p+ 1 and σ−1(i+ 1) = 2p+ 2.

We now go through these cases individually.
In case (a), we first note that (i, σ, #–c ) can only possibly be an element of

a subset of the first type listed above. Furthermore, note that p can not be 0,
because σ(0) = 0 6= i+ 1. Thus we must have 1 ≤ p ≤ l − 1, and so (i, σ, #–c )
is indeed an element of Ii,2p+2,2p.

In case (b), the element (i, σ, #–c ) can only possibly be an element of the
second or third type of subset listed above, i. e. Icanceli,2q,2q+1 and Ii,2q,2q+1 for
1 ≤ q ≤ l− 1. Again p can not be 0, as σ(0) = 0 6= i. By definition of C(l,m)
we must have cp+1 + 1 ≤ cp+2 − 1, so we have either cp+1 + 1 < cp+2 − 1 or
cp+1+1 = cp+2− 1. The element (i, σ, #–c ) is an element of Icanceli,2p,2p+1 precisely
in the first case and of Ii,2p,2p+1 precisely in the second case.

Finally, in the case (c), the element (i, σ, #–c ) can only possibly be an ele-
ment of the fourth or fifth type of subset listed above, i. e. Icanceli,2q+1,2q+2 and
Ii,2q+1,2q+2 for 0 ≤ q ≤ l − 1. If p > 0, then the argument is analogous to
the case (b), but it remains to show that if p = 0, then (i, σ, #–c ) is an element
of precisely one of Icanceli,1,2 and Ii,1,2. It is an element of the first precisely if
c1 > 1 and of the second precisely if c1 = 1. As c1 ≥ 1 by the definition of
C(l,m), this finishes the proof.

Proposition 7.3.2.5. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
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m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following
holds for every 1 ≤ i ≤ 2l − 1.

∑

v∈Icancel
i

B(v) = 0

♥

Proof. Let (i, σ, #–c ) be an element of Icanceli . Then we claim that the tuple
(i, (i i+1) ◦ σ, #–c ) is also an element of Icanceli . For this we need to show that
(i i + 1) ◦ σ is again an element of El, and that for all 0 ≤ p ≤ l − 1 the
following holds.

{
σ−1

(
(i i+ 1)−1(i)

)
, σ−1

(
(i i+ 1)−1(i+ 1)

) }
* {2p, 2p+ 1, 2p+ 2}

This latter condition follows directly from (i, σ, #–c ) being an element of Icanceli

given the following short calculation.
{
σ−1

(
(i i+ 1)−1(i)

)
, σ−1

(
(i i+ 1)−1(i+ 1)

) }

=
{
σ−1(i+ 1), σ−1(i)

}
=
{
σ−1(i), σ−1(i+ 1)

}

We still have to show that (i i+1)◦σ is an element of El. So let 0 ≤ p ≤ l−1.
Then there is a condition on the ordering of the three integers obtained by
applying (i i + 1) ◦ σ to 2p, 2p + 1, and 2p + 2. Applying σ to those three
elements, the condition is satisfied as σ is in El. As postcomposing with
(i i + 1) only swaps i and i + 1, the condition will thus also be satisfied for
(i i+1)◦σ as long as at most one of i and i+1 occurs as a value of 2p, 2p+1,
and 2p+ 2 under σ. But this is ensured by the condition that

{
σ−1(i), σ−1(i+ 1)

}
* {2p, 2p+ 1, 2p+ 2}

that holds due to (i′, σ, #–c ) being an element of Icanceli .
Now let S be a subset of Σ2l containing exactly one representative of each

right coset of {id, (i i+ 1)}. We then obtain
∑

v∈Icancel
i

B(v) =
∑

(i,σ, #–c )∈Icancel
i

such that
σ∈S

(B((i, σ, #–c )) +B((i, (i i+ 1) ◦ σ, #–c )))

so that it suffices to show that if (i, σ, #–c ) is an element of Icanceli , then the
following holds.

B((i, σ, #–c )) +B((i, (i i+ 1) ◦ σ, #–c )) = 0

But as ∂i multiplies together the i-th and i+ 1-th tensor factor we have

∂i((i i+ 1) · (σ · T ((y1, . . . , ym), #–c ))) = ∂i(σ · T ((y1, . . . , ym), #–c ))

which together with sgn((i i+ 1)) = −1 finishes the proof.
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Proposition 7.3.2.6. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following
holds. ∑

v∈Icancel
0

B(v) +
∑

v∈Icancel
2l

B(v) = 0

♥

Proof. We prove this by constructing a bijection

φ : Icancel0 → Icancel2l

such that for every element v of Icancel0 we have B(φ(v)) = −B(v).
We define φ as follows.

φ : (0, σ, #–c ) 7→ (2l, σ1→2l ◦ σ,
#–c )

We also directly define the candidate inverse map as follows.

ψ : (2l, σ, #–c ) 7→ (0, σ2l→1 ◦ σ,
#–c )

It is clear that φ and ψ will be mutually inverse bijections as long as both
are well-defined.

Before showing well-definedness we begin with a small observation. Let
(0, σ, #–c ) be an element of Icancel0 . Then the definition of Icancel0 rules out that
σ−1(1) = 1, and we claim that the requirement that σ is an element of El
also rules out σ−1(1) = 2. Indeed, if we had σ(2) = 1, then, as σ(0) = 0,
we would have σ(0) < σ(2), which due to σ ∈ El requires that σ(1) is an
integer bigger than σ(0) and smaller than σ(2), which would be impossible.
In a completely analogous way one can see that if (2l, σ, #–c ) is an element of
Icancel2l , then σ−1(2l) can be neither 1 nor 2.

Now we turn to showing that φ is well-defined. So let (0, σ, #–c ) be an element
of Icancel0 . We have to show that (2l, σ1→2l ◦ σ,

#–c ) is an element of Icancel2l .
We first show that σ1→2l ◦ σ is an element of El. So let 0 ≤ p ≤ l − 1.

As σ1→2l preserves the ordering of the subset {2, . . . 2l} it is immediate that
σ1→2l ◦ σ cyclically preserves the ordering of {2p, 2p + 1, 2p + 2} as long as
none of the three values σ(2p), σ(2p + 1), and σ(2p + 2) is 1. So assume
that 0 ≤ p ≤ l − 1 is such that one of these three values is 1. Our previous
observation rules out that this can happen when p = 0, so we may assume
that 1 ≤ p ≤ l− 1, which implies that 2p, 2p+1, and 2p+2 are all at least 1
and hence their images under σ will also be at least 1, which implies that the
one that is 1 will be the minimum, and σ being in El will then imply which
of the other two values must be bigger. We now consider the three possible
cases separately. So assume first that σ(2p) = 1. We then obtain that

σ(2p) < σ(2p+ 1) < σ(2p+ 2)
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which implies the following.

(σ1→2l ◦ σ)(2p+ 1) < (σ1→2l ◦ σ)(2p+ 2) < (σ1→2l ◦ σ)(2p)

Next, assume that σ(2p+ 1) = 1. In this case we must have

σ(2p+ 1) < σ(2p+ 2) < σ(2p)

which implies the following.

(σ1→2l ◦ σ)(2p+ 2) < (σ1→2l ◦ σ)(2p) < (σ1→2l ◦ σ)(2p+ 1)

Finally, assume that σ(2p+ 2) = 1. Then we must have

σ(2p+ 2) < σ(2p) < σ(2p+ 1)

which implies the following.

(σ1→2l ◦ σ)(2p) < (σ1→2l ◦ σ)(2p+ 1) < (σ1→2l ◦ σ)(2p+ 2)

This shows that σ1→2l◦σ is an element of El. To show that φ is well-defined
we still need to show that

(σ1→2l ◦ σ)
−1

(2l) = σ−1
(
σ−1
1→2l(2l)

)
= σ−1(1)

is not 2. But this has been shown in the observation we made above.
We have now shown that φ is well-defined. That ψ is well-defined can be

shown in a completely analogous way.
It remains to show that B(φ(v)) = −B(v) holds for every element v of

Icancel0 . So let (0, σ, #–c ) be an element of Icancel0 . Then we have the following
calculation.

B(φ((0, σ, #–c )))

= B((2l, σ1→2l ◦ σ,
#–c ))

= (−1)2l · sgn(σ1→2l ◦ σ) · ∂2l(σ1→2l · (σ · T ((y1, . . . , ym), #–c )))

= sgn(σ1→2l) · sgn(σ) · ∂0(σ · T ((y1, . . . , ym), #–c ))

= (−1) · sgn(σ) · ∂0(σ · T ((y1, . . . , ym), #–c ))

= −B((0, σ, #–c ))

Proposition 7.3.2.7. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Let 1 ≤ p ≤ l − 1
be an integer. Then the following holds.

∑

1≤i≤2l−1

v∈Icancel
i,2p,2p+1

B(v) +
∑

1≤i≤2l−1

v∈Icancel
i,2p+1,2p+2

B(v) = 0

♥
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Proof. We use the following notation.

J :=
{
(i, v) ∈ {1, . . . , 2l − 1} × I

∣∣ v ∈ Icanceli,2p,2p+1

}

J ′ :=
{
(i, v) ∈ {1, . . . , 2l − 1} × I

∣∣ v ∈ Icanceli,2p+1,2p+2

}

To prove this proposition it then suffices to construct maps

φ : J → J ′ and ψ : J ′ → J

that are mutually inverse bijections such that for every element (i, v) of J we
have B(w) = −B(v) if w is the second component of φ((i, v)).

So let (i, (i, σ, #–c )) be an element of J . By definition of Icanceli,2p,2p+1 we have
σ(2p) = i and σ(2p+ 1) = i+ 1 so that σ(2p) < σ(2p+ 1). The definition of
El then implies that we are in one of the following two cases.

(a) σ(2p) < σ(2p+ 1) < σ(2p+ 2)

(b) σ(2p+ 2) < σ(2p) < σ(2p+ 1)

If we are in case (a) we let τ = σi+1→σ(2p+2)−1
18, and if we are instead in

case (b) we let τ = σi+1→σ(2p+2). In both cases we define φ as follows.

φ((i, (i, σ, #–c ))) := (τ(i+ 1), (τ(i+ 1), τ ◦ σ, #–c + #      –ep+1))

We will show later that φ is actually well-defined, but will first define ψ.
So let (i, (i, σ, #–c )) be an element of J ′. By definition of Icanceli,2p+1,2p+2 we have
σ(2p + 1) = i and σ(2p + 2) = i + 1 so that σ(2p + 1) < σ(2p + 2). The
definition of El then implies that we are in one of the following two cases.

(a) σ(2p) < σ(2p+ 1) < σ(2p+ 2)

(b) σ(2p+ 1) < σ(2p+ 2) < σ(2p)

If we are in case (a) we let τ ′ = σi→σ(2p)+1
19 and if we are instead in case

(b) we let τ ′ = σi→σ(2p) . In both cases we define ψ as follows.

ψ((i, (i, σ, #–c ))) := (τ ′(i)− 1, (τ ′(i)− 1, τ ′ ◦ σ, #–c − #      –ep+1))

We next show that φ is well-defined. So let (i, (i, σ, #–c )) be an element of
J . We first show that 1 ≤ τ(i + 1) ≤ 2l − 1. That 1 ≤ τ(i + 1) is clear. In
case (a) we have that τ(i+1) is by definition strictly smaller than σ(2p+2),
which can be at most 2l, and in case (b) we can use that σ(2p+2) is strictly
smaller than σ(2p) by virtue of us being in case (b), and σ(2p) is at most 2l.
This show that τ(i+ 1) ≤ 2l − 1.

Next we need to show that τ ◦ σ is an element of El. As τ preserves the
ordering of the complement of {σ(2p + 1)} it immediately follows from σ

18Note that σ(2p+1) < σ(2p+2) implies σ(2p+2)−1 ≥ σ(2p+1) ≥ 1, so τ is well-defined.
19Note that σ(2p) < σ(2p+ 1) implies σ(2p) + 1 ≤ σ(2p+ 1) ≤ 2l, so τ ′ is well-defined.
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cyclically preserving the ordering of {2q, 2q + 1, 2q + 2} that τ ◦ σ does so as
well, as long as 0 ≤ q ≤ l − 1 with q 6= p. But if we are in case (a) then we
have

(τ ◦ σ)(2p) < (τ ◦ σ)(2p+ 1) < (τ ◦ σ)(2p+ 2)

and in case (b) we have

(τ ◦ σ)(2p+ 1) < (τ ◦ σ)(2p+ 2) < (τ ◦ σ)(2p)

so that τ ◦ σ cyclically preserves the ordering of {2p, 2p+ 1, 2p+ 2} as well.
To finish showing that (τ(i + 1), τ ◦ σ, #–c + #      –ep+1) is an element of I we

need to show that
#–

c′ = #–c + #      –ep+1 is an element of C(l,m). Most of the
(in)equalities that need to be satisfied for this are inherited from #–c , as

#–

c′ has
all components except the p+1-th component in common with #–c , so we are
left to show that cp + 1 ≤ (cp+1 + 1)− 1 and (cp+1 + 1) + 1 ≤ cp+2 − 1. The
former follows directly from cp + 1 ≤ cp+1 − 1, and the latter follows from
cp+1 + 1 < cp+2 − 1, which is part of the definition of Icanceli,2p,2p+1.

We have now shown that (τ(i+1), τ ◦ σ, #–c + #      –ep+1) is an element of I, and
we need to show that it is even an element of Icancel

τ(p+1),2p+1,2p+2. The condition
on τ ◦ σ holds as

τ(σ(2p+ 1)) = τ(i+ 1)

and τ is defined exactly so that τ(i + 1) + 1 = τ(σ(2p + 2)). The condition
on #–c + #      –ep+1 requires that

(cp) + 1 < (cp+1 + 1)− 1

which holds as cp + 1 ≤ cp+1 − 1 due to #–c being in C(l,m).
This finishes the proof that φ is well-defined. That ψ is well-defined can

be shown completely analogously.
We next show that ψ ◦ φ = id. So let (i, (i, σ, #–c )) be an element of J and

τ as in the definition of φ so that the following holds.

φ((i, (i, σ, #–c ))) := (τ(i+ 1), (τ(i+ 1), τ ◦ σ, #–c + #      –ep+1))

Then let τ ′ be as in the definition of ψ such that we have the following.

ψ(φ((i, (i, σ, #–c ))))

:= (τ ′(τ(i+ 1))− 1, (τ ′(τ(i+ 1))− 1, τ ′ ◦ τ ◦ σ, #–c + #      –ep+1 −
#      –ep+1))

Inspecting this it is clear that it suffices to show that τ ′ ◦ τ is the identity.
Note that τ maps i + 1 to some element but preserves the ordering of the
complement, whereas τ ′ preserves the ordering of the complement of {τ(i+1)}.
The composition thus also preserves the ordering of the complement of {i+1},
so that it suffices to show that τ ′ ◦ τ maps i+ 1 to i+ 1.

For this we distinguish between the two cases. Let us first assume case
(a). Then τ maps i + 1 to σ(2p + 2) − 1. In showing that φ is well-defined
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we already saw that φ((i, (i, σ, #–c ))) will be as in case (a) for ψ. Thus τ ′ is
defined by mapping τ(i+1) to (τ ◦σ)(2p)+ 1. As σ(2p) is smaller than both
σ(2p + 1) and σ(2p + 2), we have (τ ◦ σ)(2p) = σ(2p) so that we obtain the
following calculation, where the second equality comes from the definition of
Icanceli,2p,2p+1.

(τ ◦ σ)(2p) + 1 = σ(2p) + 1 = i+ 1

Let us now assume case (b). Then τ maps i + 1 to σ(2p + 2). In showing
that φ is well-defined we already saw that φ((i, (i, σ, #–c ))) will be as in case
(b) for ψ. Thus τ ′ is defined by mapping τ(i+ 1) to (τ ◦ σ)(2p). As σ(2p) is
smaller than σ(2p+1) but bigger than σ(2p+2), we have τ(σ(2p)) = σ(2p)+1
so that we obtain the following calculation, where the second equality comes
from the definition of Icanceli,2p,2p+1.

(τ ◦ σ)(2p) = σ(2p) + 1 = i+ 1

We have now shown that ψ ◦ φ = id. That φ ◦ ψ = id can be proven in an
analogous way.

It remains to show that for every element (i, (i, σ, #–c )) of J

B(w) = −B((i, σ, #–c ))

holds if w is the second component of φ((i, (i, σ, #–c ))). Let τ again be like in
the definition of φ((i, (i, σ, #–c ))), so that

φ((i, (i, σ, #–c ))) = (τ(i+ 1), (τ(i+ 1), τ ◦ σ, #–c + #      –ep+1))

holds. We can then carry out the following calculation.

B((τ(i+ 1), τ ◦ σ, #–c + #      –ep+1))

= (−1)τ(i+1) · sgn(τ ◦ σ) · ∂τ(i+1)((τ ◦ σ) · T ((y1, . . . , ym), #–c + #      –ep+1))

= (−1)τ(i+1) · sgn(τ) · sgn(σ)
· ∂τ(i+1)((τ ◦ σ) · T ((y1, . . . , ym), #–c + #      –ep+1))

= (−1)τ(i+1) · (−1)τ(i+1)−(i+1) · sgn(σ)
· ∂τ(i+1)((τ ◦ σ) · T ((y1, . . . , ym), #–c + #      –ep+1))

= −(−1)i · sgn(σ)∂τ(i+1)((τ ◦ σ) · T ((y1, . . . , ym), #–c + #      –ep+1))

It now remains to show that

∂τ(i+1)((τ ◦ σ) · T ((y1, . . . , ym), #–c + #      –ep+1)) = ∂i(σ · T ((y1, . . . , ym), #–c )) (∗)

On the left hand side we start with T ((y1, . . . , ym), #–c + #      –ep+1), permute the
tensor factors with τ ◦σ, and then multiply the τ(i+1)-th and τ(i+1)+1-th
tensor factor together. Note that (τ ◦ σ)−1

(τ(i + 1)) = σ−1(i + 1) = 2p + 1,
and in both cases we distinguished one can furthermore check that it holds
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as well that τ−1(τ(i + 1) + 1) = σ(2p + 2). As τ preserves the ordering of
the complement of {i+1}, we can thus describe the process of obtaining the
left hand side of (∗) from T ((y1, . . . , ym), #–c + #      –ep+1) also as follows: First we
permute the tensor factors using σ, then we remove the σ(2p+ 1) = i+ 1-th
tensor factor and replace the σ(2p + 2)-th tensor factor by its product with
the σ(2p+ 1)-th tensor factor.

The σ(2p+ 2)-th tensor factor is given by

T ((y1, . . . , ym), #–c + #      –ep+1)2p+2 =

c′p+2−1∏

j=c′p+1+1

yj

where we define
#–

c′ = #–c + #      –ep+1 for ease of notation, and the σ(2p + 1)-th
tensor factor is given by

T ((y1, . . . , ym), #–c + #      –ep+1)2p+1 = yc′p+1

so that, using that c′p+1 = cp+1+1 and that the other components of c′ equal
those of c, we obtain that the product is

ycp+1+1 ·




cp+2−1∏

j=cp+1+2

yj


 =

cp+2−1∏

j=cp+1+1

yj

which is exactly the 2p+2-th tensor factor of T ((y1, . . . , ym), #–c ). As the tensor
factors of T

(
(y1, . . . , ym),

#–

c′
)

and T ((y1, . . . , ym), #–c ) are equal except the 2p-
th, 2p+1-th, and 2p+2-th, we can thus describe the process of obtaining the
left hand side of (∗) from T ((y1, . . . , ym), #–c ) as follows (note that the second
argument of T is now #–c , not

#–

c′): First we permute the tensor factors using
σ, then we remove the σ(2p + 1)-th tensor factor and replace the σ(2p)-th
tensor factor by the 2p-th tensor factor of T

(
(y1, . . . , ym),

#–

c′
)

.
We have

T
(
(y1, . . . , ym),

#–

c′
)
2p

=

(cp+1+1)−1∏

j=cp+1

yj

=



cp+1−1∏

j=cp+1

yj


 · ycp+1

= T ((y1, . . . , ym), #–c )2p · T ((y1, . . . , ym), #–c )2p+1

so that we can also describe the process of obtaining the left hand side of (∗)
from T ((y1, . . . , ym), #–c ) as follows: First we permute the tensor factors using
σ, then we remove the σ(2p + 1)-th tensor factor and replace the σ(2p)-th
tensor factor by the product of the σ(2p)-th tensor factor with the σ(2p+1)-
th tensor factor. But this is exactly the definition of the right hand side, as
σ(2p) = i.
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Proposition 7.3.2.8. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following
holds. ∑

v∈Icancel
0,0,1

B(v) +
∑

1≤i≤2l−1

v∈Icancel
i,1,2

B(v) = 0

♥

Proof. This proposition and proof is very similar to Proposition 7.3.2.7, but
a easier, as we are always in case (a).20 We will thus refer to the proof
of Proposition 7.3.2.7 for more details of the proof. We use the following
notation.

J :=
{
(i, v) ∈ {1, . . . , 2l − 1} × I

∣∣ v ∈ Icanceli,1,2

}

To prove this proposition it then suffices to construct maps

φ : Icancel0,0,1 → J and ψ : J → Icancel0,0,1

that are mutually inverse bijections such that for every element v of J the
identity B(w) = −B(v) holds if w is the second component of φ(v).

We begin by defining φ, which we do as follows.21

φ((0, σ, #–c )) =
(
σ(2)− 1,

(
σ(2)− 1, σ1→σ(2)−1 ◦ σ,

#–c + #–e1
))

Now let (i, (i, σ, #–c )) be an element of J . Then we define ψ as follows.

ψ((i, (i, σ, #–c ))) = (0, σi→1 ◦ σ,
#–c − #–e1)

We next show that φ is well-defined. So let (0, σ, #–c ) be an element of Icancel0,0,1 .
Then 1 ≤ σ(2) − 1 ≤ 2l − 1 and σ1→σ(2)−1 ◦ σ ∈ El can be shown exactly
as in the proof of Proposition 7.3.2.7. To see that #–c + #–e1 is an element of
C(l,m) we need to show that (c1 + 1) + 1 ≤ c2 − 1, which follows from the
condition c1 + 1 < c2 − 1 that is part of the definition of Icancel0,0,1 . To see that
(σ(2)− 1, σ1→σ(2)−1 ◦σ,

#–c + #–e1) is even an element of Icanceli,1,2 we need to show
a condition on the values of 1 and 2 under σ1→σ(2)−1 ◦ σ, which can be done
exactly as in Proposition 7.3.2.7, and that 0 < (c1 + 1) − 1, which follows
from c1 ≥ 1.

The proof that ψ is well-defined is very similar. That φ and ψ are mutually
inverse can be shown just as in Proposition 7.3.2.7 (though the proof is easier,
as only one case needs to be considered). Finally, that B(w) = −B(v) for
every element v of J with w the second component of φ(v) can also be shown
in exactly the same way as in the proof of Proposition 7.3.2.7.
20The reason this is a separate proposition is the fact that the condition that c1 needs to

satisfy for #–c ∈ C(l,m) is not precisely of the same form as for ci with i > 1, which makes
the definitions a little different, and that σ(2p) is always 0 if p = 0. Those differences
don’t add any complications to the proof and instead make it simpler however.

21As σ(1) = 1 by definition of Icancel
0,0,1 we must have σ(2) ≥ 2, so σ(2)− 1 ≥ 1.
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We sum up the progress made in this section with the following proposition.
Proposition 7.3.2.9. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Let 1 ≤ p ≤ l − 1
be an integer. Then the following holds.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
=

∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q+2,2q

B(v) +
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v)

+
∑

v∈I0,0,1

B(v) +
∑

v∈I2l,2,0

B(v)

♥

Proof. This follows by combining the previous results as follows. We start by
applying Remark 7.3.2.2 and Definition 7.3.2.3.

∂
(
ϵ
(l)
X (y1 · · · ym)

)

=
∑

v∈I

B(v)

Now we apply the decomposition of I from Proposition 7.3.2.4.
=

∑

1≤i≤2l−1,

v∈Icancel
i

B(v)

+
∑

v∈Icancel
0

B(v) +
∑

v∈Icancel
2l

B(v)

+
∑

1≤q≤l−1




∑

1≤i≤2l−1,

v∈Icancel
i,2q,2q+1

B(v) +
∑

1≤i≤2l−1,

v∈Icancel
i,2q+1,2q+2

B(v)




+
∑

1≤i≤2l−1,

v∈Icancel
i,1,2

B(v) +
∑

v∈Icancel
0,0,1

B(v)

+
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q+2,2q

B(v) +
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v)

+
∑

v∈I0,0,1

B(v) +
∑

v∈I2l,2,0

B(v)

The first line is zero by Proposition 7.3.2.5, the second line by Proposi-
tion 7.3.2.6, the third line by Proposition 7.3.2.7, and the fourth line by
Proposition 7.3.2.8, which shows the claim.
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7.3.3. Identification of summands of ϵ
(l−1)
X ◦ d of a first

type

We now begin looking into the term ϵ
(l−1)
X (d(y1 · · · ym)). We can write this

as a sum of terms of two types, and one one type can immediately be identified
with summands from ∂(ϵ

(l)
X (y1 · · · ym)).

Remark 7.3.3.1. In this remark we use notation from Construction 7.3.1.1.
Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as
in Construction 7.3.1.1.

We consider ϵ(l−1)
X (d(y1 · · · ym)). Unpacking the definition, we obtain the

following.

ϵ
(l−1)
X (d(y1 · · · ym))

= ϵ
(l−1)
X

(
m∑

s=1

y1 · · · ys−1 · ys+1 · · · ym · d ys

)

=
m∑

s=1

ϵ
(l−1)
X (y1 · · · ys−1 · ys+1 · · · ym) · (1⊗ ys)

=
∑

1≤s≤m
σ∈El−1

#–c ∈C(l−1,m−1)

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

We can distinguish two types of summands: Those in which ys−1 and ys+1

appear together in a tensor factor, and those in which they don’t. The former
happens precisely if there exists an integer 1 ≤ p ≤ l− 1 with cp < s− 1 and
cp+1 > s22, or if c1 > s. Note that these possibilities exclude each other, i. e.
if we count c1 > s as being the condition for p = 0, then if there exists a
0 ≤ p ≤ l − 1 satisfying the condition, then it is unique. ♦

We begin by identifying the summands of ϵ(l−1)
X (d(y1 · · · ym)) in which ys−1

and ys+1 occur in the same tensor factor.

Proposition 7.3.3.2. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following
holds.

∑

1≤i≤2l−1,
1≤p≤l−1

∑

v∈Ii,2p+2,2p

B(v)

22Note that we “jump over” ys, so ys+1 has index s rather than s+ 1.
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=
∑

1≤s≤m,
σ∈El−1,

#–c ∈C(l−1,m−1),
1≤p≤l−1
such that

cp<s−1<s<cp+1

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

♥

Proof. We first evaluate the product occurring in the summands on the right
hand side of the equation, which by Propositions 6.3.2.10 and 6.3.2.11 yields
the following for s, σ, #–c , and p as in the sum in the statement.

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

=
∑

1≤t≤2l−1

sgn
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·

(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
· (T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )⊗ ys)

We now make the following definitions.

J := { (i, p, v) ∈ {1, . . . , 2l − 1} × {1, . . . , l − 1} × I | v ∈ Ii,2p+2,2p }

J ′ :=
{(
s, σ′′,

#–

c′ , p, t
)
∈ {1, . . . ,m} × El−1 × C(l − 1,m− 1)

× {1, . . . , l − 1} × {1, . . . , 2l − 1}
∣∣∣ c′p < s− 1 < s < c′p+1

}

Furthermore, for (s, σ′′,
#–

c′ , p, τ) an element of J ′ we will use the following
notation.

B′
((
s, σ′′,

#–

c′ , p, t
))

:= sgn
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))

·
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym),

#–

c′
)
⊗ ys

)

It thus suffices to construct a bijection of sets

Φ: J → J ′

such that for each element (i, p, v) of J it holds that B′(Φ((i, p, v))) = B(v).
So let (i, p, (i, σ, #–c )) be an element of J . Let s := cp+1. As 1 ≤ p ≤ l − 1

we have 2 ≤ p+ 1 ≤ l, so that cp+1 is defined 1 ≤ cp+1 ≤ (m+ 1)− 2 < m is
satisfied. Next we define σ′ as follows.

σ′ = σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2

Note that σ′(2l) = 2l so that we can consider σ′ as an element of Σ2l−1.
We let t := σ′(2p + 1). Note that 1 ≤ t ≤ 2l − 1 and that t is σ(2p + 1) if
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σ(2p+1) < σ(2p+2) and σ(2p+1)−1 otherwise. We can now define another
permutation σ′′ to be the following composition.

σ′′ := σt→2l−1 ◦ σ
′ ◦ σ2l−1→2p+1

= σt→2l−1 ◦ σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1

With this definition σ′′ is an element of Σ2l−1 that satisfies σ′′(2l−1) = 2l−1,
so that we can consider σ′′ as an element of Σ2(l−1).

We claim that σ′′ is an element of El−1. So let 0 ≤ a ≤ l − 2. We have
to show that σ′′ cyclically preserves the ordering of {2a, 2a + 1, 2a + 2}.
We note first that as a ≤ l − 2 implies 2a + 2 ≤ 2l − 2, so the image of
{2a, 2a+1, 2a+2} under σ◦σ2l→2p+2◦σ2l−1→2p+1 will have image in the com-
plement of {σ(2p+2), σ−1

σ(2p+2)→2l(t)}, so that σt→2l−1 ◦σσ(2p+2)→2l is order-
preserving on this image. This means that it suffices to show 0 ≤ a ≤ l−2 that
σ◦σ2l→2p+2◦σ2l−1→2p+1 cyclically preserves the ordering of {2a, 2a+1, 2a+2}.

We first consider the case of a < p. Then the claim follows as σ2l−1→2p+1

and σ2l→2p+2 are the identity on {2a, 2a+1, 2a+2}, and σ cyclically preserves
the ordering of {2a, 2a+ 1, 2a+ 2}.

We next consider the case of a > p. In this case both σ2l−1→2p+1 is given
by addition with 1 on {2a, 2a+1, 2a+2}, and σ2l→2p+2 is given by addition
with 1 on {2a + 1, 2a + 2, 2a + 3}. The claim thus follows from σ cyclically
preserving the ordering of {2(a+ 1), 2(a+ 1) + 1, 2(a+ 1) + 2}.

It remains to consider the case a = p. In this case 2p, 2p + 1, and 2p + 2
are mapped by σ2l−1→2p+1 to 2p, 2p + 2, and 2p + 3, which are mapped
by σ2l→2p+2 to 2p, 2p + 3, and 2p + 4, which are mapped by σ to σ(2p),
σ(2p + 3), and σ(2p + 4), respectively. So we have to show that σ cyclically
preserves the ordering of {2p, 2p + 3, 2p + 4}. But by assumption σ is an
element of Ii,2p+2,2p, which implies that σ(2p) = σ(2p + 2) + 1. This means
that σ cyclically preserves the ordering of {2p, 2p+3, 2p+4} if and only if σ
cyclically preserves the ordering of {2p+2, 2p+3, 2p+4}, which is the case,
as σ is an element of El.

We define
#–

c′ ∈ {1, . . . ,m}l as follows.

c′a :=

{
ca for a ≤ p
ca+1 − 1 for a > p

for 1 ≤ a ≤ l

Note that as ca ≤ m + 1 for 1 ≤ a ≤ l + 1 we obtain c′a ≤ m for 1 ≤ a ≤ l.
Furthermore, as p ≥ 1, and 1 ≤ c1 < c2 < . . . < cl+1 we also obtain that
c′a ≥ 1 for 1 ≤ a ≤ l, so that

#–

c′ is indeed an element of {1, . . . ,m}l. We claim
that

#–

c′ is in fact an element of C(l− 1,m− 1). For this we first note that as
p ≤ l − 1 we have c′l = cl+1 − 1 = m + 1 − 1 = m, which handles one of the
conditions. That c′a+1 ≤ c′a+1− 1 for 1 ≤ a ≤ l− 1 follows directly from the
corresponding property for #–c as long as a 6= p. For a = p we have

c′p + 1 = cp + 1 ≤ cp+1 − 1 ≤ cp+2 − 3 = c′p+1 − 2 ≤ c′p+1 − 1
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which finishes the proof that
#–

c′ is an element of C(l − 1,m− 1).
We can now define Φ as follows.

Φ((i, p, (i, σ, #–c ))) :=
(
s, σ′′,

#–

c′ , p, t
)
=
(
cp+1, σ

′′,
#–

c′ , p, σ′(2p+ 1)
)

To show that Φ is well-defined it remains to show that it holds in the above
situation that

c′p < s− 1 < s < c′p+1

but unpacking the definitions, this become the following.

cp < cp+1 − 1 < cp+1 < cp+2 − 1

which holds as #–c is an element of C(l,m).
We next show that B′(Φ((i, p, v))) = B(v) holds for each element (i, p, v) of

J . We continue using the notation we introduced up to now for this. We first
check that the signs of the two terms agree. For this we have the following
calculation.

sgn
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))

= sgn(σ2l−1→t) · sgn(σ′′)

= (−1)2l−1−t · sgn(σt→2l−1 ◦ σ
′ ◦ σ2l−1→2p+1)

= (−1)2l−1−t · (−1)2l−1−t · sgn(σ′) · (−1)2l−1−2p−1

= sgn(σ′)

= sgn
(
σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2

)

= (−1)2l−σ(2p+2) · sgn(σ) · (−1)2p+2−2l

= (−1)σ(2p+2) · sgn(σ)
= (−1)i · sgn(σ)

To complete the proof of B′(Φ((i, p, v))) = B(v) it remains to show the
following.

(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym),

#–

c′
)
⊗ ys

)

= ∂i(σ · T ((y1, . . . , ym), #–c ))

We begin by considering T ((y1, . . . , ys−1, ys+1, . . . , ym),
#–

c′), in the following
calculation, where we let y′1 = y1, . . . , y

′
s−1 = ys−1, y

′
s = ys+1, . . . , y

′
m−1 = ym.

T
(
(y1, . . . , ys−1, ys+1, . . . , ym),

#–

c′
)

=

c′1−1∏

j=1

y′j ⊗ y
′
c′1
⊗

c′2−1∏

j=c′1+1

y′j ⊗ · · · ⊗ y
′
c′
l−1
⊗

c′
l
−1∏

j=c′
l−1+1

y′j
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=

c1−1∏

j=1

y′j ⊗ y
′
c1
⊗ · · · ⊗

cp+2−1−1∏

j=cp+1

y′j ⊗ y
′
cp+2−1 ⊗

cp+3−1−1∏

j=cp+2−1+1

y′j ⊗ y
′
cp+3−1 ⊗ · · ·

Using that s = cp+1.

=

c1−1∏

j=1

yj ⊗ yc1 ⊗ · · · ⊗

cp+1−1∏

j=cp+1

yj ·

cp+2−1∏

j=cp+1+1

yj ⊗ ycp+2
⊗

cp+3−1∏

j=cp+2+1

yj ⊗ · · ·

Abbreviating T ((y1, . . . , ym), #–c ) as T = T0 ⊗ . . . T2l, we obtain the following.
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym),

#–

c′
)
⊗ ys

)

=
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))

· (T0 ⊗ · · · ⊗ T2p−1 ⊗ (T2p · T2p+2)⊗ T2p+3 ⊗ · · · ⊗ T2l ⊗ T2p+1)

=
(
σ2l−1→t ◦ σt→2l−1 ◦ σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1

)
|{1,...,2l−1}

· (T0 ⊗ · · · ⊗ T2p−1 ⊗ (T2p · T2p+2)⊗ T2p+3 ⊗ · · · ⊗ T2l ⊗ T2p+1)

=
(
σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1

)
|{1,...,2l−1}

· (T0 ⊗ · · · ⊗ T2p−1 ⊗ (T2p · T2p+2)⊗ T2p+3 ⊗ · · · ⊗ T2l ⊗ T2p+1)

=
(
σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2

)
|{1,...,2l−1}

· (T0 ⊗ · · · ⊗ T2p−1 ⊗ (T2p · T2p+2)⊗ T2p+1 ⊗ T2p+3 ⊗ T2p+4 ⊗ · · · ⊗ T2l)

Recall that σ(2p+2) = i and σ(2p) = i+1. We now have to distinguish several
cases. We start with 1 ≤ j ≤ 2p−1 such that σ(j) < i. Then the permutation
σ′ = σσ(2p+2)→2l ◦σ ◦σ2l→2p+2 maps j to σ(j), as both σσ(2p+2)→2l as well as
σ2l→2p+2 act as the identity on the relevant elements. Thus the σ(j)-th tensor
factor in the result is given by Tj . If instead 2p + 2 < j ≤ 2l and σ(j) < i,
then σ′ maps j − 1 to σ(j). As the j − 1-th tensor factor of the unpermuted
tensor product is given by Tj , we can again conclude that the σ(j)-th tensor
factor of the result is given by Tj . If j = 2p or j = 2p + 2 then we can not
have σ(j) < i. If σ(2p+ 1) < i, then we get that σ′(2p+ 1) = σ(2p+ 1). The
upshot is that the 0-th to (i− 1)-th tensor factors of the result will be given
by T0 ⊗ Tσ−1(1) ⊗ · · · ⊗ Tσ−1(i−1).

We have
σ′(2p) = σi→2l(σ(2p)) = σi→2l(i+ 1) = i

so that we can furthermore conclude that the i-th tensor factor is given by
T2p · T2p+2 = T2p+2 · T2p.

Now let 1 ≤ j ≤ 2p−1 with σ(j) > i. Then σ′(j) = σ(j)−1, so the (σ(j)−1)-
th tensor factor of the result is given by Tj . If instead 2p + 2 < j ≤ 2l and
σ(j) > i, then σ′(j − 1) = σ(j) − 1, so that we can again conclude that the
(σ(j)−1)-th tensor factor of the result is given by Tj . Finally, if σ(2p+1) > i,
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then σ′(2p + 1) = σ(2p + 1) − 1 as well. As σ({2p, 2p + 2}) = {i, i + 1}, the
image of {1, . . . , 2p− 1, 2p+ 3, . . . , 2l} under σ contains {i+ 2, . . . , 2l}. The
upshot is that the (i+ 1)-th through 2l − 1-th tensor factors of the product
are given by Tσ−1(i+2) ⊗ · · · ⊗ Tσ−1(2l).

Thus we obtain
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym),

#–

c′
)
⊗ ys

)

= T0 ⊗ Tσ−1(1) ⊗ · · ·Tσ−1(i−1) ⊗ Tσ−1(i) · Tσ−1(i+1) ⊗ Tσ−1(i+2) ⊗ · · ·

= ∂i(σ · T ((y1, . . . , ym), #–c ))

To finish the proof of this proposition it remains to show that Φ is a
bijection. For this we construct an inverse Ψ. So let (s, σ′′,

#–

c′ , p, t) be an
element of J ′. Then we define

σ′ := σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1

as an element of Σ2l−1. We then define i := σ′(2p) and define σ as follows, as
an element of Σ2l.

σ := σ2l→i ◦ σ
′ ◦ σ2p+2→2l

Note that as σ′ is an element of Σ2l−1 we have that 1 ≤ i ≤ 2l − 1.
We also claim that σ is an element of El. So let 0 ≤ a ≤ l− 1. We have to

show that σ cyclically preserves the ordering of {2a, 2a+ 1, 2a+ 2}. For this
we distinguish four cases. If a < p, then 2a, 2a + 1, and 2a + 2 are mapped
to 2a, 2a+ 1, and 2a+ 2 by σ2p+2→2l and σ2p+1→2l−1. The permutation σ′′

cyclically preserves the ordering of {2a, 2a+ 1, 2a+ 2}, and as a < p ≤ l− 1,
the image under σ′′ lies in {1, . . . , 2l−2}, so that σ2l→i and σ2l−1→t preserve
the ordering.

Next we consider the case a = p. In this case we have the following.

σ(2p) = (σ2l→i ◦ σ
′ ◦ σ2p+2→2l)(2p)

= (σ2l→i ◦ σ
′)(2p) = σ2l→i(i) = i+ 1

σ(2p+ 2) = (σ2l→i ◦ σ
′ ◦ σ2p+2→2l)(2p+ 2)

= (σ2l→i ◦ σ
′)(2l) = σ2l→i(2l) = i

Which shows that σ cyclically preserves the ordering of {2p, 2p + 1, 2p + 2}
(it does not matter where 2p+ 1 is mapped to).

We now consider the case a = p+ 1.

σ(2p+ 3) = (σ2l→i ◦ σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1 ◦ σ2p+2→2l)(2p+ 3)

= (σ2l→i ◦ σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1)(2p+ 2)

= (σ2l→i ◦ σ2l−1→t ◦ σ
′′)(2p+ 1)

σ(2p+ 3) = (σ2l→i ◦ σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1 ◦ σ2p+2→2l)(2p+ 4)

= (σ2l→i ◦ σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1)(2p+ 3)
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= (σ2l→i ◦ σ2l−1→t ◦ σ
′′)(2p+ 2)

What we thus need to show is that the three distinct integers

i, (σ2l→i ◦ σ2l−1→t ◦ σ
′′)(2p+ 1), (σ2l→i ◦ σ2l−1→t ◦ σ

′′)(2p+ 2)

are cyclically ordered. We now note that

(σ2l→i ◦ σ2l−1→t ◦ σ
′′)(2p) = (σ2l→i ◦ σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1)(2p)

= (σ2l→i ◦ σ
′)(2p)

= σ2l→i(i)

= i+ 1

so as 2p+1 6= 2p and 2p+2 6= 2p, we can replace i by i+1 and instead show
that σ2l→i◦σ2l−1→t◦σ

′′ cyclically preserves the ordering of {2p, 2p+1, 2p+2}.
Note that a ≤ l − 1 and we are looking at the case where a = p + 1, which
implies that p ≤ l − 2 (even though p in general can be l − 1 as well), which
implies that the set {2p, 2p+ 1, 2p+ 2} is mapped by σ′′ to the complement
of {2l−1, 2l}, so that σ2l→i ◦σ2l−1→t is order preserving on this image. That
σ2l→i ◦ σ2l−1→t ◦ σ

′′ cyclically preserves the order of {2p, 2p+1, 2p+2} thus
follows from σ′′ doing so.

Finally, we consider the case p + 1 < a ≤ l − 1. Then 2a, 2a + 1, and
2a + 2 are mapped by σ2p+1→2l−1 ◦ σ2p+2→2l to 2(a − 1), 2(a − 1) + 1, and
2(a − 1) + 2. As a ≤ l − 1 we have a − 1 ≤ l − 2, so that σ′′ maps these
elements into the complement of {2l − 1, 2l}, on which σ2l→i ◦ σ2l−1→t is
order preserving. The claim thus follows from σ′′ cyclically preserving the
order of {2(a− 1), 2(a− 1) + 1, 2(a− 1) + 2}.

To define Ψ we still need to define #–c , which we do as follows.

ca :=





c′a for 1 ≤ a ≤ p

s for a = p+ 1

c′a−1 + 1 for p+ 2 ≤ a ≤ l + 1

for 1 ≤ a ≤ l + 1

We first note that as 1 ≤ s ≤ m and 1 ≤ c′a ≤ m for all 1 ≤ a ≤ l, we have
that #–c is an element of {1, . . . ,m + 1}l+1. We next need to show that #–c is
an element of C(l,m). For this we first note that p + 1 ≤ l − 1 + 1 = l, so
cl+1 = c′l + 1 = m + 1. Furthermore, that ca + 1 ≤ ca+1 − 1 for 1 ≤ a ≤ l

follows directly from
#–

c′ being in C(l− 1,m− 1) as long as a < p or a ≥ p+2,
so that it only remains to consider the cases a = p and a = p + 1. But we
have

cp = c′p, cp+1 = s, cp+2 = c′p+1 + 1

so that the required property follows from

c′p < s− 1 < s < c′p+1
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which holds as (s, σ′′,
#–

c′ , p, t) is an element of J ′.
We have now defined i, σ, and #–c and shown that (i, σ, #–c ) is an element of

I. In the course of doing so we also already showed that σ(2p) = i + 1 and
σ(2p + 2) = i, so that (i, σ, #–c ) is even an element of Ii,2p+2,2p. We can thus
define Ψ as follows.

Ψ
((
s, σ′′,

#–

c′ , p, t
))

:= (i, p, (i, σ, #–c ))

It remains to show that Ψ ◦ Φ and Φ ◦Ψ are the respective identity maps.
So let (i, p, (i, σ, #–c )) be an element of J , and let s, σ′, σ′′,

#–

c′ , and t be as in
the definition of Φ((i, p, (i, σ, #–c ))). Then recall that σ′ and σ′′ were defined
(in the definition of Φ) as follows.

σ′ = σi→2l ◦ σ ◦ σ2l→2p+2

σ′′ = σt→2l−1 ◦ σ
′ ◦ σ2l−1→2p+1

We first note that then

σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1 = σ′

so that the σ′ defined from σ′′ in the definition of Ψ((s, σ′′,
#–

c′ , p, t)) recovers
the σ′ used in the definition of Φ((i, p, (i, σ, #–c ))). Next we have

σ′(2p) = (σi→2l ◦ σ ◦ σ2l→2p+2)(2p)

= (σi→2l ◦ σ)(2p)

= (σi→2l)(i+ 1)

= i

so that we in the definition of Ψ((s, σ′′,
#–

c′ , p, t)) also recover the correct i. It
then also follows immediately from the definition that the correct σ is recov-
ered as well. Let #–c be what was called #–c in the definition of Ψ((s, σ′′,

#–

c′ , p, t)).
Then we have for 1 ≤ a ≤ p that

ca = c′a = ca

while for p+ 2 ≤ a ≤ l + 1 we have

ca = c′a−1 + 1 = ca−1+1 − 1 + 1 = ca

and finally, we have the following.

cp+1 = s = cp+1

This shows that Ψ ◦ Φ is the identity.
Now let (s, σ′′,

#–

c′ , p, t) be an element of J ′, and let σ′, σ, i, and #–c be as
in the definition of Ψ((s, σ′′,

#–

c′ , p, t)). Let Φ(i, p, (i, σ, #–c )) = (s, σ′′,
#–

c′ , p, t).
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Then we directly obtain s = cp+1 = s and p = p. It then follows from the
definition that the σ′ constructed in the definition of Φ(i, p, (i, σ, #–c )) recovers
the σ′ constructed in the definition of Ψ((s, σ′′,

#–

c′ , p, t)). We then obtain that

t = σ′(2p+ 1)

= (σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1)(2p+ 1)

= t

from which we can then also conclude that σ′′ = σ′′. It remains to show that
#–

c′ =
#–

c′ . If 1 ≤ a ≤ p then we have

c′a = ca = c′a

and if instead p < a ≤ l, then we have

c′a = ca+1 − 1 = c′a+1−1 + 1− 1 = c′a

which finishes the proof.

The next proposition is exactly like Proposition 7.3.3.2, just for p = 0.
Proposition 7.3.3.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following
holds.

∑

v∈I2l,2,0

B(v)

=
∑

1≤s≤m,
σ∈El−1,

#–c ∈C(l−1,m−1)
such that
s<c1

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

♥

Proof. The proof is very similar to the proof of Proposition 7.3.3.2, but has
some differences that require some minor changes. For example there is only
I2l,2,0 rather than Ii,2,0 for various values of i, which is related to the relevant
permutations σ being forced to map 0 to 0. We will point out how the main
steps differ in the case at hand to the case considered in Proposition 7.3.3.2,
but avoid details, for which Proposition 7.3.3.2 should be consulted.

The proof of Proposition 7.3.3.2 begins with an unpacking of the product
occurring on the right hand side, which applies in the same way in our case.
We then define

J ′ :=
{(
s, σ′′,

#–

c′ , t
)
∈

{1, . . . ,m} × El−1 × C(l − 1,m− 1)× {1, . . . , 2l − 1}∣∣∣ s < c′1

}
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and for an element (s, σ′′,
#–

c′ , t) of J ′ we define B′((s, σ′′,
#–

c′ , t)) in exactly the
same way as in the proof of Proposition 7.3.3.2 (note the definition of B′

there does not depend on p). It thus suffices to construct a bijection of sets

Φ: I2l,2,0 → J ′

such that for each element v of I2l,2,0 it holds that B′(Φ(v)) = B(v).
For the construction of Φ, let (i, σ, #–c ) be an element of I2l,2,0. Then we

define s, σ′′,
#–

c′ , and t in exactly the same way as in Proposition 7.3.3.2. The
verification of the required property of

#–

c′ differs slightly, we have to show that
s < c′1 which amounts to c1 < c2 − 1, which is satisfied as #–c is an element of
C(l,m).

The proof of Proposition 7.3.3.2 continues with a verification of the iden-
tity B′(Φ(v)) = B(v), which can be done in essentially the same way, only
requiring very minor modification, and less cases.

The construction of Ψ requires some modifications from the way it was
done in Proposition 7.3.3.2. To start with we do not have p given as part
of the input, and instead set p = 0. The definition of i, which is defined
as σ′(2p) = 0 in Proposition 7.3.3.2, needs to be changed to i := 2l. The
definition of σ′, σ, and #–c , using these values for p and i, is then exactly as
in Proposition 7.3.3.2. The verification that σ is in El needs to be modified
when checking the cases a = p and a = p + 1. In the case a = p = 0
we have σ(0) = 0 and σ(2) = 2l, so σ cyclically preserves the ordering of
{0, 1, 2} as 1 ≤ σ(2) < 2l. For the case a = p + 1 = 1 one arrives as in
the proof of Proposition 7.3.3.2 to showing that 2l, (σ2l−1→t ◦ σ

′′)(1), and
(σ2l−1→t ◦ σ

′′)(2) are cyclically ordered, which is the case if and only if 0,
(σ2l−1→t ◦ σ

′′)(1), and (σ2l−1→t ◦ σ
′′)(2) are cyclically ordered. One now uses

that (σ2l−1→t ◦σ
′′)(0) = 0 and proceeds as in the proof of Proposition 7.3.3.2.

The remaining verification steps in the construction of Ψ are exactly as in
the proof of Proposition 7.3.3.2.

The verification of Ψ ◦ Φ = id is the same as in the proof of Proposi-
tion 7.3.3.2 except for the argument showing that i is correctly recovered,
which instead in our case is a tautology. The situation for the verification for
Φ ◦Ψ = id is analogous.

7.3.4. Reindexing of summands of ϵ
(l−1)
X ◦ d of a second

type
We have now shown how the summands of ϵ(l−1)

X (d(y1 · · · ym)) in which ys−1

and ys+1 occur together as factors of a single tensor factor match up with
summands of ∂(ϵ(l)X (y1 · · · ym)). We now consider those summands in which
ys−1 and ys+1 do not occur together as factors of a single tensor factor. For
this it will be helpful to introduce some further notation, and while doing so
we will also immediately introduce relevant analogous definitions that will be
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used in the next sections for d(ϵ(l−1)
X (y1 · · · ym)) and the remaining summands

from ∂(ϵ
(l)
X (y1 · · · ym)).

Definition 7.3.4.1. Let n ≥ 1 be an integer and σ an element of Σn. Let us
for the moment denote by P (σ) the following set.

P (σ) :=
{
p ∈ {1, . . . , n− 1}

∣∣ σ cyclically preserves the ordering

of {p− 1, p, p+ 1}
}

Then we make the following definitions

eeven(σ) := max({ p ∈ {1, . . . , n− 1} | p /∈ P (σ) and 2 | p })

eodd(σ) := min({ p ∈ {1, . . . , n− 1} | p /∈ P (σ) and 2 ∤ p })

where we set eeven(σ) = −∞ if the set over which the maximum is taken is
empty, and eodd(σ) =∞ if the set over which the minimum is taken is empty.

Now let n,m ≥ 0 be integers. Then we define a set Cfull(n,m) as follows.

Cfull(n,m) :=
{
(c1, . . . , cn+1) ∈ {1, . . . ,m+ 1}n+1

∣∣ c1 < c2 < . . . < cn < cn+1 and cn+1 = m+ 1
}

Now let X be a totally ordered set, n ≥ 1 and m ≥ 0 integers, y1, . . . , ym as
in Construction 7.3.1.1, and #–c an element of Cfull(n,m). Then we define an
element T full((y1, . . . , ym), #–c ) in Cn(k[X]) as follows.

T full((y1, . . . , ym), #–c ) :=

c1−1∏

j=1

yj ⊗
c2−1∏

j=c1

yj ⊗
c3−1∏

j=c2

yj ⊗ · · · ⊗

cn+1−1∏

j=cn

yj

Finally, we also make the following definition for n,m ≥ 0 and #–c an element
of Cfull(n,m).

eeven(
#–c ) := max

(
{ p ∈ {1, . . . , n} | cp + 1 < cp+1 and 2 | p }

∪ { p ∈ {0} | 1 < c1 }
)

eodd(
#–c ) := min({ p ∈ {1, . . . , n} | cp + 1 < cp+1 and 2 ∤ p })

Again, if the set over which we take the maximum is empty then we set
eeven(

#–c ) = −∞ and if the set over which we take the minimum we set
eodd(

#–c ) =∞. ♦

Definition 7.3.4.2. In this definition will we use notation from Construc-
tion 7.3.1.1 and continue on with similar definitions as in Definition 7.3.2.3.
Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as
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in Construction 7.3.1.1. The following set Id will act as an indexing set for
the summands of ϵ(l−1)

X (d(y1 · · · ym)) that were not yet considered, while the
set I1 will be used for d(ϵ(l−1)

X (y1 · · · ym)).

Id :=
{
(σ, #–c , p) ∈ Σ2l−1 × C

full(2l − 1,m)× {1, . . . , 2l − 1}
∣∣ eeven( #–c ) < p < eodd(

#–c ) and eeven(σ)− 2 < p < eodd(σ) + 2

and σ cycl. pres. the ord. of {p− 2, p− 1, p+ 1} if 2 | p and p ≤ 2l − 2

and σ cycl. pres. the ord. of {p− 1, p+ 1, p+ 2} if 2 ∤ p and p ≤ 2l − 3
}

I1 :=
{
(σ, #–c ) ∈ Σ2l−1 × C

full(2l − 1,m)

∣∣ eeven(σ) = −∞ and eeven(
#–c ) = −∞

}

One should think of Id as something like El×C(l,m), but where we have an
extra component p that we “jump over” in the properties that El and C(l,m)
need to satisfy. We also define some new indexing sets that we will use to
reindex sums appearing in ∂(ϵ

(l)
X )(y1 · · · ym).

I∂even :=
{
(σ, #–c ) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eeven( #–c ) 6= −∞ and eeven(σ) ≤ eeven(

#–c )

and eodd(
#–c ) ≥ eeven(

#–c ) + 3 and eodd(σ) ≥ eeven(
#–c ) + 1

}

I∂odd :=
{
(σ, #–c ) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eodd( #–c ) 6=∞ and eodd(σ) ≥ eodd(

#–c )

and eeven(
#–c ) ≤ eodd(

#–c )− 3 and eeven(σ) ≤ eodd(
#–c )− 1

}

We also define B′′ and B′ as follows for every element (σ′,
#–

c′) of the set
Σ2l−1 × C

full(2l − 1,m) and element (σ, #–c , p) of Id.

B′′((σ, #–c )) := sgn(σ) · σ · T full((y1, . . . , ym), #–c )

B′((σ, #–c , p)) := (−1)p+1 ·B′′((σ, #–c )) ♦

Proposition 7.3.4.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

ϵ
(l−1)
X (d(y1 · · · ym)) =

∑

1≤i≤2l−1,
1≤p≤l−1

∑

v∈Ii,2p+2,2p

B(v) +
∑

v∈I2l,2,0

B(v)

+
∑

v∈Id

B′(v)
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♥

Proof. Define a set J ′ as follows.

J ′ :=
{
(s, σ, #–c ) ∈ {1, . . . ,m} × El−1 × C(l − 1,m− 1)
∣∣ there is no 1 ≤ p ≤ l − 1 such that cp < s− 1 < s < cp+1,

and c1 ≯ s
}

Then Remark 7.3.3.1 together with Propositions 7.3.3.2 and 7.3.3.3 imply

ϵ
(l−1)
X (d(y1 · · · ym))

=
∑

1≤i≤2l−1,
1≤p≤l−1

∑

v∈Ii,2p+2,2p

B(v) +
∑

v∈I2l,2,0

B(v)

+
∑

(s,σ, #–c )∈J′

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

so that it suffices to show the following.
∑

v∈Id

B′(v)

=
∑

(s,σ, #–c )∈J ′

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

As in the proof of Proposition 7.3.3.2, we begin by evaluating the product
occurring in the summands on the right hand side of the equation, which by
Propositions 6.3.2.10 and 6.3.2.11 yields the following for (s, σ, #–c ) an element
of J ′.

(sgn(σ) · σ · T ((y1, . . . , ys−1, ys+1, . . . , ym), #–c )) · (1⊗ ys)

=
∑

1≤t≤2l−1

sgn
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·

(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
· (T ((y1, . . . , yi−1, yi+1, . . . , ym), #–c )⊗ ys)

Defining a set J as follows

J :=
{
(s, t, σ, #–c ) ∈ {1, . . . ,m} × {1, . . . , 2l − 1} × El−1 × C(l − 1,m− 1)
∣∣ there is no 1 ≤ q ≤ l − 1 such that cq < s− 1 < s < cq+1,

and c1 ≯ s
}

it then suffices to show that there exists a bijection

Φ: J → Id
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such that the following holds for all elements (s, t, σ, #–c ) of J .

B′(Φ((s, t, σ, #–c )))

= sgn
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))

·
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
· (T ((y1, . . . , yi−1, yi+1, . . . , ym), #–c )⊗ ys)

So to define Φ, let (s, t, σ, #–c ) be an element of J . As c1 ≯ s we must have
c1 ≤ s. We also have s ≤ m = cl. As c1 < c2 < · · · < cl there must thus either
exists a 1 ≤ q ≤ l with cq = s or with cq < s < cq+1. But as we ruled out
cq < s− 1 < s < cq+1, the latter implies cq = s− 1. The upshot is that there
is a 1 ≤ q ≤ l with either cq = s or cq = s− 1. If cq = s then set p := 2q − 1.
If instead cq = s− 1, then set p := 2q. We then define

σ′ := σ2l−1→t ◦ σ ◦ σp→2l−1

as an element of Σ2l−1 and
#–

c′ as follows.

c′a :=





ca/2 + 1 if 2 | a
c(a+1)/2 if a ≤ p and 2 ∤ a
c(a−1)/2 + 2 if a > p and 2 ∤ a

for 1 ≤ a ≤ 2l

We want to define Φ by setting

Φ((s, t, σ, #–c )) :=
(
σ′,

#–

c′ , p
)

and for this we need to check various things to ensure that this is well-defined.
To begin with, we have 1 ≤ q ≤ l and defined p as either 2q or 2q − 1. We

can thus conclude that 1 ≤ p ≤ 2l, and are left to exclude that p = 2l can
occur. This could only occur if we had cl = s− 1, which can not happen, as
cl = m and s− 1 < m. Thus 1 ≤ p ≤ 2l − 1.

We next show that eeven(σ′) − 2 < p < eodd(σ
′) + 2. We begin with the

left inequality. To show that eeven(σ
′) < p + 2 we need to show that if

p + 2 ≤ a ≤ 2l − 2 and a is even, then σ′ cyclically preserves the ordering
of {a − 1, a, a + 1}. Unpacking the definition of σ′ this amounts to σ cycli-
cally preserving the ordering of {a − 2, a − 1, a}, which it does as a − 1 is
odd, 1 ≤ a − 1 ≤ 2l − 323, and σ is an element of El−1. Similarly, to show
that eodd(σ′) > p − 2, we need to show that if 1 ≤ a ≤ p − 2 and a is
odd, then σ′ cyclically preserves {a− 1, a, a+1}, which unpacking the defini-
tion of σ amounts to σ cyclically preserving the ordering of {a− 1, a, a+ 1},
which it does as it is an element of El−1. Similarly we can show the extra
condition on σ around p, where this time the elements are “split up” by
σp→2l−1. If p ≤ 2l − 2 is even, then σ′ cyclically preserving the ordering
of {p − 2, p − 1, p + 1} amounts to σ cyclically preserving the ordering of
231 ≤ a− 1 is implied by p+ 2 ≤ a.
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{p − 2, p − 1, p}, which it does as 1 ≤ p − 1 ≤ 2l − 3 is odd24 and σ is an
element of El−1. Similarly, if p ≤ 2l − 3 is odd, then σ′ cyclically preserving
the ordering of {p − 1, p + 1, p + 2} amounts to σ cyclically preserving the
ordering of {p− 1, p, p+ 1}, which it does as 1 ≤ p ≤ 2l − 3 is odd.

We now show that
#–

c′ is an element of Cfull(2l−1,m). For this we first need
to show that c′a is a well-defined element of {1, . . . ,m + 1} for 1 ≤ a ≤ 2l.
If 1 ≤ a ≤ 2l is even, then 1 ≤ a/2 ≤ l, so 1 ≤ ca/2 ≤ m is well-defined,
implying that 1 ≤ c′a/2 ≤ m + 1. If a is odd and 1 ≤ a ≤ p ≤ 2l − 1, then
2 ≤ a + 1 ≤ 2l, so 1 ≤ (a + 1)/2 ≤ l and 1 ≤ c(a+1)/2 ≤ m is well-defined.
If instead a is odd with 2 ≤ p + 1 ≤ a ≤ 2l, then 1 ≤ a − 1 ≤ 2l − 1. As
a − 1 is even this implies that 1 ≤ (a − 1)/2 ≤ l − 1 so that c(a−1)/2 is
well-defined and 1 ≤ c(a−1)/2 ≤ m. As (a− 1)/2 ≤ l− 1 we furthermore have
that c(a−1)/2 ≤ cl − 2 = m − 2, so that 1 ≤ c(a−1)/2 + 2 ≤ m. So far we
showed that

#–

c′ is an element of {1, . . . ,m+1}2l, so we still need to verify the
(in)equalities the components need to satisfy. It follows immediately from the
definition that c′2l = cl + 1 = m + 1. It remains to show that c′1 < · · · < c′2l.
So let 1 ≤ a ≤ 2l be even. Assume that 2 ≤ a. Then we need to show that
c′a−1 < c′a. Depending on whether a − 1 ≤ p or not this amounts to either
ca/2 < ca/2 + 1, which clearly true, or c(a/2)−1 + 2 < ca/2 + 1, which is true
as #–c is an element of C(l− 1,m− 1). Now assume that a ≤ 2l− 2. Then we
have to show that c′a < c′a+1. Again we have two cases and this amounts to
either ca/2 +1 < c(a/2)+1, which is true as #–c is an element of C(l− 1,m− 1),
or to ca/2 + 1 < ca/2 + 2, which is trivially true.

For Φ being well-defined it remains to show that eeven(
#–

c′) < p < eodd(
#–

c′).
We begin with eeven(

#–

c′) < p. So let p ≤ a ≤ 2l be even. Then we have to show
that c′a + 1 = c′a+1. But unpacking the definition of

#–

c′ we have c′a = ca/2 + 1

and c′a+1 = ca/2 + 2, so this holds. For p < eodd(
#–

c′) let 1 ≤ a ≤ p be odd.
Then we have to show that c′a + 1 = c′a+1. This time we have by definition
c′a = c(a+1)/2, and c′a+1 = c(a+1)/2 + 1. This finishes the proof that Φ is
well-defined.

Now let (s, t, σ, #–c ) be an element of J , and Φ((s, t, σ, #–c )) = (σ′,
#–

c′ , p). We
want to verify the identity for B′(Φ((s, t, σ, #–c ))). We begin with the following
calculation.

B′(Φ((s, t, σ, #–c )))

= (−1)p+1 · sgn(σ′) · σ′ · T full
(
(y1, . . . , ym),

#–

c′
)

= (−1)p+1 · sgn(σ2l−1→t ◦ σ ◦ σp→2l−1) · (σ2l−1→t ◦ σ ◦ σp→2l−1)·


c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗

c′3−1∏

j=c′2

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj




241 ≤ p− 1, as p = 1 conflicts with the assumption that p is even.
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= (−1)p+1 · (−1)p−(2l−1) sgn(σ2l−1→t ◦ σ) · (σ2l−1→t ◦ σ)·

c′1−1∏

j=1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj




= sgn(σ2l−1→t ◦ σ) · (σ2l−1→t ◦ σ)·

c′1−1∏

j=1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj




Let y′1 = y1, . . . , y
′
s−1 = ys−1, and y′s = ys+1, . . . , y

′
m−1 = ym. It then suffices

to show the following.

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj

= T
((
y′1, . . . , y

′
m−1

)
, #–c
)
⊗ ys

For this we distinguish two cases according to the parity of p. If p is odd,
then we obtain the following by unpacking the definition of

#–

c′ and p.

c′1−1∏

j=1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj

=

c1−1∏

j=1

yj ⊗ · · · ⊗

cq−1∏

j=cq−1+1

yj ⊗

cq+1∏

j=cq+1

yj ⊗ · · · ⊗
cl∏

j=cl−1+2

yj ⊗

cq∏

j=cq

yj

=

c1−1∏

j=1

yj ⊗ yc1 ⊗ · · · ⊗

cq−1∏

j=cq−1+1

yj ⊗ ycq+1 ⊗ · · · ⊗
cl∏

j=cl−1+2

yj ⊗ ycq

=

c1−1∏

j=1

y′j ⊗ y
′
c1
⊗ · · · ⊗

cq−1∏

j=cq−1+1

y′j ⊗ y
′
cq
⊗ · · · ⊗

cl−1∏

j=cl−1+1

y′j ⊗ ys

= T
((
y′1, . . . , y

′
m−1

)
, #–c
)
⊗ ys

If p is instead even, one obtains the following instead. There is only a slight
difference in the middle.

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj

=

c1−1∏

j=1

yj ⊗
c1∏

j=c1

yj ⊗ · · · ⊗

cq∏

j=cq

yj ⊗

cq+1∏

j=cq+2

yj ⊗ · · · ⊗
cl∏

j=cl−1+2

yj ⊗

cq∏

j=cq

yj
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=

c1−1∏

j=1

yj ⊗ yc1 ⊗ · · · ⊗ ycq ⊗

cq+1∏

j=cq+2

yj ⊗ · · · ⊗
cl∏

j=cl−1+2

yj ⊗ ycq

=

c1−1∏

j=1

y′j ⊗ y
′
c1
⊗ · · · ⊗ y′cq ⊗

cq+1−1∏

j=cq+1

y′j ⊗ · · · ⊗
cl−1∏

j=cl−1+1

y′j ⊗ ys

= T
((
y′1, . . . , y

′
m−1

)
, #–c
)
⊗ ys

To finish the proof of this proposition it remains to show that Φ is a
bijection, for which we construct an inverse Ψ. So let (σ′,

#–

c′ , p) be an element
of Id. Then we define s, t, σ, and #–c as follows.

s := c′p

t := σ′(p)

σ := σt→2l−1 ◦ σ
′ ◦ σ2l−1→p

ca := c′2a − 1 for 1 ≤ a ≤ l

We want to define Ψ as

Ψ
(
(σ′,

#–

c′ , p)
)
:= (s, t, σ, #–c )

for which we need to check various things to ensure that this is well-defined.
We first note that

#–

c′ is an element of Cfull(2l − 1,m) and 1 ≤ p ≤ 2l − 1,
so c′p is defined and satisfies 1 ≤ cp < c2l = m+ 1, so 1 ≤ s ≤ m. Next, σ′ is
an element of Σ2l−1, so 1 ≤ t ≤ 2l − 1 is also well-defined.

We next need to show that σ is an element of El−1. For this we first note
that it follows from the definition of t and σ that σ is an element of Σ2l−2.
So now let 1 ≤ a ≤ 2l − 3 be an odd integer. We have to show that σ
cyclically preserves the ordering of {a − 1, a, a + 1}. As a ≤ 2l − 3 we have
a + 1 < 2l − 1, so this amounts to showing that σ′ cyclically preserves the
ordering of {σ2l−1→p(a − 1), σ2l−1→p(a), σ2l−1→p(a + 1)}. For this we need
to distinguish four cases. First consider the case a < p− 1. Then we have to
show that σ′ cyclically preserves the ordering of {a − 1, a, a + 1}, which it
does, as a is odd and a ≤ p−2 < eodd(σ

′). Next consider the case a > p. Then
we have to show that σ′ cyclically preserves the ordering of {a, a+ 1, a+ 2},
which it does, as a + 1 is even and eeven(σ

′) < p + 2 ≤ a + 1. The cases
a = p−1 and a = p remain. So assume a = p−1. Then we have to show that
σ′ cyclically preserves the ordering of {p − 2, p − 1, p + 1}. Now a ≤ 2l − 3
being odd implies that p ≤ 2l − 2 is even, so this is part of the condition for
(σ′,

#–

c′ , p) being an element of Id. Similarly, if we assume a = p, then we have
to show that σ′ cyclically preserves the ordering of {p−1, p+1, p+2}, which
it does as p = a ≤ 2l − 3 is even.

We now turn to showing that #–c is an element of C(l − 1,m − 1). If
1 ≤ a ≤ l, then 2 ≤ 2a ≤ 2l, so it follows that c′2a is defined and satis-
fies 1 ≤ c′1 < c′2a ≤ m+ 1, so that ca is well-defined and satisfies 1 ≤ ca ≤ m.
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We also obtain cl = c′2l − 1 = m + 1 − 1 = m. So now let 1 ≤ a ≤ l − 1.
Then we have to show that ca +1 ≤ ca+1 − 1. This amounts to showing that
c′2a ≤ c

′
2a+2 − 2. But this follows from c′2a < c′2a+1 < c′2a+2.

To finish the proof that Ψ is well-defined it remains to show that c1 ≯ s

and that there is no 1 ≤ q ≤ l− 1 such that cq < s− 1 < s < cq+1. Applying
the definitions of s and #–c , this means we have to show that c′2 − 1 ≯ c′p and
that there is no 1 ≤ q ≤ l − 1 such that c′2q − 1 < c′p − 1 < c′p < c′2q+2 − 1.
Let us first tackle the first claim. Assume that c′p < c′2 − 1, so c′p + 1 < c′2.
As c′1 < c′2 < c′3 < · · · this implies that p = 1. As p < eodd(

#–

c′) and p = 1
is odd, this means that c′1 + 1 = c′2, which contradicts c′p + 1 < c′2. Next,
assume 1 ≤ q ≤ l − 1 such that c′2q − 1 < c′p − 1 < c′p < c′2q+2 − 1. Again as
c′1 < c′2 < · · · we obtain that we must have 2q < p < 2q + 2, so p = q + 1.
As eeven(

#–

c′) < p < eodd(
#–

c′) we can then conclude that c′p + 1 = c′p+1, which
contradicts the assumption that c′p < c′2q+2 − 1. This finishes the proof that
Ψ is well-defined.

It remains to show that Φ ◦ Ψ and Ψ ◦ Φ are the respective identities.
So let (s, t, σ, #–c ) be an element of J and Φ((s, t, σ, #–c )) = (σ′,

#–

c′ , p). Let
furthermore Ψ((σ′,

#–

c′ , p)) = (s, t, σ, #–c ). It follows directly from the definitions
that t = σ′(p) = t, from which we can then conclude σ = σ as well. It is also
immediate from the definitions that #–c = #–c . To show that s = s, one needs to
distinguish by the parity of p, and then this also follows directly by unpacking
the definitions.

Now let (σ′,
#–

c′ , p) be an element of Id and let Ψ((σ′,
#–

c′ , p)) = (s, t, σ, #–c ), as
well as Φ((s, t, σ, #–c )) = (σ′,

#–

c′ , p). We again need to distinguish by the parity
of p. If p is odd, then p < eodd(

#–

c′) implies that c′p+1 − 1 = c′p. From this we
obtain c(p+1)/2 = c′p+1−1 = c′p = s. Thus we obtain p = 2((p+1)/2)−1 = p.
If instead p is even, then we directly obtain cp/2 = c′p − 1 = s − 1, so that
p = 2(p/2) = p. As p = p it then follows from the definition that σ′ = σ′. For
#–

c′ we obtain the following for 1 ≤ a ≤ 2l.

c′a :=





c′a if 2 | a
c′a+1 − 1 if a ≤ p and 2 ∤ a
c′a−1 + 1 if a > p and 2 ∤ a

So let a ≤ p be odd. Then a < eodd(
#–

c′), so that c′a = c′a+1− 1. Now let a > p

be odd. Then a−1 ≥ p > eeven(
#–

c′) is even, so c′a−1+1 = c′a. This shows that
#–

c′ =
#–

c′ and thus finishes the proof that Φ ◦Ψ = id and thus the proof of this
proposition.

7.3.5. A first look at d ◦ ϵ(l−1)
X

We now turn to d(ϵ(l−1)
X (y1 · · · ym)) and write it as a sum over I1.
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Proposition 7.3.5.1. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

d
(
ϵ
(l−1)
X (y1 · · · ym)

)
=
∑

v∈I1

B′′(v)

♥

Proof. We begin by evaluating the left hand side using the definition of ϵ(l−1)
X

from Construction 7.3.1.1 and of the differential on the normalized standard
Hochschild complex in Proposition 6.3.1.10.

d
(
ϵ
(l−1)
X (y1 · · · ym)

)

= d




∑

σ∈El−1,
#–c ∈C(l−1,m)

sgn(σ) · σ · T ((y1, . . . , ym), #–c )




=
∑

0≤t≤2l−2

σtcyc,2l−1 ·


1⊗




∑

σ∈El−1,
#–c ∈C(l−1,m)

sgn(σ) · σ · T ((y1, . . . , ym), #–c )







Note that sgn(σcyc,2l−1) = (−1)(2l−1)−1 = 1.
=

∑

0≤t≤2l−2

∑

σ∈El−1,
#–c ∈C(l−1,m)

sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
· (1⊗ T ((y1, . . . , ym), #–c ))

Finally, we note that if we had c1 = 1, then the first tensor factor of
T ((y1, . . . , ym), #–c ) would be 1, making 1 ⊗ T ((y1, . . . , ym), #–c ) = 0. We can
thus remove those summands.
=

∑

0≤t≤2l−2

∑

σ∈El−1,
#–c ∈C(l−1,m)
such that
c1>1

sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
· (1⊗ T ((y1, . . . , ym), #–c ))

This leads us to defining a set J as follows.

J := { (t, σ, #–c ) ∈ {0, . . . , 2l − 2} × El−1 × C(l − 1,m) | c1 > 1 }

It then suffices to construct a bijection

Φ: J → I1
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such that for every element (t, σ, #–c ) of J the following holds.

B′′(Φ((t, σ, #–c ))) = sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))

·
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
· (1⊗ T ((y1, . . . , ym), #–c ))

So let (t, σ, #–c ) be an element of J . Then we make the following definitions.

σ′ := σtcyc,2l−1 ◦
(
id{1}∐σ

)

c′a :=





1 if a = 1

ca/2 if a is even
c(a−1)/2 + 1 if 1 < a is odd

for 1 ≤ a ≤ 2l

Φ((t, σ, #–c )) :=
(
σ′,

#–

c′
)

We need to show that (σ′,
#–

c′) defined like this is a well-defined element of I1.
For this note first that as σ is an element of Σ2l−2 the permutation σ′ is indeed
an element of Σ2l−1. We also need eeven(σ

′) = −∞. So let 2 ≤ a ≤ 2l − 2
be even. Then we have to show that σ′ cyclically preserves the ordering
of {a − 1, a, a + 1}. This amounts to σ cyclically preserving the ordering of
{a−2, a−1, a}, which it does as σ is an element of El−1 and 1 ≤ a−1 ≤ 2l−3 is
odd. Next we need to show that

#–

c′ is a well-defined element of Cfull(2l−1,m).
If 2 ≤ a ≤ 2l is even, then 1 ≤ a/2 ≤ l, so c′a is well defined and satisfies
1 ≤ c′a ≤ m + 1. If 3 ≤ a ≤ 2l − 1 is odd, then 1 ≤ (a − 1)/2 ≤ l − 1 so
that c(a−1)/2 is defined and satisfies 1 ≤ c(a−1)/2 < cl = m+1, which implies
that 1 ≤ c′a ≤ m + 1. Thus

#–

c′ is an element of {1, . . . ,m + 1}2l. We also
have c′2l = cl = m+ 1. It remains to show that c′1 < · · · < c′2l. This amounts
to 1 < c1 < c1 + 1 < c2 < · · · < cl, which holds as c1 > 1 by assumption
on (t, σ, #–c ), and as ca + 1 ≤ ca+1 − 1 for 1 ≤ a ≤ l − 1 as #–c is an element
of C(l − 1,m). To show that (σ′,

#–

c′) is an element of I1 it still remains to
show that eeven(

#–

c′) = −∞, which amounts to showing that c′1 = 1 and that
c′a+1 = c′a+1 for 2 ≤ a ≤ 2l− 2 even, both of which is the case directly from
the definition of

#–

c′ .
We now verify the identity that needs to be satisfied for B′′(Φ((t, σ, #–c ))).

B′′(Φ((t, σ, #–c )))

= B′′
((
σ′,

#–

c′
))

= sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
· T full

(
(y1, . . . , ym),

#–

c′
)

Verification of the identity that is needed for B′′(Φ((t, σ, #–c ))) is now com-
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pleted by the following calculation.

T full
(
(y1, . . . , ym),

#–

c′
)

=

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗

c′3−1∏

j=c′2

yj ⊗

c′4−1∏

j=c′3

yj ⊗

c′5−1∏

j=c′4

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj

=

0∏

j=1

yj ⊗
c1−1∏

j=1

yj ⊗
c1∏

j=c1

yj ⊗
c2−1∏

j=c1+1

yj ⊗
c2∏

j=c2

yj ⊗ · · · ⊗
cl−1∏

j=cl−1+1

yj

= 1⊗
c1−1∏

j=1

yj ⊗ yc1 ⊗
c2−1∏

j=c1+1

yj ⊗ yc2 ⊗ · · · ⊗
cl−1∏

j=cl−1+1

yj

= 1⊗ T ((y1, . . . , ym), #–c )

It remains to show that Φ is a bijection. As usual we construct an inverse
Ψ. So let (σ′,

#–

c′) be an element of I1. Then we define Ψ((σ′,
#–

c′)) as follows.

t := σ′(1)− 1

σ := r{2,...,2l−1}

(
σ−t
cyc,2l−1 ◦ σ

′
)

ca := c′2a for 1 ≤ a ≤ l

Ψ
((
σ′,

#–

c′
))

:= (t, σ, #–c )

Again we have to check some things to verify that this is well-defined. First,
as σ′ is an element of Σ2l−1, the value of t satisfies indeed 0 ≤ t ≤ 2l − 2,
and the above definition of σ is an element of Σ2l−1. We need to show that
σ is even an element of El−1. So let 1 ≤ a ≤ 2l − 3 be an odd integer. We
have to show that σ cyclically preserves the ordering of {a− 1, a, a+1}. But
as σ−t

cyc,2l−1 cyclically preserves the ordering of any set, the restriction means
that what we have to show amounts to showing that σ′ cyclically preserves
the ordering of {a, a + 1, a + 2}, which it does as 2 ≤ a + 1 ≤ 2l − 2 is
even and eeven(σ) = −∞. We also need to show that #–c is an element of
C(l − 1,m) satisfying c1 > 1. For this we note that for 1 ≤ a ≤ l we have
2 ≤ 2a ≤ 2l. Thus 1 ≤ c′1 < c′2a ≤ m+ 1, from which it follows that #–c is an
element of {1, . . . ,m+ 1}l with c1 > 1. Directly from the definition we have
cl = c′2l = m+1, and if a < l, then we have ca = c′2a < c′2a+1 < c′2a+2 = ca+1,
from which ca + 1 ≤ ca+1 − 1 follows. This shows that Ψ is well-defined.

To finish the proof of this propositions we are left to show that Φ ◦Ψ and
Ψ ◦ Φ are the respective identity maps. So let (t, σ, #–c ) be an element of J ,
and set Φ((t, σ, #–c )) = (σ′,

#–

c′) and Ψ((σ′,
#–

c′)) = (t, σ, #–c ). Then the following
calculations show that Ψ ◦ Φ is the identity.

t = σ′(1)− 1 = σtcyc,2l−1(1)− 1 = 1 + t− 1 = t
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σ = r{2,...,2l−1}

(
σ
−t
cyc,2l−1 ◦ σ

t
cyc,2l−1 ◦

(
id{1}∐σ

))

= r{2,...,2l−1}

(
id{1}∐σ

)
= σ

ca = c′2a = ca for 1 ≤ a ≤ l

Now let (σ′,
#–

c′) be an element of I1. Let Ψ((σ′,
#–

c′)) = (t, σ, #–c ) and let
Φ((t, σ, #–c )) = (σ′,

#–

c′). We begin by the following calculation.

(
σ−t
cyc,2l−1 ◦ σ

′
)
(1) = σ

−(σ′(1)−1)
cyc,2l−1 (σ′(1)) = σ′(1)− (σ′(1)− 1) = 1

This implies the following calculation showing σ′ = σ′.

σ′ = σtcyc,2l−1 ◦
(
id{1}∐σ

)

= σtcyc,2l−1 ◦
(

id{1}∐r{2,...,2l−1}

(
σ−t
cyc,2l−1 ◦ σ

′
))

= σtcyc,2l−1 ◦ σ
−t
cyc,2l−1 ◦ σ

′

= σ′

It remains to show that
#–

c′ =
#–

c′ . So let 1 ≤ a ≤ 2l. Then we have the following
calculation.

c′a =





1 if a = 1

ca/2 if a is even
c(a−1)/2 + 1 if 1 < a is odd

=





1 if a = 1

c′a if a is even
c′a−1 + 1 if 1 < a is odd

As eeven(
#–

c′) = −∞ by definition of I1 we have c′1 = 1. Furthermore, if
3 ≤ a ≤ 2l − 1 is odd, then 2 ≤ a− 1 ≤ 2l − 2 is even, so c′a−1+1 = c′a−1 + 1
for the same reason. This finishes the proof of Φ ◦Ψ = id.

7.3.6. Progress so far

We can sum up progress so far as in the following proposition. Our goal is
to show that the left hand side of the equation is zero.

Proposition 7.3.6.1. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
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Then the following holds.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X (d(y1 · · · ym)) + d

(
ϵ
(l−1)
X (y1 · · · ym)

)

=
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v) +
∑

v∈I0,0,1

B(v)

−
∑

v∈Id

B′(v) +
∑

v∈I1

B′′(v) ♥

Proof. By combining Proposition 7.3.2.9 (used for the first two lines, for
∂(ϵ

(l)
X (y1 · · · ym))), Proposition 7.3.4.3 (third line, for −ϵ(l−1)

X (d(y1 · · · ym)))
Proposition 7.3.5.1 (used for the fourth line, for d(ϵ(l−1)

X (y1 · · · ym))) we obtain
the following.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X (d(y1 · · · ym)) + d

(
ϵ
(l−1)
X (y1 · · · ym)

)

=
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q+2,2q

B(v) +
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v)

+
∑

v∈I0,0,1

B(v) +
∑

v∈I2l,2,0

B(v)

−
∑

1≤i≤2l−1,
1≤p≤l−1,
v∈Ii,2p+2,2p

B(v)−
∑

v∈I2l,2,0

B(v)−
∑

v∈Id

B′(v)

+
∑

v∈I1

B′′(v)

Now some summands cancel and the result follows.

7.3.7. Reindexing remaining summands from the
boundary

We want to show that the left hand side of the equation in Proposi-
tion 7.3.6.1 is zero, doing so via the right hand side. Of the terms there,
the last two terms are written as sums of summands that are obtained by
applying T full to an element of Cfull(2l − 1,m) and then permuting and per-
haps adding a sign. The other terms are however given differently, so in this
section we reindex those sums to bring them into a similar form.

Proposition 7.3.7.1. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
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Then the following holds.
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

v∈I0,0,1

B(v) =
∑

v∈I∂even

B′′(v)

♥

Proof. Define the subset J of I as follows.25

J := I0,0,1 ∪
⋃

1≤i≤2l−1,
1≤q≤l−1

Ii,2q,2q+1

It then suffices to produce a bijection

Φ: J → I∂even

such that the following holds for every element v of J .

B′′(Φ(v)) = B(v)

So let (i, σ, #–c ) be an element of J . Then we make the following definitions.

q := σ−1(i)/2

σ′ := σi+1→2l ◦ σ ◦ σ2l→2q+1

c′a :=





c(a+1)/2 if 2 ∤ a and a ≤ 2q

ca/2 + 1 if 2 | a and a ≤ 2q

c(a+1)/2 + 1 if 2 ∤ a and a ≥ 2q + 1

ca/2+1 if 2 | a and a ≥ 2q + 1

for 1 ≤ a ≤ 2l

Φ((i, σ, #–c )) :=
(
σ′,

#–

c′
)

There are various things that we need to check to verify that this is well-
defined. First, σ−1(i + 1) = σ−1(i) + 1 holds by assumption on elements of
J , so as 0 ≤ i ≤ 2l − 1 implies 1 ≤ σ−1(i+ 1) ≤ 2l we can conclude that we
must have 0 ≤ σ−1(i) ≤ 2l− 1. Furthermore, the definition of J implies that
σ−1(i) is even, so q is a well-defined integer satisfying 0 ≤ q ≤ l − 1. This
makes σ′ into a well-defined element of Σ2l. Furthermore, we have

σ′(2l) = σi+1→2l(σ(2q + 1)) = σi+1→2l

(
σ
(
σ−1(i) + 1

))

= σi+1→2l

(
σ
(
σ−1(i)

)
+ 1
)
= σi+1→2l(i+ 1)

= 2l

25The definition of I0,0,1 is really the same one as for Ii,2q,2q+1 if we set i = 0 and q = 0,
so we mostly do not need to treat this as a separate case. The only difference is that
Ii,0,1 is empty unless i = 0, as σ(0) = 0 for every element σ of Σ2l.
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so that we can even consider σ′ as an element of Σ2l−1.
We next show that

#–

c′ is a well-defined element of Cfull(2l−1,m). Using that
#–c is an element of C(l,m) one easily sees that in all four cases c′a is a well-
defined integer satisfying 1 ≤ c′a ≤ m+126. We also have c′2l = cl+1 = m+1.
It remains to show that c′a < c′a+1 for 1 ≤ a ≤ 2l − 1. If a ≤ 2q − 1 is odd or
a ≥ 2q+2 even then is immediate. If a ≤ 2q−2 is even, then c′a = ca/2+1 and
c′a+1 = ca/2+1, so c′a < c′a+1 follows from ca/2+1 ≤ ca/2+1−1. If a ≥ 2q+1 is
odd, then c′a = c(a+1)/2 + 1 and c′a+1 = c(a+1)/2+1, so that c′a < c′a+1 follows
analogously. It remains to consider a = 2q. In this case c′2q = cq + 1 and
c′2q+1 = cq+1 + 1, so c′2q < c′2q+1 as cq < cq+1. This completes the proof that
#–

c′ is a well-defined element of Cfull(2l − 1,m).
We now verify the conditions required for (σ′,

#–

c′) to be an element of I∂even.
Concretely we make the following claims.

eeven

(
#–

c′
)
= 2q

eeven(σ
′) ≤ 2q

eodd

(
#–

c′
)
≥ 2q + 3

eodd(σ
′) ≥ 2q + 1

To show that eeven(
#–

c′) = 2q, we begin by first noting that c′2q = cq + 1 and
c′2q+1 = cq+1+1. As #–c is an element of C(l,m), we have cq+1 < cq+1, which
implies that c′2q + 1 < c′2q+1, so eeven(

#–

c′) ≥ 2q. Now let 2q + 2 ≤ a ≤ 2l − 2

be even. Then c′a + 1 = ca/2+1 + 1 = c′a+1, which shows that eeven(
#–

c′) = 2q.
Next let 1 ≤ a ≤ 2q − 1 be odd. Then c′a + 1 = c(a+1)/2 + 1 = c′a+1, so
eodd(

#–

c′) ≥ 2q + 1. Furthermore, we have c′2q+1 = cq+1 + 1 and c′2q+2 = cq+2.
By definition of J it holds that cq+1 + 1 = cq+2 − 1, which then implies
c′2q+1 + 1 = c′2q+2. Thus we even get eodd(

#–

c′) ≥ 2q + 3. We next show that
eeven(σ

′) ≤ 2q. So let 2q + 2 ≤ a ≤ 2l − 2 be even. Then we have to show
that σ′ cyclically preserves the ordering of {a − 1, a, a + 1}, which amounts
to σ cyclically preserving the ordering of {a, a + 1, a + 2}, which is the case
as a+1 is odd and satisfies 1 ≤ a+1 ≤ 2l−1. To show that eodd(σ′) ≥ 2q+1
we let 1 ≤ a ≤ 2q − 1 be odd, and have to show that σ′ cyclically preserves
the ordering of {a− 1, a, a+ 1}, which it does as σ does. This completes the
proof that Φ is well-defined.

Keeping the notation used so far, we now show the following.

B′′(Φ((i, σ, #–c ))) = B((i, σ, #–c ))

26To exclude that we get m+2 in the two cases in which 1 is added to a component of #–c ,
note that in those cases the index is at most l, and cl < cl+1 = m+ 1.
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We first consider the signs.

sgn(σ′)

= sgn(σi+1→2l ◦ σ ◦ σ2l→2q+1)

= (−1)2l−(i+1) · sgn(σ) · (−1)2q+1−2l

= (−1)i · sgn(σ)

It thus remains to show the following.

∂i(σ · T ((y1, . . . , ym), #–c )) = σ′ · T full
(
(y1, . . . , ym),

#–

c′
)

For this let us write T = T ((y1, . . . , ym), #–c ) and Ta for the a-th tensor factor
of T . Then we can carry out the following calculation for the a-th tensor
factor of T full((y1, . . . , ym),

#–

c′), with 0 ≤ a ≤ 2l − 1.

T full
(
(y1, . . . , ym),

#–

c′
)
a

=





∏c′1−1
j=1 yj if a = 0

∏c′a+1−1

j=c′a
yj if a > 0

=





∏c1
j=1 yj if a = 0 = q

∏c1−1
j=1 yj if a = 0 < q

∏c(a+1)/2

j=c(a+1)/2
yj if 0 < a ≤ 2q − 1 is odd

∏ca/2+1−1

j=ca/2+1 yj if 0 < a ≤ 2q − 1 is even
∏cq+1

j=cq+1 yj if 0 < a = 2q

∏c(a+1)/2+1−1

j=c(a+1)/2+1 yj if a ≥ 2q + 1 is odd
∏ca/2+1

j=ca/2+1
yj if a ≥ 2q + 1 is even

=





∏c1
j=1 yj if a = 0 = q

∏c1−1
j=1 yj if a = 0 < q

yc(a+1)/2
if 0 < a ≤ 2q − 1 is odd

∏ca/2+1−1

j=ca/2+1 yj if 0 < a ≤ 2q − 1 is even
∏cq+1

j=cq+1 yj if 0 < a = 2q

∏c(a+1)/2+1−1

j=c(a+1)/2+1 yj if a ≥ 2q + 1 is odd

yca/2+1
if a ≥ 2q + 1 is even

414



7.3. De Rham forms as a strict model in Mixed

=





T0 · T1 if a = 0 = q

Ta if a = 0 < q

Ta if 0 < a ≤ 2q − 1 is odd
Ta if 0 < a ≤ 2q − 1 is even
T2q · T2q+1 if 0 < a = 2q

Ta+1 if a ≥ 2q + 1 is odd
Ta+1 if a ≥ 2q + 1 is even

=





Ta if a ≤ 2q − 1

T2q · T2q+1 if a = 2q

Ta+1 if a ≥ 2q + 1

Note that the inverse of σ′ is given by

σ′−1 = σ2q+1→2l ◦ σ
−1 ◦ σ2l→i+1

so that we have the following values for 0 ≤ a ≤ 2l − 1 (note that the cases
below are exhaustive, as 2q + 1 can not occur due to a 6= 2l).

σ′−1(a) =





σ−1(a) if a ≤ i and σ−1(a) ≤ 2q

σ−1(a)− 1 if a ≤ i and σ−1(a) ≥ 2q + 2

σ−1(a+ 1) if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q

σ−1(a+ 1)− 1 if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2

The upshot is that the a-th tensor factor of σ′ ·T full((y1, . . . , ym),
#–

c′) is given
by





T full
(
(y1, . . . , ym),

#–

c′
)
σ−1(a)

if a ≤ i and σ−1(a) ≤ 2q

T full
(
(y1, . . . , ym),

#–

c′
)
σ−1(a)−1

if a ≤ i and σ−1(a) ≥ 2q + 2

T full
(
(y1, . . . , ym),

#–

c′
)
σ−1(a+1)

if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q

T full
(
(y1, . . . , ym),

#–

c′
)
σ−1(a+1)−1

if a ≥ i+ 1

and σ−1(a+ 1) ≥ 2q + 2

=





Tσ−1(a) if a ≤ i and σ−1(a) ≤ 2q − 1

T2q · T2q+1 if a ≤ i and σ−1(a) = 2q

Tσ−1(a)−1+1 if a ≤ i and σ−1(a) ≥ 2q + 2

Tσ−1(a+1) if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q − 1

T2q · T2q+1 if a ≥ i+ 1 and σ−1(a+ 1) = 2q

Tσ−1(a+1)−1+1 if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2
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Note that σ(2q) = i and σ(2q + 1) = i+ 1.

=





Tσ−1(a) if a ≤ i and σ−1(a) ≤ 2q − 1

Tσ−1(i) · Tσ−1(i+1) if a = i

Tσ−1(a) if a ≤ i and σ−1(a) ≥ 2q + 2

Tσ−1(a+1) if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q − 1

Tσ−1(a+1) if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2

=





Tσ−1(a) if a ≤ i
Tσ−1(i) · Tσ−1(i+1) if a = i

Tσ−1(a+1) if a ≥ i+ 1

= (∂i(σ · T ((y1, . . . , ym), #–c )))a

This finishes the proof that B′′(Φ((i, σ, #–c ))) = B((i, σ, #–c )).
We still have to show that Φ is a bijection. For this we construct an in-

verse Ψ. So let (σ′,
#–

c′) be an element of I∂even. Then we make the following
definitions.

q := eeven

(
#–

c′
)
/2

i := σ′(2q)

σ := σ2l→i+1 ◦ σ
′ ◦ σ2q+1→2l

ca :=





c′2a−1 if a ≤ q
c′2a−1 − 1 if q + 1 ≤ a ≤ l

m+ 1 if a = l + 1

for 1 ≤ a ≤ l + 1

Ψ
(
(σ′,

#–

c′)
)
:= (i, σ, #–c )

As usual various checks are needed to show that this is indeed well-defined. To
begin with eeven

(
#–

c′
)
6= −∞ by definition of I∂even, so 0 ≤ eeven

(
#–

c′
)
≤ 2l− 2,

implying that q is a well-defined integer satisfying 0 ≤ q ≤ l− 1. This makes
i a well defined integer satisfying 0 ≤ i ≤ 2l − 1. We note here that i = 0 if
and only if q = 0.

We next show that σ is an element of El. So let 1 ≤ a ≤ 2l − 1 be odd.
We have to show that σ cyclically preserves the ordering of {a− 1, a, a+ 1}.
If a ≤ 2q − 1, then this amounts to showing that σ′ cyclically preserves
{a − 1, a, a + 1}, which it does as eodd(σ

′) ≥ eeven(
#–

c′) + 1 = 2q + 1. If
instead a ≥ 2q+3, then this amounts to showing that σ′ cyclically preserves
{a− 2, a− 1, a}, which it does as a− 1 is even, satisfies a− 1 ≥ 2q + 2, and
eeven(σ

′) ≤ eeven(
#–

c′) = 2q. The case a = 2q + 1 remains. For this we just
evaluate σ at 2q and 2q + 1 as follows

σ(2q) = i σ(2q + 1) = i+ 1
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which already shows the claim, no matter what σ(2q + 2) may be. It also
handles the condition on σ required for (i, σ, #–c ) to be an element of Ii,2q,2q+1.

Now we show that #–c is an element of C(l,m). We have cl+1 = m + 1 by
definition, and for 1 ≤ a ≤ l we have 1 ≤ 2a − 1 ≤ 2l − 1 so that c′2a−1 is
a well-defined integer. If furthermore a ≤ q, then, as q ≤ l − 1, we have the
following chain of inequalities.

1 ≤ c′2a−1 ≤ c
′
2l−3 ≤ c

′
2l − 3 = m− 2

If instead q + 1 ≤ a as well as 2 ≤ a, then we have the following chain of
inequalities.

1 ≤ c′2 ≤ c
′
3 − 1 ≤ c′2a−1 − 1 ≤ c′2l−1 − 1 ≤ c′2l − 2 = m− 1

Finally, if a = 1 and q = 0, then eeven(
#–

c′) = 0, which implies that 1 ≤ c′1 − 1,
while c′2a−1 − 1 ≤ m− 1 as in the previous case. We have thus shown so far
that cl+1 = m + 1 while 1 ≤ ca ≤ m − 1 for 1 ≤ a ≤ l. So let 1 ≤ a ≤ l − 1.
We still have to show that ca + 1 ≤ ca+1 − 1. If a ≤ q − 1 or a ≥ q + 1 this
follows from c′2a−1 < c′2a < c′2a+1. The case a = q remains, where we have
cq = c′2q−1 and cq+1 = c′2q+1 − 1. But as eeven(

#–

c′) = 2q, we obtain the last
inequality in the following chain c′2q−1 < c′2q < c′2q + 1 < c′2q+1, which shows
the claim. Using that c′2q+1 = c′2q+2 − 1 = c′2q+3 − 2 due to eodd(

#–

c′) ≥ 2q + 3

and eeven(
#–

c′) = 2q we obtain the short calculation

cq+1 + 1 = c′2q+1 − 1 + 1 = c′2q+1 = c′2q+2 − 1 = c′2q+3 − 2 = cq+2 − 1

which finishes the proof that Ψ is well-defined as a map to J .
It remains to show that Ψ is an inverse map to Φ. So let (i, σ, #–c ) be an

element of J , and set Φ((i, σ, #–c )) = (σ′,
#–

c′) and q = σ−1(i)/2 as in the
definition of Φ. Set furthermore Ψ((σ′,

#–

c′)) = (i, σ, #–c ) and q = eeven(
#–

c′)/2 as
in the definition of Ψ. In the definition of Φ it was shown that eeven(

#–

c′) = 2q,
so that q = q, and unpacking the definition we then have i = σ′(2q) = i.
It then follows immediately that also σ = σ, and the following calculation
shows that #–c = #–c , where 1 ≤ a ≤ l.

ca =

{
c′2a−1 if a ≤ q
c′2a−1 − 1 if q + 1 ≤ a ≤ l

=

{
ca if a ≤ q
ca + 1− 1 if q + 1 ≤ a ≤ l

= ca

This shows that Ψ ◦ Φ = id.
Now let (σ′,

#–

c′) be an element of I∂even. Set Ψ((σ′,
#–

c′)) = (i, σ, #–c ) and let
q = eeven(

#–

c′)/2 be as in the definition of Ψ. Let Φ((i, σ, #–c )) = (σ′,
#–

c′) and
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q = σ−1(i)/2 as in the definition of Φ. Then we have

σ(2q) = (σ2l→i+1 ◦ σ
′ ◦ σ2q+1→2l)(2q) = σ2l→i+1(σ

′(2q)) = σ2l→i+1(i) = i

so that q = q. It then follows that σ′ = σ′. It remains to show that
#–

c′ =
#–

c′ .
So let 1 ≤ a ≤ 2l. Then this is shown by the following calculation.

c′a =





c(a+1)/2 if 2 ∤ a and a ≤ 2q

ca/2 + 1 if 2 | a and a ≤ 2q

c(a+1)/2 + 1 if 2 ∤ a and a ≥ 2q + 1

ca/2+1 if 2 | a and a ≥ 2q + 1

=





c′a if 2 ∤ a and a ≤ 2q

c′a−1 + 1 if 2 | a and a ≤ 2q

c′a − 1 + 1 if 2 ∤ a and a ≥ 2q + 1

c′a+1 − 1 if 2 | a and 2l > a ≥ 2q + 1

m+ 1 if a = 2l

Using that eodd(
#–

c′) ≥ 2q+3 we obtain c′a−1 +1 = c′a in the second case, and
using eeven(

#–

c′) = 2q we obtain c′a = c′a+1 − 1 in the fourth case.

=





c′a if 2 ∤ a and a ≤ 2q

c′a if 2 | a and a ≤ 2q

c′a if 2 ∤ a and a ≥ 2q + 1

c′a if 2 | a and 2l > a ≥ 2q + 1

m+ 1 if a = 2l

= c′a

Proposition 7.3.7.2. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v) = −
∑

v∈I∂odd

B′′(v)

♥

Proof. The proof is completely analogous to the proof of Proposition 7.3.7.1,
so we omit the details. The formulas used to define Φ in this case are

q :=
(
σ−1(i)− 1

)
/2

σ′ := σi→2l ◦ σ ◦ σ2l→2q+1
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c′a :=





c(a+1)/2 if 2 ∤ a and a ≤ 2q + 1

ca/2 + 1 if 2 | a and a ≤ 2q + 1

c(a+1)/2 + 1 if 2 ∤ a and a ≥ 2q + 2

ca/2+1 if 2 | a and a ≥ 2q + 2

for 1 ≤ a ≤ 2l

Φ((i, σ, #–c )) :=
(
σ′,

#–

c′
)

and in this case eodd(
#–

c′) = 2q + 1.
The special assumption on #–c from the definition of J has in this case, in

contrast to the proof of Proposition 7.3.7.1, a different form depending on
whether q = 0 or not, as there is no c0. Where this property was used in the
proof of Proposition 7.3.7.1 was to show that eodd(

#–

c′) 6= 2q + 1. In our case
here this property is needed to show that eeven(

#–

c′) 6= 2q, and the distinction
between the cases q = 0 and q 6= 0 corresponds to the analogous distinction
in the definition of eeven.

That the definition of σ′ involves i instead of i + 1 introduces an extra
minus sign in sgn(σ′), which explains the minus sign in the result.

The formulas used to define Ψ are as follows.

q :=
(
eeven

(
#–

c′
)
− 1
)
/2

i := σ′(2q + 1)

σ := σ2l→i ◦ σ
′ ◦ σ2q+1→2l

ca :=





c′2a−1 if a ≤ q + 1

c′2a−1 − 1 if q + 2 ≤ a ≤ l

m+ 1 if a = l + 1

for 1 ≤ a ≤ l + 1

Ψ
(
(σ′,

#–

c′)
)
:= (i, σ, #–c )

Again the proof that this is well-defined is analogous to the proof of Propo-
sition 7.3.7.1 except the special treatment of q = 0 as discussed above.

We sum up our current progress.

Proposition 7.3.7.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X (d(y1 · · · ym)) + d

(
ϵ
(l−1)
X (y1 · · · ym)

)

=
∑

v∈I∂even

B′′(v)−
∑

v∈I∂odd

B′′(v) +
∑

v∈I1

B′′(v)−
∑

v∈Id

B′(v) ♥

Proof. Combine Propositions 7.3.6.1, 7.3.7.1 and 7.3.7.2.
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7.3.8. Subdivisions of the remaining indexing sets

To continue we need to subdivide Id, I∂even, I∂odd, and I1 into a disjoint
unions of subsets, which we do in this section.

Definition 7.3.8.1. In this definition we will make use of notation from
Construction 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let l ≥ 1 and m ≥ 0
be integers. We define the following subsets of Id.

I
d,cancel
> :=

{
(σ, #–c , p) ∈ Id

∣∣ eeven(σ) > eodd(σ)
}

Id< :=
{
(σ, #–c , p) ∈ Id

∣∣ eeven(σ) < eodd(σ)
}

Id<,top :=
{
(σ, #–c , p) ∈ Id<

∣∣ if eodd(σ) 6=∞ then p = eodd(σ),

else p = 2l − 1
}

I
d,cancel
<,top :=

{
(σ, #–c , p) ∈ Id<,top

∣∣ eeven(σ) 6= −∞

and eeven(
#–c ) < eeven(σ)

}

Id<,top,∂ :=
{
(σ, #–c , p) ∈ Id<,top

∣∣ eeven( #–c ) 6= −∞

and eeven(
#–c ) ≥ eeven(σ)

}

Id<,top,1 :=
{
(σ, #–c , p) ∈ Id<,top

∣∣ eeven( #–c ) = −∞ and eeven(σ) = −∞
}

Id<,bottom :=
{
(σ, #–c , p) ∈ Id<

∣∣ p = eeven(σ)
}

I
d,cancel
<,bottom :=

{
(σ, #–c , p) ∈ Id<,bottom

∣∣ if eodd(σ) =∞ then eodd(
#–c ) =∞,

else eodd(σ) < eodd(
#–c )
}

Id<,bottom,∂ :=
{
(σ, #–c , p) ∈ Id<,bottom

∣∣ eodd( #–c ) 6=∞ and eodd(σ) ≥ eodd(
#–c )
}

The following subset is to be defined for 1 ≤ p ≤ 2l − 2.

I
d,cancel
<,mid,p :=

{
(σ, #–c , p′) ∈ Id<

∣∣ p′ = p and eeven(σ) < p < eodd(σ)
}

We also define the following subsets of Σ2l−1 × C
full(2l − 1,m).

I∂even,d :=
{
(σ, #–c ) ∈ I∂even

∣∣ if eodd(σ) =∞ then eodd(
#–c ) =∞,

else eodd(σ) < eodd(
#–c )
}

I∂odd,d :=
{
(σ, #–c ) ∈ I∂odd

∣∣ eeven(σ) 6= −∞ and eeven(
#–c ) < eeven(σ)

}
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I∂odd−even :=
{
(σ, #–c ) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣

eeven(
#–c ) 6= −∞ and eodd(

#–c ) 6=∞ and

eeven(σ) ≤ eeven(
#–c ) ≤ eodd(

#–c )− 3 ≤ eodd(σ)− 3
}

I∂odd,1 :=
{
(σ, #–c ) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eeven( #–c ) = −∞ and

eodd(
#–c ) 6=∞ and eeven(σ) = −∞ and eodd(

#–c ) ≤ eodd(σ)
}

I1d :=
{
(σ, #–c ) ∈ I1

∣∣ if eodd(σ) =∞ then eodd(
#–c ) =∞,

else eodd(σ) < eodd(
#–c )
}

♦

Proposition 7.3.8.2. In this definition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let l ≥ 1 and m ≥ 0
be integers. Then the set Id is the disjoint union of the following subsets.

• I
d,cancel
>

• I
d,cancel
<,mid,p for 1 ≤ p ≤ 2l − 2

• I
d,cancel
<,top

• I
d,cancel
<,bottom

• Id<,top,∂

• Id<,top,1

• Id<,bottom,∂ ♥

Proof. As eeven(σ) = eodd(σ) is never possible for parity reasons, we must
always either have eeven(σ) < eodd(σ) or eeven(σ) > eodd(σ), showing that Id
is the disjoint union of Id,cancel> and Id<.

Now assume that (σ, #–c , p) is an element of Id<. We will show that then

eeven(σ) ≤ p ≤ eodd(σ)

which implies that Id< is the disjoint union of the subsets Id,cancel<,mid,q , where q
ranges over for 1 ≤ q ≤ 2l − 2, and the subsets Id<,top and Id<,bottom. By
definition of Id we must have

eeven(σ)− 1 ≤ p ≤ eodd(σ) + 1

so that we only must rule out that p = eeven(σ)− 1 and p = eodd(σ) + 1. For
this, note that by definition of eeven(σ) the permutation σ does not cyclically
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preserve the ordering of {eeven(σ) − 1, eeven(σ), eeven(σ) + 1}, which means
that

eeven(σ)− 1, eeven(σ) + 1, eeven(σ)

will be cyclically ordered. As eeven(σ) < eodd(σ) by definition of Id<, we also
know that

eeven(σ)− 2, eeven(σ)− 1, eeven(σ)

is cyclically ordered. Combining both we obtain that

eeven(σ)− 2, eeven(σ)− 1, eeven(σ) + 1, eeven(σ)

is cyclically ordered. But this means that

eeven(σ)− 2, eeven(σ), eeven(σ) + 1

is not cyclically ordered, which rules out p = eeven(σ) − 1. Analogously one
can rule out p = eodd(σ) + 1.

We have now shown that Id is the disjoint union of the following subsets.

• I
d,cancel
>

• I
d,cancel
<,mid,p for 1 ≤ p ≤ 2l − 2

• Id<,top

• Id<,bottom

It thus remains to show the following two claims. Firstly that Id<,top is a
disjoint union of the following subsets.

• I
d,cancel
<,top

• Id<,top,∂

• Id<,top,1

And secondly that Id<,bottom is a disjoint union of the following subsets.

• I
d,cancel
<,bottom

• Id<,bottom,∂

For the first claim we begin by noting that clearly the three subsets are
pairwise disjoint. So now let (σ, #–c , p) be an element of Id<,top. First assume
that eeven(σ) 6= −∞. If eeven( #–c ) < eeven(σ) then (σ, #–c , p) is an element of
I
d,cancel
<,top . If instead eeven(

#–c ) ≥ eeven(σ) then it follows from eeven(σ) 6= −∞

that also eeven( #–c ) 6= −∞ and (σ, #–c , p) is an element of Id<,top,∂ . Next assume
that eeven(σ) = −∞. If also eeven( #–c ) = −∞, then (σ, #–c , p) is an element of
Id<,top,1, and otherwise it will be an element of Id<,top,∂ .
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For the second claim we can again note immediately that the two subsets
are disjoint. So now let (σ, #–c , p) be an element of Id<,bottom and assume it is not
an element of Id,cancel<,bottom. If eodd(σ) =∞, then this means eodd( #–c ) 6=∞, and
this implies that (σ, #–c , p) is an element of Id<,bottom,∂ . If instead eodd(σ) 6=∞,
then this implies eodd(σ) ≥ eodd( #–c ), so in particular eodd( #–c ) 6=∞, and thus
(σ, #–c , p) is again an element of Id<,bottom,∂ .

Proposition 7.3.8.3. In this definition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let l ≥ 1 and m ≥ 0
be integers. Then the set I∂odd is the disjoint union of the following subsets.

• I∂odd,d

• I∂odd−even

• I∂odd,1

Furthermore the set I∂even is the disjoint union of the following subsets.

• I∂even,d

• I∂odd−even ♥

Proof. While I∂odd,d was defined as a subset of I∂odd and I∂even,d as a subset
of I∂even, the other two relevant sets have only be defined as a subset of
Σ2l−1 ×C

full(2l− 1,m). However it follows easily from the definition that #–c

and σ have the necessary properties for the required subset inclusions.
We first discuss I∂odd. So let (σ, #–c ) be an element of I∂odd. If eeven( #–c ) = −∞

as well as eeven(σ) = −∞, then (σ, #–c ) could (out of the three subsets in ques-
tion) only possibly be an element of I∂odd,1, and indeed it is, as the other two re-
quired properties are part of the definition of I∂odd. If instead eeven( #–c ) = −∞
and eeven(σ) > −∞, then (σ, #–c ) is an element of (only) I∂odd,d. If we have
eeven(

#–c ) 6= −∞, and eeven(σ) > eeven(
#–c ), then (σ, #–c ) is also only element

of I∂odd,d. The last case is when eeven(
#–c ) 6= −∞, and eeven(σ) ≤ eeven(

#–c ),
in which case (σ, #–c ) is an element of precisely I∂odd−even, with the remaining
inequalities arising from the definition of I∂odd.

We now discuss I∂even. It is easy to see that elements of I∂even,d are not
elements of I∂odd−even, so the two subsets are disjoint. Now let (σ, #–c ) be
an element of I∂even that is not in I∂even,d. If eodd(σ) = ∞ this means that
eodd(

#–c ) 6= ∞, and then (σ, #–c ) is an element of I∂odd−even, with the other
inequalities being part of the definition of I∂even. If instead eodd(σ) 6= ∞,
then eodd(σ) ≥ eodd( #–c ), which implies eodd( #–c ) 6=∞, and combined with the
properties arising from the definition of I∂even this again shows that (σ, #–c ) is
an element of I∂odd−even.
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Proposition 7.3.8.4. In this definition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let l ≥ 1 and m ≥ 0
be integers. Then the set I1 is the disjoint union of the following subsets.

• I1d

• I∂odd,1 ♥

Proof. While I1d was defined as a subset of I1, this is not the case for I∂odd,1,
but that it is a subset is clear from the definition. It is also straightforward
that the two subsets are disjoint. Now let (σ, #–c ) be an element of I1. Assume
eodd(σ) = ∞. Then either eodd( #–c ) = ∞, in which case (σ, #–c ) is an element
of I1d , or eodd( #–c ) ≤ eodd(σ), in which case (σ, #–c ) is an element of I∂odd,1. Now
assume eodd(σ) 6=∞. Then either eodd( #–c ) > eodd(σ), in which case (σ, #–c ) is
an element of I1d , or eodd( #–c ) ≤ eodd(σ), which implies eodd( #–c ) 6=∞, so that
(σ, #–c ) is an element of I∂odd,1.

7.3.9. Canceling of some summands of ϵ
(l−1)
X ◦ d

Several of the subsets we defined for Id are such that the relevant sums
over them cancel (which we indicated by naming them Id,cancel with some
subscript). This is what we show in this subsection.
Proposition 7.3.9.1. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

∑

v∈Id,cancel
>

B′(v) = 0 ♥

Proof. Let (σ, #–c , p) be an element of Id,cancel> . Then

eodd(σ) ≤ eeven(σ)− 1 ≤ p ≤ eodd(σ) + 1 ≤ eeven(σ)

holds, where the middle inequality is from the definition of Id and the other
two are from the definition of Id,cancel> . This implies that27

eodd(σ) + 1 = eeven(σ)

and either p = eodd(σ) or p = eodd(σ) + 1.
It thus suffices to show that the map

Φ:
{
(σ, #–c , p) ∈ Id,cancel>

∣∣∣ p = eodd(σ)
}

→
{
(σ, #–c , p) ∈ Id,cancel>

∣∣∣ p = eodd(σ) + 1
}

(σ, #–c , p) 7→ (σ, #–c , p+ 1)

27eeven(σ)− 1 ≤ eodd(σ) + 1 ≤ eeven(σ) but for parity reasons eodd(σ) + 1 = eeven(σ)− 1
is not possible.
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is a well-defined bijection and that for every element (σ, #–c , p) of Id,cancel> with
p = eodd(σ) it holds that B′((σ, #–c , p + 1)) = −B′((σ, #–c , p)). This property
of B′ is obvious from the definition, so it only remains to show that Φ is a
well-defined bijection.

So let (σ, #–c , p) be an element of Id,cancel> with p = eodd(σ). Note that this
implies that p is odd with p ≤ 2l − 3. Thus 1 ≤ p + 1 ≤ 2l − 2. We have to
show that (σ, #–c , p+ 1) is again an element of Id. It follows from

eeven(
#–c ) < p < eodd(

#–c )

that also
eeven(

#–c ) < p+ 1 < eodd(
#–c )

for parity reasons. The discussion at the start of this proof shows that

eeven(σ)− 1 ≤ p+ 1 ≤ eodd(σ) + 1

holds as well. It thus remains to show that

σ(eodd(σ)− 1), σ(eodd(σ)), σ(eodd(σ) + 2)

is cyclically ordered. But as (σ, #–c , p) is an element of Id we know that

σ(eodd(σ)− 1), σ(eodd(σ) + 1), σ(eodd(σ) + 2)

is cyclically ordered, and the definition of eeven(σ) = eodd(σ)+1 implies that

σ(eodd(σ)), σ(eodd(σ) + 2), σ(eodd(σ) + 1)

is cyclically ordered. Rotating the first of these two we can phrase this as the
following two lines each being cyclically ordered

σ(eodd(σ) + 2), σ(eodd(σ)− 1), σ(eodd(σ) + 1)

σ(eodd(σ)), σ(eodd(σ) + 2), σ(eodd(σ) + 1)

which combines to

σ(eodd(σ)), σ(eodd(σ) + 2), σ(eodd(σ)− 1), σ(eodd(σ) + 1)

being cyclically ordered, from which the claim follows, so Φ is well-defined.
To show that Φ is a bijection, we let (σ, #–c , p) be an element of Id,cancel>

with p = eodd(σ) + 1. We have to show that (σ, #–c , p− 1) is again an element
of Id. The first two properties for this are shown completely analogously to
the argument above. It thus remains to show that

σ(eodd(σ)− 1), σ(eodd(σ) + 1), σ(eodd(σ) + 2)

is cyclically ordered. Similarly to the argument above one finds that the
following two lines are each being cyclically ordered, the first arising from
(σ, #–c , p) being an element of Id, the second from the definition of eodd.

σ(eodd(σ)− 1), σ(eodd(σ)), σ(eodd(σ) + 2)
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σ(eodd(σ)− 1), σ(eodd(σ) + 1), σ(eodd(σ))

which combines to

σ(eodd(σ)− 1), σ(eodd(σ) + 1), σ(eodd(σ)), σ(eodd(σ) + 2)

being cyclically ordered, from which the claim follows.

Proposition 7.3.9.2. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Let 1 ≤ p ≤ 2l − 3 be odd. Then the following holds.

∑

v∈Id,cancel
<,mid,p

B′(v) +
∑

v∈Id,cancel
<,mid,p+1

B′(v) = 0 ♥

Proof. Let σ be an element of Σ2l−1 and #–c an element of Cfull(2l − 1,m).
It suffices to show that (σ, #–c , p) is an element of Id,cancel<,mid,p if and only if
(σ, #–c , p + 1) is an element of Id,cancel<,mid,p+1, and that in this case it holds that
B′((σ, #–c , p + 1)) = −B′((σ, #–c , p)). This latter property is clear from defini-
tion.

Purely for parity reasons we immediately have that

eeven(
#–c ) < p < eodd(

#–c ) and eeven(σ) < p < eodd(σ)

if and only if

eeven(
#–c ) < p+ 1 < eodd(

#–c ) and eeven(σ) < p+ 1 < eodd(σ)

It thus remains to show that σ cyclically preserves the ordering of the set
{p − 1, p + 1, p + 2} if and only if σ cyclically preserves the ordering of
{p − 1, p, p + 2}. So assume first that σ cyclically preserves the ordering
of {p− 1, p+ 1, p+ 2}. As p < eodd(σ) is odd, we know that σ cyclically pre-
serves the ordering of {p− 1, p, p+ 1}, which combined with the assumption
yields the claim. For the other direction we combine the assumption with
p + 1 > eeven(σ) being even, which means that σ cyclically preserves the
ordering of {p, p+ 1, p+ 2}.

Proposition 7.3.9.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

∑

v∈Id,cancel
<,top

B′(v) +
∑

v∈Id,cancel
<,bottom

B′(v) = 0 ♥
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Proof. It suffices to show that

Φ: Id,cancel<,top → I
d,cancel
<,bottom

(σ, #–c , p) 7→ (σ, #–c , eeven(σ))

is a well-defined bijection that satisfies B′(Φ(v)) = −B′(v) for every element
v of Id,cancel<,top .

So let (σ, #–c , p) be an element of Id,cancel<,top . We first handle the property for
B′. We have

B′((σ, #–c , eeven(σ))) = (−1)eeven(σ)+1B′′((σ, #–c )) = −B′′((σ, #–c ))

= −(−1)p+1B′′((σ, #–c )) = −B′((σ, #–c , p))

where we used that p is odd.
Next we need to show that (σ, #–c , eeven(σ)) is an element of Id,cancel<,bottom. First

we show that this is an element of Id. For this we first show the following
inequality.

eeven(
#–c ) < eeven(σ) < eodd(

#–c )

The inequality on the left holds by definition of Id,cancel<,top . By definition of Id<
we have eeven(σ) < eodd(σ), which together with eodd(σ) ≤ eodd(

#–c ) due to
what p is (and (σ, #–c , p) being an element of Id) implies the inequality on the
right. Next we show the following inequality.

eeven(σ)− 2 < eeven(σ) < eodd(σ) + 2

The left inequality is clear, and the right inequality follows from the inequality
eeven(σ) < eodd(σ), which holds by definition of Id<. To finish showing that
(σ, #–c , eeven(σ)) is an element of Id it remains to show that

σ(eeven(σ)− 2), σ(eeven(σ)− 1), σ(eeven(σ) + 1)

is cyclically ordered For this we use that the following two lines are cyclically
ordered, where the first one arises from the definition of eeven(σ), and the
second from eeven(σ)− 1 < eodd(σ) being odd.

σ(eeven(σ)− 1), σ(eeven(σ) + 1), σ(eeven(σ))

σ(eeven(σ)− 2), σ(eeven(σ)− 1), σ(eeven(σ))

Combining these two we obtain that

σ(eeven(σ)− 2), σ(eeven(σ)− 1), σ(eeven(σ) + 1), σ(eeven(σ))

is cyclically ordered, from which the claim follows. We have now shown that
(σ, #–c , eeven(σ)) is an element of Id. That (σ, #–c , eeven(σ)) is then an element
of Id<,bottom is clear. To show that it is even an element of Id,cancel<,bottom, we have
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to show that either eodd(σ) = eodd(
#–c ) = ∞ or eodd(σ) < eodd(

#–c ). But this
follows from what p must be from the definition of Id,cancel<,top together with the
inequalities p must satisfy in the definition of Id.

So far we have shown that Φ is a well-defined map, and it is clearly an
injection, as σ and #–c already determine the value of p if (σ, #–c , p) is an element
of Id,cancel<,top . It remains to show that Φ is surjective. So let (σ, #–c , eeven(σ))

be an element of Id,cancel<,bottom. If eodd(σ) = ∞ set p = 2l − 1, otherwise let
p = eodd(σ). Then we have to show that (σ, #–c , p) is an element of Id,cancel<,top .
From (σ, #–c , eeven(σ)) being an element of Id we can immediately conclude
that eeven(σ) 6= −∞ and that eeven( #–c ) < eeven(σ). It thus only remains to
show that (σ, #–c , p) is an element of Id. For this we first show the following
inequalities.

eeven(
#–c ) < p < eodd(

#–c )

That (σ, #–c , eeven(σ)) is an element of Id implies that eeven( #–c ) < eeven(σ),
which together with eeven(σ) < eodd(σ) from the definition of Id< implies
the left inequality. The right inequality follows instead from the definition of
I
d,cancel
<,bottom. We next show the following inequalities.

eeven(σ)− 2 < p < eodd(σ) + 2

Here the left inequality follows from eeven(σ) < eodd(σ) from the definition
of Id<, and the right inequality is clear. It remains to show that σ cyclically
preserves the ordering of {p − 1, p + 1, p + 2}, as long as p ≤ 2l − 3. So
assume that p ≤ 2l − 3, which implies that we are in the case in which
p = eodd(σ) 6= ∞. Then we use that the following two lines are cyclically
ordered, where the first one arises from the definition of eodd(σ), and the
second from eodd(σ) + 1 > eeven(σ) being odd.

σ(eodd(σ)− 1), σ(eodd(σ) + 1), σ(eodd(σ))

σ(eodd(σ)), σ(eodd(σ) + 1), σ(eodd(σ) + 2)

Combining these two we obtain that

σ(eodd(σ)), σ(eodd(σ)− 1), σ(eodd(σ) + 1), σ(eodd(σ) + 2)

from which the claim follows.

7.3.10. Matching up of the remaining summands
In this section we show how the sums over various subsets of Id, I1, I∂even,

and I∂odd match up.

Proposition 7.3.10.1. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
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Then the following holds.
∑

v∈Id
<,top,∂

B′(v) =
∑

v∈I∂even,d

B′′(v) ♥

Proof. Let (σ, #–c , p) be an element of Id<,top,∂ . Then p is odd, so

B′((σ, #–c , p)) = B′′((σ, #–c ))

so that it suffices to show that

Φ: Id<,top,∂ → I∂even,d

Φ: (σ, #–c , p) 7→ (σ, #–c )

is a well-defined bijection.
So let (σ, #–c , p) be an element of Id<,top,∂ . We first show that (σ, #–c ) is an

element of I∂even. For this we need that eeven( #–c ) 6=∞ and eeven(σ) ≥ eeven( #–c ),
both properties that are part of the definition of Id<,top,∂ , and we need that
eodd(

#–c ) ≥ eeven(
#–c ) + 3, which follows from the condition

eeven(
#–c ) < p < eodd(

#–c )

from the definition of Id together with the parities, and finally we need that
eodd(σ) ≥ eeven(

#–c ) + 1, which follows from left part of the inequalities just
used together with the definition of p in Id<,top. So now we have shown that
(σ, #–c ) is an element of I∂even. The properties that σ needs to satisfy for (σ, #–c )
to even be an element of I∂even,d follow from what p is by the definition of
Id<,top and that p < eodd(

#–c ) by the definition of Id. This shows that Φ is
well-defined. As p is uniquely determined by σ and #–c in the definition of
Id<,top, we can also conclude that Φ is injective.

It remains to show that Φ is surjective. So let (σ, #–c ) be an element of
I∂even,d. If eodd(σ) = ∞ set p = 2l − 1, otherwise let p = eodd(σ). Then we
have to show that (σ, #–c , p) is an element of Id<,top,∂ . We can first note that
the two inequalities in the definition of Id<,top,∂ also occur in the definition
of I∂even, so that it suffices to show that (σ, #–c , p) is an element of Id<. By the
definition of I∂even we have

eeven(σ) ≤ eeven(
#–c ) < eodd(σ)

so that is only remains to show that (σ, #–c , p) is an element of Id. For this we
note that

eeven(
#–c ) < p < eodd(

#–c )

follows from the definition of I∂even for the left inequality and from the def-
inition of I∂even,d for the right inequality. Next we consider the following in-
equalities.

eeven(σ)− 2 < p < eodd(σ) + 2

429



Chapter 7. Hochschild homology of polynomial algebras

The left inequality follows from eeven(σ) < eodd(σ), which we already showed
above, and the right inequality is clear. Finally, we have to show that σ
cyclically preserves the ordering of {p− 1, p+ 1, p+ 2} as long as p ≤ 2l− 3,
which implies that p = eodd(σ) 6= ∞. The argument for this is identical to
the argument used at the end of the proof of Proposition 7.3.9.3.

Proposition 7.3.10.2. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

∑

v∈Id
<,bottom,∂

B′(v) = −
∑

v∈I∂odd,d

B′′(v) ♥

Proof. Let (σ, #–c , p) be an element of Id<,bottom,∂ . Then p is even, so

B′((σ, #–c , p)) = −B′′((σ, #–c ))

so that it suffices to show that

Φ: Id<,bottom,∂ → I∂odd,d

Φ: (σ, #–c , p) 7→ (σ, #–c )

is a well-defined bijection.
So let (σ, #–c , p) be an element of Id<,bottom,∂ . We first show that (σ, #–c ) is an

element of I∂odd. For this we need that eodd( #–c ) 6= ∞ and eodd(σ) ≥ eodd(
#–c ),

both properties that are part of the definition of Id<,bottom,∂ . We also need
that eeven( #–c ) ≤ eodd(

#–c )− 3, which follows from the condition

eeven(
#–c ) < p < eodd(

#–c )

from the definition of Id together with parities. Finally, we need that

eeven(σ) ≤ eodd(
#–c )− 1

which follows from p < eodd(
#–c ) together with p = eeven(σ) from the definition

of Id<,bottom. This finishes the proof that (σ, #–c ) is an element of I∂odd. The
properties that (σ, #–c ) needs to satisfy to also be an element of the subset
I∂odd,d follow from p = eeven(σ) and the definition of Id. This shows that Φ
is well-defined. As p is uniquely determined by σ and #–c in the definition of
Id<,bottom we can also conclude that Φ is injective.

It remains to show that Φ is surjective. So let (σ, #–c ) be an element of I∂odd,d.
We have to show that (σ, #–c , eeven(σ)) is an element of Id<,bottom,∂ . We first
note that the two inequalities in the definition of Id<,bottom,∂ also occur in
the definition of I∂odd, so that it suffices to show that (σ, #–c , eeven(σ)) is an
element of Id<. By the definition of I∂odd we have

eeven(σ) < eodd(
#–c ) ≤ eodd(σ)
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so that is only remains to show that (σ, #–c , eeven(σ)) is an element of Id. For
this we note that

eeven(
#–c ) < eeven(σ) < eodd(

#–c )

follows from the definition of I∂odd,d for the left inequality and from the defi-
nition of I∂odd for the right inequality. Next we consider the following inequal-
ities.

eeven(σ)− 2 < eeven(σ) < eodd(σ) + 2

The left inequality is clear and the right inequality follows from the inequality
eeven(σ) < eodd(σ), which we already showed above. Finally, we have to show
that σ cyclically preserves the ordering of the following set.

{eeven(σ)− 2, eeven(σ)− 1, eeven(σ) + 1}

The argument for this is identical to the argument used at the middle of the
proof of Proposition 7.3.9.3, where it is shown that the map Φ used there is
well-defined.

Proposition 7.3.10.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.
Then the following holds.

∑

v∈Id
<,top,1

B′(v) =
∑

v∈I1d

B′′(v) ♥

Proof. Let (σ, #–c , p) be an element of Id<,top,1. Then p is odd, so

B′((σ, #–c , p)) = B′′((σ, #–c ))

so that it suffices to show that

Φ: Id<,top,1 → I1d

Φ: (σ, #–c , p) 7→ (σ, #–c )

is a well-defined bijection.
So let (σ, #–c , p) be an element of Id<,top,1. That (σ, #–c ) is an element of

I1 then follows directly from the definition of Id<,top,1. Suppose now that
eodd(σ) = ∞. Then we must have p = 2l − 1 by the definition of Id<,top,
which by the definition of Id implies that eodd( #–c ) > 2l − 1 so that we can
conclude that eodd( #–c ) = ∞ as well. If instead eodd(σ) 6= ∞ Then we must
have p = eodd(σ) by the definition of Id<,top, which by the definition of Id
implies that eodd(σ) < eodd(

#–c ). This finishes the proof that Φ is well-defined.
As p is uniquely determined by σ and #–c in the definition of Id<,top we also
obtain that Φ is injective.
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It remains to show that Φ is surjective. So let (σ, #–c ) be an element of
I1d . Assume first that eodd(σ) = ∞. Then the definition of I1d implies that
eodd(

#–c ) = ∞ as well, and by the definition of I1 we furthermore have that
eeven(

#–c ) = ∞ = eeven(σ). This directly implies all the properties needed for
(σ, #–c , 2l−1) to be an element of Id<,top,1. Assume now that eodd(σ) 6=∞. Then
the definition of I1d implies that eodd(σ) < eodd(

#–c ). This time all properties
needed for (σ, #–c , eodd(σ)) to be an element of Id<,top,1 are directly implies
except that σ must cyclically preserve the ordering of

{eodd(σ)− 1, eodd(σ) + 1, eodd(σ) + 2}

which follows with the same argument used at the end of the proof of Propo-
sition 7.3.9.3.

7.3.11. Conclusion

We can now put everything together to show that ϵ(•)X forms a strongly
homotopy linear morphism. As an intermediate step we first show that the
identity required for this holds on elements of degree 0.

Proposition 7.3.11.1. Let X be a totally ordered set and l ≥ 1 an integer.
Then

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

holds on elements of Ω0
k[X]/k, where ϵ(•)X defined as in Construction 7.3.1.1.

♥

Proof. The equation we have to show is k-linear on both sides, so it suffices
to show it for a set of generators. So let m ≥ 0 be an integer and y1, . . . , ym
be as in Construction 7.3.1.1. It suffices to show that

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X (d(y1 · · · ym)) + d

(
ϵ
(l−1)
X (y1 · · · ym)

)
= 0

This is done by combining various previous results as follows.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X (d(y1 · · · ym)) + d

(
ϵ
(l−1)
X (y1 · · · ym)

)

Applying Proposition 7.3.7.3.

=
∑

v∈I∂even

B′′(v)−
∑

v∈I∂odd

B′′(v) +
∑

v∈I1

B′′(v)−
∑

v∈Id

B′(v)
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Applying Proposition 7.3.8.3 for I∂even (first line) and I∂odd (second line),
Proposition 7.3.8.4 for I1 (third line), and Proposition 7.3.8.2 for Id (rest).

=
∑

v∈I∂even,d

B′′(v) +
∑

v∈I∂odd−even

B′′(v)

−
∑

v∈I∂odd,d

B′′(v)−
∑

v∈I∂odd−even

B′′(v)−
∑

v∈I∂odd,1

B′′(v)

+
∑

v∈I1d

B′′(v) +
∑

v∈I∂odd,1

B′′(v)

−
∑

v∈Id,cancel
>

B′(v)−
∑

1≤p≤2l−q

v∈Id,cancel
<,mid,p

B′(v)

−




∑

v∈Id,cancel
<,top

B′(v) +
∑

v∈Id,cancel
<,bottom

B′(v)




−
∑

v∈Id
<,top,∂

B′(v)−
∑

v∈Id
<,top,1

B′(v)−
∑

v∈Id
<,bottom,∂

B′(v)

The terms involving I∂odd−even in the first and second line cancel. Similarly,
the terms involving I∂odd,1 in the second and third line cancel. Furthermore
the terms in the fourth and fifth line are zero by Propositions 7.3.9.1, 7.3.9.2
and 7.3.9.3.

=
∑

v∈I∂even,d

B′′(v)−
∑

v∈I∂odd,d

B′′(v) +
∑

v∈I1d

B′′(v)

−
∑

v∈Id
<,top,∂

B′(v)−
∑

v∈Id
<,top,1

B′(v)−
∑

v∈Id
<,bottom,∂

B′(v)

Applying Proposition 7.3.10.1 for the term involving Id<,top,∂ , applying Propo-
sition 7.3.10.3 for the term involving Id<,top,1, and finally applying Proposi-
tion 7.3.10.2 for the term involving Id<,bottom,∂ .

=
∑

v∈I∂even,d

B′′(v)−
∑

v∈I∂odd,d

B′′(v) +
∑

v∈I1d

B′′(v)

−
∑

v∈I∂even,d

B′′(v)−
∑

v∈I1d

B′′(v) +
∑

v∈I∂odd,d

B′′(v)

= 0

Proposition 7.3.11.2. Let X be a totally ordered set. Then the quasiiso-
morphism of chain complexes

ϵX : Ω•
k[X]/k → C(k[X])
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from Construction 7.2.2.1 and Proposition 7.2.2.2 can be upgraded to a
strongly homotopy linear quasiisomorphism by equipping it with ϵ(•)X as defined
in Construction 7.3.1.1. ♥

Proof. By Definition 4.2.3.1 we have to show that

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

holds for l > 028. As both sides of the above equation are k-linear it suffices
to show this on a set of generators of Ω•

k[X]/k. So let f be an element of k[X]

and y1, . . . , yn elements of X. Then the following calculation shows that the
above identity is satisfied on the element f · d y1 · · · d ym.

(
∂ ◦ ϵ

(l)
X

)
(f · d y1 · · · d ym)

= ∂
(
ϵ
(l)
X (f · d y1 · · · d ym)

)

Applying the definition of ϵ(l)X from Construction 7.3.1.1.

= ∂
(
ϵ
(l)
X (f) · ϵX(d y1 · · · d ym)

)

Applying Proposition 7.2.2.2 (1).

= ∂
(
ϵ
(l)
X (f) · d y1 · · · d ym

)

Applying the Leibniz rule for ∂, and using that ∂(dx) = 0 in C(k[X]) for
every element x of X, which can be seen either by direct calculation or by
using that ∂(dx) = − d(∂x) = 0 for degree reasons.

= ∂
(
ϵ
(l)
X (f)

)
· d y1 · · · d ym

Applying Proposition 7.3.11.1.

=
(
ϵ
(l−1)
X (d(f))− d

(
ϵ
(l−1)
X (f)

))
· d y1 · · · d ym

= ϵ
(l−1)
X (d(f)) · d y1 · · · d ym − d

(
ϵ
(l−1)
X (f)

)
· d y1 · · · d ym

Using Proposition 7.2.2.2 (1) for the first summand and Proposition 6.3.2.14
for the second summand.

= ϵ
(l−1)
X (d(f)) · ϵX(d y1 · · · d ym)− d

(
ϵ
(l−1)
X (f) · d y1 · · · d ym

)

Also using Proposition 7.2.2.2 (1) for the second summand.

= ϵ
(l−1)
X (d(f)) · ϵX(d y1 · · · d ym)− d

(
ϵ
(l−1)
X (f) · ϵX(d y1 · · · d ym)

)

Using the definition of ϵ(l−1)
X from Construction 7.3.1.1.

= ϵ
(l−1)
X (d(f) · d y1 · · · d ym)− d

(
ϵ
(l−1)
X (f · d y1 · · · d ym)

)

28The case l = 0 is equivalent to ϵX being a morphism of chain complexes, which we
already know.
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Using the Leibniz rule for d in Ω•
k[X]/k (and that d ◦ d = 0).

= ϵ
(l−1)
X (d(f · d y1 · · · d ym))− d

(
ϵ
(l−1)
X (f · d y1 · · · d ym)

)

=
(
ϵ
(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

)
(f · d y1 · · · d ym)

This shows that ϵX can be upgraded to a strongly homotopy linear quasiiso-
morphism using ϵ(•)X constructed in Construction 7.3.1.1.

As the end result of this section we can now use Proposition 7.3.11.2 to
obtain an equivalence between HHMixed(k[X]) and γMixed(Ω•

k[X]/k) in Mixed,
showing that Ω•

k[X]/k is a strict mixed model for HHMixed(k[X]).

Construction 7.3.11.3. Let X be a totally ordered set. The strongly ho-
motopy linear quasiisomorphism ϵX from Proposition 7.3.11.2 induces by
Proposition 7.2.2.2 (4) and Construction 4.4.4.1 a morphism

γMixed
(
Ω•
k[X]/k

)
→ γMixed

(
C(k[X])

)

in Mixed, which is even an equivalence by Remark 4.4.4.2. Composing this
equivalence with the equivalences from Propositions 6.3.4.1 and 6.3.1.10
yields an equivalence

HHMixed(k[X]) ≃ γMixed
(
Ω•
k[X]/k

)

in the ∞-category Mixed. ♦

7.4. De Rham forms as a strict model in
Alg(Mixed)

In Sections 7.2 and 7.3 we showed that Ω•
k[X]/k, which is an object in

CAlg(Mixedcof), is a model for both HH(k[X]) considered as an object in
CAlg(D(k)), by forgetting the strict mixed structure, and of HHMixed(k[X])
as an object in Mixed, by forgetting the algebra structure. An improved
version of the latter result would be to show that Ω•

k[X]/k is also a model
for HHMixed(k[X]) as an object in Alg(Mixed). While it seems reasonable to
expect this to hold, we will unfortunately not be able to show this in general,
so we first formulate this as the following conjecture.

Conjecture B. Let X be a set. Then there exists an equivalence

HHMixed(k[X]) ≃ Alg(γMixed)
(
Ω•
k[X]/k

)

in Alg(Mixed).
We will often refer to the existence of such an equivalence for a specific set

X as “Conjecture B holds for X”. ♧
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While we will not be able to show Conjecture B in general, we will be able
to show that it holds for sets X with |X| ≤ 2, and this is the goal of this
section.

Let us now give an overview of the strategy to prove Conjecture B for
|X| ≤ 2. The very rough idea is to lift HHMixed(k[X]) to some cofibrant strict
model in Alg(Mixed), use the previous results to obtain two equivalences
from this model to Ω•

k[X]/k, one respecting the strict mixed structure and
one respecting the algebra structure, and finally use this to construct an
equivalence between Ω•

k[X]/k and our generic lift that respects both.
To implement this plan we begin in Section 7.4.1 by lifting HHMixed(k[X])

to a cofibrant object C̃
′′
(X) of Alg(Mixed).

As the underlying differential graded algebra of C̃
′′
(X) is also cofibrant,

we could then already lift the equivalence from Corollary 7.2.2.3 to a multi-
plicative quasiisomorphism as follows.

Alg(evm)
(

C̃
′′
(X)

)
→ Ω•

k[X]/k

However, we can not carry out the same argument to obtain such a quasi-
isomorphism that is compatible with the strict mixed structure from the
equivalence from Construction 7.3.11.3, as the underlying strict mixed com-
plex evMixed

a
(C̃

′′
(X)) of C̃

′′
(X) need not be cofibrant. This problem is related

to the fact that the monoidal unit k of Mixed is not cofibrant as a strict mixed
complex. To deal with this issue we will thus not actually use C̃

′′
(X), but

replace it along a quasiisomorphism

C̃(X)→ C̃
′′
(X)

in Alg(Mixed) by C̃(X), which is also cofibrant and constructed so as to satisfy
some specific properties that we will need. In particular, evMixed

a
(C̃(X)) will

be given by a coproduct k ⊕ C̃
′
(X), with the inclusion of the first summand

given by the unit morphism, and such that C̃
′
(X) is cofibrant as a strict mixed

complex. The construction of C̃(X) will be carried out in Section 7.4.2.
Now we can lift the equivalence from Corollary 7.2.2.3 to a quasiisomor-

phism
Φ′
X : Alg(evm)

(
C̃(X)

)
→ Ω•

k[X]/k

in Alg(Ch(k)), and the equivalence from Construction 7.3.11.3 to a quasiiso-
morphism

kcof ⊕ C̃
′
(X)→ Ω•

k[X]/k

in Mixed, and we only need to verify that the restriction to kcof factors over
k to obtain a quasiisomorphism

ΨX : evMixed
a

(
C̃(X)

)
→ Ω•

k[X]/k
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in Mixed as desired. This will be done in Section 7.4.3.
So now let us get back to what we actually want to show, that C̃(X) is

equivalent to Ω•
k[X]/k in Alg(Mixed). As C̃(X) is cofibrant such an equivalence

could be realized by a quasiisomorphism

C̃(X)→ Ω•
k[X]/k

in Alg(Mixed). However, we know little about the elements of C̃(X), apart
from those that must exist by virtue of the quasiisomorphisms discussed
above, so it would be easier to construct morphisms into rather than out of
C̃(X). As Ω•

k[X]/k is not cofibrant as an object in Alg(Mixed), we can not
hope for there to be an actual strict morphism

Ω•
k[X]/k → C̃(X)

in Alg(Mixed), so instead we will attempt to construct a morphism ΞX from
a cofibrant replacement of Ω•

k[X]/k to C̃(X).
To be able to actually construct ΞX will require good control over the (low-

degree) generators of said cofibrant replacement, so we construct a specific
cofibrant replacement Ω′•

k[X]/k of Ω•
k[X]/k in Section 7.4.5.

The set X will occur as free generators of Ω′•
k[X]/k in degree 0, so the con-

struction of ΞX will begin by defining ΞX(x) to be such that (Φ′
X◦ΞX)(x) = x

for elements x in X. As Φ′
X is a quasiisomorphism it suffices to check that

Φ′
X ◦ΞX is a quasiisomorphism to conclude that ΞX is one. The information

mentioned so far would suffice to show that ΞX induces an isomorphism on
H0, but to handle the other homology groups we also need control over where
Φ′
X ◦ ΞX maps dx for x an element in X.
Thus we need to study how Φ′

X interacts with d. In Section 7.4.4 we will
begin with the one variable case Φ{t}. We will not quite be able to show that
the Φ′

{t} is compatible with d, but we find that this holds up to sign. By
postcomposing with an automorphism that tweaks signs we can thus define
new morphisms ΦX to replace the usage of Φ′

X such that Φ{t} is compatible
with d.

To deduce from this that ΦX is also compatible with d on elements of
degree 0, as long as |X| ≤ 2, we need a naturality statement for Φ. We show
the required statement in Section 7.4.7, after we showed a similar naturality
statement for ϵ in Section 7.4.6. The reason we only show this naturality
statement for ϵ in Section 7.4.6 rather than earlier is that the proof uses the
cofibrant resolution of Ω•

k[t]/k that was constructed in Section 7.4.5. After
having handled the required naturality of Φ we can then show that ΦX is
compatible with d on degree 0 elements in Section 7.4.8.

Finally, in Section 7.4.9 we will put everything together and actually con-
struct the quasiisomorphism

ΞX : Ω′•
k[X]/k → C̃(X)
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that is a morphism in Alg(Mixed), and thereby prove Conjecture B for |X| ≤ 2.
To do so it will be very relevant to use the comparison morphisms ΦX as well
as ΨX ; to begin with we need to prescribe the images of the generators X as
we mentioned before, which we do by lifting elements along ΦX , and in later
steps there will be obstructions in the form of cycles that need to be bound-
aries, which we can verify by checking that the homology class represented
by the cycle maps to zero along one of the two comparison morphisms.

7.4.1. A first cofibrant model
In this section we lift HHMixed(k[X]) to a first cofibrant model C̃

′′
(X) in

Alg(Mixed). We actually need slightly more and lift not only HHMixed(k[X]),
but the morphism HHMixed(k)→ HHMixed(k[X]) that is induced by the unit
morphism. We need this relative version in order to carry out the identifi-
cation of the restriction to k that is needed for the strict mixed comparison
morphism, as was explained in the introduction to Section 7.4.

Proposition 7.4.1.1. Let X be a set. Then there exists a morphism

ι̃′′ : C̃
′′
(∅)→ C̃

′′
(X)

in Alg(Mixed), such that C̃
′′
(∅) and C̃

′′
(X) are cofibrant, together with a

commutative square

HHMixed(k) Alg(γMixed)
(

C̃
′′
(∅)
)

HHMixed(k[X]) Alg(γMixed)
(

C̃
′′
(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)(ι̃′′)

≃

(7.5)

in Alg(Mixed), where the left morphism is induced by the unit morphism
ιk[X] : k → k[X] and the horizontal morphisms are equivalences. ♥

Proof. By Propositions 4.4.1.7 and 4.4.2.3 the ∞-category Alg(Mixed) is
the underlying ∞-category of the combinatorial model category Alg(Mixed),
where Alg(Mixed) carries the model structure from Proposition 4.2.2.9. As
the 1-category [1] is small29, we can apply [HA, 1.3.4.25] to lift functors
[1] → Alg(Mixed) to functors [1] → Alg(Mixed) that are cofibrant with re-
spect to the projective model structure.

Let us for the moment denote the functor [1]→ Alg(Mixed) that is encoded
by the morphism HHMixed

(
ιk[X]

)
by θ. Applying [HA, 1.3.4.25] to θ we thus

obtain a functor
Θ: [1]→ Alg(Mixed)

29By [1] we mean the 1-category with two objects 0 and 1, and a unique non-identity
morphism 0 → 1.
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that is cofibrant with respect to the projective model structure on the functor
category Fun([1],Alg(Mixed)), and that lifts θ in the sense that there is a
commutative diagram as follows.

[1] Alg(Mixed)

Alg(Mixed)

θ

Θ

Alg(γMixed)

The functor Θ corresponds to a morphism in Alg(Mixed) that we are going
to denote by

ι̃′′ : C̃
′′
(∅)→ C̃

′′
(X)

so that the commutative triangle above corresponds exactly to the commuting
square (7.5).

It remains to show that C̃
′′
(∅) and C̃

′′
(X) are cofibrant objects. As Θ is

cofibrant with respect to the projective model structure, it is also cofibrant
with respect to the injective model structure by [HTT, A.2.8.5], which by
definition30 means that it is pointwise cofibrant.

We can directly improve Proposition 7.4.1.1 by showing that we can replace
C̃

′′
(∅) by k, which we do in the following proposition.

Proposition 7.4.1.2. Let X be a set. Then there exists a cofibrant object
C̃

′′
(X) in Alg(Mixed) so that there is a commutative square

HHMixed(k) Alg(γMixed)(k)

HHMixed(k[X]) Alg(γMixed)
(

C̃
′′
(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)
(
ιC̃′′

(X)

)

≃

(7.6)

in Alg(Mixed), where the left morphism is induced by the unit morphism
ιk[X] : k → k[X], the right morphism is induced by the unit morphism

ιC̃′′
(X)

: k → C̃
′′
(X)

and the horizontal morphisms are equivalences. ♥

Proof. Let
ι̃′′ : C̃

′′
(∅)→ C̃

′′
(X)

30See [HTT, A.2.8.1 and A.2.8.2].
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be as in Proposition 7.4.1.1. Then C̃
′′
(X) is cofibrant and the diagram

HHMixed(k) Alg(γMixed)
(

C̃
′′
(∅)
)

Alg(γMixed)(k)

HHMixed(k[X]) Alg(γMixed)
(

C̃
′′
(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)(ι̃′′)

Alg(γMixed)
(
ιC̃′′

(∅)

)

Alg(γMixed)
(
ιC̃′′

(X)

)

≃

in Alg(Mixed) commutes, where ιC̃′′
(∅)

: k → C̃
′′
(∅) is the unit morphism and

the square is the one supplied by Proposition 7.4.1.1. It thus suffices to show
that ιC̃′′

(∅)
: k → C̃

′′
(∅) is a quasiisomorphism.

As quasiisomorphisms are detected on underlying morphisms of chain com-
plexes, we can forget about the strict mixed structure and only consider the
unit morphism of the differential graded algebra Alg(evm)(C̃

′′
(∅)). There is

a composite equivalence

Alg(γ)
(

Alg(evm)
(

C̃
′′
(∅)
))
≃ HH(k) ≃ Alg(γ)

(
Ω•
k/k

)
≃ Alg(γ)(k)

in Alg(D(k)), where the first equivalence is obtained by applying the forget-
ful functor Alg(evm) to the equivalence at the top left in the diagram above
combined with compatibility of Alg(evm) with Alg(γMixed) from Construc-
tion 4.4.1.1, the second equivalence is the one from Corollary 7.2.2.3, and the
third equivalence arises from the isomorphism Ω•

k/k
∼= k.

As initial object k is cofibrant in Alg(Ch(k)), so as every object in the
model category Alg(Ch(k)) is fibrant, the above equivalence in Alg(D(k))
can be lifted to a quasiisomorphism

k → Alg(evm)
(

C̃
′′
(∅)
)

in Alg(Ch(k)). But as k is the initial object in this category, this morphism
must be exactly ιC̃′′

(∅)
, which has thus been proven to be a quasiisomorphism.

7.4.2. An improved cofibrant model
C̃

′′
(X) as in Proposition 7.4.1.1 is a cofibrant model in Alg(Mixed) for

HHMixed(k[X]), but apart from that we know nothing about C̃
′′
(X). In this

section we will use C̃
′′
(X) to construct a new cofibrant model C̃(X) over

which we will have more control.
Before we state the result of this section we begin with some notation and

a remark on pushouts of certain free algebras in strict mixed complexes.
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Notation 7.4.2.1. In this section we are often going to use free associa-
tive algebras in strict mixed complexes that are generated by strict mixed
complexes that are themselves free. To simplify notation, we thus define

FreeAlg(Mixed) := FreeAlg(Mixed)
Mixed ◦ FreeMixed

where FreeAlg(Mixed)
Mixed and FreeMixed are as in Notation 4.2.2.10. ♦

Remark 7.4.2.2. Let X be an object in Alg(Mixed), let E be a Z-graded
set, and let i′ : E → X be a map of Z-graded sets. Assume that the image
of i′ consists only of cycles in X. Define B′ to be the chain complex whose
underlying graded k-module is k·E (i. e. the free one on E), equipped with the
zero boundary operator. We also define a Z-graded k-module B′ := B′⊕B′[1].
Then B′ has two generators corresponding to every element e of E; the one
in the left summand is in the same degree as e, and we will also denote this
generator by e, and the one in the right summand has degree one higher
than e, and we will denote this generator by e. We can upgrade B′ to a chain
complex by defining ∂(e) = e and ∂(e) = 0 for every element e of E. There
is an obvious morphism of chain complexes j′ : B′ → B′ that maps e to e.

We will consider the pushout diagram

FreeAlg(Mixed)(B′) FreeAlg(Mixed)(B′
)

X X

FreeAlg(Mixed)(j′)

i i

ι

(∗)

in Alg(Mixed), where i is the morphism that is determined by the morphism
of chain complexes B′ → X that is given by mapping e to i′(e) for every
element e of E (this is a morphism of chain complexes by the assumption
that i′(e) is a cycle).

Let Y be a chain complex. Then the underlying Z-graded k-algebra of
FreeAlg(Mixed)(Y ) is given by the free graded k-algebra generated by the
graded k-module D ⊗ Y ∼= Y ⊕ Y [1]. This follows from Proposition 4.2.2.11
and the analogous statement proven with Proposition E.7.2.2 (2) in the same
manner by using that the forgetful functor from Ch(k) to the category of
Z-graded k-modules is symmetric monoidal and preserves colimits.

As the forgetful functor from Alg(Mixed) to Alg(Ch(k)) preserves colimits
by Proposition 4.2.2.12 and the forgetful functor from Alg(Ch(k)) to the
category of Z-graded k-algebras does so as well by Proposition E.7.3.1, we
then obtain that diagram (∗) is on underlying graded k-algebras given by a
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pushout31

Free(k · E ⊕ k · dE) Free(k · E ⊕ k · dE)∐ Free(k · E ⊕ k · dE)

X X

i i

ι

where Free is ad hoc notation for the free associative Z-graded k-algebra on a
Z-graded k-module32, ∐ refers to the coproduct in the category of Z-graded
k-algebras, i. e. the free product, and the top morphism is the inclusion of the
first summand. From this it follows that the underlying graded k-algebra of
X is given by the coproduct (in graded k-algebras) of X and the free graded
k-algebra on elements e and d e for e ∈ E. ♦

Proposition 7.4.2.3. Let Y be an object in Alg(Mixed) and Y ′ a sub-Z-
graded-k-module of H∗(Y ) such that H∗(Y ) is the direct sum of Y ′ with
a copy of k generated by the homology class [1] that is represented by the
multiplicative unit 1 of Y 33. Assume furthermore that the homology of Y is
concentrated in non-negative degrees.

Then there exists a quasiisomorphism

Θ: X → Y

in Alg(Mixed) such that X is cofibrant, concentrated in nonnegative degrees,
and satisfies the following additional property. There must exist a sub-strict-
mixed-complex X ′ of evMixed

a
(X) that is cofibrant as an object of Mixed such

that the morphism of strict mixed complexes

k ⊕X ′ → evMixed
a

(X)

that is induced by the unit k → X and the inclusion X ′ → evMixed
a

(X) is an
isomorphism. Furthermore, the restriction of H∗(Θ) to H∗(X

′) must corestrict
to an isomorphism H∗(X

′)
∼=
−→ Y ′. ♥

Proof. We will inductively construct a diagram in Alg(Mixed) as indicated
below, satisfying properties (a), (b), (c), (d), (e), (f) and (g) that will be

31We denote by dE a Z-graded set that consists of an element that we denote by d e of
degree one higher than e for each element e of E. We use a similar convention for E.

32We also use that Free preserves coproducts to rewrite the top right object as a coproduct.
33This element is a cycle and satisfies d(1) = 0 due to the Leibniz rule that is satisfied by

both ∂ as well as d.
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explained below.

k

X−1 X0 X1 X2 · · ·

Y

ι0−1

Θ−1

p−1

ι10

Θ0

p0

ι21

Θ1

p1

Θ2

p2

(∗)

Beyond the notation indicated in the diagram, we will denote the morphism
from Xn to Xm for −1 ≤ n ≤ m by ιmn := ιmm−1 ◦ · · · ◦ ι

n+1
n . All morphisms

ιmn are going to be levelwise injective, so if x is an element of Xn, we will also
just write x for the element ιmn (x) of Xm. Finally, we define Kn := Ker(pn)
for n ≥ −1. Note that as pn is a morphism of chain complexes Kn will be
closed under ∂.

Now we can formulate the properties that (7.4.2.3) needs to satisfy.

(a) X−1 = k.

(b) Xn is concentrated in non-negative degrees for all n ≥ −1.

(c) H∗(Θn) is an isomorphism for ∗ < n if n ≥ −1 and surjective for all ∗
if n ≥ 0.

(d) H∗(Θn) maps H∗(Kn) into Y ′ for all n ≥ −1.

(e) Let n ≥ −1. Then there is a Z-graded set En and a morphism of Z-
graded sets i′n : En → Xn satisfying the following properties. Let e be
an element of En. Then the image i′n(e) in Xn must be a cycle as
well as lie in Kn. We denote by B′

n := k · En the chain complex with
zero boundary operator whose underlying Z-graded k-module is freely
generated by En. We furthermore denote by B′

n the Z-graded k-module
that is given by (k ·En)⊕ (k ·En)[1]. If e is an element of En, then we
will also use e to refer to e as en element of the left summand, and e to
refer to e as an element of the right summand. Note that e has degree 1
higher than e. We can then make B′

n into a chain complex by defining
∂(e) = e and ∂(e) = 0 for every element e of En. There is a morphism
of chain complexes j′n : B′

n → B′
n that maps e to e. Now we can finally

formulate the property that En needs to satisfy. We require that there
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is a pushout diagram

FreeAlg(Mixed)(B′
n) FreeAlg(Mixed)(B′

n

)

Xn Xn+1

FreeAlg(Mixed)(j′n)

in in

ιn+1
n

(∗∗)

in Alg(Mixed), where in is the morphism that is determined by the
morphism of chain complexes B′

n → Xn that is given by mapping e to
i′n(e) for e an element of En (this is a morphism of chain complexes by
the assumption that every element of En be a cycle in Xn).

(f) ιn+1
n is a cofibration in Alg(Mixed) for n ≥ −1.

(g) evMixed
a

(ιn+1
n ) is a cofibration in Mixed for n ≥ −1.

Before we construct diagram (∗) with these properties, let us first explain
how to deduce the claim from it. We define

X := colim
n≥−1

Xn

with the colimit taken in Alg(Mixed), and let p : X → k and Θ: X → Y be
the morphisms induced by pn and Θn. We furthermore define

X ′ := Ker
(
evMixed

a
(p)
)

which is a sub-strict-mixed-complex of evMixed
a

(X) as evMixed
a

(p) is a morphism
of strict mixed complexes. It remains to check the properties that X and Θ
need to satisfy. Before we go through the individual claims, let us first note
that the forgetful functors from Alg(Mixed) to Alg(Ch(k)), Mixed, as well as
Ch(k) all detect filtered colimits by Proposition 4.2.2.12, so in particular every
element of X already occurs in Xn for some n ≥ −1. That X is concentrated
in nonnegative degrees then follows directly from (b).

We continue by showing that Θ is a quasiisomorphism. It follows immedi-
ately from (c) that Hm(Θ) is surjective for any integer m. Now assume that
m is an integer and z is a cycle of chain degree m in X such that Θ(z) is a
boundary. There must be an n ≥ −1 such that z is an element of Xn, and we
may assume that n > m. Then (c) implies that Hm(Θn) is an isomorphism, so
z must be a boundary in Xn and hence in X. Thus Θ is a quasiisomorphism.

Next we need to show that X is a cofibrant object in Alg(Mixed). This
means that the morphism from the initial object k must be a cofibration. By
(a) we can identify this morphism with the inclusion X−1 → X, which is a
transfinite composition of

X−1 X0 X1 · · ·
ι0−1 ι10
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so that the claim follows from each ιn+1
n being a cofibration in Alg(Mixed) by

(f), as cofibrations are closed under transfinite compositions.
We now turn towards the properties X ′ needs to satisfy. As p is a morphism

in Alg(Mixed), it must be compatible with the respective unit morphisms, so
that the composition of the unit morphism k → X with p must be the
identity. The splitting lemma now implies that the morphism of strict mixed
complexes k ⊕X ′ → evMixed

a
(X) that is induced by the unit k → X and the

inclusion X ′ → X is an isomorphism. Let m be an integer. Using the just
mentioned isomorphism and the one from the statement of the proposition
we obtain a composition

Hm(k)⊕Hn(X
′) Hm(X) Hm(Y ) Hm(k · {[1]})⊕ Y ′∼= Hm(Θ) ∼=

that we can write as a 2 × 2 matrix (thinking of the direct sums as col-
umn vectors), and showing that the restriction of H∗(Θ) to H∗(X

′) core-
stricts to an isomorphism H∗(X

′)
∼=
−→ Y ′ means showing the the component

Hn(X
′) → Hm(k · {[1]}) is zero and the component Hn(X

′) → Y ′ is an iso-
morphism. (d) implies that the restriction of Hm(Θ) to Hm(X ′) factors over
Y ′, which handles the former. As Θ is a morphism in Alg(Mixed) we also
know that the composition of Θ with the unit morphism k → X is given by
the unit morphism k → Y , which shows that matrix is of the form

[
∼= 0
0 ?

]

Combining this with the fact that Hm(Θ) is an isomorphism as we already
showed above we can conclude that the component Hn(X

′)→ Y ′ (indicated
with a question mark above) must be an isomorphism as well.

It remains to show that X ′ is a cofibrant strict mixed complex. Using that
the forgetful functor evMixed

a
from Alg(Mixed) to Mixed preserves transfinite

compositions we can show, using the same argument as when we showed that
X was cofibrant in Alg(Mixed), only this time using (g) instead of (f), that
the unit morphism k → evMixed

a
(X) is a cofibration in Mixed. We can identify

this unit morphism with the inclusion of the first summand k → k⊕X ′. This
means that the top horizontal morphism in the pushout diagram

k k ⊕X ′

0 X ′

idk ×0

0∐idX′ (∗ ∗ ∗)

in Mixed is a cofibration, and hence so is the bottom horizontal morphism,
i. e. X ′ is cofibrant as an object of Mixed.
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We have shown that constructing diagram (∗) satisfying properties (a), (b),
(c), (d), (e), (f) and (g) will imply the statement of the proposition, so we now
turn towards actually constructing this diagram. This has two main parts. We
will inductively construct Xn together with ιnn−1, pn and Θn satisfying (a),
(b), (c), (d) and (e), and separately show that this implies that (f) and (g)
hold as well.

We first get this latter part out of the way. So assume that we are given
a diagram (∗) satisfying properties (a), (b), (c), (d) and (e). Then the mor-
phisms j′n defined in (e) for n ≥ −1 are cofibrations of chain complexes as
they are coproducts of generating cofibrations, see [Hov99, 2.3.3 and 2.3.11]34.
The functor FreeAlg(Mixed) is a left Quillen functor by Theorem 4.2.2.1, so the
morphisms FreeAlg(Mixed)(j′n) in Alg(Mixed) are cofibrations as well, and hence
so are the morphisms ιn+1

n by the pushout diagram that is part of (e). This
proves (f).

Showing (g) requires a more detailed analysis of the underlying objects of
pushouts in associative algebras. Luckily, Schwede and Shipley already did
most of the work for us in the proof of [SS00, 6.2], and the following ar-
gument assumes that the reader has familiarized themselves with the proof
of [SS00, 6.2]. We prove (g) by induction, letting n ≥ −1, assuming that
evMixed

a
(ι0−1), . . . , evMixed

a
(ιnn−1) are cofibrations in Mixed, and proving that

then also evMixed
a

(ιn+1
n ) is a cofibration in Mixed. By (e) the morphism ιn+1

n is
given by a pushout in Alg(Mixed) that is the transpose of the diagram below.

FreeAlg(Mixed)
Mixed

(
FreeMixed(B′

n)
)

Xn

FreeAlg(Mixed)
Mixed

(
FreeMixed(B′

n

))
Xn+1

FreeAlg(Mixed)
Mixed (FreeMixed(j′n))

in

ιn+1
n

in

This is also the situation considered in the proof of [SS00, 6.2], with their
functor T being given by FreeAlg(Mixed)

Mixed , and the the transpose of the pushout
diagram above then corresponding to the pushout diagram

T (K) T (L)

X P

that is considered at the start of the proof of [SS00, 6.2]. The proof then
shows (using their notation for the intermediate steps, but ours for the end
34The relevant generating cofibrations are denoted by Sm−1 → Dm in [Hov99, 2.3.3].
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points) that evMixed
a

(ιn+1
n ) is a transfinite composition of a sequence

evMixed
a

(Xn) = P0 P1 · · · Pm · · ·

in Mixed. As cofibrations are closed under transfinite compositions, it thus
suffices to show that the morphism Pm−1 → Pm is a cofibration for every
m ≥ 1. This morphism is defined as a pushout

Qm

(
evMixed

a
(Xn)⊗ FreeMixed(B′

n

))⊗m
⊗ evMixed

a
(Xn)

Pm−1 Pm

in Mixed, so that it suffices to show that the morphism

Qm →
(

evMixed
a

(Xn)⊗ FreeMixed(B′
n

))⊗m
⊗ evMixed

a
(Xn)

is a cofibration in Mixed. This morphism is in turn isomorphic to a morphism

Qm ⊗ evMixed
a

(Xn)
⊗(m+1) → FreeMixed(B′

n

)⊗m
⊗ evMixed

a
(Xn)

⊗(m+1)

that is given as a tensor product of a morphism Qm → FreeMixed(B′
n

)⊗m

and the identity of evMixed
a

(Xn)
⊗(m+1). Now Qm is the colimit of a punctured

hypercube built up from FreeMixed(j′n). As j′n is a cofibration of chain com-
plexes35 and FreeMixed is a left Quillen functor by Theorem 4.2.2.1, it follows
that FreeMixed(j′n) is a cofibration in Mixed. Just like in the proof of [SS00,
6.2] one can now conclude by iterated application of the pushout-product
that the morphism Qm → FreeMixed(B′

n

)⊗m is a cofibration in Mixed.
Where we have to deviate from the proof of [SS00, 6.2] is in how we conclude

from this that the morphism

Qm ⊗ evMixed
a

(Xn)
⊗(m+1) → FreeMixed(B′

n

)⊗m
⊗ evMixed

a
(Xn)

⊗(m+1)

is a cofibration as well. While evMixed
a

(Xn) is assumed to be cofibrant in the
context of [SS00, 6.2], evMixed

a
(Xn) actually not cofibrant in our situation.

However, with arguments completely analogous to the proof that the state-
ment of the proposition follows from the existence of a diagram (∗) satisfying
properties (a), (b), (c), (d), (e), (f) and (g), we can see that evMixed

a
(Xn) is

given by the direct sum of the sub-strict-mixed-complex Kn and the image
of unit morphism k → Xn. That unit morphism can furthermore be identi-
fied with the morphism evMixed

a
(ιn−1), which is a cofibration in Mixed by the

35This was shown above when we proved (f).
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induction assumption. Using a pushout diagram analogous to (∗ ∗ ∗) we can
then conclude that Kn is cofibrant as an object of Mixed. Let us now return
to showing that

Qm ⊗ evMixed
a

(Xn)
⊗(m+1) → FreeMixed(B′

n

)⊗m
⊗ evMixed

a
(Xn)

⊗(m+1)

is a cofibration. The tensor product evMixed
a

(Xn)
⊗(m+1) ∼= (k ⊕Kn)

⊗(m+1) is
isomorphic to a direct sum of terms of the form K⊗i

n ⊗ k
⊗(m+1−i) ∼= K⊗i

n . As
cofibrations are closed under coproducts, it thus suffices to show that

Qm ⊗K
⊗i
n → FreeMixed(B′

n

)⊗m
⊗K⊗i

n

is a cofibration in Mixed for any i ≥ 0. Here we need to distinguish two cases.
If i > 0, then K⊗i

n is cofibrant in Mixed as Kn is cofibrant as just shown,
and combining this with Qm → FreeMixed(B′

n

)⊗m being a cofibration and
the pushout-product axiom we obtain that the morphism above is indeed a
cofibration. If instead i = 0, then K⊗i

n
∼= k. This is not cofibrant as a strict

mixed complex, but as it is the monoidal unit, we obtain that the above
morphism in question is isomorphic to Qm → FreeMixed(B′

n

)⊗m and hence
nevertheless a cofibration.

We have now shown that given a diagram (∗) satisfying properties (a), (b),
(c), (d) and (e) also properties (f) and (g) hold. So now it remains to actually
construct a diagram (∗) satisfying properties (a), (b), (c), (d) and (e), which
we do inductively.

We begin by setting X−1 := k, p−1 := idk, and Θ−1 : k → Y the unit
morphism of Y . Then (a) is handled, and (b) clearly holds for n = −1. As Y
was assumed to have homology concentrated in non-negative degrees, and k

has the same property we also have (c) for n = −1. Finally, K−1 = 0, so (d)
is clear for n = −1.

Now let Z be the graded subset of Y that is given by cycles that represent
a non-zero homology class in Y ′. We let E−1 be Z[−1], i. e. the Z-graded set
in which the elements of Z are all given a degree that has been lowered by 1,
and define i′n : E−1 → X−1 = k as the map that maps every element to 0. As
the element 0 in every degree of k is an element of K−1 as well as a cycle we
can now define X0 via the pushout diagram (∗∗), so that (e) is satisfied for
n = −1. We also need to define p0 and Θ0, which we do using the universal
property of the pushout, which ultimately amounts to prescribing a cycle of
the appropriate degree in k and Y to the elements e of B′

−1 for each element
e of E−1. For p0 we simply let e map to 0. For Θ0 we note that an element e
of E−1 corresponds to a cycle z in Y , and the degrees of e and z agree. We
can thus define Θ0 by mapping e to the corresponding cycle z.

We now need to show that (b), (c) and (d) hold for n = 0. By assumption
Y has homology concentrated in non-negative degrees, so by construction of
E−1 every element e of E−1 is of degree bigger or equal to −1, which means
that the corresponding elements e are all of non-negative degrees. Applying

448
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Remark 7.4.2.2 we can thus conclude that X0 is concentrated in non-negative
degrees, which shows (b) for n = 0. By construction of E−1 and Θ0 it is clear
that Y ′ is contained in the image of H∗(Θ0). As 1 must also be in the image
by virtue of Θ0 being multiplicative, we can conclude from the assumption
that H∗(Y ) ∼= k · {[1]}⊕Y ′ that H∗(Θ0) is surjective. As both X0 and Y have
homology that is concentrated in non-negative degrees it is also clear that
H∗(Θ0) is an isomorphism for ∗ < 0. Thus (c) follows for n = 0. Finally, it
is clear from the definitions and Remark 7.4.2.2 that a basis for K0 is given
by non-empty words in the multiplicative generators e and d e of X0 for e
elements of E−1. As Θ0 maps every element of the form e to a cycle that
represents a homology class in Y ′, the same is true for elements of the form
d e, as Y ′ is closed under d for degree reasons36. Multiplicativity of Θ0 now
implies that H∗(Θ0) maps H∗(K0) into Y ′, showing (d) for n = 0.

We now define the remainder of diagram (∗) by induction. So we as-
sume that m > 0 such that X−1, . . . , Xm−1 as well as p−1, . . . , pm−1 and
Θ−1, . . . ,Θm−1 have already been defined in such a way that (e) holds for
n = −1, . . . ,m− 2 and (b), (c) and (d) hold for n = −1, . . . ,m− 1. We then
define Xm, pm, and Θm in such a way that (e) holds for n = m− 1 and (b),
(c) and (d) hold for n = m.

Let L := Ker(Hm−1(Θm−1)). We want to define Em−1 as a Z-graded subset
of Km−1 whose elements are cycles representing nonzero homology classes in
L, and which contains at least one such cycle for each nonzero homology class
in L. Note that Em−1 will then be concentrated in degree m − 1. We have
to show that this is in fact possible, i. e. that every homology class in L is
represented by a cycle that lies in Km−1. Note that, as we already mentioned
before, Xm−1 decomposes as a direct sum of k ·{1} and Km−1. If m > 1, then
this immediately implies the claim, as k · {1} is then concentrated in degree
0 < m − 1 so that every cycle of degree m − 1 in Xm−1 will be in Km−1. If
instead m = 1, then a cycle representing a homology class in L is given by a
sum a · 1+ l, with a an element of k and l a cycle in K0 of degree 0. That Θ0

is an algebra morphism as well as (d) for n = m− 1 imply that

H0(Θ0)([a · 1] + [l]) = a · [1] + H0(Θ0)([l])

with H0(Θ0)([l]) an element of Y ′. The assumption that H∗(Y ) is the direct
sum of k ·{[1]} and Y ′ then implies that we must have a = 0. Thus a Z-graded
subset Em−1 of Km−1 of the form described above exists.

We let i′m−1 : Em−1 → Xm−1 be the inclusion map and define ιmm−1 and
Xm via the pushout diagram (∗∗), so that (e) is satisfied for n = m − 1.
We next define pm and Θm using the universal property of the pushout. We
define pm by extending pm−1 by mapping e to 0 for every element e of Em−1,
which is compatible as pm−1◦im−1 maps every element of Em−1 to 0 as Em−1

is a subset of Km−1.
36Y ′ is concentrated in nonnegative degrees, so the images of d applied to elements of Y ′

lie in degrees greater or equal to 1, and in those degrees Y ′ is equal to H∗(Y ), as k is
concentrated in degree 0.
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We also define Θm as follows. Let e be an element of Em−1. By definition
i′m−1(e) is a cycle that represents a homology class that is in the kernel of
Hm−1(Θm−1). There thus exists an element in degree m of Y whose boundary
is Θm−1(i

′
m−1(e)), and we can thus define Θm as an extension of Θm−1 by

mapping e to one such element. It now remains to show that with these
definitions (b), (c) and (d) hold for n = m.

Combining that Em−1 is concentrated in degree m − 1 ≥ 0 with Re-
mark 7.4.2.2 we obtain that the underlying Z-graded k-algebra of Xm is
multiplicatively generated by Xm−1 and elements of the form e of degree m
and d e of degree m+1 for e ∈ Em−1. Combining this with (b) for n = m− 1
we obtain (b) for n = m.

This also implies that ιmm−1 is an isomorphism in degrees less than or equal
to m−137, and thus an isomorphism in homology in degrees less than or equal
to m − 2. Combining this with (c) for n = m − 1 we obtain that H∗(Θm) is
an isomorphism for ∗ < m − 1. That H∗(Θm) is surjective for all ∗ follows
directly from H∗(Θm−1) being surjective for all ∗ by (c) for n = m − 1. To
show (c) for n = m it thus remains to show that Hm−1(Θm) is injective. As
we noted that ιmm−1 is an isomorphism in degrees less than or equal to m− 1,
any homology class in the kernel of Hm−1(Θm) must already lie in the kernel
of Hm−1(Θm−1) and hence in L. But the construction of Xm then directly
implies that that homology class is zero in Hm−1(Xm). This shows (c) for
n = m.

Finally, ιmm−1 being an isomorphism in degrees less than or equal to m− 1
implies that the restriction and corestriction of ιmm−1 to a morphism of chain
complexes Km−1 → Km is also an isomorphism in those degrees. As m−1 ≥ 0
this implies that the image of the restriction of H0(Θm) to H0(Km) is con-
tained in the image of the restriction of H0(Θm−1) to H0(Km−1), which
together with (d) for n = m − 1 shows that H0(Θm) maps H0(Km) into Y ′.
As Y ′ is equal to H∗(Y ) in degrees ∗ 6= 0, this shows (d) for n = m.

We can now apply Proposition 7.4.2.3 to improve the cofibrant model for
HHMixed(k[X]) from Proposition 7.4.1.2.

Proposition 7.4.2.4. Let X be a set. Then there exists a cofibrant object
C̃(X) in Alg(Mixed) that is concentrated in nonnegative degrees satisfying the
following properties.

37This is one reason why (b) is part of the properties that we need to require of diagram
(∗) even if we did not need this property to conclude the statement of the proposition;
without assuming it in the induction each new multiplicative generator also causes new
elements of potentially arbitrary low degree.
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Firstly, there has to a be a commutative square

HHMixed(k) Alg(γMixed)(k)

HHMixed(k[X]) Alg(γMixed)
(

C̃(X)
)

≃

HHMixed(ιk[X]) Alg(γMixed)
(
ιC̃(X)

)

≃

(7.7)

in Alg(Mixed), where the left morphism is induced by the unit morphism
ιk[X] : k → k[X], the right morphism is induced by the unit morphism

ιC̃(X)
: k → C̃(X)

and the horizontal morphisms are equivalences.
Secondly, there must exists a sub-strict-mixed-complex C̃

′
(X) of the strict

mixed complex evMixed
a

(C̃(X)) that is cofibrant as an object of Mixed and such
that the morphism of strict mixed complexes

k ⊕ C̃
′
(X)→ evMixed

a

(
C̃(X)

)

that is induced by the unit morphism k → evMixed
a

(C̃(X)) and the inclusion
C̃

′
(X)→ evMixed

a
(C̃(X)) is an isomorphism. ♥

Proof. Let C̃
′′
(X) be as in Proposition 7.4.1.2. Then there is a composite

equivalence

Alg(γ)
(

Alg(evm)
(

C̃
′′
(X)

))
≃ HH(k[X]) ≃ Alg(γ)

(
Ω•
k[X]/k

)

in Alg(D(k)), where the first equivalence is obtained by applying the forget-
ful functor Alg(evm) to the equivalence at the bottom of diagram (7.6) sup-
plied by Proposition 7.4.1.2 combined with compatibility of Alg(evm) with
Alg(γMixed) from Construction 4.4.1.1, and the second equivalence is the one
from Corollary 7.2.2.3. This implies that there is an isomorphism of Z-graded
k-algebras as follows.

H∗

(
C̃

′′
(X)

)
∼= H∗

(
Ω•
k[X]/k

)
∼= Ω•

k[X]/k

As Ω•
k[X]/k is concentrated in nonnegative degrees and can be written as a

direct sum of a copy of k generated by the multiplicative unit 1 and some com-
plement we can transfer this sum decomposition to the homology of C̃

′′
(X)

and use it to apply Proposition 7.4.2.3. This yields a quasiisomorphism

Θ: C̃(X)→ C̃
′′
(X)
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in Alg(Mixed) such that C̃(X) is cofibrant, concentrated in nonnegative de-
grees, and such that there exists a cofibrant sub-strict-mixed-complex C̃

′
(X)

of evMixed
a

(C̃(X)) such that the morphism of strict mixed complexes

k ⊕ C̃
′
(X)→ evMixed

a
(C̃(X))

that is induced by the unit and inclusion is an isomorphism. This already
shows the second property that C̃(X) needs to satisfy.

It remains to show the existence of a commutative square (7.7). This is
obtained as the transpose of the outer square of the commutative diagram

HHMixed(k) HHMixed(k[X])

Alg(γMixed)(k) Alg(γMixed)
(

C̃
′′
(X)

)

Alg(γMixed)
(

C̃(X)
)

≃

HHMixed(ιk[X])

≃

Alg(γMixed)
(
ιC̃′′

(X)

)

Alg(γMixed)
(
ιC̃(X)

) Alg(γMixed)(Θ)≃

in Alg(Mixed), with the top commutative square being the transpose of the
one supplied by Proposition 7.4.1.2 and the bottom triangle commuting be-
cause k is initial in Alg(Mixed).

As it will later be relevant to keep using the same equivalences as in diagram
(7.7) of Proposition 7.4.2.4, we now fix C̃ once and for all.

Construction 7.4.2.5. Let X be set. Then we define C̃Z(X) to be a cofi-
brant object of Alg(MixedZ) satisfying the conditions of Proposition 7.4.2.4.
Together with C̃Z(X) we fix once and for all a commutative square

HHMixed(Z) Alg(γMixed)(Z)

HHMixed(Z[X]) Alg(γMixed)
(

C̃Z(X)
)

≃

HHMixed(ιZ[X]) Alg(γMixed)
(
ιC̃

Z
(X)

)

≃

(7.8)

in Alg(MixedZ) and a cofibrant sub-strict-mixed-complex C̃
′

Z(X) of the strict
mixed complex evMixed

a
(C̃Z(X)) as supplied by Proposition 7.4.2.4.
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For other commutative rings k we then define

C̃k(X) := k ⊗Z C̃Z(X)

which is a cofibrant object of Alg(Mixedk) by Proposition 4.2.2.13. It also
follows directly from C̃Z(X) being concentrated in nonnegative degrees that
the same holds true for C̃k(X). Applying k⊗Z− to the inclusion of C̃

′

Z(X) into
evMixed

a
(C̃Z(X)) we obtain an injection into a strict mixed complex that we

can identify with evMixed
a

(C̃k(X)). We define C̃
′

k(X) to be the image of that
injection, as a sub-strict-mixed-complex of evMixed

a
(C̃k(X)). It then follows

immediately from the analogous property for C̃
′

Z that the morphism of strict
mixed complexes

k ⊕ C̃
′

k(X)→ evMixed
a

(
C̃k(X)

)

that is induced by the unit and inclusion is then an isomorphism. Further-
more, as the functor

k ⊗Z − : MixedZ → Mixedk

preserves cofibrations by Proposition 4.2.2.3 we can also conclude that C̃
′

k(X)
is cofibrant as an object of Mixedk.

We also obtain the following diagram in Alg(Mixedk)

HHMixed(k) HHMixed(k[X])

k ⊗Z HHMixed(Z) k ⊗Z HHMixed(Z[X])

k ⊗Z Alg(γMixed)(Z) k ⊗Z Alg(γMixed)
(

C̃Z(X)
)

Alg(γMixed)(k) Alg(γMixed)
(

C̃k(X)
)

≃

HHMixed(ιk[X])

≃

≃

k⊗ZHHMixed(ιZ[X])

≃

k⊗ZAlg(γMixed)
(
ιC̃

Z
(X)

)

≃ ≃

Alg(γMixed)
(
ιC̃k(X)

)

where the top square arises from compatibility of HHMixed with extension of
scalars as in Remark 6.2.1.6 (plus using the obvious isomorphisms k⊗ZZ ∼= k

and k⊗ZZ[X] ∼= k[X] that are given by including both tensor factors into the
codomain and then multiplying), the middle square is obtained by applying
k ⊗Z − to the transpose of diagram (7.8), and the bottom square arises
from compatibility of Alg(γMixed) with extension of scalars by Remark 4.4.1.3
(together again with the isomorphism k ⊗Z Z ∼= k). Transposing the outer
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commutative rectangle we obtain a commutative square

HHMixed(k) Alg(γMixed)(k)

HHMixed(k[X]) Alg(γMixed)
(

C̃k(X)
)

≃

HHMixed(ιk[X]) Alg(γMixed)
(
ιC̃k(X)

)

≃

(7.9)

which we fix once and for all. With the chosen diagram (7.9) and sub-strict-
mixed-complex C̃

′

k(X) of evMixed
a

(C̃k(X)) we have thus provided the data that
shows that C̃k(X) as we defined it here satisfies the conclusion of Proposi-
tion 7.4.2.4.

If the base ring is clear from context we will as usual omit it from the
notation and just write e. g. C̃(X) instead of C̃k(X).

Now let X and Y be two sets and F : k[X]→ k[Y ] a morphism of commu-
tative k-algebras. Then the composite morphism

Alg(γMixed)
(

C̃(X)
)

≃
−→ HHMixed(k[X])

HHMixed(F )
−−−−−−−−→ HHMixed(k[Y ])

≃
−→ Alg(γMixed)

(
C̃(Y )

)

in Alg(Mixed), where the first and third equivalences are the ones from (7.9),
can be lifted38 to a morphism C̃(F ) in Alg(Mixed), which we chose once and
for all. C̃(F ) comes together with a commutative diagram

HHMixed(k[X]) Alg(γMixed)
(

C̃(X)
)

HHMixed(k[Y ]) Alg(γMixed)
(

C̃(Y )
)

HHMixed(F )

≃

Alg(γMixed)(C̃(F ))

≃

(7.10)

in Alg(Mixed), where the horizontal equivalences are those from (7.9). ♦

7.4.3. Comparing the algebra and mixed structure
separately

Construction 7.4.2.5 provides a reasonably nice strict model C̃(X) for
HHMixed(k[X]) as an algebra in mixed complexes. In this section we will
38As C̃(X) is cofibrant and C̃(Y ) fibrant in Alg(Mixed).
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construct comparison morphisms from the underlying differential graded al-
gebra and strict mixed complex of C̃(X) to Ω•

k[X]/k.

Construction 7.4.3.1. Let X be a set. We will construct a quasiisomor-
phism

Φ′
k,X : Alg(evm)

(
C̃k(X)

)
→ Ω•

k[X]/k

in Alg(Ch(k)). If the base ring is clear from context we will also write Φ′
X ,

and even Φ′ if the set X is clear as well.
As in Construction 7.4.2.5 we first construct Φ′

Z,X and then extend scalars
for Φ′

k,X . There is a composite equivalence

Alg(γ)
(

Alg(evm)
(

C̃Z(X)
))
≃ HH(Z[X]) ≃ Alg(γ)

(
Ω•

Z[X]/Z

)

in Alg(D(Z)), where the first equivalence is obtained by applying the forgetful
functor Alg(evm) to the equivalence at the bottom of diagram (7.8) in Con-
struction 7.4.2.5 combined with compatibility of Alg(evm) with Alg(γMixed)
from Construction 4.4.1.1, and the second equivalence is the one from Corol-
lary 7.2.2.3. By Proposition 4.2.2.12 Alg(evm) preserves cofibrant objects, so
Alg(evm)(C̃Z(X)) is cofibrant as an object in Alg(Ch(Z)). As Ω•

Z[X]/Z is fi-
brant (like every object), we can thus lift the above equivalence in Alg(D(Z))
to a quasiisomorphism Φ′

Z,X (see [Hov99, 1.2.10 (ii)] and Proposition A.1.0.1)
as claimed.

We now define

Φ′
k,X : Alg(evm)

(
C̃k(X)

)
→ Ω•

k[X]/k

as the composition

Alg(evm)
(

C̃k(X)
)
= Alg(evm)

(
k ⊗Z C̃Z(X)

)

∼=
−→ k ⊗Z Alg(evm)

(
C̃Z(X)

)

k⊗ZΦ
′
Z,X

−−−−−−→ k ⊗Z Ω•
Z[X]/Z

∼=
−→ Ω•

k[X]/k

in Alg(Ch(k)), where the first equality is by definition, the first isomorphism
is the one from compatibility of evm with extension of scalars as in Re-
mark 4.2.1.3, and the isomorphism in the last line is given by applying the
unit in the first tensor factor and Ω•

ιk[X]/k in the second, and then multiply-
ing. To see that Φ′

k,X is indeed a quasiisomorphism we only need to argue
that k ⊗Z Φ′

Z,X is a quasiisomorphism. Note that the underlying morphism
of chain complexes can be identified with k ⊗Z eva(Φ

′
Z,X), and the functor

k ⊗Z − : Ch(Z)→ Ch(k)
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is a left Quillen functor by Fact 4.1.5.1 and so preserves weak equivalences
between cofibrant objects. By Proposition 4.2.2.12 C̃Z(X) has cofibrant un-
derlying chain complex, and by the discussion surrounding Definition 7.1.0.1
Ω•

Z[X]/Z has cofibrant underlying chain complex as well, so as Φ′
Z,X is a quasi-

isomorphism we obtain that Φ′
k,X is one as well. ♦

Proposition 7.4.3.2. Let X be a set. Then there is a commutative triangle

Alg(γ)
(

Alg(evm)
(

C̃k(X)
))

Alg(γ)
(
Ω•
k[X]/k

)

HH(k[X])

Alg(γ)(Φ′
k,X)

≃ ≃

in Alg(D(k)), where the left diagonal equivalence is obtained by applying the
forgetful functor evMixed

a
to the equivalence at the bottom of diagram (7.9) in

Construction 7.4.2.5 combined with compatibility of evMixed
a

with Alg(γMixed)
from Construction 4.4.1.1, and the right diagonal equivalence is the one from
Corollary 7.2.2.3. ♥

Proof. We drop the forgetful functor Alg(evm) from the notation in this proof
to improve readability. Consider the following diagram in Alg(D(k)) that will
be explained below.

Alg(γ)
(

C̃k(X)
)

Alg(γ)
(
Ω•
k[X]/k

)

Alg(γ)
(
k ⊗Z C̃Z(X)

)
Alg(γ)

(
k ⊗Z Ω•

Z[X]/Z

)

k ⊗Z Alg(γ)
(

C̃Z(X)
)

k ⊗Z Alg(γ)
(
Ω•

Z[X]/Z

)

k ⊗Z HH(Z[X]) k ⊗Z Alg(γ)
(
Ω•

Z[X]/Z

)

HH(k ⊗Z Z[X]) Alg(γ)
(
k ⊗Z Ω•

Z[X]/Z

)

HH(k[X]) Alg(γ)
(
Ω•
k[X]/k

)

id

Alg(γ)(Φ′
k,X)

≃

Alg(γ)(k⊗ZΦ
′
Z,X)

≃ ≃

k⊗ZAlg(γ)(Φ′
Z,X)

≃ id

≃

≃ ≃

≃ ≃

≃

The first square from the top is built from the composition Φ′
k,X is defined

as in Construction 7.4.3.1. The second square is the naturality square for the
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equivalence in Remark 4.4.1.3. The third square is obtained from the defini-
tion of Φ′

Z,X by applying k ⊗Z Alg(γ)(−), the left equivalence is obtained by
applying the forgetful functor Alg(evm) to the equivalence at the bottom of di-
agram (7.8) in Construction 7.4.2.5 combined with compatibility of Alg(evm)
with Alg(γMixed) from Construction 4.4.1.1 and at the end tensoring with k,
and the bottom equivalence is obtained by tensoring the equivalence from
Corollary 7.2.2.3 (for base ring Z) with k. Finally, the bottom rectangle is the
one from Proposition 7.2.2.4, so that in particular the bottom equivalence of
the full rectangle is the one from Corollary 7.2.2.3.

Now note that on the right the top two equivalences are the same as the
bottom two equivalences, so the composition of the right column is the iden-
tity. The bottom equivalence is exactly the one occurring as the right di-
agonal equivalence in the statement. Finally, the composition on the left is
exactly the definition of the equivalence at the bottom of diagram (7.9) in
Construction 7.4.2.5.

Proposition 7.4.3.3. Let X be a totally ordered set. Then there exists a
quasiisomorphism

Ψ: evMixed
a

(
C̃(X)

)
→ Ω•

k[X]/k

in Mixed. ♥

Proof. Some parts of this proof will be analogous to Construction 7.4.3.1, but
we need some additional arguments as evMixed

a

(
C̃(X)

)
is not a cofibrant object

of Mixed. Proposition 7.4.2.4 and Construction 7.4.2.5 isolate this problem
to the non-cofibrancy of the summand k. So let j : kcof → k be a cofibrant
replacement of k in Mixed. It then follows from Construction 7.4.2.5 that
kcof ⊕ C̃

′
(X) is a cofibrant strict mixed complex and that the composition

kcof ⊕ C̃
′
(X) k ⊕ C̃

′
(X) evMixed

a

(
C̃(X)

)
j⊕id ∼= (∗)

is a quasiisomorphism, where the second morphism is induced by the unit
and inclusion. There is a composite equivalence

γMixed
(
kcof ⊕ C̃

′
(X)

)
≃ γMixed

(
evMixed

a

(
C̃(X)

))

≃ HHMixed(k[X])

≃ γMixed
(
Ω•
k[X]/k

)
(∗∗)

in Mixed, where the first equivalences arises from the composite quasiiso-
morphism (∗), the second equivalence is obtained by applying the forgetful
functor evMixed

a
to the equivalence at the bottom of diagram (7.9) in Construc-

tion 7.4.2.5 combined with compatibility of evMixed
a

with Alg(γMixed) from
Construction 4.4.1.1, and the third equivalence is the one from Construc-
tion 7.3.11.3.
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Using that kcof⊕C̃
′
(X) is a cofibrant object of Mixed and that every object,

so in particular Ω•
k[X]/k, is fibrant, we can now lift the composite equivalence

from (∗∗) to a quasiisomorphism

Ψ′ : kcof ⊕ C̃
′
(X)→ Ω•

k[X]/k

in Mixed.
In the following we will use the notation i1 and i2 for the inclusions of the

first and second summands of the sums kcof⊕ C̃
′
(X) and k⊕ C̃

′
(X), with the

context making clear which of the two sums we are including into. We now
claim the following.

Claim 1: There exist morphisms

Ψ′′ : kcof → k and Ψ′′′ : k → Ω•
k[X]/k

in Mixed such that Ψ′′ is a quasiisomorphism and such that there exists a
commutative square

γMixed
(
kcof

)
γMixed

(
kcof ⊕ C̃

′
(X)

)

γMixed(k) γMixed
(
Ω•
k[X]/k

)

γMixed(i1)

γMixed(Ψ
′′) γMixed(Ψ

′)

γMixed(Ψ
′′′)

(∗ ∗ ∗)

in Mixed.
Before showing the claim we discuss how the claim implies the statement

of the proposition. We define Ψ as the composition

evMixed
a

(
C̃(X)

)
k ⊕ C̃

′
(X) Ω•

k[X]/k

∼= Ψ′′′∐(Ψ′◦i2)

in Mixed, where the first morphism is the inverse isomorphism of the second
morphism in (∗). It remains to show that the morphism

Ψ′′′ ∐ (Ψ′ ◦ i2) : k ⊕ C̃
′
(X)→ Ω•

k[X]/k

is a quasiisomorphism. But as Ψ′′ and hence Ψ′′ ⊕ idC̃′
(X)

is a quasiisomor-
phism, it suffices for this to show that

(Ψ′′′ ◦Ψ′′)∐ (Ψ′ ◦ i2) : k
cof ⊕ C̃

′
(X)→ Ω•

k[X]/k

is a quasiisomorphism. We know that Ψ′ = (Ψ′ ◦ i1) ∐ (Ψ′ ◦ i2) is a quasi-
isomorphism, so it would suffice to show that (Ψ′′′ ◦Ψ′′) ∐ (Ψ′ ◦ i2) is chain
homotopic to (Ψ′ ◦ i1) ∐ (Ψ′ ◦ i2), for which it in turn suffices to show that
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(Ψ′′′ ◦Ψ′′) is chain homotopic to (Ψ′ ◦ i1). But this follows from existence of
commutative diagram (∗ ∗ ∗), using that the underlying chain complex of kcof
is cofibrant by Proposition 4.2.2.12, while Ω•

k[X]/k is a fibrant chain complex,
together with [Hov99, 1.2.10 (ii)] and Propositions A.1.0.1 and 4.1.4.2.

So to finish the proof it remains to show Claim 1, for which we need to
unpack and rewrite the composition γMixed(Ψ′) ◦ γMixed(i1) that occurs in the
square (∗ ∗ ∗) that we are to construct. Using the definition of Ψ′ and (∗)
and (∗∗) to unpack this composition we obtain that γMixed(Ψ′) ◦ γMixed(i1) is
homotopic to the composition from the top left to the bottom right along the
top row and right column of the following diagram in Mixed, which will be
explained below.

γMixed
(
kcof

)
γMixed

(
kcof ⊕ C̃

′
(X)

)

γMixed(k) γMixed
(
k ⊕ C̃

′
(X)

)

γMixed(k) γMixed
(

evMixed
a

(
C̃(X)

))

HHMixed(k) HHMixed(k[X])

γMixed
(
Ω•
k[X]/k

)

γMixed(i1)

γMixed(j) γMixed(j⊕id)

γMixed(i1)

id ≃

γMixed
(
ιC̃(X)

)

≃ ≃

HHMixed(ιk[X])

≃

The top square is obtained by applying γMixed to a commuting square in
Mixedcof. In the middle square we define the vertical morphism on the right
as the equivalence induced by the isomorphism occurring in (∗). By definition
this isomorphism is given on k by the unit morphism, which implies that this
square also has a filler as it is given by γMixed applied to a commuting square in
Mixedcof. The bottom square is given by applying the forgetful functor evMixed

a

to diagram (7.9) in Construction 7.4.2.5. Finally, the vertical equivalence at

459



Chapter 7. Hochschild homology of polynomial algebras

the bottom right is the one from Construction 7.3.11.3, which also occurs in
(∗∗). Commutativity of the above diagram means that γMixed(Ψ′) ◦ γMixed(i1)
is homotopic to the composition from the top left to the bottom right along
the left column.

We now consider the following commutative diagram in Mixed, which we
again explain below. The composition that we just showed is homotopic to
γMixed(Ψ′) ◦ γMixed(i1) occurs as the composition from the top left to the
bottom right while staying on the top and right side.

γMixed
(
kcof

)

γMixed(k)

HHMixed(k) HHMixed(k[X])

γMixed(C(k)) γMixed(C(k[X]))

γMixed
(
C(k)

)
γMixed

(
C(k[X])

)

γMixed
(
Ω•
k[X]/k

)

γMixed(j) ≃

≃ψ′′

≃

≃

HHMixed(ιk[X])

≃

≃

γMixed(C(ιk[X]))

≃ ≃

γMixed(C(ιk[X]))

≃γMixed
(
ϵ
(•)
X

)

We start by just defining ψ′′ as the composition of the equivalences in the
left column (which will be explained in a moment); this shorthand will be
useful to shorten notation later. The second morphism in the left column is
obtained by applying the forgetful functor evMixed

a
to the top horizontal equiv-

alence in diagram (7.9) in Construction 7.4.2.5. The top square arises from
naturality of the equivalence between HHMixed and the standard Hochschild
complex in Proposition 6.3.4.1. The bottom square arises from naturality of
the quotient morphism from the standard Hochschild complex to the nor-
malized standard Hochschild complex, see Proposition 6.3.1.10. The lower
right vertical equivalence is the one induced by the strongly homotopy linear
quasiisomorphism ϵ

(•)
X , see Proposition 7.3.11.2 and Construction 4.4.4.1. Fi-

nally, the long equivalence on the right is the one of Construction 7.3.11.3,
which also occurs in (∗∗), and the right rectangle is obtained by unpacking
its definition.
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We have now shown that γMixed(Ψ′) ◦ γMixed(i1) is homotopic to the com-
position from the top left to the bottom right in the diagram above while
staying to the left and bottom. Note that C(k) is isomorphic to k as a strict
mixed complex (as k = 0), with an isomorphism given by the unit ιC(k) of
C(k). As C(ιk[X]) is a morphism of differential graded algebras and equal-
ity of morphisms of strict mixed complex can be checked on the underlying
morphisms of chain complexes we can conclude that

C
(
ιk[X]

)
◦ ιC(k) = ιC(k[X])

holds. We should comment here on why ιC(k) and ιC(k[X]) are morphisms of
strict mixed complexes. As C(R) for a commutative k-algebra R is not in
general an algebra in strict mixed complexes, it is not a purely formal fact
that the unit morphism k → C(R) of the differential graded algebra structure
is a morphism of strict mixed complexes rather than just a morphism of
chain complexes. However, this is indeed the case, as one can check using the
formula for d from Proposition 6.3.1.10.39

The upshot of the discussion so far is that there is a commutative diagram
as follows in Mixed.

γMixed
(
kcof

)

γMixed
(
C(k)

)
γMixed

(
C(k[X])

)
γMixed

(
Ω•
k[X]/k

)

γMixed(k)

γMixed(Ψ
′)◦γMixed(i1)

ψ′′ ≃

γMixed(C(ιk[X])) γMixed
(
ϵ
(•)
X

)

≃

γMixed(ιC(k)) ≃ γMixed(ιC(k[X]))

As kcof is a cofibrant object in Mixed we can lift the composition of the two
equivalences on the left to a quasiisomorphism Ψ′′ : kcof → k in Mixed, and
it remains to show that we can up to homotopy find a lift of the dashed
composition in Mixed to a strict morphism Ψ′′′ : k → Ω•

k[X]/k (that such a
lift exists is not automatic as k is not cofibrant in Mixed). We define Ψ′′′ as
the unit morphism

Ψ′′′ := ιΩ•
k[X]/k

: k → Ω•
k[X]/k

which can be seen to be a morphism of strict mixed complexes from the

39That this is not automatic is underlined by the fact that the analogous property does
not hold if we had used C(R) instead of C(R) – this is one of the reasons the normalized
standard Hochschild complex is more convenient to work with.
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definition of d on Ω•
k[X]/k. It then suffices to show that the triangle

γMixed
(
Ω•
k[X]/k

)
γMixed

(
C(k[X])

)

γMixed(k)

≃

γMixed
(
ϵ
(•)
X

)

γMixed(ιC(k[X]))γMixed(Ψ′′′)

commutes in Mixed.
For this we first unpack the definition of the lower horizontal equivalence

γMixed(Ω•
k[X]/k) from Construction 4.4.4.1. As ad hoc notation, let us denote

the natural transformation coming with the functorial cofibrant replacement
on Mixed by q : −cof → idMixed. We will also use the notation that was in use
in Construction 4.4.4.1. We need to show that there is a filler for the triangle
at the bottom of the following diagram, where the top is the commutative
rectangle from Construction 4.4.4.1. To make the diagram a bit cleaner we
abbreviate γMixed by γM, as well as Ω•

k[X]/k and C(k[X]) by Ω and C.

γM
(
Ωcof) γM

((
Cshl)cof)

γM
(

Ccof)

γM(Ω) γM
(
C
)

γM(k)

≃γM(qΩ)

γM
(
(ϵstrict

X )
cof)

≃ ≃

γM
(
(ιshl

C )
cof)

≃ γM(qC)

≃

γM
(
ϵ
(•)
X

)

γM(ιC)γM(Ψ′′′)

As all the morphism in the top rectangle are equivalences we can also partition
the diagram differently and instead show that there is a morphism from
γMixed(k) to the object in the top middle such that the two shapes in the
diagram below have a filler.

γM
(
Ωcof) γM

((
Cshl)cof)

γM
(

Ccof)

γM(Ω) γM
(
C
)

γM(k)

≃γM(qΩ)

γM
(
(ϵstrict

X )
cof)

≃ ≃

γM
(
(ιshl

C )
cof)

≃ γM(qC)

γM(ιC)γM(Ψ′′′)

462



7.4. De Rham forms as a strict model in Alg(Mixed)

Next we use that qk : kcof → k is a quasiisomorphism to reduce to showing
that there exists a dashed morphism as indicated in the diagram below such
that the top two triangles have a filler, with the two squares having a filler
by naturality of q.

γM
(
Ωcof) γM

((
Cshl)cof)

γM
(

Ccof)

γM(Ω) γM
(
kcof

)
γM
(
C
)

γM(k)

≃γM(qΩ)

γM
(
(ϵstrict

X )
cof)

≃ ≃

γM
(
(ιshl

C )
cof)

≃ γM(qC)

γM(qk) ≃

γM(Ψ′′′cof) γM(ιcof
C )

γM(ιC)γM(Ψ′′′)

To show that the square formed by the two triangles has a filler in Mixed it
suffices to show that the square

kcof
(
Ω•
k[X]/k

)cof

C(k[X])
cof

(
C(k[X])

shl
)cof

Ψ′′′cof

ιcof
C(k[X]) (ϵstrict

X )
cof

(
ιshl

C(k[X])

)cof

commutes in Mixed, for which it in turn suffices to show that the diagram

k Ω•
k[X]/k

C(k[X]) C(k[X])
shl

Ψ′′′

ιC(k[X]) ϵstrict
X

ιshl
C(k[X])

commutes. This we can now check directly. As all morphisms are k-linear it
suffices to check the image of the element 1 of k along the two compositions.
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We first consider the composition along the bottom left. ιC(k[X]) maps 1 to 1,
which is then mapped by ιshlC(k[X])

to the tuple (1, 0, 0, . . .) of C(k[X])
shl, see

Definition 4.2.3.3. In the composition along the top right Ψ′′′ maps 1 to 1,
which is then mapped by ϵstrictX to the tuple ϵstrictX (1) that is defined as follows
for i ≥ 0, see Proposition 4.2.3.7 and Definition 4.2.3.8.

ϵstrictX (1)2i = ϵ
(i)
X (1)

ϵstrictX (1)2i+1 =
(
∂ϵ

(i+1)
X − ϵ

(i+1)
X ∂

)
(1)

As ∂(1) = 0 we can simplify the odd case to ϵstrictX (1)2i+1 = ∂(ϵ
(i+1)
X (1)).

It thus suffices to show that ϵ(0)X (1) = 1 and ϵ
(i)
X (1) = 0 for i > 0. The

former is clear as ϵ(0)X is a morphism of differential graded algebras by Propo-
sition 7.2.2.2 (2). For the latter we check the definition of ϵ(i)X in Construc-
tion 7.3.1.1. Using the notation there, the element 1 implies that m = 0, and
then C(i,m) is empty40, implying the claim. This finishes the proof.

Definition 7.4.3.4. Let X be a totally ordered set. Then we choose once
and for all a quasiisomorphism

ΨX : evMixed
a

(
C̃(X)

)
→ Ω•

k[X]/k

in Mixed, as exists by Proposition 7.4.3.3. ♦

7.4.4. Compatibility of Φ with d in the case of a single
variable

In Section 7.4.3 we constructed two comparison quasiisomorphisms be-
tween C̃(X) and Ω•

k[X]/k; one compatible with the strict mixed structure,
and one compatible with the multiplicative structure. In this section we show
that after possibly tweaking it slightly, the multiplicative morphism also pre-
serves d in the special case of X = {t}.

Proposition 7.4.4.1. There exists an element ν of {+1,−1} such that the
morphism

Φ′
k,{t} : Alg(evm)

(
C̃k({t})

)
→ Ω•

k[t]/k

from Construction 7.4.3.1 satisfies

Φ′
k,{t}(d y) = ν · d

(
Φ′
k,{t}(y)

)
(7.11)

for every element y of C̃k({t}). ♥

40As i > 0 we have that 1 ≤ 1 ≤ i. Thus any element #–c of C(i,m) must satisfy c1+1 ≤ c2−1
while 1 ≤ c1, c2 ≤ 0 + 1 = 1, which is not possible.
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Proof. By definition we can identify Φ′
k,{t} with k⊗ZΦ

′
Z,{t}, and as the isomor-

phism (actually equality) C̃k({t}) ∼= k⊗ZC̃Z({t}) is compatible with the strict
mixed structure by definition and the isomorphism Ω•

k[t]/k
∼= k⊗ZΩ

•
Z[t]/Z that

occurs in the definition of Φ′
k,{t} is compatible with the strict mixed struc-

ture by Remark 7.1.0.2, it suffices to prove that there exists an element ν of
{+1,−1} such that (7.11) holds in the case of base ring Z.

We next note that as Ω•
Z[t]/k is concentrated in degrees 0 and 1, equation

(7.11) is automatic no matter what we choose for ν if y is an element of a
degree other than −1 or 0. As C̃Z({t}) is concentrated in nonnegative degrees
the equation also holds automatically for elements of degree −1, and every
element of C̃Z({t}) of degree 0 is a cycle. We are thus left showing that there
exists an element ν of {+1,−1} such that (7.11) holds for cycles y of degree
0 of C̃Z({t})

As Φ′
Z,{t} is a quasiisomorphism and Ω•

Z[t]/Z has zero boundary operator,
Φ′

Z,{t} must be surjective. We can thus lift the element t of Ω•
Z[t]/Z to an

element t of C̃Z({t}) of degree 0 such that Φ′
Z,{t}(t) = t. As Φ′

Z,{t} is multi-
plicative we then also have Φ′

Z,{t}(t
n
) = tn for n ≥ 0, so that we can conclude

that the elements [t
n
] for n ≥ 0 form a Z-basis for H0(C̃Z({t})). Let us as-

sume for the moment that we found an element ν such that (7.11) holds for
the elements y = t

n for n ≥ 0. Then we claim (7.11) holds for all cycles y
in degree 0. Indeed, any cycle y of degree 0 of C̃Z({t}) must be of the form
y =

∑
0≤n cn · t

n
+ ∂z for some element z of degree 1 and elements cn in Z

for n ≥ 0, only finitely many of which are nonzero. But then we have the
following calculation, using that Ω•

Z[t]/Z has zero boundary operator and thus
Φ′

Z,{t} maps boundaries to zero.

Φ′
Z,{t}(d y) = Φ′

Z,{t}


∑

0≤n

cn · d
(
t
n)
− ∂(d z)


 =

∑

0≤n

cn · Φ
′
Z,{t}

(
d
(
t
n))

=
∑

0≤n

cn · ν · d
(
Φ′

Z,{t}
(
t
n))

= ν · d


Φ′

Z,{t}


∑

0≤n

cn · t
n






= ν · d


Φ′

Z,{t}


∑

0≤n

cn · t
n
+ ∂z




 = ν · d

(
Φ′

Z,{t}(y)
)

It thus suffices to show that there exists an element ν of {+1,−1} such that
(7.11) holds for elements y = t

n for n ≥ 0.
We now need some input on properties that d must satisfy on the homology

of C̃Z({t}). For this equip {t} with the unique total order and let Ψ be as in
Definition 7.4.3.4. Then Ψ being a quasiisomorphism as well as compatible
with d, and Ω•

Z[t]/Z having zero boundary operator, implies that there is a
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commutative diagram

Ω1
Z[t]/Z H1

(
C̃Z({t})

)

Ω0
Z[t]/Z H0

(
C̃Z({t})

)

∼=

∼=

d d

of abelian groups where the two horizontal morphisms are isomorphisms41.
A Z-basis of Ω0

Z[t]/Z is given by tn for n ≥ 0, and a Z-basis of Ω1
Z[t]/Z is given

by tn · d t for n ≥ 0. Combining this with d(tn) = n · tn−1 · d t for n ≥ 0 one
obtains the following two properties for d on Ω•

Z[t]/Z.

(1) The morphism

Q⊗Z d : Q⊗Z Ω0
Z[t]/Z → Q⊗Z Ω1

Z[t]/Z

is surjective.

(2) The morphism
d : Ω0

Z[t]/Z → Ω1
Z[t]/Z

is only divisible by units, i. e. if d = c · d′ for another morphism
d′ : Ω0

Z[t]/Z → Ω1
Z[t]/Z and element c in Z, then c must be a unit (so

either +1 or −1).

Using the above commutative square we can conclude that the analogous
properties hold for the homology C̃Z({t}).

(1) The morphism

Q⊗Z d : Q⊗Z H0

(
C̃Z({t})

)
→ Q⊗Z H1

(
C̃Z({t})

)

is surjective.

(2) The morphism

d : H0

(
C̃Z({t})

)
→ H1

(
C̃Z({t})

)

is only divisible by units, i. e. if d = c · d′ for another morphism

d′ : H0

(
C̃Z({t})

)
→ H1

(
C̃Z({t})

)

and element c in Z, then c must be a unit (so either +1 or −1).
41Induced by Ψ, but we do not actually care beyond them being isomorphisms.
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We now use property (1) to show that Φ′
Z,{t}(d t) = ν · d t for a nonzero

element ν in Z. For this let am for 0 ≤ m ≤ s be elements of Z such that

Φ′
Z,{t}(d t) =

∑

0≤m≤s

am · t
m · d t

holds in Ω1
Z[t]/Z. We already noted that the elements [t

n
] for n ≥ 0 form a

Z-basis for H0(C̃Z({t})). Combining this with (1) we obtain that the elements
[t
n
· d t] for n ≥ 0 form a Q-generating set for Q⊗Z H1(C̃Z({t})). As Φ′

Z,{t} is
a multiplicative quasiisomorphism it follows that the elements

Φ′
Z,{t}

(
t
n
· d t

)
= tn ·


 ∑

0≤m≤s

am · t
m · d t


 =

∑

0≤m≤s

am · t
n+m · d t

for n ≥ 0 form a Q-linear generating set for Q⊗Z Ω
1
Z[t]/Z. In particular, there

must exist elements bn of Q for 0 ≤ n ≤ u, such that

d t =
∑

0≤n≤u

bn ·


 ∑

0≤m≤s

am · t
n+m · d t




holds in Q⊗Z Ω
1
Z[t]/Z. Note that if all am are zero or all bn are zero, then the

right hand side vanishes, which contradicts the equality, so we can without
loss of generality assume that 0 ≤ u and 0 ≤ s are such that bu 6= 0 and
as 6= 0. But then rewriting the right hand side in terms of the Q-basis tl · d t
for l ≥ 0 of Q ⊗Z Ω1

Z[t]/Z we will have a nonzero coefficient bu · as for the
summand associated to tu+s · d t. This can only happen if u + s = 0, so in
particular s = 0 so that we must have

Φ′
Z,{t}

(
d t
)
= a0 · d t

in Ω1
Z[t]/Z for a0 a nonzero element of Z.

Set ν = a0. Then we obtain the following calculation for n ≥ 0.

Φ′
Z,{t}

(
d
(
t
n))

= Φ′
Z,{t}

(
n · t

n−1
· d t

)
= n · tn−1 · (ν · d t)

= ν ·
(
n · tn−1 · d t

)
= ν · d(tn) = ν · d

(
Φ′

Z,{t}
(
t
n))

We have thus shown that (7.11) holds for this choice of ν for the elements
y = t

n for n ≥ 0, but we still have to show that ν is an element of {+1,−1}.
But note that as [t

n
] for n ≥ 0 is a Z-basis for H0(C̃Z({t})), the calculation

we just made implies that the composition

H0

(
C̃Z({t})

)
H1

(
C̃Z({t})

)
H1

(
Ω1

Z[t]/Z

)
d H1(Φ′

Z,{t})
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is ν times the composition d◦H0(Φ
′
Z,{t}), so the above composition is divisible

by ν. As H1(Φ
′
Z,{t}) is an isomorphism this implies that also the morphism

d : H0

(
C̃Z({t})

)
→ H1

(
C̃Z({t})

)

is divisible by ν. Finally, (2) implies that ν must then be either +1 or −1.

Definition 7.4.4.2. Let X be a set. We define a quasiisomorphism

Φk,X : Alg(evm)
(

C̃k(X)
)
→ Ω•

k[X]/k

in Alg(Ch(k)) by
y 7→ νdegCh(y) · Φ′

k,X(y)

where Φ′
k,X is as in Construction 7.4.3.1 and ν as in Proposition 7.4.4.1. If k

is clear from context we will also denote Φk,X by Φx. ♦

Proposition 7.4.4.3. The morphism

Φk,{t} : Alg(evm)
(

C̃k({t})
)
→ Ω•

k[t]/k

from Definition 7.4.4.2 is compatible with d and can thus be lifted to a mor-
phism in Alg(Mixed). ♥

Proof. Follows directly from the definition and Proposition 7.4.4.1.

7.4.5. A free resolution for de Rham forms
In this section we construct a cofibrant replacement of Ω•

k[X]/k in the model
category Alg(Mixed) for totally ordered sets X with |X| ≤ 2, and prove some
properties it satisfies. We know abstractly that a cofibrant replacement exists,
but it will be crucial for applications that we have good control over the low
degrees of the the cofibrant replacement that we use.

We will begin in Section 7.4.5.1 by giving a construction of a cofibrant
replacement42 that depends on the choice of certain sets Y0, Y1, . . . . For our
application we will need to make a specific choice for Y0, Y1, and Y2, and we
will describe those choices and show that they have the necessary properties
in Section 7.4.5.2. Finally Section 7.4.5.3 will be concerned with proving that
the object constructed in Section 7.4.5.1 actually is a cofibrant replacement
of Ω•

k[X]/k.

42We will only construct the object and morphism to Ω•
k[X]/k

, but will not yet show that
it indeed is a cofibrant replacement.
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7.4.5.1. The general construction

In this section we give a general construction of a morphism

Ω′•
k[X]/k → Ω•

k[X]/k

in Alg(Mixed) that depends on the choice of certain sets Y0, Y1, . . . .

Construction 7.4.5.1. Let X be a set. We will construct a commutative
diagram

A0 A1 A2 . . . Ω′•
k[X]/k

Ω•
k[X]/k

ι10

Θ0

ι21

Θ1 Θ2 Θ

in Alg(Mixed), where the first line is a Z≥0-diagram and its colimit Ω′•
k[X]/k.

Beyond the notation indicated in the diagram, we will denote the morphism
from An to Ω•

k[X]/k by ιn, and the morphism from An to Am for m ≥ n by
ιmn . The objects An are going to be built up using free associative algebras
in strict mixed complexes that are generated by strict mixed complexes that
are themselves free, so to simplify notation we will use Notation 7.4.2.1. All
morphisms ιmn are going to be levelwise injective, so if y is an element of An,
we will also just write y for the element ιmn (y) of Am.

We begin by defining

A0 := FreeAlg(Mixed)(k ·X)

where by k ·X we mean the chain complex that is free as a graded k-module
on the set X, where we give every element of X chain degree 0.

Using the universal property of FreeAlg(Mixed) and k ·X, we can now define
Θ0 as the unique morphism in Alg(Mixed) that maps an element x of X,
considered as a basis element of k · X, to the element x, considered as an
element of k[X] and thereby of Ω0

k[X]/k.
We next describe how to construct An+1 from An, for n ≥ 0. This will

depend on the choice of a subset Yn of (An)n, i. e. elements of degree n in An.
We note that we will later show that we can make some particular choices
for some of these sets. The set Yn has to satisfy the following conditions for
every n ≥ 0.

(a) Every element y of Yn is a cycle in An.

(b) Every element y of Yn is mapped to 0 by Θn.

469



Chapter 7. Hochschild homology of polynomial algebras

(c) Let I be the graded ideal43 in the graded k-algebra H∗(An) that is gen-
erated by the homology classes represented by elements of the following
subset.

Yn ∪ { d y | y ∈ Yn }
Then we must have In = Ker(Hn(Θn))

44.

Note that it is always possible to find a set Yn satisfying all three require-
ments above, by starting with a generating set of Ker(Hn(Θn))

45, and then
for each of those homology classes choosing a cycle representing it. Note that
as the boundary operator of Ω•

k[X]/k is zero, a cycle representing a homology
class in the kernel of H∗(Θ) must already be mapped to 0 by Θ, so (b) is
then satisfied, and (a) and (c) hold by construction.

The idea behind the above requirements is that we want to divide out
Ker(Hn(Θn)) from An, but want to do so in an efficient fashion that does not
create excessive new elements in homology. In particular, the assumption that
the elements of Yn all have degree n is needed to ensure that the connectivity
of Θn increases with n.

Now let B′
n be the chain complex B′

n := k · Yn, where we give elements of
Yn the the same chain degree as in An. If y is an element of Yn, then we will
denote the corresponding basis element of B′

n by y as well. Let B′
n the chain

complex whose underlying graded k-module is given by (k · Yn)⊕ (k · Yn)[1],
where if y is an element of Yn we will denote the corresponding basis element
from the first summand by y again and the corresponding shifted46 basis
element of the second summand by y, and where the boundary operator is
determined by ∂(y) = y. There is an evident morphism of chain complexes
jn : B

′
n → B′

n that maps y to y.
We can now define An+1 and ιn+1

n as in the following pushout diagram in
Alg(Mixed)

Bn := FreeAlg(Mixed)(B′
n) Bn := FreeAlg(Mixed)(B′

n

)

An An+1

FreeAlg(Mixed)(jn)

in in

ιn+1
n

(7.12)

where in is the morphism in Alg(Mixed) that extends the morphism of chain
complexes B′

n → An given by mapping y considered as an element of B′
n to

y considered as an element of An, for every element y of Yn. The latter is a
morphism of chain complexes due to (a).
43That is, a subset that is closed under k-linear combinations as well as multiplication

with any element of H∗(An) on either side.
44Note that (b) already implies that I ⊆ Ker(H∗(Θn)).
45For example the very inefficient choice of all elements of Ker(Hn(Θn)) works.
46One degree higher, see Definition 4.1.1.2.
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We can define a morphism Θn : Bn → Ω•
k[X]/k in Alg(Mixed) as the one ad-

joint to the morphism of chain complexes 0: B′
n → Ω•

k[X]/k that maps y and
y to 0 for every y in Yn. If y is an element of Yn, then by (b), Θn(in(y)) = 0,
so that Θn ◦ in = Θn ◦ FreeAlg(Mixed)(jn), and hence, by the universal prop-
erty of the pushout diagram in Alg(Mixed) above, we obtain a morphism
Θn+1 : An+1 → Ω•

k[X]/k such that Θn+1 ◦ ι
n+1
n = Θn and Θn+1 ◦ in = Θn.

Finally, Ω′•
k[X]/k is defined as the colimit of the Z≥0-diagram

A0 A1 A2 . . .
ι10 ι21 ι32

in Alg(Mixed), and Θ: Ω′•
k[X]/k → Ω•

k[X]/k is defined using the universal prop-
erty of the colimit such that Θ ◦ ιn = Θn for every n ≥ 0. ♦

Remark 7.4.5.2. This remark concerns the situation of Construction 7.4.5.1.
Let n ≥ 0 be an integer. From Remark 7.4.2.2 it follows that the underlying
graded k-algebra of An+1 is given by the coproduct (in graded k-algebras) of
An and the free graded k-algebra on elements y and d y for y ∈ Yn.

Inductively we can conclude that the underlying graded k-algebra of An
is free on the elements x and dx for x ∈ X, and y and d y for y ∈ Ym
with m < n. As the forgetful functor from Alg(Mixed) to Alg Ch(k) preserves
filtered colimits by Proposition 4.2.2.12 we can also conclude that the colimit
Ω′•
k[X]/k has an underlying graded k-algebra that is free on the elements x

and dx for x ∈ X and y and d y for y ∈ Ym for m ≥ 0.
Note that elements y of Ym being of degree m implies that y is then of

degree m + 1, which is always positive. The only multiplicative generators
of degree 0 are thus those of the form x for x ∈ X, and Am is concentrated
in nonnegative degrees for every m ≥ 0. The above also implies that the
morphisms ιn′

n are isomorphisms in degrees smaller to or equal to n. ♦

7.4.5.2. Specific choices for Y0, Y1, and Y2

In this section we discuss specific choices that we make for Y0, Y1, and
Y2 in Construction 7.4.5.1. We begin with a general remark explaining the
maneuvers that we will make in all the proofs.

Remark 7.4.5.3. This remark concerns the situation of Construction 7.4.5.1,
and we will use notation from there. In the proofs of Propositions 7.4.5.6,
7.4.5.7 and 7.4.5.8 we will for some n ≥ 0 have defined sets Y0, . . . , Yn−1 as
in Construction 7.4.5.1 and shown that they satisfy (a), (b) and (c), and
defined a set Yn of elements of degree n in An for which we already showed
that (a) and (b) holds, but we still have to show that (c) holds, i. e. that
In = Ker(Hn(Θn)), for I the graded ideal in H∗(An) that is generated by
the homology classes represented by elements of Yn ∪ { d y | y ∈ Yn }. In this
remark we explain the general approach to proving this, in order to avoid
repetition. Before we continue let us define J as the graded ideal in the
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graded k-algebra of cycles of An47 that is generated by the elements y and
d y for y ∈ Yn48.

Property (b) implies that In ⊆ Ker(Hn(Θn)), so to show equality it only
remains to show that every element in Ker(Hn(Θn)) lies in In. Note that the
set of homology classes represented by elements of J is exactly I. As Ω•

k[X]/k

has zero boundary operator it also follows that a cycle in An represents a
homology class in Ker(Hn(Θn)) if and only if Θn maps it to 0. These two
facts together imply that it suffices to show that every cycle in An of degree
n that lies in the kernel of Θn is given as a sum of an element in J and a
boundary.

The strategy we will employ to prove this will be by reducing step by step
to the case of such cycles lying in increasingly restrictive submodules, by
eliminating basis elements, as we now make more precise.

By Remark 7.4.5.2 the underlying Z-graded k-algebra of An is free on the
generators x and dx for x ∈ X, and y and d y for y ∈ Yn′ with n′ < n. Let
G be the set of generators just described, as a Z-graded subset of An, and B
the set of all words of degree n in G. Then B is a k-basis of the underlying
Z-graded k-module of An. We will use a sequence of subsets

B = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bl

up to some subset Bl of B for l > 0 an integer. Suppose that we can show
that one of the following two holds for every 0 ≤ i < l.

(I) For every element w of Bi \ Bi+1 there is a boundary in An or an
element of J that, written in the basis B, only has non-zero coefficients
corresponding to the basis elements in Bi+1, except for the basis element
w, for which the coefficient is a unit in k. This implies that every element
z of An of degree n that lies in the k-submodule generated by Bi is a sum
of an element of J , a boundary, and an element z′ in the k-submodule
generated by Bi+1. Note that every element of J and every boundary
is a cycle, so z is a cycle if and only if z′ is. Furthermore every element
of J and every boundary is in the kernel of Θn, so z is in the kernel of
Θn if and only if z′ is.

(II) Every cycle z in An of degree n that satisfies Θn(z) = 0 and that lies
in the k-submodule generated by Bi already lies in the k-submodule
generated by Bi+1.

In both cases this implies that if we can show that every cycle in An of degree
n that lies in the kernel of Θn and also lies in the k-submodule generated by
Bi+1 is a sum of an element of J and a boundary, then the same statement fol-
lows for such cycles that lie in the k-submodule generated by Bi. Inductively
47Note that the Leibniz rule for ∂ implies that 1 is a cycle and that products of cycles are

again cycles, so cycles form a sub-k-algebra of An.
48By (a) these elements are cycles.
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it then thus suffices to show that cycles in An that lie in the k-submodule
generated by Bl and lie in the kernel of Θn are a sum of an element in J

and a boundary. Usually Bl will be of such a form that we can already show
that such a cycle must be zero, and we will explain how we usually show this
further below.

In the propositions below we will not usually define Bi explicitly. Instead
we will step by step describe the difference Bi \ Bi+1 and explain how to
eliminate those basis elements using an element of J or boundary in An in
the manner described above.

Let us make one remark about the elements of B. It follows from Re-
mark 7.4.5.2 G consists only of elements of nonnegative degree, with the
only elements of degree 0 being the elements of X. A concrete implication of
this that we will often use is that the number of factors that are not in X

that can occur in a word in G of specified degree is bounded. For example
words in G of degree 1 need to consists of precisely one factor of the form dx
or y with y an element of Y0, with the other factors all from X.

We will call products of elements of X, considered as elements of An, words
in X. If we are given a total order on the set X then we say that a word in
X is ordered if it is of the form xi11 · · ·x

ia
a with a ≥ 0 an integer, i1, . . . , ia ≥ 1

integers, and x1 < x2 < · · · < xa elements of X. Similarly we will call
products of elements of the form x and dx for x ∈ X words in X and dX,
and call such a word ordered if it is of the form xi11 · · ·x

ia
a · dx′1 · · · dx′b with

a, b ≥ 0 an integers, i1, . . . , ia ≥ 1 integers, and x1 < x2 < · · · < xa and
x′1 < · · · < x′b elements of X. We let BX be the set of words in X and BordX
the set of ordered words in X. Analogously, we let BX,dX be the (Z-graded)
set of words in X and dX, and BordX,dX the (Z-graded) set of ordered words
in X and dX. We will often refer to the number of factors in a word w as its
length, and denote it by len(w).

Now suppose that Bl is a subset of BordX,dX . Then the restriction of Θn to
the sub-k-module with basis Bl is injective, so any element in the kernel of
that restriction is already 0. The upshot is that if we can find

B = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bl

such that (I) or (II) holds for every 0 ≤ i < l and such that Bl is a subset of
BordX,dX , then this will complete the proof that In = Ker(Hn(Θn)). ♦

Remark 7.4.5.4. Let X be a totally ordered set that is either X = ∅,
X = {x1}, or X = {x1, x2} with x1 < x2. For reference we provide here a
table with the multiplicative generators of A0, A1, A2, A3 with Y0, Y1, Y2 as
defined in Propositions 7.4.5.6, 7.4.5.7 and 7.4.5.8 below. The generators are
given as for the case X = {x1, x2}, and to read off the case X = {x1} (the
case X = ∅) one leaves out any element that involves x2 (that involves x1 or
x2) The first column contains the chain degree of the elements, the second
lists their names, and the third column contains the first of A0, A1, A2, A3

that contains the element.
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Deg. Elements In
0 x1 A0

0 x2 A0

1 dx1 A0

1 dx2 A0

1 x1x2 − x2x1 A1

2 dx1x2 − x2x1 A1

2 x1 · dx1 − dx1 · x1 A2

2 x2 · dx2 − dx2 · x2 A2

2 x1 · dx2 − dx2 · x1 A2

2 x2 · dx1 − dx1 · x2 A2

3 dx1 · dx1 − dx1 · x1 A2

3 dx2 · dx2 − dx2 · x2 A2

3 dx1 · dx2 − dx2 · x1 A2

3 dx2 · dx1 − dx1 · x2 A2

3 dx1 · dx1 A3

3 dx2 · dx2 A3

3 dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 . . .
. . .− x2 · dx1 − dx1 · x2 A3

3 dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2 . . . A3

. . .− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1 . . .
. . .+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

3 dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1 . . . A3

. . .− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1 . . .
. . .+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

4 d dx1 · dx1 A3

4 d dx2 · dx2 A3

4 d dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 . . .
. . .− x2 · dx1 − dx1 · x2 A3

4 d dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2 . . . A3

. . .− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1 . . .
. . .+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

4 d dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1 . . . A3

. . .− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1 . . .
. . .+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

This table is intended to be used to determine what the k-basis for An in
a specific degree is. ♦

Before we actually define Y0, Y1, and Y2, we first show a helper statement.

Proposition 7.4.5.5. This proposition concerns Construction 7.4.5.1, and
we use some notation from Remark 7.4.5.3.
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Let X = {x1, x2}. Then the elements

xa11 x
a2
2 · (x1x2 − x2x1) · w

in A0, with a1, a2 ≥ 0 and w ∈ BX , are all pairwise distinct, and the set of
all such elements is k-linearly independent. ♥

Proof. Suppose that a1, a2, a′1, a′2 ≥ 0 and w,w′ ∈ BX such that

xa11 x
a2
2 · (x1x2 − x2x1) · w = x

a′1
1 x

a′2
2 · (x1x2 − x2x1) · w

′

Then as BX is k-linearly independent and the left hand side has two sum-
mands in the basis BX that both begin with xa11 x

a2
2 , but where the next factor

differs, the same must be true for the two summands of the right hands side,
and vice versa. This implies a′1 = a1 and a′2 = a2, which in turn implies that
w′ = w.

Now suppose that

0 =
∑

a1,a2≥0,
w∈BX

ba1,a2,w · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

with ba1,a2,w elements of k, all but finitely many zero. We have to show that
all coefficients ba1,a2,w are already zero. If this is already the case, then we
are done. So assume that there is a coefficient ba1,a2,w that is nonzero. Then
let ã1 ≥ 0 and ã2 ≥ 0 and w̃ ∈ BX be such that bã1,ã2,w̃ 6= 0 while first
minimizing ã1 and then (for that already fixed ã1) maximizing ã2.

Then it suffices to show that

xã11 x
ã2
2 · (x1x2 − x2x1) · w̃

is k-linearly independent of the k-submodule spanned by elements

xa11 x
a2
2 · (x1x2 − x2x1) · w

for a1, a2 ≥ 0 and w ∈ BX such that (a1, a2, w) 6= (ã1, ã2, w̃) and a1 ≥ ã1,
and a2 ≤ ã2 if a1 = ã1.

So assume that

c ·
(
xã11 x

ã2
2 · x1x2 · w̃ − x

ã1
1 x

ã2
2 · x2x1 · w̃

)
(∗)

=
∑

a1,a2≥0,
w∈BX ,
a1≥ã1,

a2≤ã2 if a1=ã1,
(a1,a2,w) 6=(ã1,ã2,w̃)

ca1,a2,w · (x
a1
1 x

a2
2 · x1x2 · w − x

a1
1 x

a2
2 · x2x1 · w)

for c a nonzero element of k and ca1,a2,w elements of k, only finitely many of
which are nonzero. We consider for which (a1, a2, w) as in the indexing set
we can have that one of the following two equations holds.

xã11 x
ã2
2 ·x2x1 ·w̃ = xa11 x

a2
2 ·x1x2 ·w or xã11 x

ã2
2 ·x2x1 ·w̃ = xa11 x

a2
2 ·x2x1 ·w
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We first note that the on left hand side of the equations the first ã1 factors of
x1 are always followed by at least one factor of x2. Thus it is not possible to
have a1 > ã1. As by assumption a1 ≥ ã1 we can thus conclude that a1 = ã1.
Thus we must have a2 ≤ ã2. The factor number a1 + a2 + 1 or a1 + a2 + 2
on the right hand side of the two equations is x1. As factors a1 + 1 up to
a1 + ã2 + 1 on the left hand side are x2 we must thus have a2 ≥ ã2. As
factor number a1 + ã2 + 2 on the left hand side is x1 on the other hand we
must have a2 ≤ ã2 + 1. We are thus left with the two options a2 = ã2 and
a2 = ã2 + 1. The former would imply that w = w̃, which contradicts the
assumption (a1, a2, w) 6= (ã1, ã2, w̃). The latter contradicts the assumptions
that a2 ≤ ã2 if a1 = ã1. This shows that if we write both sides of equation (∗)
in the basis BX , then the left hand side has a nonzero coefficient for the basis
element xã11 x

ã2
2 ·x2x1 · w̃ while the right hand side always has coefficient zero.

This contradicts equation (∗), which implies all coefficients ba1,a2,w must have
been zero, thereby showing the k-linear independence claim in the statement.

Proposition 7.4.5.6. Let X be a totally ordered set. Then the subset Y0 of
(A0)0 in Construction 7.4.5.1 can be chosen as follows.

Y0 := { x · x′ − x′ · x | x, x′ ∈ X such that x < x′ } ♥

Proof. Condition (a): That the elements are cycles is clear as A0 has zero
boundary operator.

Condition (b): holds as Ω•
k[X]/k is commutative.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3
and also use notation from there. Elements of B are precisely words in X, and
we can use elements of J to iteratively reorder the factors until we are left
only with ordered words in X.

Proposition 7.4.5.7. Let X be a subset of the totally ordered set {x1 < x2}.
This proposition concerns Construction 7.4.5.1, and we let Y0 be as in Propo-
sition 7.4.5.6.

Then the subset Y1 of (A1)1 in Construction 7.4.5.1 can be chosen as
follows.

Y1 := { x · dx′ − dx′ · x | x, x′ ∈ X } ♥

Proof. Condition (a): All elements of Y1 lie in A0, which has zero boundary
operator.

Condition (b): Holds as Ω•
k[X]/k is commutative.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3
and also use notation from there. The elements of B are words of one of the
following two types, with the second only occurring if |X| = 2.

(1) A word in G with precisely one factor dx with x ∈ X and the remaining
factors in X.
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(2) A word in G with precisely one factor x1x2 − x2x1 and the remaining
factors in X.

We first consider elements of type (1). We can first use elements of J to
move the factor dx to the very end of the product, so that we are left with
elements of the form w · dx with w a word in X. If |X| < 2 then w will
already be ordered, and if |X| = 2 we can then use the boundary of elements
of A1 of the form

w′ · x1x2 − x2x1 · w
′′ · dx

for w′ and w′′ words in X to reorder w, so that we can ultimately eliminate
all basis elements of type (1) except those of the form w · dx with w an
ordered word in X and x an element of X.

We are thus left with basis elements of the following two types, with the
second only occurring if |X| = 2.

(1’) An element of BordX,dX .

(2’) A word in G with precisely one factor x1x2 − x2x1 and the remaining
factors in X.

If |X| < 2 we are thus done per Remark 7.4.5.3. So now assume that |X| = 2.
Then let w · x1x2 − x2x1 · w′ be an element of B of type (2’), with w and

w′ words in X. Assume that w is not ordered. It is then possible to order w
in a finite number of steps by swapping neighboring (nonequal) factors, and
there also is a minimum number of such steps required, which in this case
must be positive as we assumed that w is not already ordered. Then we can
write w as w = v ·x2 ·x1 ·v

′ such that v and v′ are words in X, and such that
the minimum number of swappings to order v · x1 · x2 · v′ is smaller than the
minimum number of swappings to order w. Consider the following boundary.

∂
(
v · x1x2 − x2x1 · v

′ · x1x2 − x2x1 · w
′
)

= v · (x1x2 − x2x1) · v
′ · x1x2 − x2x1 · w

′

− v · x1x2 − x2x1 · v
′ · (x1x2 − x2x1) · w

′

= v · x1 · x2 · v
′ · x1x2 − x2x1 · w

′ − v · x2 · x1 · v
′ · x1x2 − x2x1 · w

′

− v · x1x2 − x2x1 · v
′ · x1 · x2 · w

′ + v · x1x2 − x2x1 · v
′ · x2 · x1 · w

′

Up to sign the second summand is the element we started with, the first
has a word of the same length before x1x2 − x2x1, but of smaller minimum
number of swappings to order it, and the last two summands have a word of
smaller length before the first factor x1x2 − x2x1. By induction we can thus
eliminate those elements from (2’) where the word in X appearing before the
factor x1x2 − x2x1 is not ordered.

We are thus left with basis elements of the following two types.

(1”) An element of BordX,dX .
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(2”) A product xa11 · x
a2
2 · x1x2 − x2x1 · w where w is a word in X.

To finish the proof it remains to eliminate the basis elements from (2”). We
do this using method (II) from Remark 7.4.5.3. So let z′ be a cycle in A1 that
is a k-linear combination of elements of type (1”) and (2”). We have to show
that z′ is then already a k-linear combination of elements of type (1”). For
this we write z′ = z′′ + z with z′′ a k-linear combination of elements of type
(1”) and z a k-linear combination of elements of type (2”). As every element
of type (1”) is a cycle this implies that z is a cycle. It now suffices to show
that z = 0.

We can write z as

z =
∑

a1,a2≥0
w∈BX

ba1,a2,w · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

with ba1,a2,w elements of k, all but finitely many zero. The boundary of z is
then given as follows.

∂(z) =
∑

a1,a2≥0,
w∈BX

ba1,a2,w · x
a1
1 x

a2
2 · x1x2 · w − ba1,a2,w · x

a1
1 x

a2
2 · x2x1 · w

Now Proposition 7.4.5.5 directly implies that all coefficients ba1,a2,w must be
zero, so z = 0.

We are thus now left with only basis elements of type (1”), which finishes
the proof as explained in Remark 7.4.5.3.

Proposition 7.4.5.8. Let X be a subset of the totally ordered set {x1 < x2}.
This proposition concerns Construction 7.4.5.1, and we let Y0 be as in Propo-
sition 7.4.5.6 and Y1 as in Proposition 7.4.5.7.

Then the subset Y2 of (A2)2 in Construction 7.4.5.1 can be chosen as
follows. If |X| = 0 we can let Y2 = ∅, if |X| = 1 we can let Y2 = {dx1 · dx1},
and if |x| = 2 we can define Y2 as follows.

Y2 :=
{

dx1 · dx1, dx2 · dx2
}

∪
{

dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2
}

∪
{

dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2
− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

}

∪
{

dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

}
♥

Proof. To keep the proof shorter as it would otherwise be we mostly will
implicitly work as if we had |X| = 2; the proof for |X| < 2 can be ob-
tained by jumping over every element or argument that involves an element
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of {x1, x2} \ X. To shorten notation we also make the following definitions
for this proof.

D := dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2
C2 := dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2

− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

C3 := dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

Condition (a): That the elements of Y2 are cycles can be checked by direct
calculation. For this, keep in mind the signs introduced by the Leibniz rule
and ∂ ◦ d = −d ◦ ∂.

Condition (b): Θ2 maps dx1 · dx1 and dx2 · dx2 (if they are defined,
depending on what X is) to zero as dx1 and dx2 square to zero in Ω•

k[X]/k.
The elements D, C2, and C3 are mapped to zero because every summand
has a factor of the form y or d y, with y an element of Y0 or Y1, and those
elements are already mapped to zero.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3
and also use notation from there. The elements of B are words of one of the
following types, with types (3), (4) and (5) only occurring for |X| = 2.

(1) A word in G with precisely two factors dx and dx′ with x, x′ ∈ X (the
case x = x′ is allowed) and the remaining factors in X.

(2) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and
the remaining factors in X.

(3) A word in G with precisely one factor x1x2 − x2x1, precisely one factor
dx for x ∈ X, and the remaining factors in X.

(4) A word in G with precisely two factors x1x2 − x2x1, and the remaining
factors in X.

(5) A word in G with precisely one factor dx1x2 − x2x1, and the remaining
factors in X.

As a first step the basis elements of type (5) can be eliminated using
elements of J that involve a factor of D, so that we are only left with types
(1), (2), (3) and (4).

For elements of type (4) we use a similar procedure as we did for elements
of type (2’) in Proposition 7.4.5.7. So let w ·x1x2 − x2x1 ·w′ ·x1x2 − x2x1 ·w

′′

be an element of type (4), with w, w′, and w′′ elements of BX . Assume that
w′ is not ordered. Then we can write w′ as w′ = v · x2 · x1 · v

′ such that v
and v′ are elements of BX and such that the minimum number of swappings
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to order v · x1 · x2 · v′ is smaller than the minimum number of swappings to
order w′. Consider the following boundary.

∂
(
w · x1x2 − x2x1 · v · x1x2 − x2x1 · v

′ · x1x2 − x2x1 · w
′′
)

= + w · x1x2 · v · x1x2 − x2x1 · v
′ · x1x2 − x2x1 · w

′′

− w · x2x1 · v · x1x2 − x2x1 · v
′ · x1x2 − x2x1 · w

′′

− w · x1x2 − x2x1 · v · x1x2 · v
′ · x1x2 − x2x1 · w

′′

+ w · x1x2 − x2x1 · v · x2x1 · v
′ · x1x2 − x2x1 · w

′′

+ w · x1x2 − x2x1 · v · x1x2 − x2x1 · v
′ · x1x2 · w

′′

− w · x1x2 − x2x1 · v · x1x2 − x2x1 · v
′ · x2x1 · w

′′

Up to sign the fourth summand is the element we started with, the third has
a word in X between the two factors x1x2 − x2x1 of same length as w′ but
with smaller minimum number of swappings to order it, and the remaining
four summands have a word in X of smaller length between the two factors of
x1x2 − x2x1. By induction we can thus eliminate elements of type (4) where
the word in X between the two factors of x1x2 − x2x1 are not ordered.

We are thus left with the following types of basis elements.

(1’) A word in G with precisely two factors dx and dx′ with x, x′ ∈ X (the
case x = x′ is allowed) and the remaining factors in X.

(2’) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and
the remaining factors in X.

(3’) A word in G with precisely one factor x1x2 − x2x1, precisely one factor
dx for x ∈ X, and the remaining factors in X.

(4’) w · x1x2 − x2x1 · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′ with w,w′ ∈ BX .

We next show that we can also eliminate the remaining elements of type
(4’) using method (II) from Remark 7.4.5.3. For this we first note that words
in G that can occur49 in the boundaries of elements of type (1’), (2’), (3’)
and (4’) never have a factor x1x2 − x2x1, but the boundary of elements of
type (4’) lies in the k-submodule spanned by words in G that have a factor
x1x2 − x2x1. To eliminate (4’) it thus suffices to show that if z is a k-linear
combination of elements of type (4’), with ∂(z) = 0, then already z = 0.

So let z be given by

z =
∑

w,w′∈BX

a1,a2≥0

bw,a1,a2,w′ · w · x1x2 − x2x1 · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′

with bw,a1,a2,w′ elements of k, only finitely many of which are nonzero, and
assume that ∂(z) = 0. If all coefficients bw,a1,a2,w′ are zero, then we already
49By this we mean that writing the respective element in terms of the k-basis given by

words in G the coefficient associated to that word is nonzero.
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have z = 0 and are done, so assume that this is not the case. Then we
can let w̃ ∈ B be such that there exist a1, a2 ≥ 0 and w′ ∈ B such that
bw̃,a1,a2,w′ 6= 0 while minimizing len(w̃) with this property. The boundary
∂(z) has the following form.

0 = ∂(z)

=
∑

w,w′∈BX

a1,a2≥0
len(w)≥len(w̃)

bw,a1,a2,w′ · w · (x1x2 − x2x1) · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′

−
∑

w,w′∈BX

a1,a2≥0
len(w)≥len(w̃)

bw,a1,a2,w′ · w · x1x2 − x2x1 · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

′

We now apply a k-linear morphism p to this equation. p is to be a morphism
from (A2)1 to the k-submodule of (A2)1 that is spanned by words in G of
degree 1 that begin with w̃ · x1x2 − x2x1. We define p on the basis given by
words in G of degree 1 by mapping words that begin with w̃ · x1x2 − x2x1
to themselves, and all others to 0. Then the requirement len(w) ≥ len(w̃)
implies that the summands

bw,a1,a2,w′ · w · (x1x2 − x2x1) · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′

of the equation above are all mapped to 0 by p, and the summands

bw,a1,a2,w′ · w · x1x2 − x2x1 · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

′

map to 0 unless w = w̃. The upshot is that we obtain the following equality50.

0 =
∑

w′∈BX
a1,a2≥0

bw̃,a1,a2,w′ · w̃ · x1x2 − x2x1 · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

′

This implies that we must also have

0 =
∑

w′∈BX
a1,a2≥0

bw̃,a1,a2,w′ · xa11 x
a2
2 · (x1x2 − x2x1) · w

′

which by Proposition 7.4.5.5 implies that bw̃,a1,a2,w′ = 0 for all a1, a2 ≥ 0
and w′ ∈ BX . This however contradicts the assumption on w̃, implying that
z must have been zero after all.

Thus we can eliminate elements of type (4’) and are left with basis elements
of the following types.

(1’) A word in G with precisely two factors dx and dx′ with x, x′ ∈ X (the
case x = x′ is allowed) and the remaining factors in X.

50We also multiplied with −1.
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(2’) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and
the remaining factors in X.

(3’) A word in G with precisely one factor x1x2 − x2x1, precisely one factor
dx for x ∈ X, and the remaining factors in X.

We now consider the basis elements of type (3’). We claim that we can
eliminate those elements of type (3’) that do not begin with the factor dx.
We can show this by induction on the number of factors before the factor dx.
There are two main cases, depending on what the preceding factor is. We
first discuss the case in which the preceding factor is an element of X, say
x′. Then we can write the element as either w · x1x2 − x2x1 ·w′ · x′ · dx ·w′′

or w · x′ · dx ·w′ · x1x2 − x2x1 ·w
′′ with w,w′, w′′ ∈ BX . We only discuss the

first form, the second is completely analogous. Then consider the following
boundary.

∂
(
w · x1x2 − x2x1 · w

′ · x′ · dx− dx · x′ · w′′
)

= w · x1x2 · w
′ · x′ · dx− dx · x′ · w′′

− w · x2x1 · w
′ · x′ · dx− dx · x′ · w′′

− w · x1x2 − x2x1 · w
′ · x′ · dx · w′′

+ w · x1x2 − x2x1 · w
′ · dx · x′ · w′′

Up to sign the third summand is the element we started with, the fourth is of
type (3’), but with a smaller number of factors preceding dx, and the other
two are of type (2’).

The other case to consider is when the factor preceding dx is x1x2 − x2x1,
so that the element is of the form w · x1x2 − x2x1 · dx · w′ for w,w′ ∈ BX .
We assume that x = x1, the case x = x2 is completely analogous by using C2

instead of C3. Then consider the following element in J .

w · C3 · w
′

= w · dx1 · x1 · x2 − x2 · x1 · w′ + w · x1 · x2 − x2 · x1 · dx1 · w′

− w · x1 · x2 · dx1 − dx1 · x2 · w′ + w · x2 · dx1 − dx1 · x2 · x1 · w′

+ w · x2 · x1 · dx1 − dx1 · x1 · w′ − w · x1 · dx1 − dx1 · x1 · x2 · w′

Up to sign the second summand is the element we started with, the first is of
the (3’), but with a smaller number of factors preceding dx1, and the other
four are of type (2’).

We have now eliminated all elements of type (3’) except those that start
with dx as their first factor. Proceeding completely analogously to how we
did with elements of type (2’) in Proposition 7.4.5.7 we can now also eliminate
those in which the word in X between dx and the factor x1x2 − x2x1 is not
ordered. We are thus left with the following basis elements.

(1”) A word in G with precisely two factors dx and dx′ with x, x′ ∈ X (the
case x = x′ is allowed) and the remaining factors in X.
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(2”) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and
the remaining factors in X.

(3”) dx · xa11 x
a2
2 · x1x2 − x2x1 · w for x ∈ X, a1, a2 ≥ 0, and w ∈ BX .

We now eliminate type (2”) using method (II) from Remark 7.4.5.3. So
assume that z′′ = z′′′ + z + z′ is a cycle where z′′′ is a k-linear combination
of basis elements of type (1”), z is a k-linear combination of basis elements
of type (2”) and z′ is a k-linear combination of basis elements of type (3”).
We have to show that then z = 0. We first note that as every element of type
(1”) is already a cycle we obtain that z + z′ is a cycle. We write

z =
∑

w,w′∈BX ,

x,x′∈X

bw,x,x′,w′ · w · x · dx′ − dx′ · x · w′

z′ =
∑

x∈X,
a1,a2≥0,
w∈BX

cx,a1,a2,w · dx · xa11 x
a2
2 · x1x2 − x2x1 · w

with bw,x,x′,w′ and cx,a1,a2,w elements of k, only finitely many of which are
nonzero. If all coefficients bw,x,x′,w′ are zero, then we have z = 0 and are
done. So assume that this is not the case. Then let w̃, w̃′ ∈ BX and x̃, x̃′ ∈ X
be such that b

w̃,x̃,x̃′,w̃′ 6= 0 and choose w̃ to be of maximum length with this
property. From ∂(z + z′) = 0 we then obtain the following equality.

∑

w,w′∈BX ,

x,x′∈X,
len(w)≤len(w̃)

bw,x,x′,w′ · w · x · dx′ · w′

−
∑

w,w′∈BX ,

x,x′∈X,
len(w)≤len(w̃)

bw,x,x′,w′ · w · dx′ · x · w′

=
∑

x∈X,
a1,a2≥0,
w∈BX

cx,a1,a2,w · dx · xa11 x
a2
2 · x1x2 · w

−
∑

x∈X,
a1,a2≥0,
w∈BX

cx,a1,a2,w · dx · xa11 x
a2
2 · x2x1 · w

We now apply a k-linear morphism p′ to this equation. p′ is to be a mor-
phism from (A2)1 to the k-submodule of (A2)1 that is spanned by the word
w̃ · x̃ · d x̃′ · w̃′ in G of degree 1. We define p on the basis given by words in G
of degree 1 by mapping the just mentioned word to itself and all others to 0.
Then note that all words are mapped to zero where the length of the word
preceding a factor of the form dx is unequal to len(w̃) + 1. The condition
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len(w) ≤ len(w̃) on the left hand side of the above equation then implies that
the second sum on the left hand side is mapped to zero. As all words in G
occurring on the right hand side begin with an element of the form dx they
are also all mapped to zero. We thus obtain that

b
w̃,x̃,x̃′,w̃′ · w̃ · x̃ · d x̃′ · w̃′ = 0

which contradicts the assumption that b
w̃,x̃,x̃′,w̃′ 6= 0. Thus we must have

z = 0 and can thus eliminate basis elements of type (2”).
We are thus left with the following basis elements.

(1”) A word in G with precisely two factors dx and dx′ with x, x′ ∈ X (the
case x = x′ is allowed) and the remaining factors in X.

(3”) dx · xa11 x
a2
2 · x1x2 − x2x1 · w for x ∈ X, a1, a2 ≥ 0, and w ∈ BX .

We can now eliminate type (3”) in a manner that is completely analogous
to the argument as we used to eliminate (2”) in Proposition 7.4.5.7. We are
thus left with only type (1”). For this we can first use boundaries of words
in G involving two factors dx and dx′ as well as a factor x1x2 − x2x1 with
the other factors in X, as well as boundaries of words in G involving one
factor dx′′ and one factor x · dx′ − dx′ · x with the remaining factors in X,
to reorder the factors so that we are left with only elements of the form
xa11 x

a2
2 · dx · dx′ with a1, a2 ≥ 0 and x, x′ ∈ X. As a second step we can

eliminate such elements with x = x′ by using elements of J that involve a
factor of dx · dx.

We are thus left with elements of the following two types.

(1*) xa11 x
a2
2 · dx1 · dx2 for a1, a2 ≥ 0.

(2*) xa11 x
a2
2 · dx2 · dx1 for a1, a2 ≥ 0.

We can eliminate type (2*) using the following boundary.

∂
(
xa11 x

a2
2 · dx1 · dx2 − dx2 · x1

)
= −xa11 x

a2
2 · dx1 · dx2 − x

a1
1 x

a2
2 · dx2 · dx1

We are thus left with only basis elements from (1*), which form a subset of
BordX,dX , so we are done.

Definition 7.4.5.9. Let X be a totally ordered set with |X| ≤ 2. Then we
define

ΘX : Ω′•
k[X]/k → Ω•

k[X]/k

to be the morphism in Alg(Mixed) constructed in Construction 7.4.5.1 where
we let Y0 be as defined in Proposition 7.4.5.6, Y1 as defined in Proposi-
tion 7.4.5.7, Y2 as defined in Proposition 7.4.5.8, and where for n > 2 we
just choose some subset Yn of (An)n that satisfies (a), (b) and (c) of Con-
struction 7.4.5.1 (we argued in Construction 7.4.5.1 that it is always possible
to find Yn satisfying this). ♦
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7.4.5.3. Proof that the construction is a cofibrant resolution

In this section we show that ΘX as defined in Definition 7.4.5.9 really is a
cofibrant replacement of Ω•

k[X]/k.

Proposition 7.4.5.10. This proposition concerns Construction 7.4.5.1. Let
X be a set and n ≥ 0 an integer. Then

Hm(Θn) : Hm(An)→ Hm

(
Ω•
k[X]/k

)

is an isomorphism for m < n and surjective for every m. ♥

Proof. Ω•
k[X]/k is generated as a graded k-algebra by the elements x and dx

for x ∈ X, so as every element of X is in the image of the morphism Θ0

in Alg(Mixed), it follows that Θ0 is surjective. As both A0 and Ω•
k[X]/k have

zero boundary operator, this implies that H∗(Θ0) and hence also H∗(Θn) is
surjective as well.

Now we show that Hm(Θn) is even an isomorphism if m < n. We prove
this by induction. The case n = 0 is clear, as both A0 and Ω•

k[X]/k are concen-
trated in nonnegative degrees, so in particular have homology concentrated
in nonnegative degrees.

So now assume that n > 0 and we already showed that Hm(Θn−1) is an
isomorphism for m < n − 1. By Remark 7.4.5.2 ιnn−1 : An−1 → An is an
isomorphism in degrees smaller than or equal to n − 1. This implies that in
the commutative diagram

Hm(An−1) Hm(An)

Hm

(
Ω•
k[X]/k

)

Hm(ιnn−1)

Hm(Θn−1) Hm(Θn)

the top morphism is an isomorphism for m ≤ n−2, and as the left morphism
is an isomorphism in that range as well, it already follows that Hm(Θn) is an
isomorphism for m ≤ n − 2. For m = n − 1 we still obtain that Hn−1(ι

n
n−1)

must be surjective51. In order to show that Ker(Hn−1(Θn)) ∼= 0 it thus suffices
to show that Hn−1

(
ιnn−1

)
maps Ker(Hn−1(Θn−1)) to zero. But is precisely

what condition (c) ensures.
51Given an element of Hn−1(An) we can represent it by a cycle of degree n − 1 As ιnn−1

is an isomorphism in degree n − 1, there is an element z in An−1 that is mapped to
that cycle by ιnn−1. It thus remains to show that z is also a cycle and hence represents
a homology class. But

ιnn−1(∂z) = ∂
(
ιnn−1(z)

)
= 0

which implies ∂z = 0, as ιnn−1 is also an isomorphism in degree l.
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Proposition 7.4.5.11. Let X be a totally ordered set with |X| ≤ 2. This
proposition concerns ΘX as defined in Definition 7.4.5.9.

The object
Ω′•
k[X]/k

of Alg(Mixed) is cofibrant, and the morphism

ΘX : Ω′•
k[X]/k → Ω•

k[X]/k

is a quasiisomorphism. ♥

Proof. FreeAlg(Mixed) is a left Quillen functor by Definition 4.2.2.2, Proposi-
tion 4.2.2.9, and Theorem 4.2.2.1. As k ·X is a cofibrant chain complex, this
implies that A0 is cofibrant in Alg(Mixed). Furthermore, for every n ≥ 0, the
morphism jn is a cofibration in Ch(k) (it is a coproduct of generating cofibra-
tions considered in [Hov99, 2.3.3 and 2.3.11]), so FreeAlg(Mixed)(jn) and thus
also ιn+1

n are cofibrations in Alg(Mixed). As cofibrations are closed under
(transfinite) compositions, this implies that Ω′•

k[X]/k is cofibrant.
We now turn to showing that ΘX is a quasiisomorphism. Remark 7.4.5.2

implies that ιn′

n : An → An′ is an isomorphism in degrees smaller to or equal
to n for all 0 ≤ n < n′. Combining this with the fact that the forgetful functor
from Alg(Mixed) to Ch(k) preserves filtered colimits by Proposition 4.2.2.12
we obtain that ιn : An → Ω′•

k[X]/k is an isomorphism in degrees smaller to or
equal to n as well. In particular, in the diagram

Hm(An) Hm

(
Ω′•
k[X]/k

)

Hm

(
Ω•
k[t]/k

)

Hm(ιn)

Hm(Θn) Hm(ΘX)

the top morphism is an isomorphisms for m < n. As the left morphism is as
isomorphism in that range as well by Proposition 7.4.5.10 we can conclude
that Hm(ΘX) is an isomorphism for m < n too. It follows that Hm(ΘX) is
an isomorphism for all integers m, so Θ is a quasiisomorphism.

7.4.6. Naturality of ϵ

We explained in Warning 7.2.2.6 that the morphisms

ϵX : Ω•
k[X]/k → C(k[X])

of differential graded k-algebras that were defined in Construction 7.2.2.1
and Proposition 7.2.2.2 only assemble to a natural transformation of func-
tors from Set to Alg(Ch(k)), but not to a natural transformation of functors
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from CAlg(LModk(Ab)) to Alg(Ch(k)). In this section we show that a weaker
statement is at least true in special cases: If X is a set with |X| ≤ 2 and F a
morphism of commutative algebras F : k[t] → k[X], then there is a filler for
the square

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
C(k[t])

)

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C(k[X])

)

Alg(γ)(ϵ{t})

Alg(γ)(Ω•
F/k) Alg(γ)(C(F ))

Alg(γ)(ϵX)

in Alg(D(k)).

Proposition 7.4.6.1. Let X be a totally ordered set satisfying |X| ≤ 2,
and f an element of k[X]. Denote the morphism of commutative k-algebras
k[t]→ k[X] that maps t to f by F .

Then there is a filler for the square

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
C(k[t])

)

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C(k[X])

)

Alg(γ)(ϵ{t})

Alg(γ)(Ω•
F/k) Alg(γ)(C(F ))

Alg(γ)(ϵX)

in Alg(D(k)), where ϵ is as defined in Construction 7.2.2.1 and Proposi-
tion 7.2.2.2. ♥

Proof. Let the morphism

Θ{t} : Ω
′•
k[t]/k → Ω•

k[t]/k

in Alg(Mixed) be as in Definition 7.4.5.9. By Proposition 7.4.5.11 Ω′•
k[t]/k is

a cofibrant object of Alg(Mixed), and thus has cofibrant underlying chain
complex by Proposition 4.2.2.12. Furthermore, Θ{t} is a quasiisomorphism,
and thus induces an equivalence

Alg(γ)
(
Θ{t}

)
: Alg(γ)

(
Ω′•
k[X]/k

)
→ Alg(γ)

(
Ω•
k[X]/k

)
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in Alg(D(k)). It thus suffices to show that there is a filler for the square

Alg(γ)
(
Ω′•
k[t]/k

)
Alg(γ)

(
C(k[t])

)

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C(k[X])

)

Alg(γ)(ϵ{t}◦Θ{t})

Alg(γ)(Ω•
F/k◦Θ{t}) Alg(γ)(C(F ))

Alg(γ)(ϵX)

in Alg(D(k)).
By Proposition 4.2.2.12 the underlying differential graded algebra of cofi-

brant objects in Alg(Mixed) is cofibrant, so Ω′•
k[t]/k is cofibrant as an object in

Alg(Ch(k)). Like every object of Alg(Ch(k)) also C(k[X]) is fibrant. Combin-
ing this with Proposition A.1.0.1 and [Hov99, 1.2.10 (ii)] it suffices to show
that there exists a homotopy in the model-category-theoretic sense between
the two compositions in the following diagram in Alg(Ch(k)).

Ω′•
k[t]/k C(k[t])

Ω•
k[X]/k C(k[X])

ϵ{t}◦Θ{t}

Ω•
F/k◦Θ{t} C(F )

ϵX

By Propositions 4.1.4.2 and 4.2.2.17 this means that we have to define a
morphism of Z-graded k-modules

h : Ω′•
k[t]/k → C(k[X])

of degree 1 that satisfies

∂(h(z)) + h(∂(z)) =
(
C(F ) ◦ ϵ{t} ◦Θ{t}

)
(z)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t}

)
(z)

for being a chain homotopy as well as the Leibniz rule for chain homotopies

h(z · z′) = h(z) ·
(
ϵX ◦ Ω

•
F/k ◦Θ{t}

)
(z′)

+ (−1)degCh(z)
(
C(F ) ◦ ϵ{t} ◦Θ{t}

)
(z) · h(z′)

for all elements z and z′ of Ω′•
k[t]/k.

In the following we will use notation from Construction 7.4.5.1. By defi-
nition, and using that the forgetful functor from Alg(Mixed) to Alg(Ch(k))
preserves filtered colimits by Proposition 4.2.2.12, we can identify Ω′•

k[t]/k as
the colimit of the diagram

A0 A1 A2 . . .
ι10 ι21 ι32
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in Alg(Ch(k)). The forgetful functor to Z-graded k-modules also preserves fil-
tered colimits by Proposition 4.2.2.12, and together this implies that we can
define h as above by defining a compatible system of homotopies hn of mor-
phisms of differential graded algebras from the restriction C(F )◦ϵ{t}◦Θ{t}◦ιn
to ϵX ◦ Ω•

F/k ◦Θ{t} ◦ ιn. We will do this by induction.
We begin with some general remarks on how the induction step will work.

So assume that n ≥ 0 and we already have constructed a homotopy hn of mor-
phisms of differential graded algebras An → C(k[X]) from C(F )◦ϵ{t}◦Θ{t}◦ιn
to ϵX ◦ Ω•

F/k ◦Θ{t} ◦ ιn. We wish to extend hn to hn+1. For easier notation
we will use the following shorthands.

φ′ := C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ιn

φ := C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ιn+1

ψ′ := ϵX ◦ Ω
•
F/k ◦Θ{t} ◦ ιn

ψ := ϵX ◦ Ω
•
F/k ◦Θ{t} ◦ ιn+1

By Remark 7.4.5.2 the underlying graded k-algebra of An+1 is free on the
elements t and d t, and y and d y for y ∈ Ym with m ≤ n, while An is free
on the same generators except the elements of Yn and dYn. Let us denote by
Gn+1 the generators for An+1 that were just mentioned, and by Gn those of
An. For compatibility with hn we are forced to define hn+1 as follows on Gn.

hn+1(g) := hn(g) for g ∈ Gn

On elements g in Gn+1 \Gn we need to define hn+1 in such a way that hn+1

is a homotopy from φ to ψ, so we must have the following.

∂(hn+1(g)) = φ(g)− ψ(g)− hn+1(∂(g)) = −hn(∂(g)) (∗)

In the simplification we used that Θ{t} ◦ ιn+1 is zero on g (and hence so are φ
and ψ), and that ∂(g) is an element of An. We claim that finding solutions to
these lifting problems is the only obstacle to extending hn to hn+1 as required.
So assume that we can find values for hn+1(g) for every g ∈ Gn+1 \Gn that
satisfy (∗).

As we have already defined values of hn+1 on Gn+1, Proposition 4.2.2.18
implies that there is a unique way to extend this to a morphism hn+1 of
Z-graded k-modules from An+1 to C(k[X]) of that increases degree by 1 and
that satisfies the Leibniz rule for homotopies of differential graded algebras
from φ to ψ. As hn+1 agrees with hn on Gn and hn also satisfies the analogous
Leibniz rule as a homotopy of differential graded algebras from φ′ to ψ′, and
φ and ψ restrict to φ′ and ψ′, the uniqueness part of Proposition 4.2.2.18
then implies that hn+1 extends hn. It remains to show that hn+1 satisfies
∂ ◦hn+1+hn+1 ◦∂ = φ−ψ. Again by Proposition 4.2.2.18 it suffices to check
this on elements of Gn+1. On elements of Gn+1 \Gn this holds by definition,
and on elements of Gn this holds because it does for hn.
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We have now shown that the only obstruction to extending hn to hn+1

with all the necessary properties is finding solutions for hn+1(g) for elements
g of Gn+1 \Gn to the equation (∗). We claim that such a solution can always
be found if n ≥ 2. So assume that n ≥ 2 and we have already defined hn. Let
g be an element of Gn+1 \Gn. Then we first claim that the right hand side of
equation (∗) is a cycle. For this we carry out the following calculation, using
that hn is a chain homotopy from φ′ to ψ′.

∂(−hn(∂(g)))

= hn(∂(∂(g)))− φ
′(∂(g)) + ψ′(∂(g))

= −φ′(∂(g)) + ψ′(∂(g))

= 0

The last step needs a comment. The element g is either of the form y or d y
for y ∈ Yn. Thus ∂(g) is either y or − d y for a y ∈ Yn, and Θ{t}, and thus
also φ′ and ψ′, maps every element of Yn (and hence also dYn) to 0.

As the right hand sides of equation (∗) is a cycle, it represents a homology
class, and finding a solution to the equation is equivalent to the homology
class being zero. As the elements of Yn are of degree n, the element g, and
hence the right hand side of (∗), must be of degree n+1 or n+2.52 Thus the
obstructions to extending hn to hn+1 are homology classes in degree n + 1
and n+2. As ϵX is a quasiisomorphism by Proposition 7.2.2.2 (6) and Ω•

k[X]/k

is concentrated in degrees less than or equal to 2 (this is where we use the
assumption |X| ≤ 2), the homology of C(k[X]) is concentrated in degrees less
than or equal to 2. Thus the homology classes obstructing extension of hn to
hn+1 are all trivially zero as we assumed n ≥ 2, so that it is always possible
to extend hn to hn+1.

By the above argument it thus suffices to construct h2. Concretely, we first
need to define h0(t) and h0(d t) satisfying the following.53

∂(h0(t)) =
(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t) (7.13)

∂(h0(d t)) =
(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(d t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(d t)

For the set {t} the set Y0 is empty by Proposition 7.4.5.6, so ι10 : A0 → A1 is
an isomorphism, and hence h0 extends to h1 for trivial reasons. Finally, to
extend h1 to h2 we need to define h2(t · d t− d t · t) and h2(d t · d t− d t · t)
(see Proposition 7.4.5.7) satisfying the following.

∂(h2(t · d t− d t · t)) = −h0(∂(t · d t− d t · t)) (7.14)
∂(h2(d t · d t− d t · t)) = −h0(∂(d t · d t− d t · t))

52Recall that if y is an element of Yn, then y is of degree n + 1 and d y is then of degree
n+ 2.

53The argument that it suffices to define h0 on t and d t satisfying the chain homotopy
identity is completely analogous to the argument we gave for extending hn to hn+1,
also using Proposition 4.2.2.18. This time the analogue of (∗) has slightly different form
as Θ{t} does not vanish on t and d t, but t and d t are cycles in A0.
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However, the obstruction for the existence of a solution for h2(d t · d t− d t · t)
is a homology class in degree 3. By the same argument as the case of exten-
sions from An to An+1 for n ≥ 2 we thus already know abstractly that a
solution can be found. To extend h1 to h2 it thus suffices to find a solution
for h2(t · d t− d t · t).

We begin by evaluating the right hand sides of (7.13), where we use the
definitions in particular from Construction 7.4.5.1 and Construction 7.2.2.1.
If |X| = 2 we denote the elements of X by x1 < x2, if |X| = 1 we denote the
unique element by x1.

(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t)

=
(
C(F ) ◦ ϵ{t}

)
(t)−

(
ϵX ◦ Ω

•
F/k

)
(t)

= C(F )(t)− ϵX(f)

= f − f

= 0

= ∂(0)

(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(d t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(d t)

=
(
C(F ) ◦ ϵ{t}

)
(d t)−

(
ϵX ◦ Ω

•
F/k

)
(d t)

= C(F )
(
1⊗ t

)
− ϵX(d f)

= 1⊗ f − ϵX(d f)
= d(f)− ϵX(d f)
= d(ϵX(f))− ϵX(d f)

We can now use that ϵ(•)X as defined in Construction 7.3.1.1 is a strongly
homotopy linear morphism, see Proposition 7.3.11.2.

= −∂
(
ϵ
(1)
X (f)

)

We can thus define h0(t) = 0 and h0(d t) = −ϵ(1)X (f).
Now we evaluate the right hand side of (7.14).

− h0(∂(t · d t− d t · t))
= −h0(t · d t− d t · t)

= −h0(t) ·
(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(d t)

−
(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(t) · h0(d t)

+ h0(d t) ·
(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t)

−
(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(d t) · h0(t)
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= −
(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(t) · h0(d t)

+ h0(d t) ·
(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t)

= −
(

C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0 − ϵX ◦ Ω
•
F/k ◦Θ{t} ◦ ι0

)
(t) · h0(d t)

= −∂(h0(t)) · h0(d t)
= 0

= ∂(0)

Thus we can define h2(t · d t− d t · t) = 0.

As a significantly easier variant we can also show a analogous result to
Proposition 7.4.6.1 where we consider morphisms into k.
Proposition 7.4.6.2. Let X be a set and F : k[X] → k a morphism of
commutative k-algebras.

Then there is a filler for the square

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C(k[X])

)

Alg(γ)
(
Ω•
k/k

)
Alg(γ)

(
C(k)

)

Alg(γ)(ϵX)

Alg(γ)(Ω•
F/k) Alg(γ)(C(F ))

Alg(γ)(ϵ∅)

in Alg(D(k)), where ϵ is as defined in Construction 7.2.2.1 and Proposi-
tion 7.2.2.2. ♥

Proof. It suffices to show that the diagram

Ω•
k[X]/k C(k[X])

Ω•
k/k C(k)

ϵX

Ω•
F/k

C(F )

ϵ∅

commutes strictly. For this we note that as k ∼= 0, the lower right chain
complex is concentrated in degree 0, so it suffices to check that the two
compositions agree on elements of degree 0. But on degree 0 we can identify
the diagram with

k[X] k[X]

k k

idk[X]

F F

idk
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which commutes.

7.4.7. Naturality of Φ

In Definition 7.4.4.2 we defined a quasiisomorphisms

ΦX : Alg(evm)
(

C̃k(X)
)
→ Ω•

k[X]/k

in Alg(Ch(k)), for every set X. While the morphisms ΦX for different sets
X do not assemble to a natural transformation from the category of com-
mutative k-algebras to Alg(Ch(k)), we show in this section that a weaker
naturality property holds with respect to some specific morphisms of commu-
tative k-algebras.

Proposition 7.4.7.1. Let X and Y be totally ordered sets satisfying one of
the following.

(1) |X| = 1 and |Y | ≤ 2.

(2) |Y | = 0.

Let F be a morphism of commutative k-algebras k[X]→ k[Y ].
Then there is a filler for the square

Alg(γ)
(

Alg(evm)
(

C̃k(X)
))

Alg(γ)
(
Ω•
k[X]/k

)

Alg(γ)
(

Alg(evm)
(

C̃k(Y )
))

Alg(γ)
(
Ω•
k[Y ]/k

)

Alg(γ)(ΦX)

Alg(γ)(Alg(evm)(C̃k(F ))) Alg(γ)(Ω•
F/k)

Alg(γ)(ΦY )

in Alg(D(k)), where C̃ is as in Construction 7.4.2.5 and ΦX and ΦY as in
Definition 7.4.4.2. ♥

Proof. In the following we will omit the forgetful functor Alg(evm) from the
notation to make diagrams more compact.

By Definition 7.4.4.2 ΦX is the composition of Φ′
X with the quasiisomor-

phism mapping z to νdegCh(z) · z (where ν is as in Proposition 7.4.4.1), and
analogously for ΦY . As the diagram

Ω•
k[X]/k Ω•

k[X]/k

Ω•
k[Y ]/k Ω•

k[Y ]/k

νdegCh(−)·−

≃

Ω•
F/k Ω•

F/k

νdegCh(−)·−

≃
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commutes there is a filler for the right square in the following (non-commut-
ing) diagram in Alg(D(k)).

Alg(γ)
(

C̃k(X)
)

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
Ω•
k[X]/k

)

Alg(γ)
(

C̃k(Y )
)

Alg(γ)
(
Ω•
k[Y ]/k

)
Alg(γ)

(
Ω•
k[Y ]/k

)

Alg(γ)(Φ′
X)

Alg(γ)(C̃k(F )) Alg(γ)(Ω•
F/k)

Alg(γ)(νdegCh(−)·−)
≃

Alg(γ)(Ω•
F/k)

Alg(γ)(Φ′
Y )

Alg(γ)(νdegCh(−)·−)
≃

It thus suffices to find a filler for the left square.

We now unpack the definition of Φ′
X , with Φ′

Y of course being completely
analogous. By Proposition 7.4.3.2 Alg(γ)(Φ′

X) is homotopic to the composi-
tion

Alg(γ)
(

C̃k(X)
)
≃ HH(k[X]) ≃ Alg(γ)

(
Ω•
k[X]/k

)

where the first equivalence is obtained by applying evMixed
a

to the equiva-
lence at the bottom of diagram (7.9) in Construction 7.4.2.5 combined with
compatibility of evMixed

a
with Alg(γMixed) from Construction 4.4.1.1, and the

second equivalence is the one from Corollary 7.2.2.3.

By definition that equivalence from Corollary 7.2.2.3 is given by the com-
position

HH(k[X]) Alg(γ)(C(k[X])) Alg(γ)
(
C(k[X])

)

Alg(γ)
(
Ω•
k[X]/k

)

≃ ≃

≃

Alg(γ)(ϵX)

where the first equivalence is the one from Proposition 6.3.4.3, the second one
is induced by the quotient morphism from Propositions 6.3.1.10 and 6.3.2.11,
and the last equivalence is induced from ϵX as constructed in Construc-
tion 7.2.2.1.

In the following diagram in Alg(D(k)), we let the two columns be given
by the composition the equivalences Φ′

X and Φ′
Y are defined as, as we just
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reviewed.

Alg(γ)
(

C̃k(X)
)

Alg(γ)
(

C̃k(Y )
)

HH(k[X]) HH(k[Y ])

Alg(γ)(C(k[X])) Alg(γ)(C(k[Y ]))

Alg(γ)
(
C(k[X])

)
Alg(γ)

(
C(k[Y ])

)

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
Ω•
k[Y ]/k

)

≃

Alg(γ)(C̃k(F ))

≃

HH(F )

≃ ≃

Alg(γ)(C(F ))

≃ ≃

Alg(γ)(C(F ))

Alg(γ)(Ω•
F/k)

≃ Alg(γ)(ϵX) Alg(γ)(ϵY ) ≃

There is a filler for the first square from the top by definition of C̃k(F ),
see Construction 7.4.2.5. The second square has a filler by naturality of the
equivalence between HH and the standard Hochschild complex C in Propo-
sition 6.3.4.3. The third square has a filler by naturality of the quotient map
from the standard Hochschild complex to the normalized standard Hochschild
complex, see Propositions 6.3.1.10 and 6.3.2.11. Finally, the bottom square
has a filler by Proposition 7.4.6.1 (and Proposition 7.2.2.2 (3)) if we are in
case (1) and by Proposition 7.4.6.2 if we are in case (2).

7.4.8. Compatibility of Φ with d in degree 0

In Section 7.4.4 we showed that Φ{t} is compatible with d (see Proposi-
tion 7.4.4.3). In this section we use the naturality statement from the previ-
ous Section 7.4.7 to deduce compatibility of ΦX with d on elements of degree
0 as long as |X| ≤ 2. Note that the following proposition still has content for
|X| = 1. In this case it shows that the ν obtained in Proposition 7.4.4.1 is
independent of the choices made along the way.
Proposition 7.4.8.1. Let X be a totally ordered set satisfying |X| ≤ 2. Then
the quasiisomorphism

ΦX : Alg(evm)
(

C̃k(X)
)
→ Ω•

k[X]/k

in Alg(Ch(k)) from Definition 7.4.4.2 satisfies

ΦX(d z) = d(ΦX(z)) (7.15)
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for every element z of degree 0 of C̃k(X). ♥

Proof. Let z and z′ be elements of C̃k(X) of degree 0, and y an element of
degree 1 such that ∂(y) = z − z′. Assume that

ΦX(d z) = d(ΦX(z))

holds. Then we claim that

ΦX(d z′) = d(ΦX(z′))

holds as well. Indeed, this follows from the following calculation.

ΦX(d z′) = ΦX(d(z − ∂(y))) = ΦX(d z − d(∂(y)))
= ΦX(d z) + ΦX(∂(d(y))) = d(ΦX(z)) + ∂(ΦX(d(y)))
= d(ΦX(z)) = d(ΦX(z′ + ∂(y))) = d(ΦX(z′) + ΦX(∂(y)))

= d(ΦX(z′) + ∂(ΦX(y))) = d(ΦX(z′))

As C̃k(X) is concentrated in nonnegative degrees by Construction 7.4.2.5
and Proposition 7.4.2.4, every element of degree 0 is a cycle. It thus suffices to
show that for each homology class in H0(C̃k(X)) there is a cycle representing
it that satisfies (7.15).

As both sides of (7.15) are k-linear in z it even suffices to verify (7.15) on
one cycle for each in a set of homology classes that generate H0(C̃k(X)) as a
k-module.

As ΦX is a quasiisomorphism it is surjective, so that we can lift every
element x of X, considered as an element of Ω•

k[X]/k of degree 0, to a cycle
x̃ in C̃k(X). Products54 of elements of X form a k-basis for Ω•

k[X]/k and
hence H0(Ω

•
k[X]/k). As ΦX is a multiplicative quasiisomorphism this implies

that products of elements of the form x̃ for x ∈ X are cycles representing
homology classes that together form a generating set for H0(C̃k(X)) as a
k-module. It thus suffices to show that (7.15) is satisfied for products (with
arbitrary many factors) of elements of the form x̃ for x ∈ X.

Now suppose that z and z′ are elements of degree 0 in C̃k(X) that both
satisfy (7.15). Then we claim that the product z · z′ satisfies (7.15) as well.
This can be shown with the following simple calculation that uses that ΦX
is multiplicative and that d satisfies the Leibniz rule on both C̃k(X) and
Ω•
k[X]/k.

ΦX(d(z · z′)) = ΦX(d(z) · z′ + z · d(z′))
= ΦX(d z) · ΦX(z′) + ΦX(z) · ΦX(d z′)
= d(ΦX(z)) · ΦX(z′) + ΦX(z) · d(ΦX(z′))

54With arbitrary (finite) number of factors, including zero factors.
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= d(ΦX(z) · ΦX(z′))

= d(ΦX(z · z′))

Note that the element 1 satisfies (7.15) because d(1) = 0 by the Leibniz rule
in both C̃k(X) and Ω•

k[X]/k, and ΦX(1) = 1. We are thus reduced to show
that (7.15) holds for the specific elements x̃ for x ∈ X.

So let x be an element of X and F : k[t] → k[X] the morphism of com-
mutative k-algebras that maps t to x. By Proposition 7.4.7.155 there is a
commutative diagram

Alg(γ)
(

Alg(evm)
(

C̃k({t})
))

Alg(γ)
(
Ω•
k[t]/k

)

Alg(γ)
(

Alg(evm)
(

C̃k(X)
))

Alg(γ)
(
Ω•
k[X]/k

)

Alg(γ)(Φ{t})

Alg(γ)(Alg(evm)(C̃(F ))) Alg(γ)(Ω•
F/k)

Alg(γ)(ΦX)

in Alg(D(k)). As the underlying differential graded algebra of C̃k({t}) is
cofibrant by Proposition 4.2.2.12 and every object is fibrant in Alg(Ch(k)),
we obtain from [Hov99, 1.2.10 (ii)] and Proposition A.1.0.1 that the following
diagram commutes up to chain homotopy of morphisms of differential graded
algebras in the sense of Propositions 4.1.4.2 and 4.2.2.17.

Alg(evm)
(

C̃k({t})
)

Ω•
k[t]/k

Alg(evm)
(

C̃k(X)
)

Ω•
k[X]/k

Φ{t}

Alg(evm)(C̃(F )) Ω•
F/k

ΦX

So let h be such a homotopy of morphisms of differential graded algebras
from Ω•

F/k ◦ Φ{t} to ΦX ◦ Alg(evm)(C̃(F )). Lift the element t in degree 0 of
Ω•
k[t]/k to a cycle t̃ in C̃k({t}). Then we have the following.

ΦX

(
x̃− C̃(F )

(
t̃
))

= ΦX(x̃)− ΦX

(
C̃(F )

(
t̃
))

= x+ ∂
(
h
(
t̃
))

+ h
(
∂
(
t̃
))
− Ω•

F/k

(
Φ{t}

(
t̃
))

= x+ 0 + h(0)− Ω•
F/k(t)

= x− x

= 0

55This is the part of this proof that uses the assumption that |X| ≤ 2.
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Thus x̃ − C̃(F )(t̃) is a cycle that represents a homology class that maps
to 0 under H0(ΦX). As ΦX is a quasiisomorphism we must thus have that
x̃ − C̃(F )(t̃) is a boundary. By the argument we gave at the start of this
proof it thus suffices to show that (7.15) holds for the element C̃(F )(t̃). For
this we use the following calculation, using that Φ{t} is compatible with d by
Proposition 7.4.4.3, and that ΦX(C̃(F )(t̃)) = ΦX(x̃) by the above calculation.

ΦX

(
d
(

C̃(F )
(
t̃
)))

= ΦX

(
C̃(F )

(
d t̃
))

= Ω•
F/k

(
Φ{t}

(
d t̃
))
− ∂

(
h
(
d t̃
))
− h
(
∂
(
d t̃
))

= Ω•
F/k

(
d
(
Φ{t}

(
t̃
)))
− 0 + h

(
d
(
∂
(
t̃
)))

= Ω•
F/k(d t) + h(d(0))

= dx

= d
(
ΦX

(
C̃(F )

(
t̃
)))

7.4.9. Proof of Conjecture B for sets of cardinality at
most 2

The goal of Section 7.4 is to show that Conjecture B holds for |X| ≤ 2.
This is what we do in this subsection, by combining all the ingredients from
the previous subsections.

Construction 7.4.9.1. Let X be a totally ordered set with |X| ≤ 2. We
will construct a morphism

ΞX : Ω′•
k[X]/k → C̃(X)

in Alg(Mixed), where Ω′•
k[X]/k is as defined in Definition 7.4.5.9 and Construc-

tion 7.4.5.1, and C̃(X) is as defined in Construction 7.4.2.5.
In this construction we will in particular use notation from Construc-

tion 7.4.5.1, and also make use of the multiplicative quasiisomorphism ΦX
from Definition 7.4.4.2 and the strict mixed quasiisomorphism ΨX from Def-
inition 7.4.3.4.

By the universal property of the colimit it suffices to construct morphisms

Ξn : An → C̃(X)

in Alg(Mixed) for every n ≥ 0 such that Ξn+1 ◦ ι
n+1
n = Ξn. By the universal

property of pushouts and FreeAlg(Mixed) this amounts to the following. To
define Ξ0 we need to prescribe a cycle as the value Ξ0(x) for every element
x of X. If n ≥ 0, then to lift Ξn to Ξn+1 amounts to prescribing a value for
Ξn+1(y) for every element y of Yn, under the constraint that

∂
(
Ξn+1

(
y
))

= Ξn(y) (∗)
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must hold. We will require one additional property that Ξn+1(y) should sat-
isfy, namely that

ΨX
(
Ξn+1

(
y
))

= 0 (∗∗)
where ΨX is as in Definition 7.4.3.4.

Let n ≥ 0, let y be an element of Yn, and assume that Ξn has already
been defined. Note that Ξn(y) is a cycle, as y is a cycle by (a) in Construc-
tion 7.4.5.1. We claim that if the homology class represented by Ξn(y) is zero,
then a value for Ξn+1(y) can be found that satisfies both (∗) and (∗∗). So let
z be an element of C̃(X) so that ∂(z) = Ξn(y). Then ΨX(z) is a cycle (as
every element of Ω•

k[X]/k is), so as ΨX is a quasiisomorphism and Ω•
k[X]/k has

zero boundary operator we can lift ΨX(z) to a cycle z′ in C̃(X) such that
ΨX(z′) = ΨX(z). Now set Ξn+1(y) := z − z′. Then we immediately obtain

ΨX
(
Ξn+1

(
y
))

= Ψx(z)−ΨX(z′) = 0

and, using that z′ is a cycle,

∂
(
Ξn+1

(
y
))

= ∂(z − z′) = ∂(z) = Ξn(y)

so that this definition of Ξn+1(y) satisfies both (∗) and (∗∗).
We now define Ξ0 and then Ξn for n > 0 by induction, in such a way that

ΨX ◦ Ξn maps y to 0 for all elements y ∈ Yn′ for n′ < n. By the argument
above it suffices for the induction step in which we extend Ξn to Ξn+1 for
n ≥ 0 to show that the homology class represented by Ξn(y) is zero for every
element y of Yn. As ΦX and ΨX are quasiisomorphisms it in turn suffices for
this to show that each of those elements is mapped to zero by ΦX ◦ Ξ0 or
ΨX ◦ Ξ0.

We thus start with Ξ0. Let x be an element of X. We need to define a
cycle Ξ0(x). For this we use that as ΦX is a quasiisomorphism and Ω•

k[X]/k

has zero boundary operator, we can lift the element x of Ω0
k[X]/k to a cycle

Ξ0(x) in C̃(X). This defines Ξ0 in such a way that

(ΦX ◦ Ξ0)(x) = x (7.16)

holds for every element x of X.
To extend Ξ0 to Ξ1 and then Ξ2 we use that ΦX ◦ Ξ0 maps the elements

of Y0 and Y1 (note that Y1 lies already in A0) to zero. This is the case
as all elements of Y0 and Y1 are given by commutators, so as ΦX ◦ Ξ0 is
multiplicative those elements are mapped to zero as Ω•

k[X]/k is commutative.
We next extend Ξ2 to Ξ3. In the following we will denote the element(s)

of X by x1 < · · · < x|X|. Then by Proposition 7.4.5.8 the elements of Y2 are
given by the full list below for |X| = 2, consist of the first element of the list
for |X| = 1, and Y1 = ∅ for |X| = 0.

(1) dx1 · dx1
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(2) dx2 · dx2
(3) dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2
(4) dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2

− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

(5) dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

Elements (4) and (5) can be handled using ΦX in the same way as we did
with the elements of Y0 and Y1, as they are sums of commutators. Elements
(1) and (2) can also be handled analogously with ΦX , this time using that
odd degree elements square to zero in Ω•

k[X]/k. It remains to consider element
(3). For this element we can use that ΨX ◦Ξ2 maps it to 0, which is the case
as by induction hypothesis ΨX ◦ Ξ2 maps every element of the form y for y
an element of Y0 or Y1 to zero, and ΨX ◦ Ξ2 is also compatible with d.

Now let n ≥ 3 and assume we have already constructed Ξn. To extend Ξn to
Ξn+1 it suffices to show that ΦX◦Ξn maps the elements of Yn to zero. However
the elements of Yn are of degree n, and Ωnk[X]/k

∼= 0 as |X| ≤ 2 < 3 ≤ n, so
this is automatically satisfied. ♦

Proposition 7.4.9.2. Let X be a totally ordered set with |X| ≤ 2. Then the
morphism

ΞX : Ω′•
k[X]/k → C̃(X)

in Alg(Mixed) that was constructed in Construction 7.4.9.1 is a quasiisomor-
phism. ♥

Proof. Let us denote the element(s) of X by x1 < · · · < x|X|. The morphism

ΘX : Ω′•
k[X]/k → Ω•

k[X]/k

as defined in Definition 7.4.5.9 is a quasiisomorphism by Proposition 7.4.5.11.
By construction ΘX maps the cycle xa11 · · ·x

a|X|

|X| · dx
b1
1 · · · dx

b|X|

|X| of Ω′•
k[X]/k

with a1, . . . , a|X| ≥ 0 and b1, . . . , b|X| ∈ {0, 1}, to the element of Ω•
k[X]/k with

the same name. As the homology classes of those cycles in Ω•
k[X]/k form a

k-basis for the homology, the same must be true for Ω′•
k[X]/k, i. e. the set

{ [
xa11 · · ·x

a|X|

|X| · dx
b1
1 · · · dx

b|X|

|X|

] ∣∣∣ a1, . . . , a|X| ≥ 0, b1, . . . , b|X| ∈ {0, 1}
}

(∗)

forms a k-basis of the Z-graded k-module H∗(Ω
′•
k[X]/k).

To show that H∗(ΞX) is an isomorphism it suffices to show that the
morphism H∗(ΦX ◦ ΞX) is an isomorphism, where ΦX is the quasiisomor-
phism defined in Definition 7.4.4.2. For this it now suffices to show that
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the basis (∗) of H∗(Ω
′•
k[X]/k) is mapped to a basis of H∗(Ω

•
k[X]/k) under

H∗(ΦX ◦ ΞX), and for this it is in turn enough to show that ΦX ◦ ΞX maps
the element xa11 · · ·x

a|X|

|X| · dx
b1
1 · · · dx

b|X|

|X| of Ω′•
k[X]/k for a1, . . . , a|X| ≥ 0 and

b1, . . . , b|X| ∈ {0, 1} to the element of Ω•
k[X]/k with the same name. As ΦX◦ΞX

is multiplicative we only need to show that ΦX ◦ ΞX maps elements x to x
and dx to dx, for each element x in X. That ΦX ◦ ΞX maps elements x of
X to x holds by construction of ΞX , see (7.16). We can also deduce from this
that dx is mapped to dx, as ΞX is compatible with d, and ΦX is compatible
with d on elements of degree 0 by Proposition 7.4.8.1.

We can now sum up Section 7.4 as follows.

Corollary 7.4.9.3. Let X be a totally ordered set with |X| ≤ 2. Then there
is a composite equivalence

HHMixed(k[X]) Alg(γMixed)
(

C̃(X)
)

Alg(γMixed)
(
Ω′•
k[X]/k

)

Alg(γMixed)
(
Ω•
k[X]/k

)

≃

≃

≃

Alg(γMixed)(ΞX)

Alg(γMixed)(ΘX) ≃

in Alg(Mixed), where the first equivalence is the one at the bottom of diagram
(7.9) in Construction 7.4.2.5, the second equivalence is induced by ΞX as
constructed in Construction 7.4.9.1, and which is a quasiisomorphism by
Proposition 7.4.9.2, and the third equivalence is induced by ΘX as defined in
Definition 7.4.5.9, which is a quasiisomorphism by Proposition 7.4.5.11.

In particular, Conjecture B holds for X. ♥

Remark 7.4.9.4. Usage of ΨX is not really necessary in Construction 7.4.9.1,
as we could also have arranged for

ΦX
(
Ξ2

(
x1 · dx2 − dx2 · x1

))
= 0

and

ΦX
(
Ξ2

(
x2 · dx1 − dx1 · x2

))
= ΦX

(
Ξ1

(
d
(
x1 · x2 − x2 · x1

)))

instead of equation (∗∗) in Construction 7.4.9.1, and thereby also dealing
with the problematic element

dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

that we used ΨX to handle in Construction 7.4.9.1, by using ΦX instead,
having the contribution from the third summand exactly cancel out the un-
controllable (under ΦX) first summand.
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The reason Construction 7.4.9.1 was nevertheless written using ΨX is that
it would not suffice to only use ΦX anymore in the case |X| = 3, as in this
case we would have to consider also obstructions to extend to generators of
degree 4, and this would involve in particular an element like

d(x · dx− dx · x) + 2 · dx · dx

in degree 3 that can not be handled with the same idea using ΦX only unless
2 is invertible in k. However, it is likely that the technique actually used in
Construction 7.4.9.1 using ΦX and ΨX extends to the three-variable case, so
it would be an unnecessary assumption to assume that 2 is invertible in k.

The case |X| = 5 is expected to need different techniques for base rings
such as k = Z in which 3 is not invertible, as the cofibrant resolution Ω′•

k[X]/k

will have a generator in degree 6 with boundary of the form56

x · d dx · dx− d dx · dx · x
+ dx · dx · dx− dx · x+ 2 · dx · dx− dx · dx− dx · x+ 2 · dx · dx · dx
+ dx · dx · dx+ dx · x · dx− dx · x− x · dx− dx · x · dx− dx · dx · x

+3 · dx · dx · dx+ dx · dx · dx

which involves interactions of the multiplicative and strict mixed structure
in a way that does not seem to be handleable using only ΦX or ΨX (unless
3 is invertible). ♦

7.5. De Rham forms as a strict model in
Alg(Mixed) and morphisms

In Section 7.4 we discussed Conjecture B, which asks for showing that
for polynomial k-algebras de Rham forms are a strict model for Hochschild
homology as an object in Alg(Mixed). The next upgrade of such an objectwise
equivalence would be showing that the morphism induced on de Rham forms
by a morphism of polynomial k-algebras represents the induced morphism on
Hochschild homology as well. We formulate this as the following conjecture.

Conjecture C. Let X and Y be sets and F : k[X] → k[Y ] a morphism of

56The generators of Ω′•
k[X]/k

, in particular including this expected generator, were found
using computer calculations.
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commutative k-algebras. Then there exists a commutative square

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

HHMixed(k[Y ]) Alg(γMixed)
(
Ω•
k[Y ]/k

)

≃

HHMixed(F ) Alg(γMixed)(Ω•
F/k)

≃

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative square for a

specific F as “Conjecture C holds for F”. ♧

Later in this section we will show that Conjecture C holds
• if |X| = 0 and |Y | ≤ 2 by Proposition 7.5.1.1 in Section 7.5.1, and

• if |X| = 1 and |Y | ≤ 1 by Proposition 7.5.2.6 in Section 7.5.2, and

• if |X| = 1 and |Y | = 2 and 2 is invertible in k by Proposition 7.5.2.6 in
Section 7.5.2, and

• if |X| = 2 and |Y | = 0 by Proposition 7.5.4.1 in Section 7.5.4.
For applications we will need the following variant of Conjecture C, with

two squares at once, with the same equivalence in the middle (so this is
stronger than just two instances of Conjecture C).
Conjecture D. Let X be a set and f an element of k[X]. Denote by
F : k[t] → k[X] the morphism of commutative k-algebras that maps t to
f and by G : k[t] → k the morphism of commutative k-algebras that maps t
to 0. Then there exists a commutative diagram

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed(k[t]) Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

≃

≃

HHMixed(F )

HHMixed(G)

Alg(γMixed)(Ω•
F/k)

Alg(γMixed)(Ω•
G/k)

≃

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative diagram for a

specific f as “Conjecture D holds for f”. ♧
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In Proposition 7.5.3.1 in Section 7.5.3 we will show that Conjecture D holds
if |X| ≤ 1 or |X| = 2 and 2 is invertible in k.

We will discuss Conjecture C for |X| = 0 in Section 7.5.1, for |X| = 1 in
Section 7.5.2, and for |X| = 2 in Section 7.5.4. Conjecture D will be discussed
in Section 7.5.3.

7.5.1. Conjecture C for zero variables in the domain

In this short section we prove Conjecture C in the case that the domain
is a polynomial ring in zero variables, in which case Conjecture C is true for
formal reasons.

Proposition 7.5.1.1. Let X be totally ordered set satisfying |X| ≤ 2. Then
there exists a filler for the square

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

≃

HHMixed(ιk[X]) Alg(γMixed)

(
Ω•

ιk[X]/k

)

≃

(7.17)

in Alg(Mixed), where the horizontal equivalences are the ones from Corol-
lary 7.4.9.3 (for the top horizontal equivalence applied to the empty set).

In particular, Conjecture C holds for F = ιk[X] if |X| ≤ 2. ♥

Proof. Ω•
k/k is isomorphic to k, the monoidal unit of Mixed, considered as

an object of Alg(Mixed). As γMixed is symmetric monoidal (see Construc-
tion 4.4.1.1), k is mapped by Alg(γMixed) to an initial object of Alg(Mixed)
by [HA, 3.2.1.8]. That there is a filler for diagram (7.17) now follows purely
from the universal property of initial objects.

7.5.2. Conjecture C for one variable in the domain

In this section we turn to the much more involved proof that Conjecture C
holds for morphisms F : k[t]→ k[X] if |X| ≤ 1 or |X| = 2 and 2 is invertible
in k. Using that Ω′•

k[t]/k is cofibrant in Alg(Mixed) it will be possible to obtain
a morphism

Ω′•
F/k : Ω

′•
k[t]/k → Ω′•

k[X]/k
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in Alg(Mixed) so that there is a commutative diagram

HHMixed(k[t]) Alg(γMixed)
(
Ω′•
k[t]/k

)

HHMixed(k[X]) Alg(γMixed)
(
Ω′•
k[X]/k

)

≃

HHMixed(F ) Alg(γMixed)(Ω′•
F/k)

≃

(7.18)

in Alg(Mixed). If we could then show that the square

Ω′•
k[t]/k Ω•

k[t]/k

Ω′•
k[X]/k Ω•

k[X]/k

Θ{t}

≃

Ω′•
F/k Ω•

F/k

ΘX

≃

(7.19)

in Alg(Mixed) commutes (perhaps up to homotopy of algebras in strict mixed
complexes), then we would be finished. If |X| ≤ 1, then it follows from Re-
mark 7.4.5.2 that we only need to check that the two compositions map t to
the same element (as the other generators must map to zero for degree rea-
sons), and this is something that is actually true, both compositions mapping
t to F (t).

However, if X = { x1, x2 } (which we give the total order x1 < x2), then
we also need to check that the two compositions agree on t · d t− d t · t. Un-
fortunately, this will not be the case in general. Ω•

k[t]/k is zero in degree 2, so
the composition along the top right will map t · d t− d t · t to zero, but this
is not necessarily the case for the composition along the bottom left. The
idea to deal with this is to replace ΘX by a different quasiisomorphism of
algebras in strict mixed complexes λ. For λ to be a quasiisomorphism and
have the correct value on Ω′•

F/k(t) we will want to set λ(xi) := xi. We have
a lot of choice in how we define λ on the higher generators y for y ∈ Yn,
which we can choose nearly arbitrarily, the only real restriction being that
the following must hold.

d
(
λ
(
x1 · x2 − x2 · x1

))
+ λ

(
x1 · dx2 − dx2 · x1

)
− λ

(
x2 · dx1 − dx1 · x2

)

(7.20)
So how should we choose λ(y) for y ∈ Yn for n ≥ 0 in order to ensure that
we have λ(Ω′•

F/k(t · d t− d t · t)) = 0 so that the analogue of diagram (7.19)
commutes?

The main tool available to understand Ω′•
F/k is naturality of Φ as we showed

it in Proposition 7.4.7.1, and we can use this to show that

ΦX

(
ΞX

(
Ω′•
F/k(t · d t− d t · t)

))
= 0 (7.21)

505



Chapter 7. Hochschild homology of polynomial algebras

holds. As ΦX ◦ΞX is a quasiisomorphism and maps xi to xi we could thus set
λ to ΦX ◦ ΞX if only it were a morphism in Alg(Mixed)! But unfortunately,
ΦX is only multiplicative but is not in general compatible with the strict
mixed structure. What we could instead do is to try to define λ in such a way
that ΦX ◦ ΞX and λ agree on Ω′•

F/k(t · d t− d t · t). As ΦX is multiplicative
and preserves d on elements of degree 0 by Proposition 7.4.8.1, ΦX ◦ΞX and
λ already agree on the Z-graded k-subalgebra generated by elements xi and
dxi. If we for example choose

λ
(
x1 · x2 − x2 · x1

)
:= ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))

then it would follow that the two morphisms would also agree on elements
like x1 · dx2 · x1 · x2 − x2 · x1.

However if terms involving d(x1 · x2 − x2 · x1) appeared in the element
Ω′•
F/k(t · d t− d t · t), then we would not be able to deal with this, as we

have no way of accessing where ΦX ◦ΞX maps such an element. So as a first
simplification step we need to make a particular choice for Ω′•

F/k for which
Ω′•
F/k(t · d t− d t · t) is given by a k-linear combination of products of x1, x2,

dx1, dx2, as well as elements of the form y for y ∈ Yn, but without factors
of the form d(y). This can be arranged as

d
(
x1 · x2 − x2 · x1

)
+ x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

is a boundary in Ω′•
k[X]/k.

If we now just set λ(y) := ΦX(ΞX(y)), then it would follow from (7.21)
that

λ
(
Ω′•
F/k(t · d t− d t · t)

)
= 0

holds as well, so that the analogue of diagram (7.19) commutes. However, the
next hurdle is that (7.20) needs to be satisfied. So say if λ(x1 · x2 − x2 · x1)
had been defined in such a way as to be 0, then we must have

λ
(
x1 · dx2 − dx2 · x1

)
= λ

(
x2 · dx1 − dx1 · x2

)

and can not choose the two values independently. This is where the assump-
tion that 2 is divisible in k comes in, because combining this assumption with
choosing Ω′•

F/k such that x1 · dx2 − dx2 · x1 and x2 · dx1 − dx1 · x2 always
contribute to Ω′•

F/k(t · d t− d t · t) in a pairwise manner we will be able to av-
erage out ΦX(ΞX(x1 · dx2 − dx2 · x1)) and ΦX(ΞX(x2 · dx1 − dx1 · x2)) be-
tween λ

(
x1 · dx2 − dx2 · x1

)
and λ

(
x2 · dx1 − dx1 · x2

)
, and similarly deal

with any possible contributions from d(x1 · x2 − x2 · x1).
We will begin putting this proof strategy into practice by first unpack-

ing the data required to construct morphisms and homotopies with domain
Ω′•
k[t]/k in Section 7.5.2.1. We will then be able to show existence of an ap-

propriate morphism Ω′•
F/k in Section 7.5.2.2. Finally, we put everything to-

gether in Section 7.5.2.3 to prove that Conjecture C holds for morphisms
F : k[t]→ k[X] if |X| ≤ 1 or |X| = 2 and 2 is invertible in k.
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7.5.2.1. Morphisms and homotopies out of Ω′•
k[t]/k

To put this proof strategy described in the introduction to Section 7.5.2
into practice we first need to construct a morphism Ω′•

F/k with the required
properties. The next two propositions are helpful for that as they simplify
the amount of data we need to provide and the amount of properties we need
to check in order to construct morphisms out of Ω′•

k[t]/k, and homotopies of
such morphisms.

Proposition 7.5.2.1. Let X be an object of Alg(Mixed) such that H∗(X) ∼= 0
for ∗ > 2 and such that elements of H1(X) square to zero. Let Ω′•

k[t]/k be as
in Definition 7.4.5.9.

Let F ′ be a map of Z-graded sets from the subset { t, t · d t− d t · t } of
Ω′•
k[t]/k to X, and assume that F ′(t) is a cycle and that F ′ satisfies the

following equality.

∂(F ′(t · d t− d t · t)) = F ′(t) · d(F ′(t))− d(F ′(t)) · F ′(t) (7.22)

Then F can be extended to a morphism

F : Ω′•
k[t]/k → X

in Alg(Mixed). ♥

Proof. We are going to use notation from the construction of Ω′•
k[t]/k in Con-

struction 7.4.5.1 in this proof.
By the universal property of FreeAlg(Mixed) and k ·− we obtain a morphism

F0 : A0 → X in Alg(Mixed) that maps t to F ′(t), where we need to use
that F ′(t) is a cycle. As Y0 is empty the morphism ι10 is an isomorphism,
so we immediately obtain an extension of F0 to F1 : A1 → X. Again by
the universal property of FreeAlg(Mixed) as well as pushouts in Alg(Mixed),
we can extend F1 to a morphism F2 : A2 → X in Alg(Mixed) satisfying
F2(t · d t− d t · t) = F ′(t · d t− d t · t) if and only if

∂(F ′(t · d t− d t · t)) = F1(t · d t− d t · t)

holds. But this es precisely ensured by (7.22).
It now suffices to assume that n ≥ 2 and Fn : An → X is a morphism

in Alg(Mixed), and then to show that Fn can be extended to a morphism
Fn+1 : An+1 → X. Again by the universal property, this requires finding a
value Fn+1(y) for every y ∈ Yn such that

∂
(
Fn+1

(
y
))

= Fn(y)

holds. But y is a cycle of degree n in An by Construction 7.4.5.1 (a), so
Fn(y) is a cycle in degree n of X, and such a solution exists if and only if
the homology class represented by Fn(y) is zero. If n > 2 then this must
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trivially be true as then Hn(X) ∼= 0 by assumption. If instead n = 2, then
the only element of Y2 is d t ·d t. As d t is already a cycle, the homology class
[Fn(d t · d t)] is equal to the square of [Fn(d t)] and hence zero by assumption
that elements of H1(X) square to zero.

Proposition 7.5.2.2. Let X be an object of Alg(Mixed) such that H∗(X) ∼= 0
for ∗ > 2. and let Ω′•

k[t]/k be as in Definition 7.4.5.9.
Let

F,G : Ω′•
k[t]/k → X

be two morphisms Alg(Mixed), and assume that the elements

F (t)−G(t) and F (t · d t− d t · t)−G(t · d t− d t · t)

are boundaries in X.
Then there exists a homotopy of algebras of strict mixed complexes in the

sense of Proposition 4.2.2.20 from F to G. ♥

Proof. We are going to use notation from the construction of Ω′•
k[t]/k in Con-

struction 7.4.5.1 in this proof.
As the forgetful functor from Alg(Mixed) to Z-graded k-modules preserves

filtered colimits by Proposition 4.2.2.12 it suffices to construct compatible
homotopies of algebras of strict mixed complexes hn from F ◦ ιn to G ◦ ιn for
every n ≥ 0.

Let us begin by constructing the homotopy h0. By Construction 7.4.5.1
the underlying Z-graded k-algebra of A0 is free on { t, d t }. Define h0 on { t }
by mapping t to an element whose boundary is F (t)−G(t) (such an element
exists by assumption). As t is a cycle Proposition 4.2.2.21 then immediately
furnishes us with an extension to a homotopy of algebras of strict mixed
complexes from F ◦ ι0 to G ◦ ι0.

We now assume that hn has already been defined for n ≥ 0, and show that
hn can be extended to hn+1. By Proposition 4.2.2.21 and Remark 7.4.5.2
extending hn to hn+1 amounts to finding a value for hn+1(y) for every element
y in Yn such that

∂
(
hn+1

(
y
))

= F
(
y
)
−G

(
y
)
− hn(y) (∗)

holds. We now distinguish between the case n = 0, n = 1, and n ≥ 2.
If n = 0, then Yn is empty, so nothing needs to be done. If n = 1, then

we have that Yn = { t · d t− d t · t }, so we only need to consider the element
t · d t− d t · t. By assumption F (t · d t− d t · t)−G(t · d t− d t · t) is a bound-
ary, so that it suffices to show that h0(t · d t − d t · t) is a boundary, which
the following calculation does.

h0(t · d t− d t · t)
= h0(t) ·G(d t) + F (t) · h0(d t)− h0(d t) ·G(t) + F (d t) · h0(t)
= h0(t) · d(G(t))− F (t) · d(h0(t)) + d(h0(t)) ·G(t) + d(F (t)) · h0(t)
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= h0(t) · d(G(t)) + d(F (t)) · h0(t) + d(h0(t)) ·G(t)− F (t) · d(h0(t))
= h0(t) · d(G(t))− h0(t) · d(F (t)) + d(h0(t)) ·G(t)− d(h0(t)) · F (t)
= −h0(t) · d(F (t)−G(t))− d(h0(t)) · (F (t)−G(t))
= −h0(t) · d(∂(h0(t)))− d(h0(t)) · ∂(h0(t))
= h0(t) · ∂(d(h0(t)))− ∂(h0(t)) · d(h0(t))
= −∂(h0(t) · d(h0(t)))

It remains to consider the case n ≥ 2. Note that the right hand side of
equation (∗) is in degree n + 1 > 2, so as H∗(X) is concentrated in degrees
∗ ≤ 2 it suffices to show that the right hand side of equation (∗) is a cycle.
This is shown via the following calculation, with y ∈ Yn.

∂
(
F
(
y
)
−G

(
y
)
− hn(y)

)

= F
(
∂
(
y
))
−G

(
∂
(
y
))
− ∂(hn(y))

= F (y)−G(y)− ∂(hn(y))

= hn(∂(y))

= hn(0)

= 0

7.5.2.2. Construction of Ω′•
F/k

In this section we show the existence of a morphism Ω′•
F/k of appropriate

form to put the proof strategy described in the introduction to Section 7.5.2
into practice. In order to be able to properly describe what kind of form
Ω′•
F/k(t · d t− d t · t) is supposed to have we need to simplify Ω′•

k[X]/k by mak-
ing it commutative. We thus introduce appropriate notation in the following
definition.

Definition 7.5.2.3. Let X be a totally ordered set satisfying |X| ≤ 2, and
let Ω′•

k[X]/k be as in Definition 7.4.5.9.
Then we define

ξX : Ω′•
k[X]/k → Ω′′•

k[X]/k

to be the morphism of Z-graded k-algebras that is given by quotienting out
the commutator, i. e. ξX is initial among morphisms of Z-graded k-algebras
with commutative codomain. We will usually not use special notation to
distinguish between elements of Ω′•

k[X]/k and their images under ξX , but make
clear from context in which of the two they lie. It follows from Remark 7.4.5.2
that the Z-graded commutative k-algebra Ω′′•

k[X]/k is freely generated (as a
commutative Z-graded k-algebra) by the elements x and dx for x ∈ X and y
and d y for y ∈ Yn for n ≥ 0. ♦
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We wish to show that there exists a morphism Ω′•
F/k fitting into a square

(7.18) and such that Ω′•
F/k(t · d t− d t · t) has a specific form57. As Ω′•

F/k has
to be a morphism of algebras of strict mixed complexes we already know that
the boundary will have to be of the following form.

∂
(
Ω′•
F/k(t · d t− d t · t)

)
= Ω′•

F/k(t) · d
(
Ω′•
F/k(t)

)
− d
(
Ω′•
F/k(t)

)
· Ω′•

F/k(t)

The strategy to obtain Ω′•
F/k where Ω′•

F/k(t · d t− d t · t) is of a specified form
will be to first show that every commutator as on the right hand side of the
equation is the boundary of an element E of degree 2 of Ω′•

k[X]/k that is of
a certain form, and then show that, up to some small adjustments, we can
construct Ω′•

k[X]/k in such a way that Ω′•
F/k(t · d t− d t · t) is precisely given by

E. While the following proposition does not yet refer to Ω′•
F/k it is however

the crucial preparatory result in its construction, ensuring that such an E of
appropriate form exists.

Proposition 7.5.2.4. Let X be the set X = { x1, x2 } equipped with the total
order x1 < x2. In this proposition we are going to use Definitions 7.4.5.9
and 7.5.2.3.

Let J be the Z-graded subset of Ω′′•
k[X]/k that consists of elements of degree

1 of the form g · x1 · x2 − x2 · x1 with g an element of k[X] and of elements
of degree 2 of the form

gd x1 · dx1 · x1 · x2 − x2 · x1 + gd x2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2

with gd x1
, gd x2

, gboth, gsame,x1
, and gsame,x2

elements in k[X]. Denote by I
the Z-graded subset of Ω′•

k[X]/k that is the preimage of J under ξX .
Then the following holds.

(1) Every element of the form w · w′ − w′ · w for w and w′ elements of
degree 0 in Ω′•

k[X]/k is the boundary of an element in I.

(2) Every element of the form w ·d(w′)−d(w′) ·w+w′ ·d(w)−d(w) ·w′ for
w and w′ elements of degree 0 in Ω′•

k[X]/k is the boundary of an element
of I.

(3) Every element of the form w ·d(w)−d(w) ·w for w an element of degree
0 in Ω′•

k[X]/k is the boundary of an element of I. ♥

Proof. In this proof we will make use of notation from Construction 7.4.5.1
as well as repeatedly use Remark 7.4.5.2 without further comment.
57For example not involving d

(
x1 · x2 − x2 · x1

)
.
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Before proving the claims let us note that I is closed under k-linear com-
binations as well as multiplying from either side with an element of X. Fur-
thermore, the product of an element of I of degree 1 with dx1 or dx2 is an
element of I again.

If w and w′ are as in (1), then we will say that E is a lift associated to w and
w′ as in (1) to mean that E is an element of I such that ∂(E) = w ·w′−w′ ·w.
We use the analogous convention for (2) and (3).

We now begin by proving (1). For this we note that as Ω′•
k[X]/k is concen-

trated in nonnegative degrees, the element w · w′ − w′ · w of degree 0 is a
cycle. As Ω•

k[X]/k is commutative, the commutator w · w′ − w′ · w must be
mapped to 0 by Θ0. H0(Θ1) is an isomorphism by Proposition 7.4.5.10, so
this implies that there is an element E′ in degree 1 of A1 whose boundary is
w · w′ − w′ · w. By Remark 7.4.5.2 E′ can be written as E′ = E′′ + E where
E′′ is an element of A0 and E is in the k-submodule generated by words in
X with one extra factor x1 · x2 − x2 · x1, so that E is an element of I. As
∂(E′′) = 0 we already have ∂(E) = w · w′ − w′ · w, which finishes the proof
of (1).

Now we show claim (2), which we will do by reducing to more and more
specific w and w′, and using claim (1). First assume that w1, w2, w′

1 and w′
2

are elements of degree 0 of Ω′•
k[X]/k such that (2) holds for the pair (w1, w

′
1)

with associated lift E11, for (w1, w
′
2) with associated lift E12, for (w2, w

′
1)

with associated lift E21, and for (w2, w
′
2) with associated lift E22. Let a1

and a2 be elements of k. Then we claim that (2) also holds for the pair
(a1 · w1 + a2 · w2, a1 · w

′
1 + a2 · w

′
2), with the following associated lift.

E = a1 · a1 · E11 + a1 · a2 · E12 + a1 · a2 · E21 + a2 · a2 · E22

That E is again an element of I follows from the argument at the start of this
proof, and that the boundary is what it should be is verified by the following
calculation.

(a1 · w1 + a2 · w2) · d(a1 · w′
1 + a2 · w

′
2)

− d(a1 · w′
1 + a2 · w

′
2) · (a1 · w1 + a2 · w2)

+ (a1 · w
′
1 + a2 · w

′
2) · d(a1 · w1 + a2 · w2)

− d(a1 · w1 + a2 · w2) · (a1 · w
′
1 + a2 · w

′
2)

= a1 · a1 · w1 · d(w′
1) + a1 · a2 · w1 · d(w′

2)

+ a2 · a1 · w2 · d(w′
1) + a2 · a2 · w2 · d(w′

2)

− a1 · a1 · d(w′
1) · w1 − a1 · a2 · d(w′

1) · w2

− a2 · a1 · d(w′
2) · w1 − a2 · a2 · d(w′

2) · w2

+ a1 · a1 · w
′
1 · d(w1) + a1 · a2 · w

′
1 · d(w2)

+ a2 · a1 · w
′
2 · d(w1) + a2 · a2 · w

′
2 · d(w2)

− a1 · a1 · d(w1) · w
′
1 − a1 · a2 · d(w1) · w

′
2

− a2 · a1 · d(w2) · w
′
1 − a2 · a2 · d(w2) · w

′
2
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= a1 · a1 · w1 · d(w′
1)− a1 · a1 · d(w′

1) · w1

+ a1 · a1 · w
′
1 · d(w1)− a1 · a1 · d(w1) · w

′
1

+ a1 · a2 · w1 · d(w′
2)− a1 · a2 · d(w′

2) · w1

+ a1 · a2 · w
′
2 · d(w1)− a1 · a2 · d(w1) · w

′
2

+ a1 · a2 · w2 · d(w′
1)− a1 · a2 · d(w′

1) · w2

+ a1 · a2 · w
′
1 · d(w2)− a1 · a2 · d(w2) · w

′
1

+ a2 · a2 · w2 · d(w′
2)− a2 · a2 · d(w′

2) · w2

+ a2 · a2 · w
′
2 · d(w2)− a2 · a2 · d(w2) · w

′
2

= ∂(a1 · a1 · E11 + a1 · a2 · E12 + a1 · a2 · E21 + a2 · a2 · E22)

By the above argument it not suffices to show claim (2) for pairs (w,w′)
of elements of degree 0 of Ω′•

k[X]/k that are in a k-basis. By Remark 7.4.5.2 it
thus suffices to consider the case in which w and w′ are words in X. If w is a
word of length 0 (i. e. w = 1), then w·d(w′)−d(w′)·w+w′ ·d(w)−d(w)·w′ = 0,
so that we can use 0 as an associated lift. Now assume that we have shown
(2) for pairs (w,w′) where the length of w is smaller or equal to n, for n ≥ 1,
and that w is a word of length n and x an element of X. Then we claim that
(2) also holds for (x ·w,w′). Indeed, let Ew,w′ be a lift associated to the pair
(w,w′) and Ex,w′ a lift associated to the pair (x,w′) as in (2), and let Ew′,w

be a lift of w′ ·w−w ·w′ and Ew′,x be a lift of w′ · x− x ·w′ as in (1). Then
E = x · Ew,w′ + Ex,w′ · w + d(x) · Ew′,w + Ew′,x · d(w) is again in I and the
following calculation then shows that this E is a lift associated to to the pair
(x · w,w′) as in (2).

x · w · d(w′)− d(w′) · x · w + w′ · d(x · w)− d(x · w) · w′

= x · w · d(w′)− d(w′) · x · w

+ w′ · d(x) · w + w′ · x · d(w)− d(x) · w · w′ − x · d(w) · w′

= x · (w · d(w′)− d(w′) · w + w′ · d(w)− d(w) · w′)

+ x · d(w′) · w − x · w′ · d(w)− d(w′) · x · w

+ w′ · d(x) · w + w′ · x · d(w)− d(x) · w · w′

= x · (w · d(w′)− d(w′) · w + w′ · d(w)− d(w) · w′)

+ (x · d(w′)− d(w′) · x+ w′ · d(x)− d(x) · w′) · w

+ d(x) · w′ · w − x · w′ · d(w) + w′ · x · d(w)− d(x) · w · w′

= x · (w · d(w′)− d(w′) · w + w′ · d(w)− d(w) · w′)

+ (x · d(w′)− d(w′) · x+ w′ · d(x)− d(x) · w′) · w

+ d(x) · (w′ · w − w · w′) + (w′ · x− x · w′) · d(w)
= ∂(x · Ew,w′ + Ex,w′ · w + d(x) · Ew′,w + Ew′,x · d(w))
= ∂(E)

It now remains to show (2) for pairs (x,w′) where x is an element of X
and w′ is a word in X. With a completely analogous argument as the one we
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just carried out, this time for w′ instead of w, we can even reduce to the case
of pairs (x, x′) with x and x′ elements of X. But for such pairs

E = x · d(x′)− d(x′) · x+ x′ · d(x)− d(x) · x′

works as an associated lift.
We now turn to showing claim (3), which we do using a similar strategy

as (2). First assume that w and w′ are elements of degree 0 of Ω′•
k[X]/k such

that (3) holds for w with associated lift Ew, and for w′ with associated lift
Ew′ . Let a and a′ be elements of k and let Ew,w′ be a lift associated to the
pair (w,w′) as in (2). Then we claim that (3) also holds for a ·w+a′ ·w′ with
associated lift E = a · a · Ew + a′ · a′ · Ew′ + a · a′ · Ew,w′ . That E is again
an element of I is covered by the argument at the start of the proof, and the
following calculation checks that the boundary is correct as well.

(a · w + a′ · w′) · d(a · w + a′ · w′)− d(a · w + a′ · w′) · (a · w + a′ · w′)

= a · a · w · d(w) + a · a′ · w · d(w′) + a′ · a · w′ · d(w) + a′ · a′ · w′ · d(w′)

− a · a · d(w) · w − a · a′ · d(w) · w′ − a′ · a · d(w′) · w − a′ · a′ · d(w′) · w′

= a · a · w · d(w)− a · a · d(w) · w + a′ · a′ · w′ · d(w′)− a′ · a′ · d(w′) · w′

+ a · a′ · w · d(w′)− a · a′ · d(w′) · w + a · a′ · w′ · d(w)− a · a′ · d(w) · w′

= ∂(a · a · Ew + a′ · a′ · Ew′ + a · a′ · Ew,w′)

It now suffices to show (3) for words in X. Assume that we have al-
ready shown (3) for words in X of length smaller or equal to n, and that
n ≥ 1. Let x be an element of X and w a word in X of length n. Let
Exw,x be a lift for the pair (x · w, x) as in (2), Ex a lift for x as in (3),
Ew a lift for w as in (3), and Ew,x a lift for the pair (w, x) as in (1). Then
E = Exw,x · w −Ex · w · w + x · x ·Ew + x ·Ew,x · d(w) is again in I and the
following calculation shows that E is a lift for x · w as in (3).

x · w · d(x · w)− d(x · w) · x · w
= x · w · d(x) · w + x · w · x · d(w)− d(x) · w · x · w − x · d(w) · x · w
= (x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x) · w

+ d(x) · x · w · w − x · d(x · w) · w + d(x · w) · x · w
+ x · w · x · d(w)− d(x) · w · x · w − x · d(w) · x · w

= (x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x) · w
+ d(x) · x · w · w − x · d(x) · w · w − x · x · d(w) · w
+ d(x) · w · x · w + x · d(w) · x · w
+ x · w · x · d(w)− d(x) · w · x · w − x · d(w) · x · w

= (x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x) · w
+ d(x) · x · w · w − x · d(x) · w · w − x · x · d(w) · w + x · w · x · d(w)
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= (x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x) · w
− (x · d(x)− d(x) · x) · w · w + x · x · (w · d(w)− d(w) · w)
− x · x · w · d(w) + x · w · x · d(w)

= (x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x) · w
− (x · d(x)− d(x) · x) · w · w + x · x · (w · d(w)− d(w) · w)
+ x · (w · x− x · w) · d(w)

= ∂(Exw,x · w − Ex · w · w + x · x · Ew + x · Ew,x · d(w))

It thus only remains to show (3) for the elements 1, x1, and x2. For 1 we
obtain 1 · d(1)− d(1) · 1 = 0, so that we can use 0 as a lift. For x either x1 or
x2 we can use x · d(x)− d(x) · x as a lift.

With the preparation of Proposition 7.5.2.4 we can now construct a mor-
phism Ω′•

F/k with the required properties in the following proposition.

Proposition 7.5.2.5. Let X be a totally ordered set satisfying |X| ≤ 2, and
denote the elements of X by x1 < · · · < x|X|. Let f be an element of k[X],
and denote by F : k[t] → k[X] the morphism of commutative k-algebras that
maps t to f .

Then there exists a morphism

Ω′•
F/k : Ω

′•
k[t]/k → Ω′•

k[X]/k

in Alg(Mixed) such that there exists a commutative diagram

Alg(γMixed)
(
Ω′•
k[t]/k

)
Alg(γMixed)

(
C̃({t})

)

Alg(γMixed)
(
Ω′•
k[X]/k

)
Alg(γMixed)

(
C̃(X)

)

Alg(γMixed)(Ω′•
F/k)

Alg(γMixed)(Ξ{t})
≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(ΞX)

≃

in Alg(Mixed) where Ξ{t} and ΞX are as in Construction 7.4.9.1, and such
that ξX ◦ Ω′•

F/k maps t to f (see Definition 7.5.2.3 for a definition of ξX).
If |X| = 2, then Ω′•

F/k can furthermore be chosen such that there addition-
ally exist elements gd x1

, gd x2
, gboth, gsame,x1

, gsame,x2
, and gobs in k[X] such

that

ξX

(
Ω′•
F/k(t · d t− d t · t)

)
(7.23)

= gd x1
· dx1 · x1 · x2 − x2 · x1 + gd x2

· dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1
· x1 · dx1 − dx1 · x1 + gsame,x2

· x2 · dx2 − dx2 · x2
+ gobs · dx1 · dx2
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holds in Ω′′•
k[X]/k. ♥

Proof. As Ω′•
k[t]/k is cofibrant as an object of the model category Alg(Mixed)

by Proposition 7.4.5.11, we can lift the composition

Alg(γMixed)(ΞX)
−1 ◦Alg(γMixed)

(
C̃(F )

)
◦Alg(γMixed)

(
Ξ{t}

)

to a morphism
G : Ω′•

k[t]/k → Ω′•
k[X]/k

that thus comes with a commutative diagram

Alg(γMixed)
(
Ω′•
k[t]/k

)
Alg(γMixed)

(
C̃({t})

)

Alg(γMixed)
(
Ω′•
k[X]/k

)
Alg(γMixed)

(
C̃(X)

)

Alg(γMixed)(G)

Alg(γMixed)(Ξ{t})
≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(ΞX)

≃

(7.24)

in Alg(Mixed). It now suffices by [Hov99, 1.2.10 (ii)] and Propositions A.1.0.1
and 4.2.2.20 to show that there is a homotopy of algebras of strict mixed
complexes from G to a morphism Ω′•

F/k that takes the required form on the
elements t and t · d t− d t · t.

We begin by showing that G already maps t to an acceptable value. For
this we consider the commutative diagram

Alg(γ)
(

Alg(evm)
(
Ω′•
k[t]/k

))
Alg(γ)

(
Alg(evm)

(
Ω′•
k[X]/k

))

Alg(γ)
(

Alg(evm)
(

C̃({t})
))

Alg(γ)
(

Alg(evm)
(

C̃(X)
))

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
Ω•
k[X]/k

)

Alg(γ)(G)

Alg(γ)(Alg(evm)(Ξ{t}))≃ Alg(γ)(Alg(evm)(ΞX)) ≃

Alg(γ)(C̃(F ))

Alg(γ)(Φ{t})≃ Alg(γ)(ΦX) ≃

Alg(γ)(Ω•
F/k)

in Alg(D(k)), where the top square is obtained from the transpose of diagram
(7.24) by applying the forgetful functor Alg(evm) and using compatibility
with γMixed (see Construction 4.4.1.1), and the bottom square is the one from
Proposition 7.4.7.1. The underlying differential graded k-algebra of Ω′•

k[t]/k is
cofibrant by Propositions 7.4.5.11 and 4.2.2.12, so we can conclude by [Hov99,
1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there exists a homotopy
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of differential graded k-algebras h from ΦX ◦ ΞX ◦ G to Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

(we omit forgetful functors in the notation here) in the sense of Proposi-
tion 4.2.2.17. We can then carry out the following calculation, where we use
that (Φ{t} ◦ Ξ{t})(t) = t by definition of Ξ{t}, see around equation (7.16) of
Construction 7.4.9.1.

(ΦX ◦ ΞX ◦G)(t) =
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t) + ∂(h(t)) + h(∂(t))

= Ω•
F/k

((
Φ{t} ◦ Ξ{t}

)
(t)
)
+ 0 + h(0)

= Ω•
F/k(t)

= f

By the universal property of ξX there exists a commutative diagram

Ω′•
k[X]/k C̃(X) Ω•

k[X]/k

Ω′′•
k[X]/k

ΞX

ξX

ΦX

of Z-graded k-algebras, and as ΦX ◦ΞX maps elements xi of X to xi by Con-
struction 7.4.9.1, it follows from Remark 7.4.5.2 that the dashed morphism
is an isomorphism in degree 0, mapping xi to xi. That (ΦX ◦ΞX)(G(t)) = f

thus implies that ξX(G(t)) = f .
If |X| < 2 we can now define Ω′•

F/k
:= G and are finished. So from now

on we will assume that X = { x1, x2 }. Unfortunately the value of G at
t · d t− d t · t is not automatically of the right form, so we will need to replace
G by a homotopic morphism that takes a different value at t · d t− d t · t, but
the same one at t.

By Proposition 7.5.2.4 (3) we can let E be an element of degree 2 in Ω′•
k[X]/k

satisfying the following two properties.

(1) ∂(E) = G(t) · d(G(t))− d(G(t)) ·G(t)

(2) There exist elements gd x1 , gd x2 , gboth, gsame,x1 , and gsame,x2 in k[X]
such that

ξX(E)

= gd x1 · dx1 · x1 · x2 − x2 · x1 + gd x2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1
· x1 · dx1 − dx1 · x1 + gsame,x2

· x2 · dx2 − dx2 · x2

holds.
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We first note that

∂(G(t · d t− d t · t)− E) = G(t) · d(G(t))− d(G(t)) ·G(t)− ∂(E) = 0

so that G(t · d t− d t · t)−E is a cycle. As Θ0 (see the construction of Ω′•
k[X]/k

in Construction 7.4.5.1) is surjective on homology by Proposition 7.4.5.10, we
can find a cycle z in A0 such that the homology classes represented by z and
G(t · d t− d t · t)− E map to the same homology class in Ω•

k[X]/k under ΘX .
As ΘX is a quasiisomorphism by Proposition 7.4.5.11 this implies that

G(t · d t− d t · t)− E − z (∗∗)

must be a boundary.
We now want to apply Proposition 7.5.2.1 to obtain a morphism

Ω′•
F/k : Ω

′•
k[t]/k → Ω′•

k[X]/k

in Alg(Mixed) with Ω′•
F/k(t) = G(t) and Ω′•

F/k(t · d t− d t · t) = E + z. We
first note that as H∗(ΦX ◦ ΞX) is a multiplicative isomorphism by Defini-
tion 7.4.4.2 and Proposition 7.4.9.2 it holds that H∗(Ω

′•
k[X]/k) is zero above

degree 2 and that odd degree elements square to zero. That G(t) is a cycle is
clear as G is a morphism of chain complexes and t is a cycle in Ω′•

k[t]/k. Finally,
(7.22) holds in this context, as this follows from (1) above combined with z

being a cycle. Thus we can apply Proposition 7.5.2.1 to obtain a morphism
Ω′•
F/k with the prescribed values.
We next show that Ω′•

F/k is indeed homotopic to G. For this we use Propo-
sition 7.5.2.2, so that we have to show that

G(t)− Ω′•
F/k(t) and G(t · d t− d t · t)− Ω′•

F/k(t · d t− d t · t)

are boundaries. The first term is 0 by definition, and that the second is a
boundary was ensured around (∗∗) (we chose z specifically so that this would
hold). Thus Proposition 7.5.2.1 applies to show that there indeed exists a
homotopy of algebras in strict mixed complexes from G to Ω′•

F/k.
It remains to show that the two values of ξX ◦Ω′•

F/k are as required. For t
this is clear as

ξX

(
Ω′•
F/k(t)

)
= ξX(G(t)) = f

holds, as we discussed at the start of this proof. For t · d t− d t · t we note
that the image of ξX ◦Θ0 is generated by the multiplicative generators x1, x2,
dx1, and dx2. Thus the element z of degree 2 in A0 must map to an element
of the form gobs · dx1 · dx2 with gobs an element of k[x1, x2]. Then we obtain
the following by combining the definition just made with (2).

ξX

(
Ω′•
F/k(t · d t− d t · t)

)

= ξX(E) + ξX(z)
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= gd x1 · dx1 · x1 · x2 − x2 · x1 + gd x2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2
+ gobs · dx1 · dx2

7.5.2.3. Conclusion

Having constructed Ω′•
F/k in the preceding Section 7.5.2.2 we can now use it

to show Conjecture C in certain cases using the strategy sketched in the intro-
duction to Section 7.5.2. Note that what we show is actually slightly stronger
than Conjecture C, as we show that there is a specific top horizontal equiva-
lence in diagram (7.25) that is independent of X and f . This is what allows
us to even deduce Conjecture D from this, as we do in Proposition 7.5.3.1 in
Section 7.5.3.

Proposition 7.5.2.6. Let X be a set, let f be an element of k[X], and denote
by F : k[t]→ k[X] the morphism of commutative k-algebras that maps t to f .
Assume that one of the following holds.

(1) |X| ≤ 1.

(2) |X| = 2 and 2 is invertible in k.

Then there exists a commutative square

HHMixed(k[t]) Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

≃

HHMixed(F ) Alg(γMixed)(Ω•
F/k)

≃

(7.25)

in Alg(Mixed) such that the top horizontal equivalence is the one from Corol-
lary 7.4.9.3 and the bottom horizontal morphism is an equivalence58. In par-
ticular, Conjecture C holds for F . ♥

Proof. We begin by equipping X with a total order, and will denote the
elements of X by x1 < · · · < x|X|. Consider the following (non-commuting)

58We do not claim that there exists a filler for such a square where also the bottom
horizontal equivalence is given by the one from Corollary 7.4.9.3.
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diagram in Alg(Mixed), that will be explained below.

HHMixed(k[t]) HHMixed(k[X])

Alg(γMixed)
(

C̃({t})
)

Alg(γMixed)
(

C̃(X)
)

Alg(γMixed)
(
Ω′•
k[t]/k

)
Alg(γMixed)

(
Ω′•
k[X]/k

)

Alg(γMixed)
(
Ω•
k[t]/k

)
Alg(γMixed)

(
Ω•
k[X]/k

)

≃

HHMixed(F )

≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(Ω′•
F/k)

Alg(γMixed)(Ξ{t}) ≃

Alg(γMixed)(Θ{t}) ≃

Alg(γMixed)(ΞX)≃

≃

Alg(γMixed)(Ω•
F/k)

(∗)
The top square has a filler given by the (transpose of) commutative diagram
(7.10) from the definition of C̃(F ) in Construction 7.4.2.5, Ξ{t}, ΞX , and
Θ{t} are as in Construction 7.4.9.1 and Definition 7.4.5.9, and Ω′•

F/k is as in
Proposition 7.5.2.5 so that the middle square has a filler as well.

By Corollary 7.4.9.3 the vertical composition on the left is the top horizon-
tal equivalence in diagram (7.25) from the statement. As the top and middle
square have fillers it thus suffices to construct a quasiisomorphism of algebras
in strict mixed complexes

λ : Ω′•
k[X]/k → Ω•

k[X]/k

such that the diagram

Ω′•
k[t]/k Ω•

k[t]/k

Ω′•
k[X]/k Ω•

k[X]/k

Θ{t}

≃

Ω′•
F/k Ω•

F/k

λ

≃

(∗∗)

in Alg(Mixed) commutes strictly.
Suppose for the moment that we have defined a λ. Using notation from

Construction 7.4.5.1, it follows from Remark 7.4.5.2 that for checking strict
commutativity of (∗∗) it suffices to check that the diagram commutes on the
element t as well as elements of the form y for y an element of one of the
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sets Ym for m ≥ 0 used in the definition of Ω′•
k[t]/k. But elements of Ym have

degree m so that y is of degree m + 1. As we assume |X| ≤ 2, we have that
Ω•
k[X]/k is concentrated in degrees at most 2, so diagram (∗∗) will commute

on elements y for y an element of Ym for m ≥ 2 automatically, and if even
|X| ≤ 1 then it will commute automatically on such elements for m ≥ 1. As
Y0 is empty by Definition 7.4.5.9 and Proposition 7.4.5.6 and Y1 has only one
element t ·d t−d t · t by Definition 7.4.5.9 and Proposition 7.4.5.7, this means
that it suffices to check that the following two equations hold if |X| = 2, and
only that the first one holds if |X| ≤ 1.

λ
(
Ω′•
F/k(t)

)
= Ω•

F/k

(
Θ{t}(t)

)

λ
(
Ω′•
F/k(t · d t− d t · t)

)
= Ω•

F/k

(
Θ{t}(t · d t− d t · t)

)

We can evaluate the right hand sides. By definition Θ{t} maps t to t and
t · d t− d t · t to 0. Thus we need to define λ such that it is a quasiisomorphism
and show that both of the following equations hold if |X| = 2, and that the
first one holds if |X| ≤ 1.

λ
(
Ω′•
F/k(t)

)
= f (∗ ∗ ∗)

λ
(
Ω′•
F/k(t · d t− d t · t)

)
= 0

We can now already show the statement under the assumption that |X| ≤ 1.
In that case, we let λ be the quasiisomorphism of algebras in strict mixed
complexes ΘX from Definition 7.4.5.9. We only need to verify that the first
equation of (∗ ∗ ∗) holds for this choice of λ. As the underlying Z-graded
k-algebra of Ω•

k[X]/k is commutative, the underlying morphism of λ factors
as in the following diagram of Z-graded k-algebras.

Ω′•
k[X]/k Ω•

k[X]/k

Ω′′•
k[X]/k

λ

ξX

λ′′

As λ and ξX map the elements xi of X to xi (considered as elements of the
respective Z-graded k-algebras), the same holds for λ′′, so that in particular
λ′′(f) = f . By Proposition 7.5.2.5 we know that ξX

(
Ω′•
F/k(t)

)
= f , so it

follows that

λ
(
Ω′•
F/k(t)

)
= λ′′

(
ξX

(
Ω′•
F/k(t)

))
= λ′′(f) = f

holds.
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We now consider the case |X| = 2, and thus assume that 2 is invertible
in k. In this case setting λ to ΘX will unfortunately not work in general.
We will in the following use notation from the construction of Ω′•

k[X]/k in
Construction 7.4.5.1, as well as the concrete choices for Y0, Y1 and Y2 in Def-
inition 7.4.5.9. We will define λ using the universal property of the definition
of Ω′•

k[X]/k as a colimit by constructing a compatible system of morphisms
λn : An → Ω•

k[X]/k in Alg(Mixed) for every n ≥ 0.
We will begin by defining λ0 using the universal property of FreeAlg(Mixed)

by prescribing λ0(xi) = xi. We first note that the argument that we used
above in the case |X| ≤ 1 to show that the first equation of (∗ ∗ ∗) holds did
not use that λ = ΘX , but only that λ maps xi to xi, and hence this argument
is still applicable. Thus it only remains to show that λ0 can be extended to
a morphism λ : Ω′•

k[X]/k → Ω•
k[X]/k in Alg(Mixed) that is a quasiisomorphism

and that is such that the second equation of (∗ ∗ ∗) holds.
We claim that any extension of λ0 to λ is automatically a quasiisomorphism.

For this we note that the Z-graded subset
{ [
xa11 · x

a2
2 · d(x1)b1 · d(x2)b2

] ∣∣ a1, a2 ≥ 0, b1, b2 ∈ {0, 1}
}

of H∗(Ω
′•
k[X]/k) forms a k-basis of H∗(Ω

′•
k[X]/k), as H∗(ΘX) is an isomor-

phism and maps this set to the set with the same description (see Construc-
tion 7.4.5.1 and Proposition 7.4.5.11). As this subset is also mapped by H∗(λ)
to the same subset of H∗(Ω

•
k[X]/k) it follows that λ is a quasiisomorphism as

well.
It thus suffices to show that there is some extension of λ0 to λ such that the

second equation of (∗ ∗ ∗) holds. We will now inductively assume that λn has
already been defined for n ≥ 0 and then extend λn to λn+1. By construction
such an extension amounts to defining a value for λn+1(y) for every element
y of Yn, and showing that

∂
(
λn+1(y)

)
= λn(y)

holds in Ω•
k[X]/k. As Ω•

k[X]/k has zero boundary operator the left hand side is
always zero and in particular does not depend on what we chose for λn+1(y).
So for an extension to λn+1 to exist λn must map all elements of Yn to zero,
and then we are free to prescribe any value for λn+1(y) for elements y of Yn.
Note that λn(y) lies in Ωnk[X]/k, so as we assumed |X| = 2 this is automatically
zero if n ≥ 3, and hence we can already conclude that an extension of λ3 to
λ exists.

To extend λ0 to λ1 we need to check that

λ0(x1 · x2 − x2 · x1) = 0

which is clear as Ω•
k[X]/k is commutative, and can then set the following value.

λ1
(
x1 · x2 − x2 · x1

)
:= ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))
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Next, to extend λ1 to λ2 we need to check

λ1(x1 · dx1 − dx1 · x1) = 0

λ1(x1 · dx2 − dx2 · x1) = 0

λ1(x2 · dx1 − dx1 · x2) = 0

λ1(x2 · dx2 − dx2 · x2) = 0

all of which are clear as Ω•
k[X]/k is commutative, and can then prescribe the

following values.

λ2
(
x1 · dx1 − dx1 · x1

)
:= ΦX

(
ΞX
(
x1 · dx1 − dx1 · x1

))

λ2
(
x1 · dx2 − dx2 · x1

)
:=

1

2

(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

−
1

2
d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

λ2
(
x2 · dx1 − dx1 · x2

)
:=

1

2

(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

+
1

2
d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

λ2
(
x2 · dx2 − dx2 · x2

)
:= ΦX

(
ΞX
(
x2 · dx2 − dx2 · x2

))

Finally, we need to extend λ2 to λ3. For this we need to check the following.

λ2

(
dx1 · dx1

)
= 0

λ2

(
dx2 · dx2

)
= 0

λ2

(
dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

)
= 0

λ2

(
dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2
− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

)
= 0

λ2

(
dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

)
= 0

The first two equations are satisfied as odd degree elements in Ω•
k[X]/k square

to zero and the last two as Ω•
k[X]/k is commutative. It remains to show that

middle equation, which is shown by the following calculation. The values for

522



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

λ2(x1 · dx2 − dx2 · x1) and λ2(x2 · dx1 − dx1 · x2) were chosen precisely so
as to make this work out, and this is why we needed that 2 is invertible in k.

λ2

(
dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

)

= d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

+
1

2

(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

−
1

2
d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

−
1

2

(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

−
1

2
d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

= 0

Thus we can extend λ2 to λ3 by mapping y to 0 for y an element of Y2.
As already mentioned λ3 can be further be extended to λ. It now only

remains to show that the second equation of (∗ ∗ ∗) holds. Again as the
underlying Z-graded k-algebra of Ω•

k[X]/k is commutative, the underlying
morphism of λ factors as in the following diagram of Z-graded k-algebras.

Ω′•
k[X]/k Ω•

k[X]/k

Ω′′•
k[X]/k

λ

ξX

λ′′

as we already had above. Similarly we can factor ΦX ◦ ΞX as follows.

Ω′•
k[X]/k Ω•

k[X]/k

Ω′′•
k[X]/k

ΦX◦ΞX

ξX

Φ′′
X

We now begin with the following calculation, where we let gd x1
, gd x2

, gboth,
gsame,x1

, gsame,x2
, and gobs be elements in k[X] as in Proposition 7.5.2.5 so

that (7.23) holds. Note that as λ maps xi to xi and hence also dxi to dxi,
the same is true for λ′′.

λ
(
Ω′•
F/k(t · d t− d t · t)

)

= λ′′
(
ξX

(
Ω′•
F/k(t · d t− d t · t)

))
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= λ′′
(
gd x1

· dx1 · x1 · x2 − x2 · x1 + gd x2
· dx2 · x1 · x2 − x2 · x1

+ gboth ·
(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1
· x1 · dx1 − dx1 · x1 + gsame,x2

· x2 · dx2 − dx2 · x2

+ gobs · dx1 · dx2
)

= gd x1
· dx1 · λ

(
x1 · x2 − x2 · x1

)

+ gd x2
· dx2 · λ

(
x1 · x2 − x2 · x1

)

+ gboth · λ
(
x1 · dx2 − dx2 · x1

)

+ gboth · λ
(
x2 · dx1 − dx1 · x2

)

+ gsame,x1 · λ
(
x1 · dx1 − dx1 · x1

)

+ gsame,x2
· λ
(
x2 · dx2 − dx2 · x2

)

+ gobs · dx1 · dx2
= gd x1

· dx1 · ΦX
(
ΞX
(
x1 · x2 − x2 · x1

))

+ gd x2 · dx2 · ΦX
(
ΞX
(
x1 · x2 − x2 · x1

))

+ gboth ·
1

2

(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

)))

+ gboth ·
1

2

(
+ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

− gboth ·
1

2
d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

+ gboth ·
1

2

(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

)))

+ gboth ·
1

2

(
ΦX
(
ΞX
(
x2 · dx1 − dx1 · x2

)))

+ gboth ·
1

2
d
(
ΦX
(
ΞX
(
x1 · x2 − x2 · x1

)))

+ gsame,x1
· ΦX

(
ΞX
(
x1 · dx1 − dx1 · x1

))

+ gsame,x2
· ΦX

(
ΞX
(
x2 · dx2 − dx2 · x2

))

+ gobs · dx1 · dx2
= gd x1

· dx1 · ΦX
(
ΞX
(
x1 · x2 − x2 · x1

))

+ gd x2
· dx2 · ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))

+ gboth ·
(
ΦX
(
ΞX
(
x1 · dx2 − dx2 · x1

)))

+ gboth ·
(
+ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

+ gsame,x1
· ΦX

(
ΞX
(
x1 · dx1 − dx1 · x1

))

+ gsame,x2
· ΦX

(
ΞX
(
x2 · dx2 − dx2 · x2

))

+ gobs · dx1 · dx2
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Now we use that Φ ◦ ΞX = Φ′′
X ◦ ξX .

= gd x1
· dx1 · Φ′′

X

(
ξX
(
x1 · x2 − x2 · x1

))

+ gd x2
· dx2 · Φ′′

X

(
ξX
(
x1 · x2 − x2 · x1

))

+ gboth ·
(
Φ′′
X

(
ξX
(
x1 · dx2 − dx2 · x1

)))

+ gboth ·
(
+Φ′′

X

(
ξX
(
x2 · dx1 − dx1 · x2

)))

+ gsame,x1
· Φ′′

X

(
ξX
(
x1 · dx1 − dx1 · x1

))

+ gsame,x2
· Φ′′

X

(
ξX
(
x2 · dx2 − dx2 · x2

))

+ gobs · dx1 · dx2

We now use that Φ′′
X is multiplicative and maps xi to xi and dxi to dxi.

The latter two properties follow from ΦX ◦ΞX mapping xi to xi by construc-
tion of ΞX (see Construction 7.4.9.1), and then also mapping dxi to dxi by
Proposition 7.4.8.1. Furthermore we can evaluate ξX .

= Φ′′
X

(
gd x1

· dx1 · x1 · x2 − x2 · x1
)
+Φ′′

X

(
gd x2

· dx2 · x1 · x2 − x2 · x1
)

+Φ′′
X

(
gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

))

+Φ′′
X

(
gsame,x1

· x1 · dx1 − dx1 · x1
)

+Φ′′
X

(
gsame,x2

· x2 · dx2 − dx2 · x2
)

+Φ′′
X(gobs · dx1 · dx2)

= Φ′′
X

(
gd x1 · dx1 · x1 · x2 − x2 · x1 + gd x2 · dx2 · x1 · x2 − x2 · x1

+ gboth ·
(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2

+ gobs · dx1 · dx2
)

= Φ′′
X

(
ξX

(
Ω′•
F/k(t · d t− d t · t)

))

= ΦX

(
ΞX

(
Ω′•
F/k(t · d t− d t · t)

))

It thus only remains to show that

ΦX

(
ΞX

(
Ω′•
F/k(t · d t− d t · t)

))
= 0
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holds. Note that we have a commutative diagram

Alg(γ)
(

Alg(evm)
(
Ω′•
k[t]/k

))
Alg(γ)

(
Alg(evm)

(
Ω′•
k[X]/k

))

Alg(γ)
(

Alg(evm)
(

C̃({t})
))

Alg(γ)
(

Alg(evm)
(

C̃(X)
))

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
Ω•
k[X]/k

)

Alg(γ)(Ω′•
F/k)

Alg(γ)(Alg(evm)(Ξ{t}))≃ Alg(γ)(Alg(evm)(ΞX)) ≃

Alg(γ)(C̃(F ))

Alg(γ)(Φ{t})≃ Alg(γ)(ΦX) ≃

Alg(γ)(Ω•
F/k)

in Alg(D(k)), where the top square is obtained from the transpose of the
diagram from Proposition 7.5.2.5 by applying the forgetful functor Alg(evm)
and using compatibility with γMixed (see Construction 4.4.1.1), and the bot-
tom square is from Proposition 7.4.7.1. The underlying differential graded k-
algebra of Ω′•

k[t]/k is cofibrant by Propositions 7.4.5.11 and 4.2.2.12, so we can
conclude by [Hov99, 1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there
exists a homotopy of differential graded k-algebras h from ΦX ◦ ΞX ◦ Ω

′•
F/k

to Ω•
F/k ◦ Φ{t} ◦ Ξ{t} (we omit forgetful functors in the notation here) in

the sense of Proposition 4.2.2.17. We can thus conclude the proof with the
following calculation.

ΦX

(
ΞX

(
Ω′•
F/k(t · d t− d t · t)

))

= Ω•
F/k

(
Φ{t}

(
Ξ{t}(t · d t− d t · t)

))

+ h(∂(t · d t− d t · t)) + ∂(h(t · d t− d t · t))
t · d t− d t · t is an element of degree 2, while Ω2

k[t]/k = 0. Thus purely for de-
gree reasons we have Φ{t}(Ξ{t}(t · d t− d t · t)) = 0 so that the first summand
is zero.

= 0 + h(t · d t− d t · t) + 0

= h(t) ·
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(d t) +

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(t) · h(d t)

− h(d t) ·
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t) +

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(d t) · h(t)

= h(t) ·
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(d t)− h(t) ·

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(d t)

+ h(d t) ·
(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(t) · −h(d t) ·

(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t)

= h(t) ·
((

Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(d t)−

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(d t)

)

+ h(d t) ·
((

ΦX ◦ ΞX ◦ Ω
′•
F/k

)
(t)−

(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t)
)
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= h(t) · (−∂(h(d t))− h(∂(d t)))
+ h(d t) · (∂(h(t)) + h(∂(t)))

= h(t) · (−0− h(0)) + h(d t) · (0 + h(0))

= 0

7.5.3. Conjecture D
In this short section we deduce Conjecture D in certain cases from Propo-

sition 7.5.2.6.

Proposition 7.5.3.1. Let X be a set and f an element of k[X]. Assume
that one of the following holds.

(1) |X| ≤ 1.

(2) |X| = 2 and 2 is invertible in k.

Then Conjecture D holds for f . ♥

Proof. Apply Proposition 7.5.2.6 for f as well as for the element 0 of k (as
the polynomial ring generated by an empty set of variables) and combine
the commutative squares. Note that it is crucial here that Proposition 7.5.2.6
constructs the commutative square (7.25) with the top horizontal equivalence
not depending on X or f , which is what allows us to glue the two squares
together.

7.5.4. Conjecture C for two variables in the domain
In this section we show Conjecture C for morphisms out of polynomial k-

algebras in two variables into k using some of the same arguments that also
went into Proposition 7.5.2.6.

Proposition 7.5.4.1. Let X be a totally ordered set satisfying |X| ≤ 2 and
F : k[X]→ k a morphism of commutative k-algebras.

Then there exists a commutative square

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

≃

HHMixed(F ) Alg(γMixed)(Ω•
F/k)

≃

(7.26)

in Alg(Mixed) such that the horizontal equivalences are the ones from Corol-
lary 7.4.9.3. In particular, Conjecture C holds for F . ♥
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Proof. The cases |X| = 0 and |X| = 1 are already contained in Proposi-
tion 7.5.1.1 and Proposition 7.5.2.6, respectively. For the case |X| = 1 this
requires a small argument for why the lower horizontal equivalence we obtain
from Proposition 7.5.2.6 is homotopic to the one from Corollary 7.4.9.3, but
as HHMixed(k) is an initial object of Alg(Mixed) (see the proof of Proposi-
tion 7.5.1.1) this is automatic.

So now assume that |X| = 2 and denote the elements of X by x1 < x2. As
in Proposition 7.5.2.6, we begin by considering the following (non-commuting)
diagram in Alg(Mixed), that will be explained below.

HHMixed(k[X]) HHMixed(k)

Alg(γMixed)
(

C̃(X)
)

Alg(γMixed)
(

C̃(∅)
)

Alg(γMixed)
(
Ω′•
k[X]/k

)
Alg(γMixed)

(
Ω′•
k/k

)

Alg(γMixed)
(
Ω•
k[X]/k

)
Alg(γMixed)

(
Ω•
k/k

)

≃

HHMixed(F )

≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(ΞX) ≃

Alg(γMixed)(ΘX) ≃

Alg(γMixed)(Ξ∅)≃

≃ Alg(γMixed)(Θ∅)

Alg(γMixed)(Ω•
F/k)

(∗)

The top square has a filler given by the (transpose of) commutative diagram
(7.10) from the definition of C̃(F ) in Construction 7.4.2.5, and Ξ and Θ are
as in Construction 7.4.9.1 and Definition 7.4.5.9. By Corollary 7.4.9.3 the
vertical compositions are the horizontal equivalences in diagram (7.26) from
the statement, so that it suffices to find a filler for the lower rectangle in the
above diagram.

As Ω′•
k[X]/k is cofibrant as an object of Alg(Mixed) by Proposition 7.4.5.11,

we can lift the composition

Alg(γMixed)(Ξ∅)
−1 ◦Alg(γMixed)

(
C̃(F )

)
◦Alg(γMixed)(ΞX)

to a morphism
Ω′•
F/k : Ω

′•
k[X]/k → Ω′•

k/k

so that if we let the dashed morphism in the above diagram be the morphism
Alg(γMixed)(Ω′•

F/k) there will be a filler for the middle square of diagram (∗).
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It thus suffices to show that

Ω′•
k[X]/k Ω′•

k/k

Ω•
k[X]/k Ω•

k/k

Ω′•
F/k

ΘX Θ∅

Ω•
F/k

commutes strictly. Note that as Ω•
k/k is concentrated in degree 0, it suffices

to check that the two compositions agree on elements of degree 0, and as
both compositions are multiplicative it even suffices to check the values on
elements x in X. The composition over the bottom left maps x to F (x), so
this boils down to showing that Ω′•

k[X]/k(x) = F (x) for every element x in X.
For this we consider the commutative diagram

Alg(γ)
(

Alg(evm)
(
Ω′•
k[X]/k

))
Alg(γ)

(
Alg(evm)

(
Ω′•
k/k

))

Alg(γ)
(

Alg(evm)
(

C̃(X)
))

Alg(γ)
(

Alg(evm)
(

C̃(∅)
))

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
Ω•
k/k

)

Alg(γ)(Ω′•
k[X]/k)

Alg(γ)(Alg(evm)(ΞX))≃ Alg(γ)(Alg(evm)(Ξ∅)) ≃

Alg(γ)(C̃(F ))

Alg(γ)(ΦX)≃ Alg(γ)(Φ∅) ≃

Alg(γ)(Ω•
F/k)

in Alg(D(k)), where the top square is obtained from the middle square of dia-
gram (∗) by applying the forgetful functor Alg(evm) and using compatibility
with γMixed (see Construction 4.4.1.1), and the bottom square is (the transpose
of) the one from Proposition 7.4.7.1. The underlying differential graded k-
algebra of Ω′•

k[t]/k is cofibrant by Propositions 7.4.5.11 and 4.2.2.12, so we can
conclude by [Hov99, 1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there
exists a homotopy of differential graded k-algebras h from Φ∅ ◦ Ξ∅ ◦ Ω

′•
k[X]/k

to Ω•
F/k ◦ ΦX ◦ ΞX (we omit forgetful functors in the notation here) in the

sense of Proposition 4.2.2.17.
We can then carry out the following calculation for x an element of X,

where we use that ΦX ◦ ΞX by definition in Construction 7.4.9.1 maps x to
x.

(Φ∅ ◦ Ξ∅)
(
Ω′•
k[X]/k(x)

)
= Ω•

F/k((ΦX ◦ ΞX)(x)) + h(∂(x)) + ∂(h(x))

= Ω•
F/k(x) + h(0) + 0
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= F (x)

Note that Ω′•
k/k is by Remark 7.4.5.2 given by k · {1} in degree 0, so that

also using the analogous identification for degree 0 of Ω•
k/k we obtain that

Φ∅ ◦ Ξ∅ is given by the identity in degree 0. Hence we can conclude that
Ω′•
k[X]/k(x) = F (x) holds for every element x in X.
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Chapter 8.

Hochschild homology of certain
quotients of commutative
algebras

The goal of this chapter can be roughly summarized as giving a concrete
formula for a strict model for HHMixed(R/(x1, . . . , xn)) as an object of Mixed,
where R is a commutative k-algebra and x1, . . . , xn elements of R satisfying
some conditions, given a strict model for HHMixed(R).

More specifically, we require Conjecture C to hold for the morphism of
k-algebras k[t1, . . . , tn]→ k mapping ti to 01. Furthermore we need as input
an object M in RModΩ•

k[t1,...,tn]/k
(Mixedcof) that represents HHMixed(R) as an

object in the ∞-category RModHHMixed(k[t1,...,tn])(Mixed), where the action
is induced by the action of k[t1, . . . , tn] on R, where ti acts by multiplication
by xi. Assuming Conjecture C as above and given such an object M , Propo-
sition 8.3.0.1 can be roughly summarized as saying that (under some further
conditions on R and x1, . . . , xn), HHMixed(R/(x1, . . . , xn)) is represented by
a strict mixed complex that can be described as

M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

with si of degree 1, d si of degree 2, and ∂ and d described by formulas given
in Proposition 8.3.0.1. In particular, if m is a cycle in M0 representing the
unit 1 of R, then ∂(m⊗ si) = (m · ti)⊗ 1 and ∂(m⊗ d s[1]i ) = −(m · d ti)⊗ 1,
so we can think of si and d s[1]i as adding the relations that make xi and dxi
zero.

To obtain such a formula, we proceed as follows. In Section 8.1 we start
by showing that – under some assumptions – we can write the quotient
R/(x1, . . . , xn) as a derived tensor product R ⊗k[t1,...,tn] k, with ti acting
by multiplication with xi on the left and by multiplication with 0 on the
right. Using that HHMixed is compatible with relative tensor products we
then obtain an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ HHMixed(R)⊗HHMixed(k[t1,...,tn]) HHMixed(k)

1This is the case for n ≤ 2 by Proposition 7.5.4.1.
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so that the task becomes to find strict models for HHMixed(k[t1, . . . , tn]) (as
an algebra in Mixed) as well as for HHMixed(R) and HHMixed(k) (the latter
two as modules over the strict model for HHMixed(k[t1, . . . , tn])), and then
calculating the derived relative tensor product. Assuming Conjecture B for
{t1, . . . , tn} we can use the algebra in strict mixed complexes Ω•

k[t1,...,tn]/k
as a

strict model for HHMixed(k[t1, . . . , tn]), and assuming that even Conjecture C
holds for the morphism of commutative k-algebras k[t1, . . . , tn] → k that
maps ti to 0 we can also use Ω•

k/k as a module over Ω•
k[t1,...,tn]/k

as a model
for HHMixed(k). In order to be able to calculate the derived tensor product
as an ordinary, underived tensor product, it will then be useful to replace
Ω•
k/k with a weakly equivalent module over Ω•

k[t1,...,tn]/k
that is sufficiently

cofibrant. Constructing such a module will be the goal of Section 8.2, and we
will put everything together in Section 8.3.

8.1. Hochschild homology of certain quotients
as relative tensor products

In Section 8.1.1 we will show that if R is a commutative k-algebra and
x1, . . . , xn are elements of R satisfying some conditions2, then the object
γ(R/(x1, . . . , xn)) in CAlg(D(k)) is equivalent to a relative tensor product
γ(R) ⊗γ(k[t1,...,tn]) k. Using compatibility of HHMixed with relative tensor
products, we can thus write HHMixed(γ(R/(x1, . . . , xn))) as a relative tensor
product as well, as we will make explicit in Section 8.1.2.

8.1.1. Certain quotients as relative tensor products
Proposition 8.1.1.1. Let R be a commutative algebra in Ch(k) and let
x1, . . . , xn be elements of R0. We obtain a morphism of commutative algebras
in Ch(k)

k[t1, . . . , tn]→ R, ti 7→ xi

that determines a k[t1, . . . , tn]-module structure on the commutative differen-
tial graded algebra R (see Construction E.8.0.4). Assume that R is cofibrant
as an object of RModk[t1,...,tn](Ch(k)) with respect to the model structure of
Theorem 4.2.2.1.

Consider the commutative diagram

k[t1, . . . , tn] R

k R/(x1, . . . , xn)

ti 7→xi

ti 7→0 (8.1)

2Roughly, x1, . . . , xn need to act sufficiently nicely on R by multiplication.
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in CAlg(Ch(k)), where the right vertical morphism is the canonical quotient
morphism. Then the following hold.

(1) Diagram (8.1) is a pushout diagram in CAlg(Ch(k)).

(2) All four objects in diagram (8.1) have cofibrant underlying chain com-
plex.

(3) The functor

CAlg(γ) : CAlg
(
Ch(k)cof

)
→ CAlg(D(k))

maps diagram (8.1) to a pushout diagram in CAlg(D(k)).

(4) There is an equivalence

CAlg(γ)(R/(x1, . . . , xn)) ≃ CAlg(γ)(R)⊗CAlg(γ)(k[t1,...,tn]) k

in CAlg(D(k)), where the module structures that are used for the relative
tensor product arise from the two morphisms k[t1, . . . , tn] → R and
k[t1, . . . , tn] → k in (8.1) by applying CAlg(γ), Construction E.8.0.4,
and identifying CAlg(γ)(k) with k. ♥

Proof. Proof of claim (1): This is well-known and can be shown by repeatedly
applying the n = 1 case3, which can be shown using Proposition E.8.0.54.

3For this one decomposes the (transposed) square (8.1) as

k[t1, . . . , tn] k[t2, . . . , tn] · · · k

R R/(x1) · · · R/(x1, . . . , xn)

ti 7→





0 i=1

ti i>1

ti 7→xi ti 7→xi

so that it suffices to show that for each 1 ≤ j ≤ n the square

k[tj , . . . , tn] k[tj+1, . . . , tn]

R/(x1, . . . , xj−1) R/(x1, . . . , xj)

is a pushout square. The transpose of this square is the right square in the following
commutative diagram.

k[tj ] k[tj , . . . , tn] R/(x1, . . . , xj−1)

k k[tj+1, . . . , tn] R/(x1, . . . , xj)

It thus suffices to show that the outer rectangle and the left square are pushouts, but as
k[tj , . . . , tn]/(tj) ∼= k[tj+1, . . . , tn] and (R/(x1, . . . , xj−1))/(xj) ∼= R/(x1, . . . , xj), this
follows from the n = 1 case.

4Using Proposition E.8.0.5, it suffices to show that the morphism

R → R⊗k[t1] k
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Proof of claim (2): k[t1, . . . , tn] and k are free as k-modules and hence cofi-
brant as chain complexes [Hov99, 2.3.6]. We assumed that R is cofibrant as
an object of RModk[t1,...,tn](Ch(k)), and as the underlying chain complex of
k[t1, . . . , tn] is cofibrant as just mentioned, Theorem 4.2.2.1 (8) implies that
the underlying chain complex of R is cofibrant as well. By (1) and Propo-
sition E.8.0.5 the underlying chain complex of R/(x1, . . . , xn) is isomorphic
to the relative tensor product R ⊗k[t1,...,tn] k, which is cofibrant as a chain
complex by Proposition 6.3.3.3.

Proof of claim (3) and (4): Combining (1) and (2) with Proposition E.8.0.5
(applied to both Ch(k)cof as well as D(k)) we only need to show that CAlg(γ)
preserves the relative tensor product R⊗k[t1,...,tn] k. As the forgetful functors
CAlg(Ch(k)cof) → Ch(k)cof and CAlg(D(k)) → D(k) are conservative and
preserve relative tensor products by Proposition E.8.0.1 and [HA, 3.2.3.1
(4)], it suffices to show that γ : Ch(k)cof → D(k) preserves this relative tensor
product, which follows from Proposition 6.3.3.35.

8.1.2. Application to Hochschild homology
Combining Proposition 8.1.1.1 with HHMixed preserving relative tensor

products by Proposition 6.2.3.1 we obtain the following result.

Proposition 8.1.2.1. Let R and x1, . . . , xn be as in Proposition 8.1.1.1.
Then we can consider R as an object in RModk[t1,...,tn](Ch(k)cof), with ti
acting by multiplication with xi, and k as an object in LModk[t1,...,tn](Ch(k)cof),
with ti acting by multiplication with 0.

As HHMixed is a monoidal functor, HHMixed(R) obtains the structure of
an object in RModHHMixed(k[t1,...,tn])(Mixed) and similarly HHMixed(k) obtains
the structure of an object in LModHHMixed(k[t1,...,tn])(Mixed).

Let Pn be an object of Alg(Mixedcof) coming with an equivalence

Alg(γMixed)(Pn) ≃ HHMixed(k[t1, . . . , tn]) (8.2)

exhibits R⊗k[t1]k as the quotient R/(x1). As the forgetful functor CAlg(Ch(k)) → Ch(k)
is conservative and preserves relative tensor products (see Proposition E.8.0.1), we can
take the relative tensor product in Ch(k).

There is a short exact sequence

0 k[t1] k[t1] k 0
1 7→t1 1 7→1

of left-k[t1]-modules in Ch(k), so as R ⊗k[t1] − is right exact [Wei94, 2.6.2], we obtain
an exact sequence

R⊗k[t1] k[t1] R⊗k[t1] k[t1] R⊗k[t1] k 0

that can be identified with

R R R⊗k[t1] k 0
x1·−

which shows the claim.
5It is here were we really use the assumption that R is cofibrant as a k[t1, . . . , tn]-module.
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in Alg(Mixed). Let furthermore M be a right-Pn-module and An a left-Pn-
module in Mixedcof such that there are equivalences

RMod(γMixed)(M) ≃ HHMixed(R) (8.3)

and
LMod(γMixed)(An) ≃ HHMixed(k) (8.4)

in RMod(Mixed) and LMod(Mixed) such that the underlying equivalences of
algebras are given by equivalence (8.2). Assume that An is cofibrant as an
object in6. LModPn

(Ch(k)).
Then the underlying chain complex of the relative tensor product M⊗Pn

An
(taken in Mixed) is cofibrant. Furthermore, there is an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ γMixed(M ⊗Pn
An)

in Mixed. ♥

Proof. By Proposition E.8.0.1 the forgetful functor evm : Mixed→ Ch(k) pre-
serves relative tensor products, so cofibrancy of the underlying chain complex
of M ⊗Pn

An follows from Proposition 6.3.3.3.
By Proposition 8.1.1.1 (4) there is an equivalence

CAlg(γ)(R/(x1, . . . , xn)) ≃ CAlg(γ)(R)⊗CAlg(γ)(k[t1,...,tn]) k

in CAlg(D(k)). As HHMixed preserves relative tensor products by Proposi-
tion 6.2.3.1 we obtain an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ HHMixed(R)⊗HHMixed(k[t1,...,tn]) HHMixed(k)

in Mixed, and the equivalences (8.2), (8.3), and (8.4) induce an equivalence
in Mixed as follows.

HHMixed(R)⊗HHMixed(k[t1,...,tn])HHMixed(k) ≃ γMixed(M)⊗γMixed(Pn)γMixed(An)

There is a comparison morphism

γMixed(M)⊗γMixed(Pn) γMixed(An)→ γMixed(M ⊗Pn
An)

in Mixed just like in Remark 6.3.3.2, and it suffices to show that this is
an equivalence. As the forgetful functors evm : Mixed → D(k) as well as
evm : Mixed → Ch(k) are conservative and preserve relative tensor products
by Proposition E.8.0.1, it suffices to show that the comparison morphism

γ(M)⊗γ(Pn) γ(An)→ γ(M ⊗Pn
An)

in D(k) from Remark 6.3.3.2 is an equivalence. But this is precisely what
we obtain from Proposition 6.3.3.3, as An was assumed to be cofibrant as a
left-Pn-module.

6We are using here that the forgetful functor evm : Mixed → Ch(k) is monoidal.
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8.2. A sufficiently cofibrant strict model of k

Proposition 7.5.4.1 implies that the morphism

Ω•
k[t1,...,tn]/k

→ Ω•
k/k

in Alg(Mixedcof) that is induced by the morphism of commutative algebras
k[t1, . . . , tn]→ k that sends ti to 0, represents the morphism

HHMixed(k[t1, . . . , tn])→ HHMixed(k)

in Alg(Mixed) induced by the same morphism, as long as n ≤ 2. For n > 2
we have encapsulated this statement as Conjecture C for this morphism, and
we will assume that Conjecture C holds for the results of this chapter.

Unfortunately, we can not directly use Ω•
k/k, as the left-module Pn over

An = Ω•
k[t1,...,tn]/k

as in Proposition 8.1.2.1, as this would require Ω•
k/k to

be cofibrant as a module over Ω•
k[t1,...,tn]/k

in chain complexes, which is not
necessarily the case.

The goal of this section is thus to construct a commutative diagram

An

Ω•
k[t1,...,tn]/k

Ω•
k/k

in Alg(Mixedcof) such that the lower morphism is the one discussed above,
the vertical morphism on the right is a quasiisomorphism, and such that An
is cofibrant when considered as an object in LModΩ•

k[t1,...,tn]/k
(Ch(k)). We will

construct An and morphisms as in the diagram above in Section 8.2.1, show
that Ak has the required cofibrancy property in Section 8.2.2, and show that
the right vertical morphism is a quasiisomorphism in Section 8.2.3.

8.2.1. Construction of the strict model
Before we construct An we need a small result on the Leibniz rule and

compositions.

Proposition 8.2.1.1. Let R be a commutative differential graded algebra,
and let f and g be two operators of odd degree on R that both satisfy the
Leibniz rule. Then f ◦f as well as fg+gf satisfy the Leibniz rule as well7. ♥

Proof. Let x and y be two elements in R. Then we can calculate as follows.

f(g(x · y)) = f
(
g(x)y + (−1)degCh(x)xg(y)

)

7Note that f ◦ f and fg + gf will be of even degree, so there will be no sign.
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= f(g(x))y + (−1)degCh(x)+1g(x)f(y) + (−1)degCh(x)f(x)g(y)

+ (−1)degCh(x)+degCh(x)xf(g(y))

= f(g(x))y + xf(g(y))

− (−1)degCh(x)g(x)f(y) + (−1)degCh(x)f(x)g(y)

Applying this to g = f we immediately obtain the claim for f ◦f . For fg+gf
there is the following calculation.

(fg + gf)(x · y) = f(g(x))y + xf(g(y))

− (−1)degCh(x)g(x)f(y) + (−1)degCh(x)f(x)g(y)

+ g(f(x))y + xg(f(y))

− (−1)degCh(x)f(x)g(y) + (−1)degCh(x)g(x)f(y)

= (fg + gf)(x)y + x(fg + gf)(y)

Construction 8.2.1.2. We define P1 and A1 to be the strict commutative
graded k-modules given by8

P1 := k[t]⊗ Λ(d t) and A1 := k[t]⊗ Λ(d t)⊗ Λ(s)⊗ Γ(d s)
degCh(t) = 0, degCh(d t) = 1, degCh(s) = 1, degCh(d s[m]) = 2m

and let g1 : P1 → A1 be the inclusion. Note that there is a commutative
triangle of commutative graded k-modules

A1

P1

k

p1

g1

g′1

(8.5)

where g′1 and p1 map t, d t, s, and d s[m] to 0.
We will now upgrade diagram (8.5) to a commutative diagram in the cat-

egory CAlg(Mixed). For this we define ∂ and d on P1 and A1 by

∂(t) = 0, ∂(d t) = 0, ∂(s) = t, ∂
(

d s[m]
)
= − d td s[m−1]

d(t) = d t, d(d t) = 0, d(s) = d s[1], d
(

d s[m]
)
= 0

and extending by k-linearity and the Leibniz rule. It is clear that if this
equips A1 with the structure of a commutative algebra in strict mixed com-
plexes, then this structure restricts to P1 and makes g1 into a morphism in
CAlg(Mixed). What we need to show is that this definition of ∂(d s[m]) and

8For now d t and d s are just names, but we will in a moment define a strict mixed complex
structure that will justify this notation.
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d(d s[m]) is well-defined9 and that d and ∂ satisfy ∂ ◦ ∂ = 0, d ◦ d = 0, and
d∂ + ∂d = 0 on A1, see Remark 4.2.1.4 and Remark 4.2.1.12.

But first, let us state the formulas for d and ∂ for a k-linear basis of A1

(obtained by applying k-linearity and the Leibniz rule), so we may refer to
them later10.

tn1 d tϵ1sη1 d s[m1] · tn2 d tϵ2sη2 d s[m2]

= (−1)η1·ϵ2
(
m1 +m2

m1

)
tn1+n2 d tϵ1+ϵ2sη1+η2 d s[m1+m2]

d
(
tn d tϵsη d s[m]

)
(8.6)

= n · tn−1 d tϵ+1sη d s[m] + (−1)ϵ · η · (1 +m) · tn d tϵ d s[1+m]

∂
(
tn d tϵsη d s[m]

)
= (−1)ϵ · η · tn+η d tϵ d s[m] − tn d tϵ+1sη d s[m−1]

For well-definedness, nothing needs to be done for d. For ∂, evaluating on

d s[m1] · d s[m2] =

(
m1 +m2

m1

)
d s[m1+m2]

using the left hand side and the Leibniz rule we obtain
(
− d td s[m1−1]

)
d s[m2] + d s[m1]

(
− d td s[m2−1]

)

= − d t
((

m1 +m2 − 1

m1 − 1

)
d s[m1+m2−1] +

(
m1 +m2 − 1

m1

)
d s[m1+m2−1]

)

and using the right hand side we obtain

−

(
m1 +m2

m1

)
d td s[m1+m2−1]

which are equal by the binomial identity
(
m1+m2−1
m1−1

)
+
(
m1+m2−1

m1

)
=
(
m1+m2

m1

)
.

We now check ∂ ◦ ∂ = 0, d ◦ d = 0, and d∂ + ∂d = 0. Note that Proposi-
tion 8.2.1.1 implies that we only need to check this on multiplicative genera-
tors. That d ◦ d = 0 on multiplicative generators is clear from the definition,
and for ∂ ◦ ∂ = 0 the only case to consider is

∂
(
∂
(

d s[m]
))

= ∂
(
− d td s[m−1]

)
= d td td s[m−2]

which is 0 as (d t)2 = 0. Finally, we verify that d∂ + ∂d = 0.

(d∂ + ∂d)(t) = 0 + ∂(d t) = 0

9I. e. compatible with the relation d s[m1] · d s[m2] =
(
m1+m2

m1

)
d s[m1+m2].

10In the formulas, some summands may contain factors that are undefined, such as d s[−1].
Those summands are to be interpreted as 0.
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(d∂ + ∂d)(d t) = 0 + 0

(d∂ + ∂d)(s) = d(t) + ∂
(

d s[1]
)
= d t− d t = 0

(d∂ + ∂d)
(

d s[m]
)
= d

(
− d td s[m−1]

)

= − d(d t) d s[m−1] + d td
(

d s[m−1]
)
= 0 + 0 = 0

It is clear that the two morphisms to k in diagram (8.5) are compatible
with d and ∂, so (8.5) is a commutative diagram in CAlg(Mixed).

For n a positive integer we denote by
An := A⊗n

1 = k[t1, . . . , tn]⊗Λ(d t1, . . . , d tn)⊗Λ(s1, . . . , sn)⊗Γ(d s1, . . . , d sn)
the n-fold tensor product of A1 in CAlg(Mixed). We will also let

Pn := P⊗n
1 = k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)

be the n-fold tensor product of P1. The n-fold tensor product of diagram
(8.5) then yields a commutative diagram

An

Pn

k

pn

gn

g′n

(8.7)

in CAlg(Mixed). ♦

8.2.2. Cofibrancy
Proposition 8.2.2.1. Let n be a positive integer. Then An from Construc-
tion 8.2.1.2 is cofibrant (with respect to the model structure from Theo-
rem 4.2.2.1) as an object in LModPn

(Ch(k)), where the module structure
is the one arising from the morphism of differential graded algebras gn from
Construction 8.2.1.2. ♥

Proof. Considered first as just a graded module over the graded algebra Pn,
it is clear that An is a free Pn-module and that

B :=
{
s

#–ϵ d s[
#–

i ]
∣∣∣ #–

i ∈ Zn≥0,
#–ϵ ∈ {0, 1}n

}

forms a basis.
Let � be the lexicographic11 well-order on (Z≥0 ∪{∞})

n×{0, 1}n. For an
element (

#–

j , #–η ) in (Z≥0 ∪ {∞})
n × {0, 1}n we define

B #–

j , #–η :=
{
s

#–ϵ d s[
#–

i ]
∣∣∣ #–

i ∈ Zn≥0,
#–ϵ ∈ {0, 1}n, (

#–

i , #–ϵ ) � (
#–

j , #–η )
}

11In Z≥0 ∪ {∞} we let ∞ be greater than any integer. The lexicographic order is then
defined such that (

#–

i , #–ϵ ) � (
#–

j , #–η ) if and only if there is an index 1 ≤ l ≤ n with
i1 = j1, . . . , il−1 = jl−1 and il < jl, or #–

i =
#–

j and there is an index 1 ≤ l ≤ n with
ϵ1 = η1, . . . , ϵl−1 = ηl−1 and ϵl < ηl.
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and let X #–

j , #–η be the sub-Pn-module (still as just a graded module over a
graded algebra) generated by B #–

j , #–η . It is clear from the definition of the
differential on An that X #–

j , #–η is actually a subcomplex of An, and that
An = X(∞,...,∞),(1,...,1).

Considering (Z≥0∪{∞})
n×{0, 1}n as a category with a unique morphism

(
#–

i , #–ϵ )→ (
#–

j , #–η ) if and only if ( #–

i , #–ϵ ) � (
#–

j , #–η ), we obtain a functor

(Z≥0 ∪ {∞})
n × {0, 1}n → LModPn

(Ch(k)) (∗)

that sends (
#–

j , #–η ) to X #–

j , #–η and the morphisms to the respective inclusions.
One can see that this functor is colimit-preserving, which boils down to the
fact that

B #–

j ,
#–

0 =
⋃

(
#–

i , #–ϵ )≺(
#–

j ,
#–

0 )

B #–

i , #–ϵ

for every #–

j in (Z≥0 ∪ {∞})
n such that there is an 1 ≤ l ≤ n with jl = ∞

and jl′ = 0 for l′ > l12. Thus the functor (∗) exhibits An as a transfinite
composition, and so to show that An is cofibrant in LModPn

(Ch(k)) it suffices
to show that X #–

0 ,
#–

0 is cofibrant, and that for each (
#–

i , #–ϵ ) and (
#–

j , #–η ) in
(Z≥0 ∪ {∞})

n × {0, 1}n, such that (
#–

j , #–η ) is the successor of (
#–

i , #–ϵ ), the
inclusion X #–

i , #–ϵ → X #–

j , #–η is a cofibration.
As X #–

0 ,
#–

0 is isomorphic to Pn, and hence free on the cofibrant chain complex
k[0] as a Pn-module in Ch(k), it is cofibrant. Furthermore, with (

#–

i , #–ϵ ) and
(

#–

j , #–η ) as above, the difference B #–

j , #–η \B #–

i , #–ϵ consists of precisely the element
s

#–η d s[
#–

j ]. The diagram

FreeLModPn

(
S2 degCh(

#–

j )+degCh(
#–η )−1

)
X #–

i , #–ϵ

FreeLModPn

(
D2 degCh(

#–

j )+degCh(
#–η )

)
X #–

j , #–η

is a pushout, where we use use the notation from [Hov99, 2.3.3]13, with the
morphism on the left being induced by the usual inclusion14. The morphism
on the top sends the generator 1 in degree 2degCh(

#–

j ) + degCh(
#–η ) − 1 to

∂
(
s

#–η d s[
#–

j ]
)

, and the morphism at the bottom sends the new generator in
degree 2degCh(

#–

j ) + degCh(
#–η ) to s

#–η d s[
#–

j − #–η ]. It is crucial here that even
though s

#–η d s[
#–

j ] is not an element of X #–

i , #–ϵ , its boundary is.
12I. e. we consider those (

#–

j , #–η ) that are not successors or (
#–

0 ,
#–

0 ).
13So Sl is the complex with k concentrated in degree l and Dl is the acyclic complex with

k in degree l and l − 1, with boundary operator the identity.
14Which is the identity in degree 2 degCh(

#–

j ) + degCh(
#–η ).
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8.2.3. Quasiisomorphism
Proposition 8.2.3.1. Let n be a positive integer. Then the morphism

pn : An → k

from Construction 8.2.1.2 is a quasiisomorphism. ♥

Proof. By Proposition 8.2.2.1 and Theorem 4.2.2.1 (8)15, Am is cofibrant as a
chain complex for every positive integer m. By the pushout-product property
for Ch(k) (see Fact 4.1.3.1) and Ken Brown’s lemma [Hov99, 1.1.12], the
tensor product of a cofibrant chain complex with a quasiisomorphism between
cofibrant chain complexes is again a quasiisomorphism. Writing pn : An → k

as the composition

A1 ⊗A
n−1
1

p1⊗id
A

n−1
1−−−−−−−→ k ⊗A1 ⊗A

n−2
1

idk ⊗p1⊗id
A

n−2
1−−−−−−−−−−→ k ⊗ k ⊗An−2

1

→ · · · → kn ∼= k

it suffices to show that p1 : A1 → k is a quasiisomorphism.
As a morphism of chain complexes p1 has a section ι that maps 1 to 1, so it

suffices to give an homotopy ϑ between the idA1
and ι◦p1. As a graded abelian

group, A1 is free with basis
{
tn d tϵsη d s[m]

∣∣ n,m ∈ Z≥0, ϵ, η ∈ {0, 1}
}

, and
we will define ϑ on this basis. Define

ϑ(tn d tϵsη d s[m]) =





(−1)ϵtn−1 d tϵsη+1 d s[m] if n > 0

− d s[m+1] if n = 0, η = 0, and ϵ = 1

0 otherwise

We now check that ϑ∂ + ∂ϑ = ιp1 on basis elements tn d tϵsη d s[m] by distin-
guishing a couple of cases.

Case n > 0, η = 0:

(ϑ∂ + ∂ϑ)(tn d tϵ d s[m])

= ϑ
(
(−1) · (−1)ϵtn d tϵ+1 d s[m−1]

)
+ ∂

(
(−1)ϵtn−1 d tϵs d s[m]

)

= (−1) · (−1)ϵ · (−1)ϵ+1tn−1 d tϵ+1s d s[m−1]

+ (−1)ϵ · (−1)ϵtn d tϵ d s[m]

+ (−1)ϵ · (−1) · (−1)ϵtn−1 d tϵ+1s d s[m−1]

= tn d tϵ d s[m]

Case n > 0, η = 1:

(ϑ∂ + ∂ϑ)(tn d tϵs d s[m])

= ϑ
(
(−1)ϵtn+1 d tϵ d s[m] − tn d tϵ+1s d s[m−1]

)
+ ∂(0)

15This is applicable because Pm has cofibrant underlying chain complex by [Hov99, 2.3.6],
as Pm is concentrated in nonnegative degrees and free as a graded k-module.
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= (−1)ϵ · (−1)ϵtn d tϵs d s[m] − 0 + 0

= tn d tϵs d s[m]

Case n = 0, η = 0, ϵ = 1:

(ϑ∂ + ∂ϑ)(d td s[m]) = ϑ(0) + ∂
(
− d s[m+1]

)

= d td s[m]

Case n = 0, η = 0, ϵ = 0:

(ϑ∂ + ∂ϑ)(d s[m]) = ϑ
(
− d td s[m−1]

)
+ ∂(0)

=

{
d s[m] if m > 0

0 otherwise

Note that the case n = m = η = ϵ = 0 is special, as 1 is the only basis
element on which ιp is acts as the identity, rather than zero, so this is the
expected result.

Case n = 0, η = 1:

(ϑ∂ + ∂ϑ)(d tϵs d s[m]) = ϑ
(
(−1)ϵtd tϵ d s[m] − d tϵ+1s d s[m−1]

)
+ ∂(0)

= (−1)ϵ · (−1)ϵ d tϵs d s[m] + 0

= d tϵs d s[m]

8.3. A formula for Hochschild homology of
certain quotients

In this section we combine Sections 8.1 and 8.2 to obtain a somewhat more
concrete formula for a strict model for HHMixed of certain quotients than in
Proposition 8.1.2.1.

Proposition 8.3.0.1. Let n ≥ 1 be an integer and assume16 that Conjec-
ture C holds for the morphism of commutative k-algebras T : k[t1, . . . , tn]→ k

that maps ti to 0, and fix a commutative square

HHMixed(k[t1, . . . , tn]) Alg(γMixed)
(
Ω•
k[t1,...,tn]/k

)

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

≃

HHMixed(T ) Alg(γMixed)(Ω•
T/k)

≃

(8.8)

16If n ≤ 2 this holds by Proposition 7.5.4.1, making this result unconditional.
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in Alg(Mixed) such that the horizontal morphisms are equivalences.
Let R be a commutative algebra in Ch(k) and let x1, . . . , xn be elements

of R0. Assume that R is cofibrant as an object of RModk[t1,...,tn](Ch(k)) with
respect to the model structure of Theorem 4.2.2.1, where ti acts by multipli-
cation with xi. Note that as HHMixed is monoidal, HHMixed(R) obtains an
induced structure of a right module over HHMixed(k[t1, . . . , tn]) in Mixed.

Let Pn = k[t1, . . . , tn]⊗Λ(d t1, . . . , d tn) be as in Construction 8.2.1.2 and
M a right-Pn-module in Mixedcof such that there is an equivalence

RMod(γMixed)(M) ≃ HHMixed(R)

in RMod(Mixed) such that the underlying equivalence of algebras is the com-
position

Alg(γMixed)(Pn) ≃ Alg(γMixed)
(
Ω•
k[t1,...,tn]/k

)
≃ HHMixed(k[t1, . . . , tn])

(8.9)
in Alg(Mixed), where the first equivalence is induced by the identification

Ω•
k[t1,...,tn]/k

∼= k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)

from the start of Section 7.1 and the second equivalence is the one from (8.8).
Then there is an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ γMixed(M
′)

in Mixed, where M ′ is the strict mixed complex defined as follows. As a graded
k-module, M ′ is given by

M ′ :=M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

with s1, . . . , sn of degree 1 and d s1, . . . , d sn of degree 2. The boundary op-
erator ∂ and differential d are given by k-linearly extending the following
formulas for m ∈M , #–ϵ ∈ {0, 1}n, and #–

i ∈ Zn≥0.

∂
(
m⊗ s

#–ϵ d s[
#–

i ]
)
=
(
∂M (m)⊗ s

#–ϵ d s[
#–

i ]
)

+ (−1)degCh(m)
n∑

a=1

(−1)
∑a−1

b=1 ϵb
(
m · ta ⊗ s

#–ϵ − #–ea d s[
#–

i ]
)

− (−1)degCh(m)
n∑

a=1

(
m · d ta ⊗ s

#–ϵ d s[
#–

i − #–ea]
)

d
(
m⊗ s

#–ϵ d s[
#–

i ]
)
=
(

dM (m)⊗ s
#–ϵ d s[

#–

i ]
)

+ (−1)degCh(m)
n∑

a=1

(−1)
∑a−1

b=1 ϵb(ia + 1)
(
m⊗ s

#–ϵ − #–ea d s[
#–

i + #–ea]
)

In the above formulas, summands in which a vector occurs with a component
that is negative are to be interpreted as zero. ♥
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Proof. We first apply Proposition 8.1.2.1, where we are using the specific
model An that was constructed in Section 8.2 for HHMixed(k) as a module
over HHMixed(k[t1, . . . , tn]). To do so, we only need to check that An has
the properties required of it in Proposition 8.1.2.1. Concretely, we need an
equivalence

LMod(γMixed)(An) ≃ HHMixed(k)

in LMod(Mixed) such that the underlying equivalence of algebras is (8.9),
and we need that An is cofibrant as an object of LModPn

(Ch(k)). The lat-
ter is precisely Proposition 8.2.2.1, and for the former we use the following
composite equivalence.

LMod(γMixed)(An)
≃
−→ LMod(γMixed)(k) ≃ LMod(γMixed)

(
Ω•
k/k

)

≃ HHMixed(k)

The first morphism is induced by the morphism of Pn-algebras pn : An → k

as defined in Construction 8.2.1.2, and lies over the identity morphism of
Alg(γMixed)(Pn) in Alg(Mixed). The second equivalences uses naturality of the
isomorphism from Section 7.1, which ensures that the underlying equivalence
of algebras is the first equivalence in (8.9). Finally, the third equivalence
arises from the commutative square (8.8), and the underlying equivalence of
algebras is the second one in (8.9).

By Proposition 8.1.2.1 we now obtain an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ γMixed(M ⊗Pn
An)

in Mixed. It thus remains to evaluate the relative tensor product M ⊗Pn
An

in Mixed.
As the forgetful functor from strict mixed complexes to graded k-modules

is conservative, symmetric monoidal, and preserves colimits, we obtain an
isomorphism of underlying graded k-modules17

M ⊗Pn
An =M ⊗k[t1,...,tn]⊗Λ(d t1,...,d tn)

(
k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)

⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)
)

∼=M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

where the isomorphism maps an element of the form m ⊗ t
#–

i d t #–ϵ s
#–η d[

#–

j ] to
m · (t

#–

i d t #–ϵ ) ⊗ s
#–η d[

#–

j ]. We can lift this isomorphism to an isomorphism of
17The point is that in graded k-modules,

k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

really is the tensor product of k[t1, . . . , tn] ⊗ Λ(d t1, . . . , d tn) and
Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn), whereas this is not the case as chain complexes.
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strict mixed complex, and it then remains to determine d and ∂, for which
we use the morphism of strict mixed complexes

M ⊗An →M ⊗Pn
An ∼=M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

where the first morphism is the canonical one and the isomorphism the one
just described. One can then read off the formulas claimed in the statement
using Definition 4.1.2.1, Remark 4.2.1.10, and Construction 8.2.1.2
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Chapter 9.

Hochschild homology of certain
quotients of polynomial algebras

In Chapter 8 we obtained a general result that helps to produce strict
mixed complexes that represent HHMixed of some quotients of commutative
algebras. In this chapter we specialize to quotients of polynomial algebras by
a single monic polynomial f of positive degree. The crucial input that we will
need for this is that Conjecture D holds for f . After verifying the necessary
requirements to apply the result, we will in Section 9.2 be able to specialize
Proposition 8.3.0.1 to the case k[x1, . . . , xn]/f for n a positive integer and f

a monic polynomial of positive degree satisfying Conjecture D, obtaining a
strict mixed complex Xf that is a model for HHMixed(k[x1, . . . , xn]/f) as an
object of Mixed. The underlying graded k-module of Xf is of the form

Xf := k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

where xi, dxi, s, and d s are of degree 0, 1, 1, and 2, respectively.
In our goal to obtain a strict mixed complex that represents the object

HHMixed(k[x1, . . . , xn]/f) in Mixed and that is as small as possible, this
is already a significant improvement on the standard Hochschild complex
C(k[x1, . . . , xn]/f) that we discussed in Section 6.3.1. To underline this, note
that Xf can be given the structure of a graded k[x1, . . . , xn]-module, with
k[x1, . . . , xn] acting through the leftmost tensor factor. Xf is then degree-
wise free as a k[x1, . . . , xn]-module, so we can consider the rank1. We find
that rankk[x1,...,xn]((Xf )i) (where i is an integer) is finite, and furthermore
bounded, i. e. there is an integer r such that

rankk[x1,...,xn]

(
(Xf )i

)
≤ r

holds for all integers i. This is very far from the situation for the standard
Hochschild complex C(k[x1, . . . , xn]/f). While k[x1, . . . , xn] doesn’t act freely
on the leftmost tensor factor, k[x1, . . . , xn]/f does, and

rankk[x1,...,xn]/f (C(k[x1, . . . , xn]/f)i)

1If we wanted to make the following discussion regarding ranks precise, we would define
bases for the various modules and discuss their cardinalities (the modules we consider
all have a relatively obvious basis to use for this). We omit such a detour, as this
discussion is only for purpose of motivation.
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= rankk[x1,...,xn]/f

(
(k[x1, . . . , xn]/f)

⊗(i+1)
)

= rankk
(
(k[x1, . . . , xn]/f)

⊗(i)
)

= rankk((k[x1, . . . , xn]/f))i

for i ≥ 0. For n > 1, rankk((k[x1, . . . , xn]/f)) will already be infinite, and
additionally it would also be reasonable to consider the rank to grow expo-
nentially in the degree i.

So Xf is an improvement over the standard Hochschild complex. It is
though certainly not optimal for specific polynomials. For example, for f = x1
the quotient k[x1]/f is isomorphic to k, so we can by Corollary 7.4.9.3 use
Ω•
k/k
∼= k as a strict model for HHMixed(k[x1]/f), and k is significantly smaller

than Xf = k[x1]⊗ Λ(dx1)⊗ Λ(s)⊗ Γ(d s).
The main goal of this chapter will thus be to improve on the size ofXf while

relaxing what the result covers. This can be done in two directions: Firstly,
we can reduce the amount of structure we consider, which we do by asking
only for a sub-chain-complex of Xf that represents HH(k[x1, . . . , xn]/f) as
an object of D(k), rather than as a mixed complex, which we will do in Sec-
tion 9.3. Secondly, we can insist on a sub-strict-mixed-complex representing
HHMixed(k[x1, . . . , xn]/f) as an object of Mixed, while reducing the set of
polynomials f that we consider. This will be done in Section 9.5.

The results of this chapter should themselves also only be considered as
stepping stones, just like Proposition 8.3.0.1 and Xf was a stepping stone for
the results of this chapter. So for actual calculations that need a strict mixed
complex representing HHMixed(k[x1, . . . , xn]/f) for specific polynomials f ,
one would begin with the strict mixed complex obtained in Section 9.5 (if
the relevant result is applicable) and then simplify it further, making use of
the specific form of f . In Chapter 10 we will discuss the concrete example of
f = x21 − x2x3 in details along those lines2.

Let us now say some more on the individual sections of this chapter.
As we stated at the beginning of this introduction, we will consider monic

multivariable polynomials f to divide out of a polynomial algebra. For poly-
nomials in a single variable there is precisely one standard definition of what
it means to be monic, but this is not the case for multivariable polynomi-
als, where there are multiple sensible definitions. What we will mean by
monic is monic with respect to a chosen monomial order, and this notion
will be introduced in Section 9.1. It will also be very important in this chap-
ter to have a good handle of moving back and forth between k[x1, . . . , xn]
and k[x1, . . . , xn]/f , for example by producing canonical representatives in
k[x1, . . . , xn] of elements in the quotient k[x1, . . . , xn]/f . For this we will also
discuss division with remainder for multivariable polynomials in Section 9.1.

In Section 9.2 we will then combine previous results to obtain Xf as a
2This polynomial has however so far not been proven to satisfy Conjecture D. The strict

mixed complex Xf can nevertheless be constructed.
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strict model for HHMixed(k[x1, . . . , xn]/f) as an object of Mixed, assuming
that Conjecture D holds for f . Heavily using constructions discussed in Sec-
tion 9.1 that are built on top of the division with remainder for multivariable
polynomials, we will also describe a new basis for Xf as well as calculate
some formulas for the boundary operator and differential in terms of that
new basis.

In Section 9.3 we will discuss HH(k[x1, . . . , xn]/f) as only an object of
D(k). A chain complex representing it has already been obtained in the pre-
vious work of the Buenos Aires Cyclic Homology Group in [BACH]. For k a
commutative ring and f an element of k[x1, . . . , xn] satisfying relatively mild
conditions, they give a quite small differential graded algebra together with
a multiplicative inclusion into the normalized standard Hochschild complex
for C(k[x1, . . . , xn]/f), as well as a homotopy inverse to this inclusion, as
a morphism of chain complexes. Using the basis for Xf and the formulas
for the boundary operator in this basis obtained in Section 9.2, it will be
relatively straightforward in Section 9.3 to define a subcomplex Xe

f,0 of Xf

such that the inclusion into Xf is a quasiisomorphism, thereby obtaining a
smaller chain complex than Xf representing HH(k[x1, . . . , xn]/f) as an ob-
ject of D(k). We will also show that Xe

f,0 is isomorphic to the chain complex
described in [BACH]. Assuming that Conjecture D holds for f , the rest of
the assumptions we need to make for f are the same as in [BACH], so this
amounts to giving a new proof for one of the main results of [BACH], using
a quite different approach, for the range in which Conjecture D has been
proven, so n ≤ 2 as long as 2 is invertible in k by Proposition 7.5.3.1.

Unfortunately the definition of the comparison morphisms used in [BACH]
between the smaller chain complex and the normalized standard Hochschild
complex are quite complicated, making them difficult to unwrap for transfer-
ring additional structure. Trying to transfer the strict mixed complex struc-
ture to the smaller chain complex from the normalized standard Hochschild
complex additionally runs into the problem that one does not obtain a strict
mixed complex structure; the necessary identities will only be satisfied up
to homotopy for general f , and it is not possible to upgrade either of the
two quasiisomorphisms between the small chain complex and the normalized
standard Hochschild complex to a morphism of strict mixed complexes, as
we show in Section 9.6.

However, for some polynomials f , the strict mixed structure on Xf restricts
to Xe

f,0, so that Xe
f,0 even represents HHMixed(k[x1, . . . , xn]/f) as an object

of Mixed. To properly formulate a condition for when the strict mixed struc-
ture restricts we introduce the notions of logarithm and the log dimension
for multivariable polynomials in Section 9.4. In particular, we will prove a
criterion that can be easily checked for multivariable polynomials f and that
implies that logdimf (d f) ≤ 1.

In Section 9.5 we will then show that if f satisfies logdimf (d f) ≤ 1, then
the strict mixed structure of Xf restricts to Xe

f,0, making the inclusion of Xe
f,0

into Xf into a morphism of strict mixed complexes that is a weak equivalence.
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Under some stronger assumptions on f a strict mixed complex isomorphic
to Xe

f,0 was already constructed by Larsen in [Lar95]. In the two-variable case
Larsen furthermore constructs a strongly homotopy linear quasiisomorphism3

from this strict mixed complex into the normalized standard Hochschild com-
plex. The result in Section 9.5 can thus be seen as a generalization of one of
the main results of [Lar95].4 A number of constructions relating to polynomi-
als that we use in order to simplify Xf are inspired by their use in [Lar95].

In Section 9.7 we discuss the relationship between our results and the main
result of [Lar95], as well as how, assuming Conjecture D, our results provide
an affirmative answer to a question posed by Larsen in [Lar95].

9.1. Prerequisites on polynomials and dividing
with remainder

Given the non-zero polynomial f in n variables by which we want to divide
the polynomial algebra k[x1, . . . , xn], it will be important for us to define
uniquely determined remainders of dividing an arbitrary polynomial P by
f , i. e. we would like to have a procedure obtain a unique decomposition of
P as P = Q · f + R for other polynomials Q and R. In the one-variable
case with f an element of k[x] it is relatively straightforward to come up
with an idea of how this decomposition should look like: We would like P to
uniquely decompose as P = Q · f +R where R has smaller degree than f . It
is not difficult to see that if the leading coefficient of f is not a zero-divisor,
then this determines Q and R uniquely as long as such a decomposition
exists. However, such a decomposition may not exist for all f and P – as
a counterexample consider f = 2 and P = 3 for k = Z. However it turns
out that such a decomposition does exist if the polynomial f is monic, that
is the leading coefficient is 1. In that case, one can perform the Euclidean
algorithm, iteratively eliminating the highest power of x remaining with the
leading term of f , i. e. if we have given f = xn + f ′ with f ′ of degree less
than n, and P =

∑m
i=0 aix

i with m ≥ n, then the first step will be to write

P = (amx
m−n) · f +

((
m∑

i=0

aix
i

)
− (amx

m−n) · f ′

)

and in this decomposition the term in brackets is of degree less than m, so
iterating this process will eventually come to a stop.

If we wish to generalize this procedure to the multi-variable case, we are
confronted with an obvious question: Which term of P should we start elim-
inating? What is the leading term of f that we should use to do so? There is

3See Definition 4.2.3.1 for a definition. By Remark 4.4.4.2 a strongly homotopy linear
quasiisomorphism induces an equivalence in Mixed.

4However introducing the new assumption that 2 is invertible in k.
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no obviously correct choice for a definition of leading terms of multivariable
polynomials but multiple equally good competing ones. Thus we will have
to codify what we require of such a definition to be nice enough to allow us
to define the kind of decompositions described, and then require that f be
monic with respect to that choice. The results will then also depend on that
choice.

We will start in Section 9.1.1 by discussing monomial orders, which provide
a consistent way of determining which of two monomials is to be considered
the larger one. This will allow us to define a notion of degree of a multivariable
polynomial in Section 9.1.2. Finally, we will discuss division with remainder
for multivariable polynomials in Section 9.1.3.

9.1.1. Monomial orders
In this section we introduce the concept of monomial orders and discuss

some easy consequences of the definition. We start in Section 9.1.1.1 by recall-
ing the notions of partial, total, and well-orders. The important example of
the pointwise partial order on Zn≥0 will be discussed in Section 9.1.1.2, before
we define monomial orders in Section 9.1.1.3. We end this section by proving
some easy properties of monomial orders in Section 9.1.1.4.

9.1.1.1. Partial, total, and well-orders

We recall the following notions.

Definition 9.1.1.1. Let X be a set and � a binary relation on X. Recall
the following properties that � may have.

Antisymmetry For any a, b ∈ X, if a � b and b � a, then a = b.

Transitivity For any a, b, c ∈ X, if a � b and b � c, then a � c.

Reflexivity For any a ∈ X it holds that a � a.

Connectivity For any a, b ∈ X, it holds that a � b or b � a.

Well-foundedness If X ′ is nonempty subset of X, then X ′ has a least
element, that is an element x ∈ X ′ such that for all y ∈ X ′ it holds
that x � y.

Note that connectivity implies reflexivity.
The relation � is called a

partial order if it is antisymmetric, transitive, and reflexive.

total order if it is antisymmetric, transitive, and connected.

well-order if it is antisymmetric, transitive, connected, and well-founded.
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A set equipped with a partial order (total order, well-order) on it will be
called a partially ordered set (totally ordered set, well-ordered set). ♦

Notation 9.1.1.2. Let X be a set and � a binary relation on X. If x and
y are elements of X such that x � y and x 6= y, then we will say that x is
smaller than y and y is bigger than x.

We will use the notation x � y to mean y � x. Furthermore, we will use
x ≻ y and y ≺ x to mean y � x and x 6= y. ♦

Remark 9.1.1.3. The important consequence of well-foundedness is that we
can prove statements about every element of X by transfinite induction: If we
prove that any element of X has some property if every smaller element has
that property, then it follows that every element of X has that property5. ♦

9.1.1.2. The standard partial order on Zn≥0

We now define an important example of a partial order on Zn≥0.

Definition 9.1.1.4. Let n be a positive integer. We define a relation ≤ on
Zn≥0 by letting #–a ≤

#–

b if and only if ai ≤ bi for all 1 ≤ i ≤ n. ♦

Remark 9.1.1.5. The relation ≤ as defined in Definition 9.1.1.4 is a partial
order.

Note that a monomial x
#–

i divides x
#–

j for #–

i ,
#–

j ∈ Zn≥0 if and only if #–

i ≤
#–

j .
This is the reason why the partial order ≤ is of relevance for us. ♦

Proposition 9.1.1.6. Let n be a positive integer. For the partial order ≤
defined on Zn≥0 as in Definition 9.1.1.4 and #–a ,

#–

b , #–c ∈ Zn≥0, if #–a ≤
#–

b , then
#–a + #–c ≤

#–

b + #–c . ♥

Proof. Follows directly from the definition.

9.1.1.3. Definition of monomial orders

The partial order ≤ encodes intuition on how some monomials definitely
should compare: Certainly the monomial x

#–

j should be “bigger” than x
#–

i if
x

#–

i divides x
#–

j , or equivalently if #–

i ≤
#–

j . But what if neither #–

i ≤
#–

j nor
#–

j ≤
#–

i ? In order to be able to define notions such as degrees and leading
terms for all elements of k[x1, . . . , xn], we are thus led to ask for a total order
� on Zn≥0 that extends ≤.

A finite subset of a totally ordered set has a maximum element. If we have
a total order � on Zn≥0 given, then we can now provisionally define what the

5Proof: Let X′ ⊆ X be the subset of X of elements that do not have the property in
question. By well-foundedness, if X′ were non-empty, it would need to have a least
element x. But this would mean that every element smaller than x has the property, so
x must have had it as well, so X′ must have been empty.
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leading term of a polynomial f ∈ k[x1, . . . , xn] should be: If f is given by

f =
∑

#–

i ∈Zn
≥0

f #–

i x
#–

i

then we can declare f #–

j x
#–

j to be the leading term of f if #–

j is the maximal
element of

{
#–

i ∈ Zn≥0

∣∣∣ f #–

i 6= 0
}

.
However this is not quite enough to obtain the kind of decomposition we

described in the introduction to Section 9.1. Firstly, in the one-variable case
the procedure to iteratively eliminate the highest degree has to eventually
terminate because there is no infinite strictly decreasing sequence of nonneg-
ative integers. For the multivariable case we should thus require that � is
a well-order. Secondly, in the one-variable case we need to argue that if f ′
has degree smaller than m, then xl−m · f ′ has degree smaller than l, and we
need an analogue of this in the multivariable case as well. This leads us to
the following definition, which is also used in [BACH, 2.2].

Definition 9.1.1.7. Let n be a positive integer. A monomial order (for n
variables) is a well-order � on Zn≥0 satisfying the following property: For every
#–a ,

#–

b , #–c ∈ Zn≥0 such that #–a �
#–

b it also holds that #–a + #–c �
#–

b + #–c . ♦

That a monomial order indeed extends ≤ will follow from this, and is shown
below in Proposition 9.1.1.8.

9.1.1.4. Properties of monomial orders

Proposition 9.1.1.8. Let n be a positive integer and � a monomial order
for n variables. Then the following hold.

(1) Let #–a ,
#–

b , #–c ∈ Zn≥0 such that #–a + #–c �
#–

b + #–c . Then it also holds that
#–a �

#–

b .

(2) #–

0 is minimal in Zn≥0 with respect to �, i. e. for every #–a ∈ Zn≥0 it holds
that #–

0 � #–a .

(3) � extends ≤, i. e. if #–a ,
#–

b ∈ Zn≥0 such that #–a ≤
#–

b , then #–a �
#–

b . ♥

Proof. Proof of claim (1): If it is not true that #–a �
#–

b , then we must have
#–a �

#–

b by connectivity, and so #–a + #–c �
#–

b + #–c as � is a monomial order.
But by antisymmetry this implies that #–a + #–c =

#–

b + #–c and so #–a =
#–

b , from
which #–a �

#–

b follows by reflexivity.
Proof of claim (2): Let #–m be an element of Zn≥0. We need to show that

#–

0 � #–m, but by connectivity and reflexivity it suffices to show that if #–

0 � #–m,
then #–m =

#–

0 . So assume that #–

0 � #–m. By adding l · #–m to this inequality we
obtain l · #–m � (l + 1) · #–m, so that we obtain an infinite descending chain

#–

0 � #–m � 2 · #–m � · · ·
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in Zn≥0. Well-foundedness of � implies that this chain must eventually sta-
bilize, so there must be an l ≥ 0 with (l + 1) · #–m = l · #–m, which implies
#–m = 0.

Proof of (3): #–a ≤
#–

b implies that #–

b − #–a still lies in Zn≥0. Applying (2)
we obtain #–

0 �
#–

b − #–a , and adding #–a to this inequality we conclude that
#–a �

#–

b .

Remark 9.1.1.9. If � is a monomial order for 1 variable, then Proposi-
tion 9.1.1.8 (3) implies that � is equal to ≤. ♦

Remark 9.1.1.10. Let n be a positive integer. The assumptions made on
the binary relation ≤T on Zn≥0 considered in [BACH, 2.2] are that ≤T is a
monomial order in the sense of Definition 9.1.1.7, and that ≤T extends ≤.
Proposition 9.1.1.8 (3) shows that the latter assumption is unnecessary. ♦

Construction 9.1.1.11. Let n be a positive integer and � a monomial order
for n variables. Let m ≤ n be another positive integer and

φ : {1, . . . ,m} → {1, . . . , n}

an injection. Then we can define an additive injection Zm≥0 → Zn≥0 as follows.

ψ : Zm≥0 → Zn≥0 , ψ( #–a )i :=

{
aj if ψ(j) = i

0 if i is not in the image of ψ

For example if φ is the inclusion of {1} into {1, 2}, then ψ maps (a) to (a, 0).
We can then define a binary relation � on Zm≥0 as follows. For #–a ,

#–

b ∈ Zm≥0

we let #–a �
#–

b if and only if ψ( #–a ) � ψ(
#–

b ). It follows immediately from ψ

being additive and injective that this defines a monomial order form variables,
which we will call the restricted monomial order.

Let {i1, . . . , in−m} be the elements of {1, . . . , n} that are not in the image
of φ. Define k′ to be the commutative k-algebra k′ = k[xi1 , . . . , xin−m

]. Then
there is an isomorphism of k-algebras

k′[y1, . . . , ym]
∼=
−→ k[x1, . . . , xn]

that maps xij to xij and yj to xφ(j). Note that this morphism then maps
y

#–

j to xψ(
#–

j ). We will make use of this isomorphism on some occasions when
inducting on the number of variables. ♦

9.1.2. Degrees for multivariable polynomials
In this section we define a notation of degree of multivariable polynomials,

dependent on a monomial order.
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Definition 9.1.2.1. Let n be a positive integer, � a monomial order for n
variables, and f ∈ k[x1, . . . , xn] a polynomial. We define

deg�(f) =





max
{

#–

i ∈ Zn≥0

∣∣∣f #–

i 6= 0
}

if f 6= 0

−∞ if f = 0

where the maximum is taken with respect to the order �. We call deg�(f) the
degree of f (with respect to the monomial order �). We call fdeg⪯(f)x

deg⪯(f)

the leading term and fdeg⪯(f) the leading coefficient of f (with respect to the
monomial order �).

If f, g ∈ k[x1, . . . , xn], then we write f � g if deg�(f) � deg�(g). ♦

Remark 9.1.2.2. It follows from Remark 9.1.1.9 and the definition that the
degree as defined in Definition 9.1.2.1 recovers the usual notion in the case
n = 1. ♦

The degree of multivariable polynomials as defined above satisfies the usual
properties with respect to addition and multiplication of polynomials, as we
record below.

Proposition 9.1.2.3. Let n be a positive integer, � a monomial order for
n variables, and f, g ∈ k[x1, . . . , xn]. Then the following hold.

(1) deg�(f + g) � max
{

deg�(f), deg�(g)
}

.

(2) If deg�(f) ≻ deg�(g), then deg�(f + g) = deg�(f).

(3) deg�(f · g) � deg�(f) + deg�(g).

(4) If at least one of f or g is zero, or it holds that both are nonzero and
fdeg⪯(f) · gdeg⪯(g) 6= 0, then deg�(f · g) = deg�(f) + deg�(g).

With respect to max we interpret −∞ as smaller than all elements of Zn≥0,
and we interpret the sum of −∞ with −∞ or an integer to be −∞ again. ♥

Proof. Proof of claim (1): By definition

fdeg⪯(f+g) + gdeg⪯(f+g) = (f + g)deg⪯(f+g) 6= 0

holds, so one of fdeg⪯(f+g) and gdeg⪯(f+g) must be non-zero, which directly
implies that deg�(f) � deg�(f + g) or deg�(g) � deg�(f + g).

Proof of claim (2): In this case max{deg�(f), deg�(g)} = deg�(f), so
using (1) it suffices to show that deg�(f + g) � deg�(f). The assumption
deg�(f) ≻ deg�(g) also implies gdeg⪯(f) = 0 and thus

(f + g)deg⪯(f) = fdeg⪯(f) + gdeg⪯(f) = fdeg⪯(f) 6= 0

from which deg�(f + g) � deg�(f) follows.
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Proof of claim (3) and (4): We can write

f =
∑

#–

i �deg⪯(f)

f #–

i x
#–

i and g =
∑

#–

j �deg⪯(g)

g #–

j x
#–

j

and thus obtain the following description of the product fg.

f · g =
∑

#–

i �deg⪯(f)
#–

j �deg⪯(g)

f #–

i f #–

j x
#–

i +
#–

j

As � is not just a well-order, but even a monomial order, it follows from
#–

i � deg�(f) and #–

j � deg�(g) that #–

i +
#–

j � deg�(f) + deg�(g), and if
one (or both) of the former two inequalities is strict, then so is the latter
inequality. This implies both claims.

Proposition 9.1.2.4. Assume that we are in the situation of Construc-
tion 9.1.1.11. Let f be an element of k[x1, . . . , xn], and assume that deg�(f)
is in the image of ψ. Let f ′ be the element of k′[y1, . . . , ym] corresponding to
f under the isomorphism from Construction 9.1.1.11. Then

deg�(f) = ψ
(
deg�(f ′)

)

where on the right hand side � refers to the restricted monomial order as
defined in Construction 9.1.1.11. Furthermore, f ′deg⪯(f ′) is an element of k
and the leading coefficients of f and f ′ agree, i. e. f ′deg⪯(f ′) = fdeg⪯(f). ♥

Proof. Let #–

j ∈ Zm≥0 be such that ψ( #–

j ) = deg�(f). Then fψ( #–

j ) 6= 0 implies
that f ′#–

j
6= 0 and hence deg�(f ′) �

#–

j , from which we can conclude that
ψ(deg�(f ′)) � deg�(f). On the other hand, f ′deg⪯(f ′) 6= 0, so there must be
some #–

i ∈ Zn≥0 with il = 0 for l in the image of φ such that

f
ψ(deg⪯(f ′))+

#–

i
= (f ′deg⪯(f ′)) #–

i 6= 0

from which
deg�(f) � ψ

(
deg�(f ′)

)
+

#–

i � ψ
(
deg�(f ′)

)
(∗)

follows. Antisymmetry now implies that deg�(f) = ψ
(
deg�(f ′)

)
.

Furthermore, this implies that if #–

i ∈ Zn≥0 with il = 0 for l in the image
of φ such that (f ′deg⪯(f ′)) #–

i 6= 0, then #–

i must actually be #–

0 , as otherwise
the inequality (∗) would by strict by Proposition 9.1.1.8 ((2)). It follows that
f ′deg⪯(f ′) is in k and that f ′deg⪯(f ′) = fdeg⪯(f) as elements of k.
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9.1.3. Dividing multivariable polynomials with
remainder

In this section we discuss a generalization of division with remainder of
polynomials from the one-variable case as discussed in the introduction to
Section 9.1 to the multivariable case. If we want to have a chance of dividing
polynomials P with remainder by some polynomial f , then we should require
that f is monic, and we discuss the multivariable notion of monic polynomials
that we will use in Section 9.1.3.1. If f is a monic polynomial, then division
with remainder will yield a decomposition of P as P = Qf + R, where R is
in some sense “small” with respect to f . In the one-variable case, R will have
smaller degree than f . In the multivariable case, R will be f -reduced, and
we discuss what this means in Section 9.1.3.2. We will then be able to tackle
division with remainder for multivariable polynomials in Section 9.1.3.3, and
discuss decomposing P as P =

∑
i≥0 r

i
f (P )f

i with rif (P ) being f -reduced
polynomials in Section 9.1.3.4.

9.1.3.1. Monic polynomials

After the discussions in Sections 9.1.1 and 9.1.2, we can now give a def-
inition of monic polynomials that generalizes the usual definition for the
univariable case.

Definition 9.1.3.1. Let n be a positive integer, � a monomial order for n
variables, and f ∈ k[x1, . . . , xn] a polynomial. Then f is monic with respect
to � if fdeg⪯(f) = 1. In particular a monic polynomial is nonzero. ♦

Convention 9.1.3.2. From here on we will introduce a monomial order � in
statements which depend on one, but will drop reference to � when this will
not cause confusion. For example we will write “Let f be a monic polynomial.”
rather than “Let f be a monic polynomial with respect to �.” when there is
only one polynomial degree order in context. ♦

Remark 9.1.3.3. If n = 1, then f is monic as defined in Definition 9.1.3.1 if
and only if it is monic in the usual sense. See Remarks 9.1.1.9 and 9.1.2.2. ♦

Proposition 9.1.3.4. Let n be a positive integer, � a monomial order for
n variables, and f, g ∈ k[x1, . . . , xn] monic polynomials. Then f · g is also
monic. ♥

Proof. Follows immediately from Proposition 9.1.2.3 (4).

Proposition 9.1.3.5. Assume that we are in the situation of Construc-
tion 9.1.1.11, and that f and f ′ are as in Proposition 9.1.2.4. Then f is
monic with respect to the monomial order on Zn≥0 if and only if f ′ is monic
with respect to the restricted monomial order on Zm≥0. ♥

Proof. Follows immediately from Proposition 9.1.2.4.
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We end this section with a useful statement we will use later.

Proposition 9.1.3.6. Let n be a positive integer, � a monomial order for
n variables, f ∈ k[x1, . . . , xn] a monic polynomial, and g ∈ k[x1, . . . , xn] any
polynomial. Then g = 0 if and only if fg = 0. ♥

Proof. It is clear that g = 0 implies fg = 0, so it remains to show that g 6= 0
implies fg 6= 0. But if g 6= 0, then we can apply Proposition 9.1.2.3 (4)6, to
conclude that

deg�(fg) = deg�(f) + deg�(g)
where the right hand side, and thus also the left hand side, is a nonnegative
integer. Thus fg must be nonzero.

9.1.3.2. Reduced polynomials

Let f be a monic polynomial in a single variable, i. e. an element of k[x].
Then we can write any polynomial P ∈ k[x] as P = Q · f +R for Q,R ∈ k[x]
such that the degree of R is smaller than the degree of f . If we want to
generalize this to the multivariable case we should find an analogous condition
for R. A first guess might be to use the condition that deg�(R) ≺ deg�(f),
but this turns out not to work. Consider for example the case of two variables
and the lexicographic order, so where (a1, a2) � (b1, b2) if a1 < b1 or if a1 = b1
and a2 ≤ b2. If we then consider f = x1x2 and P = x21, then it is impossible
to find a decomposition P = Q · f +R such that deg�(R) ≺ deg�(f). So this
condition is too strong. The reason is that we can only eliminate the lead
term of P if deg�(f) ≤ deg�(P ). We should thus ask R to be f -reduced in
the following sense.

Definition 9.1.3.7. Let n be a positive integer, � a monomial order for n
variables, #–

j ∈ Zn≥0, and P ∈ k[x1, . . . , xn] a polynomial. P is called #–

j -reduced
if P #–

i = 0 for all #–

i ≥
#–

j .
If f ∈ k[x1, . . . , xn] is a nonzero polynomial, then P is called f -reduced if

and only if P is deg�(f)-reduced. ♦

Remark 9.1.3.8. If f 6= 0 and P are elements of k[x], then P is f -reduced
in the sense of Definition 9.1.3.7 if and only if the degree of P is smaller than
the degree of f . ♦

Remark 9.1.3.9. Assume we are in the situation of Construction 9.1.1.11.
Let f and P be elements of k[x1, . . . , xn] and assume that deg�(f) is in the
image of ψ. Let f ′ and P ′ be the elements of k′[y1, . . . , ym] corresponding to
f and P under the isomorphism from Construction 9.1.1.11.

Then P is f -reduced if and only if P ′ is f ′-reduced. This can be seen by
combining Proposition 9.1.2.4 with arguments very similar to those used in
the proof of Proposition 9.1.2.4. ♦

6Both f and g are nonzero, and as f is monic we also have
fdeg⪯(f) · gdeg⪯(g) = gdeg⪯(g) 6= 0.
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9.1.3.3. Division with remainder

We are now ready to discuss division with remainders for multivariable
polynomials.

Proposition 9.1.3.10. Let n be a positive integer, � a monomial order for n
variables, and f ∈ k[x1, . . . , xn] a monic polynomial. Let P ∈ k[x1, . . . , xn] be
another polynomial. Then there exist unique polynomials Q,R ∈ k[x1, . . . , xn]
such that P = Q · f +R and R is f -reduced. ♥

Proof. We first prove uniqueness. Assume that

P = Q1 · f +R1 and P = Q2 · f +R2

are two such decompositions. Then the equation

(Q1 −Q2) · f = R2 −R1 (∗)

holds. We have to show that Q1 = Q2 and R1 = R2, but applying Proposi-
tion 9.1.3.6 to (∗) it suffices to show that R1 = R2.

We show R1 = R2 by contradiction and assume that R1 6= R2. Without loss
of generality we can additionally assume thatR1 ≺ R2. By Proposition 9.1.3.6
Q1 − Q2 6= 0, so we can apply Proposition 9.1.2.3 (4) to (∗) and obtain the
following formula relating the degrees.

deg�(R2 −R1) = deg�(Q1 −Q2) + deg�(f)

As we assumed R1 ≺ R2, we can also apply Proposition 9.1.2.3 (2) to obtain

deg�(R2 −R1) = deg�(R2)

which implies that

deg�(R2) = deg�(Q1 −Q2) + deg�(f)

and thus in particular deg�(R2) ≥ deg�(f), contradicting the assumption
that R2 is f -reduced.

It remains to show existence of the claimed decomposition. So for every
polynomial P ∈ k[x1, . . . , xn] we have to prove the following claim.

Claim There exist Q,R ∈ k[x1, . . . , xn] such that R is f -reduced and
P = Qf +R.

To do so, we first define the map

Θ: k[x1, . . . , xn]→ Zn≥0 ∪ {−∞}

P 7→ max
{

#–

i ∈ Zn≥0

∣∣∣ P #–

i 6= 0 and #–

i ≥ deg�(f)
}
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where the maximum is to be interpreted as −∞ if the set is empty, and the
set the maximum is taken over is always finite7, so the maximum exists if
the set is nonempty. Note that R ∈ k[x1, . . . , xn] is f -reduced if and only if
Θ(R) = −∞. We can extend the well-order � on Zn≥0 to Zn≥0 ∪ {−∞} by
letting −∞ be the minimal element, and will prove the claim stated above
for every element P of k[x1, . . . , xn] by transfinite induction on Θ(P ).

So we let P be an element of k[x1, . . . , xn] and assume that the claim holds
for any P ′ ∈ k[x1, . . . , xn] with Θ(P ′) � Θ(P ). We have to show that then P
also satisfies the claim.

If Θ(P ) = −∞, then P itself is reduced and so we can take Q = 0, R = P

and are done.
So assume now that Θ(P ) 6= −∞. Note that the definition of Θ(P ) and

the assumption that Θ(P ) 6= −∞ together imply that Θ(P ) ≥ deg�(f), so
that in particular Θ(P )− deg�(f) is an element of Zn≥0. We can thus define
a new polynomial P ′ as follows.

P ′ = P − PΘ(P ) · x
Θ(P )−deg⪯(f) · f (∗∗)

We claim that Θ(P ′) ≺ Θ(P ). Let us for the moment assume this and explain
how the claim for P follows. As Θ(P ′) ≺ Θ(P ) we can use the induction
hypothesis and obtain Q′, R′ ∈ k[x1, . . . , xn] such that R′ is f -reduced and
P ′ = Q′f +R′. Combining this with (∗∗) we obtain

P =
(
Q′ + PΘ(P )x

Θ(P )−deg⪯(f)
)
· f +R′

so that setting Q = Q′+PΘ(P )x
Θ(P )−deg⪯(f) and R = R′ shows the claim for

P .
We are left to show that Θ(P ′) ≺ Θ(P ). Note that (∗∗) implies that for

#–

i ∈ Zn≥0 we have

P ′
#–

i
= P #–

i − PΘ(P ) · f #–

i +det⪯(f)−Θ(P ) (∗ ∗ ∗)

where f #–

i +det⪯(f)−Θ(P ) is to be interpreted as 0 if #–

i +det�(f)−Θ(P ) is not
in Zn≥0. Plugging in #–

i = Θ(P ) we obtain

P ′
Θ(P ) = PΘ(P ) − PΘ(P ) · fdet⪯(f) = PΘ(P ) − PΘ(P ) = 0

so if Θ(P ′) � Θ(P ) then we actually must have Θ(P ′) ≻ Θ(P ). So now
assume that #–

i is an element of Zn≥0 such that the following holds.

(1) #–

i ≥ deg�(f)

(2) #–

i ≻ Θ(P )

7As polynomials only have finitely many nonzero components.
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What we have to show is that then P ′
#–

i
= 0. The two assumptions imply that

P #–

i = 0, so if #–

i +det�(f)−Θ(P ) is not in Zn≥0, then equation (∗ ∗ ∗) implies
P ′

#–

i
= 0. So assume that #–

i + det�(f)−Θ(P ) is in Zn≥0. (2) implies that
#–

i + deg�(f) ≻ Θ(P ) + deg�(f)

which – using that #–

i + det�(f)−Θ(P ) is in Zn≥0 – implies that
#–

i + deg�(f)−Θ(P ) ≻ deg�(f)

from which we can deduce that f #–

i +deg⪯(f)−Θ(P ) = 0. It again follows from
equation (∗ ∗ ∗) that P ′

#–

i
= 0.

Remark 9.1.3.11. Assume we are in the situation of Construction 9.1.1.11.
Let f and P be elements of k[x1, . . . , xn] and assume that deg�(f) is in the
image of ψ. Let f ′ and P ′ be the elements of k′[y1, . . . , ym] corresponding
to f and P under the isomorphism from Construction 9.1.1.11. Then the
decompositions of P and P ′ with respect to f and f ′ correspond to each
other under the isomorphism from Construction 9.1.1.11. Concretely, if Q,R
are elements of k[x1, . . . , xn] such that P = Qf + R and R is f -reduced,
and Q′ and R′ are the elements of k′[y1, . . . , ym] corresponding to Q and R

under the isomorphism from Construction 9.1.1.11, then P ′ = Q′f + R as
the isomorphism is an isomorphism of R-algebras, and R′ is f ′-reduced by
Remark 9.1.3.9. ♦

9.1.3.4. Full sum decomposition

If f is a monic polynomial and P any polynomial, we saw in Proposi-
tion 9.1.3.10 that we can divide P by f with remainder to obtain a decom-
position P = Qf + R0 for polynomials Q and R0 such that R0 is f -reduced.
We can then also divide Q by f with remainder and obtain a decomposition
of Q as Q = Q′f +R1, so that we can write P as P = Q′f2 +R1f +R0. We
would like this process to eventually stop (i. e. eventually arrive at an Ri that
is already f -reduced), to obtain a decomposition of P as P =

∑
i≥0Ri · f

i,
such that each Ri is f -reduced and all but finitely many are zero. For this
we however need one extra assumption: If f = 1, then the decomposition
from Proposition 9.1.3.10 will be P = P · 1 + 0, so iterating this process will
never yield an f -reduced Ri unless P = 0. We thus arrive at the following
proposition.
Proposition 9.1.3.12. Let n be a positive integer, � a monomial order for
n variables, and f ∈ k[x1, . . . , xn] a monic polynomial with deg�(f) >

#–

0
(equivalently, f 6= 1). Let P ∈ k[x1, . . . , xn] be another polynomial. Then
there exist unique Ri ∈ k[x1, . . . , xn] for i ∈ Z≥0 of which all but finitely
many are zero such that

P =
∑

i≥0

Ri · f
i
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and all Ri are f -reduced. ♥

Proof. We first show uniqueness. So assume we are given two such decompo-
sitions as follows.

P =
∑

i≥0

Ri · f
i and P =

∑

i≥0

R′
i · f

i

We can rewrite this as

∑

i≥1

Ri · f
i−1


 · f +R0 =


∑

i≥1

R′
i · f

i−1


 · f +R′

0

and hence by Proposition 9.1.3.10 we can conclude that R0 = R′
0 and

∑

i≥1

Ri · f
i−1 =

∑

i≥1

R′
i · f

i−1

as well. Iterating this argument now yields R1 = R′
1, R2 = R′

2, and so on.
We prove existence by transfinite induction on deg�(P ) and assume that

the statement has already been proven for all polynomials P ′ that satisfy
deg�(P ′) ≺ deg�(P ). By Proposition 9.1.3.10 there are polynomials Q and
R0 such that P = Qf + R0 and R0 is f -reduced. If Q = 0 we are al-
ready done, so assume that Q 6= 0. As R0 is f -reduced we must have
(R0)deg⪯(Q)+deg⪯(f) = 0 and hence, using Proposition 9.1.2.3 (4),

Pdeg⪯(Q)+deg⪯(f) = (Qf)deg⪯(Q)+deg⪯(f) 6= 0

so that we can conclude that deg�(P ) � deg�(Q)+deg�(f). As we assumed
#–

0 ≺ deg�(f) this implies the following inequality.

deg�(Q) ≺ deg�(Q) + deg�(f) � deg�(P )

By the induction hypothesis we can thus find f -reduced polynomials Ri for
i ≥ 1, all but finitely many zero, such that

Q =
∑

i≥1

Rif
i−1

which implies that

P = Q · f +R0 =


∑

i≥1

Rif
i−1


 · f +R0 =

∑

i≥0

Rif
i

and thus proves the claim.
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9.1. Prerequisites on polynomials and dividing with remainder

The assumptions made in Proposition 9.1.3.12 will be used a lot in the rest
of this chapter. To improve readability and reduce unnecessary repetitions,
we thus package them together.

Assumption MonOrdMonicPoly. Wherever we invoke this assumption,
we let n be a positive integer, � a monomial order for n variables, and
f ∈ k[x1, . . . , xn] a monic polynomial with deg�(f) > 0. ♦

We next introduce some notation to help us refer to the polynomials Ri
occurring in the decomposition from Proposition 9.1.3.12.

Definition 9.1.3.14. Assume MonOrdMonicPoly. We define maps

r
j
f , r

≤j
f , r

<j
f , q

j
f : k[x1, . . . , xn]→ k[x1, . . . , xn]

for each integer j in the following way.
For P ∈ k[x1, . . . , xn], let

P =
∑

i≥0

Rif
i

be the decomposition from Proposition 9.1.3.12, i. e. Ri is an f -reduced ele-
ment of k[x1, . . . , xn] for each i ≥ 0. We then define rjf , r≤jf , r<jf , and q

j
f for

j ≥ 0 as follows.

r
j
f (P ) := Rj r

≤j
f (P ) :=

j∑

i=0

rif (P )f
i r

<j
f (P ) :=

j−1∑

i=0

rif (P )f
i

q
j
f (P ) :=

∑

i≥j

rif (P ) · f
i−j ♦

If j < 0, then we define r
j
f , r≤jf , and r

<j
f to map P to 0, and define

q
j
f (P ) := P · f−j .

9.1.3.5. Properties of remainders

In the following proposition we collect a number of useful properties of the
maps from Definition 9.1.3.14.

Proposition 9.1.3.15. Assume MonOrdMonicPoly. Then the following hold
for each i, j ≥ 0 and P,Q ∈ k[x1, . . . , xn].

(1) r
j
f (P ) is f -reduced.

(2) P = q
j
f (P ) · f

j + r
<j
f (P ).

(3) r
j
f , r≤jf , r<jf , and qjf are k-linear.

(4) r
j
f (P · f

i) = r
j−i
f (P ) and qjf (P · f i) = q

j−i
f (P ).
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(5) r
j
f (P ·Q) =

∑
a+b+c=j r

a
f

(
rbf (P ) · r

c
f (Q)

)
.

(6) qif

(
q
j
f (P )

)
= q

i+j
f (P ). ♥

Proof. Proof of claims (1), (2), and (4): Clear by definition.
Proof of claim (3): Follows immediately from uniqueness of the decompo-

sition in Proposition 9.1.3.12, as k-linear combinations of f -reduced polyno-
mials are again f -reduced.

Proof of claim (5): First note that both sides are k-linear in both P and Q.
It hence suffices to consider the case P = R · fe, Q = R′ · fe

′ with f -reduced
polynomials R and R′ and nonnegative integers e and e′. In this case we can
read off

rbf (P ) =

{
R if b = e

0 otherwise
and rcf (Q) =

{
R′ if c = e′

0 otherwise

so that we obtain
∑

a+b+c=j

raf
(
rbf (P ) · r

c
f (Q)

)
= r

j−e−e′

f (RR′)

which is equal to rjf (P ·Q) = r
j
f (RR

′fe+e
′

) by (4).
Proof of claim (6): This follows from the previous claims, as in the following

calculation.

q
i+j
f (P ) = q

i+j
f

(
q
j
f (P )f

j + r
<j
f (P )

)

= q
i+j
f

(
q
j
f (P )f

j
)
+ q

i+j
f

(
r
<j
f (P )

)

= qif

(
q
j
f (P )

)
+ 0

As rjf , r≤jf , r<jf , and q
j
f are k-linear by Proposition 9.1.3.15 (3), we can

extend their definitions as follows.

Convention 9.1.3.16. Assume MonOrdMonicPoly. Let M be a (graded) k-
module. Then for any integer j we obtain a morphism of (graded) k-modules

r
j
f ⊗k idM : k[x1, . . . , xn]⊗kM → k[x1, . . . , xn]⊗kM (9.1)

which we will also call rjf . Similarly for r≤jf , r
<j
f , and q

j
f . ♦

9.2. A strict model for HHMixed of medium size
In this section we will give a description of a strict mixed complex that rep-

resents HHMixed(k[x1, . . . , xn]/f) as an object of Mixed under assumptions
MonOrdMonicPoly and Conjecture D for f .
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We will start in Section 9.2.1 by showing that k[x1, . . . , xn] satisfies the
necessary conditions as a module over k[t] in order to apply the more general
result Proposition 8.3.0.1 on a strict mixed complex representing HHMixed
of quotients. In Section 9.2.2 we will then spell out Proposition 8.3.0.1 spe-
cialized to HHMixed(k[x1, . . . , xn]/f). While there is an obvious basis of the
resulting strict mixed complex, that basis is not well adapted to further sim-
plification steps that we will want to do in later sections. We thus describe a
new, more useful, basis in Section 9.2.3.

9.2.1. k[x1, . . . , xn] as a module over k[t]

In this short section we show that multiplication with f acts on the com-
mutative k-algebra k[x1, . . . , xn] in a way that satisfies the requirements to
apply Proposition 8.3.0.1.
Proposition 9.2.1.1. Assume MonOrdMonicPoly. Then the subset

{
x

#–

i
∣∣∣ #–

i ∈ Zn≥0,
#–

i � deg�(f)
}

(9.2)

of k[x1, . . . , xn] is a basis of k[x1, . . . , xn] as a right-k[t]-module, where t acts
by multiplication with f . In particular, k[x1, . . . , xn] is free as a right-k[t]-
module. ♥

Proof. The sub-k-module of k[x1, . . . , xn] spanned by x
#–

i for #–

i � deg�(f)
is a basis of the sub-k-module of f -reduced polynomials, so it follows from
Proposition 9.1.3.12 that (9.2) generates k[x1, . . . , xn] as a right-k[t]-module.

For linear independence, assume that p #–

i are elements of k[t] for each
#–

i ∈ Zn≥0 such that #–

i � deg�(f), with all but finitely many p #–

i zero. We can
write p #–

i as p #–

i =
∑
j≥0 a #–

i ,jt
j , with a #–

i ,j elements of k, all but finitely many
(for fixed #–

i ) zero. Furthermore, assume that the following holds.

∑
#–

i ∈Zn
≥0,

#–

i ≱deg⪯(f)

x
#–

i ·


∑

j≥0

a #–

i ,jf
j


 = 0

Then the uniqueness part of Proposition 9.1.3.12 implies
∑

#–

i ∈Zn
≥0,

#–

i ≱deg⪯(f)

a #–

i ,jx
#–

i = 0

for every j ≥ 0, but as the x
#–

i are k-linearly independent, this implies that
all a #–

i ,j are zero.

Proposition 9.2.1.2. Assume MonOrdMonicPoly. Then k[x1, . . . , xn] is
cofibrant as an object in RModk[t](Ch(k)), where t acts by multiplication with
f . ♥
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Proof. As k[x1, . . . , xn] is free as a right-k[t]-module by Proposition 9.2.1.1,
this follows from Theorem 4.2.2.1 (5) and [Hov99, 2.3.6].

9.2.2. A strict model for HHMixed

We can now specialize Proposition 8.3.0.1 to obtain a first strict mixed
complex Xf that represents HHMixed(k[x1, . . . , xn]/f). While the result is
conditional on Conjecture D holding for f , we can construct Xf in greater
generality.

Construction 9.2.2.1. Assume MonOrdMonicPoly. We will construct a
strict mixed complex Xf . As a Z-graded k-module8, Xf is given by

Xf := k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

with x1, . . . , xn of degree 0, dx1, . . . , dxn and s of degree 1 and d s of degree 2.
The boundary operator ∂ and differential d are given by k-linearly extending
the following formulas for #–

i ∈ Zn≥0, #–ϵ ∈ {0, 1}n, and m ≥ 0.

∂
(
x

#–

i dx #–ϵ s d s[m]
)
= (−1)|

#–ϵ |x
#–

i f dx #–ϵ d s[m]

− (−1)|
#–ϵ |x

#–

i dx #–ϵ d f · s d s[m−1]

∂
(
x

#–

i dx #–ϵ d s[m]
)
= −(−1)|

#–ϵ |x
#–

i dx #–ϵ d f d s[m−1]

d
(
x

#–

i dx #–ϵ s d s[m]
)
= d

(
x

#–

i
)

dx #–ϵ s d s[m]

+ (−1)|
#–ϵ |(m+ 1)x

#–

i dx #–ϵ d s[m+1]

d
(
x

#–

i dx #–ϵ d s[m]
)
= d

(
x

#–

i
)

dx #–ϵ d s[m]

In the formulas above, d applied to elements of

k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)

is defined as in Ω•
k[x1,...,xn]/k

9, and d s[−1] is to be interpreted as zero.
To see that ∂ and d as defined really upgrade Xf to a strict mixed complex

we need to check that ∂ and d square to 0, and that ∂◦d+d◦∂ = 0 holds. We
check all of these on basis elements. Using that d f · d f = 0 in the Z-graded
k-algebra underlying Xf we obtain the following calculations for #–

i ∈ Zn≥0,
#–ϵ ∈ {0, 1}n, and m ≥ 0.

∂
(
∂
(
x

#–

i dx #–ϵ s d s[m]
))

= ∂
(
(−1)|

#–ϵ |x
#–

i f dx #–ϵ d s[m] − (−1)|
#–ϵ |x

#–

i dx #–ϵ d f · s d s[m−1]
)

8We will use the structure of a commutative Z-graded k-algebra on Xf to write down
elements, but Xf itself is only considered as a strict mixed complex.

9So extending from d(xi) := dxi using k-linearity and the Leibniz rule.
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= −(−1)|
#–ϵ |(−1)|

#–ϵ |x
#–

i f dx #–ϵ d f d s[m−1]

− (−1)|
#–ϵ |
(
(−1)|

#–ϵ |+1x
#–

i f dx #–ϵ d f d s[m−1]
)

− (−1)|
#–ϵ |
(
−(−1)|

#–ϵ |+1x
#–

i dx #–ϵ d f · d f · s d s[m−1]
)

= −x
#–

i f dx #–ϵ d f d s[m−1] + x
#–

i f dx #–ϵ d f d s[m−1] − 0

= 0

∂
(
∂
(
x

#–

i dx #–ϵ d s[m]
))

= ∂
(
−(−1)|

#–ϵ |x
#–

i dx #–ϵ d f d s[m−1]
)

=
(
−(−1)|

#–ϵ |
)
·
(
−(−1)|

#–ϵ |+1
)
· x

#–

i dx #–ϵ d f d f d s[m−2]

= 0

Using that d squares to 0 in Ω•
k[x1,...,xn]/k

we obtain the following calculations.

d
(

d
(
x

#–

i dx #–ϵ s d s[m]
))

= d
(

d
(
x

#–

i
)

dx #–ϵ s d s[m] + (−1)|
#–ϵ |(m+ 1)x

#–

i dx #–ϵ d s[m+1]
)

= d
(

d
(
x

#–

i
))

dx #–ϵ s d s[m] + (−1)|
#–ϵ |+1(m+ 1) d

(
x

#–

i
)

dx #–ϵ d s[m+1]

+ (−1)|
#–ϵ |(m+ 1) d

(
x

#–

i
)

dx #–ϵ d s[m+1]

= 0

d
(

d
(
x

#–

i dx #–ϵ d s[m]
))

= d
(

d
(
x

#–

i
)

dx #–ϵ d s[m]
)

= d
(

d
(
x

#–

i
))

dx #–ϵ d s[m]

= 0

Finally, using that d satisfies the Leibniz rule on Ω•
k[x1,...,xn]/k

we can carry
out the following calculations showing that ∂ ◦ d + d ◦ ∂ = 0.

∂
(

d
(
x

#–

i dx #–ϵ s d s[m]
))

+ d
(
∂
(
x

#–

i dx #–ϵ s d s[m]
))

= ∂
(

d
(
x

#–

i
)

dx #–ϵ s d s[m] + (−1)|
#–ϵ |(m+ 1)x

#–

i dx #–ϵ d s[m+1]
)

+ d
(
(−1)|

#–ϵ |x
#–

i f dx #–ϵ d s[m] − (−1)|
#–ϵ |x

#–

i dx #–ϵ d f · s d s[m−1]
)
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= (−1)|
#–ϵ |+1 d

(
x

#–

i
)
f dx #–ϵ d s[m] − (−1)|

#–ϵ |+1 d
(
x

#–

i
)

dx #–ϵ d f · s d s[m−1]

− (−1)|
#–ϵ |(−1)|

#–ϵ |(m+ 1)x
#–

i dx #–ϵ d f d s[m]

+ (−1)|
#–ϵ | d

(
x

#–

i · f
)

dx #–ϵ d s[m]

− (−1)|
#–ϵ |
(

d
(
x

#–

i dx #–ϵ d f
)
· s d s[m−1]

)

− (−1)|
#–ϵ |
(
(−1)|

#–ϵ |+1 ·m · x
#–

i dx #–ϵ d f d s[m]
)

= −(−1)|
#–ϵ | d

(
x

#–

i
)
f dx #–ϵ d s[m] + (−1)|

#–ϵ | d
(
x

#–

i
)

dx #–ϵ d f · s d s[m−1]

− (m+ 1)x
#–

i dx #–ϵ d f d s[m]

+ (−1)|
#–ϵ | d

(
x

#–

i
)
· f dx #–ϵ d s[m] + (−1)|

#–ϵ |x
#–

i · d(f) dx #–ϵ d s[m]

− (−1)|
#–ϵ | d

(
x

#–

i
)

dx #–ϵ d f · s d s[m−1] +mx
#–

i dx #–ϵ d f d s[m]

= −(m+ 1)x
#–

i dx #–ϵ d f d s[m] + (−1)|
#–ϵ |x

#–

i · d(f) dx #–ϵ d s[m]

+mx
#–

i dx #–ϵ d f d s[m]

= −(m+ 1)x
#–

i dx #–ϵ d f d s[m] + x
#–

i dx #–ϵ d f d s[m] +mx
#–

i dx #–ϵ d f d s[m]

= 0

∂
(

d
(
x

#–

i dx #–ϵ d s[m]
))

+ d
(
∂
(
x

#–

i dx #–ϵ d s[m]
))

= ∂
(

d
(
x

#–

i
)

dx #–ϵ d s[m]
)
− (−1)|

#–ϵ | d
(
x

#–

i dx #–ϵ d f d s[m−1]
)

= −(−1)|
#–ϵ |+1 d

(
x

#–

i
)

dx #–ϵ d f d s[m−1] − (−1)|
#–ϵ | d

(
x

#–

i
)

dx #–ϵ d f d s[m−1]

= 0

Note that as Xf is free as a Z-graded k-module, it follows from [Hov99,
2.3.6] that the underlying chain complex of Xf is cofibrant. ♦

Proposition 9.2.2.2. Assume MonOrdMonicPoly and that Conjecture D10

holds for f . Then there is an equivalence

HHMixed(k[x1, . . . , xn]/(f)) ≃ γMixed(Xf )

in Mixed, where Xf is as in Construction 9.2.2.1. ♥

Proof. This is a specialization of Proposition 8.3.0.1 for R = k[x1, . . . , xn],
the x1 from Proposition 8.3.0.1 being f and the n from Proposition 8.3.0.1
being 1. The requirement on R was verified with Proposition 9.2.1.2. That
10Note that Conjecture D holds if n = 1 or n = 2 with 2 invertible in k by Proposi-

tion 7.5.3.1.
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Conjecture D holds for f yields a commutative diagram

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed(k[t]) Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed(k[X]) Alg(γMixed)
(
Ω•
k[X]/k

)

≃

≃

HHMixed(F )

HHMixed(G)

Alg(γMixed)(Ω•
F/k)

Alg(γMixed)(Ω•
G/k)

≃

(∗)

in Alg(Mixed) such that the horizontal morphisms are equivalences. We can
use the top square as the one witnessing Conjecture C for Proposition 8.3.0.1.

Naturality of the identification at the start of Section 7.1 yields a commu-
tative diagram

k[t]⊗ Λ(d t) k[x1, . . . , xn]⊗ Λ(dx1, . . . dxn)

Ω•
k[t]/k Ω•

k[x1,...,xn]/k

∼= ∼=

in Alg(Mixedcof) with the vertical morphisms the isomorphisms from Sec-
tion 7.1 and the horizontal morphisms induced by t 7→ f . Combining this
with the bottom square in diagram (∗), we obtain a commutative diagram as
follows in Alg(Mixed)

Alg(γMixed)(k[t]⊗ Λ(d t)) Alg(γMixed)(k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn))

Alg(γMixed)
(
Ω•
k[t]/k

)
Alg(γMixed)

(
Ω•
k[x1,...,xn]/k

)

HHMixed(k[t]) HHMixed(k[x1, . . . , xn])

≃ ≃

≃ ≃

where the left column is precisely (8.9), and the horizontal morphisms are all
induced by t 7→ f . Letting M be k[x1, . . . , xn] ⊗ Λ(dx1, . . . dxn), as a right-
k[t] ⊗ Λ(d t)-module in Mixedcof, with the module action arising from the
above morphism of algebras, M thus satisfies the requirements for applying
Proposition 8.3.0.1.
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9.2.3. A basis for the strict model
In this section we describe a new basis for

k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

in which the formulas for ∂ and d will take a form that will make it easier to
construct smaller strict models in later sections.

9.2.3.1. Interaction of q1f with d and multiplication

We will need two small results on the interaction of q1f and q2f with products
and the differentiation.

Proposition 9.2.3.1. Assume MonOrdMonicPoly. Then the following hold
for P and Q elements of the strict mixed complex

k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)

(see Section 7.1).

(1) If P is f -reduced, then dP is f -reduced as well.

(2) −q1f (d f · dP ) = q1f

(
d f · q1f (d f · P )

)
+ d
(
q1f (d f · P )

)

(3) q2f (PQ) = q1f

(
P · q1f (Q)

)
+ q2f

(
P · r0f (Q)

)
♥

Proof. Proof of claim (1): It suffices to consider the case P = x
#–

i for #–

i ∈ Zn≥0.
In this case, dP =

∑n
j=1 ijx

#–

i − #–ej , and the claim follows from #–

i − #–ej ≤
#–

i .
Proof of claim (2): By definition we have

d f · P = f · q1f (d f · P ) + r0f (d f · P )

so that applying d yields the following.

− d f · dP = d f · q1f (d f · P ) + f d
(
q1f (d f · P )

)
+ d
(
r0f (d f · P )

)

We can now apply q1f , to obtain the following.

−q1f (d f · dP ) = q1f
(
d f · q1f (d f · P )

)
+ q1f

(
f d
(
q1f (d f · P )

))

+ q1f
(
d
(
r0f (d f · P )

))

r0f (d f · P ) is f -reduced, so the third summand is zero by (1). We use Propo-
sition 9.1.3.15 (4) for the second summand.

= q1f
(
d f · q1f (d f · P )

)
+ d
(
q1f (d f · P )

)

Proof of claim (3): By definition of q1f and r0f , the following holds.

Q = q1f (Q) · f + r0f (Q)

570



9.2. A strict model for HHMixed of medium size

We can now multiply with P on the left.

PQ = P · q1f (Q) · f + P · r0f (Q)

Applying q2f and using Proposition 9.1.3.15 (4) on the first summand on the
right hand side we obtain the following.

q2f (PQ) = q1f
(
P · q1f (Q)

)
+ q2f

(
P · r0f (Q)

)

9.2.3.2. The basis

Definition 9.2.3.2. Assume MonOrdMonicPoly and let m be an integer.
We define two k-linear maps

C [m] : k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)
→ k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

and
E[m] : k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)

→ k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

as follows. If m < 0, then we let C [m] and E[m] be constant with value 0. If
m ≥ 0, then we define them as follows.

C [m](g) := sg d s[m]

E[m](g) := g d s[m] + sq1f (d f · g) d s[m−1] = g d s[m] + C [m−1]
(
q1f (d f · g)

)

In the formulas above, we interpret d s[−1] as zero.
Let J be the defined as

J :=
{ (

#–

i , l, #–ϵ ,m
)
∈ Zn≥0 × Z≥0 × {0, 1}

n × Z≥0

∣∣∣ #–

i � deg�(f)
}

and for (
#–

i , l, #–ϵ ,m) ∈ J, define c #–

i ,l, #–ϵ ,m and e #–

i ,l, #–ϵ ,m as follows.

c #–

i ,l, #–ϵ ,m := C [m]
(
x

#–

i f l dx #–ϵ
)
= sx

#–

i f l dx #–ϵ d s[m]

e #–

i ,l, #–ϵ ,m := E[m]
(
x

#–

i f l dx #–ϵ
)

= x
#–

i f l dx #–ϵ d s[m] + C [m−1]
(
q1f

(
d f · x

#–

i f l dx #–ϵ
))

♦

Proposition 9.2.3.3. Assume MonOrdMonicPoly. Then
{
c #–

i ,l, #–ϵ ,m

∣∣∣
(

#–

i , l, #–ϵ ,m
)
∈ J

}
∪
{
e #–

i ,l, #–ϵ ,m

∣∣∣
(

#–

i , l, #–ϵ ,m
)
∈ J

}

is a k-basis for the Z-graded k-module

k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

♥
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Proof. The set
{

d s[m]
∣∣∣ m ∈ Z≥0

}
∪
{
s d s[m]

∣∣∣ m ∈ Z≥0

}

is a k-basis for Λ(s)⊗ Γ(d s), so there is a sum decomposition as follows.

k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)
∼=
⊕

m≥0

Im
(
C [m]

)
⊕
⊕

m≥0

Im
(
E[m]

)

As C [m] and E[m] are clearly injective for m ≥ 0, it thus suffices to show that
{
x

#–

i f l dx #–ϵ
∣∣∣ #–

i ∈ Zn≥0,
#–

i � deg�(f), l ∈ Z≥0,
#–ϵ ∈ {0, 1}n

}

is a k-basis of k[x1, . . . , xn] ⊗ Λ(dx1, . . . , dxn), which follows from Proposi-
tion 9.2.1.1.

9.2.3.3. Description of boundary and differential

Proposition 9.2.3.4. Assume MonOrdMonicPoly, recall the notation from
Definition 9.2.3.2, and let ( #–

i , l, #–ϵ ,m) ∈ J. Then the following formulas hold
in the strict mixed complex Xf from Construction 9.2.2.1.

∂
(
c #–

i ,l, #–ϵ ,m

)
= e #–

i ,l+1, #–ϵ ,m

∂
(
e #–

i ,l, #–ϵ ,m

)
=




−E[m−1]

(
r0f

(
d f · x

#–

i dx #–ϵ
))

if l = 0

0 if l > 0

d
(
e #–

i ,l, #–ϵ ,m

)
= E[m]

(
d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

+ (m− 1)C [m−1]
(
q2f

(
d f · r0f

(
d f · x

#–

i f l dx #–ϵ
)))

♥

Proof. We start with ∂
(
c #–

i ,l, #–ϵ ,m

)
and obtain the following by reordering the

factors and applying the formula from Construction 9.2.2.1.

∂
(
c #–

i ,l, #–ϵ ,m

)
= ∂

(
sx

#–

i f l dx #–ϵ d s[m]
)

= ∂
(
(−1)|

#–ϵ |x
#–

i f l dx #–ϵ s d s[m]
)

= (−1)|
#–ϵ |
(
(−1)|

#–ϵ |x
#–

i f l+1 dx #–ϵ d s[m]

− (−1)|
#–ϵ |x

#–

i f l dx #–ϵ d f · s d s[m−1]
)

= x
#–

i f l+1 dx #–ϵ d s[m] − x
#–

i f l dx #–ϵ d f · s d s[m−1]

= x
#–

i f l+1 dx #–ϵ d s[m] + s d fx
#–

i f l dx #–ϵ d s[m−1]
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If follows from Proposition 9.1.3.15 (4) that

q1f (d fx
#–

i f l+1 dx #–ϵ ) = q0f (d fx
#–

i f l dx #–ϵ ) = d fx
#–

i f l dx #–ϵ

so that we obtain the following (continuing for ∂(c #–

i ,l, #–ϵ ,m)).

= x
#–

i f l+1 dx #–ϵ d s[m] + sq1f

(
d fx

#–

i f l+1 dx #–ϵ
)

d s[m−1]

= e #–

i ,l+1, #–ϵ ,m

We next consider ∂(e #–

i ,l, #–ϵ ,m).

∂
(
e #–

i ,l, #–ϵ ,m

)

= ∂
(
x

#–

i f l dx #–ϵ d s[m] + sq1f

(
d f · x

#–

i f l dx #–ϵ
)

d s[m−1]
)

= −(−1)|
#–ϵ |x

#–

i f l dx #–ϵ d f d s[m−1]

+ (−1)1+| #–ϵ |∂
(
q1f

(
d f · x

#–

i f l dx #–ϵ
)
s d s[m−1]

)

= −(−1)|
#–ϵ |x

#–

i f l dx #–ϵ d f d s[m−1]

+ (−1)2(1+| #–ϵ |)

(
q1f

(
d f · x

#–

i f l dx #–ϵ
)
f d s[m−1]

− q1f

(
d f · x

#–

i f l dx #–ϵ
)

d f · s · d s[m−2]

)

=
(
− d f · x

#–

i f l dx #–ϵ + q1f

(
d f · x

#–

i f l dx #–ϵ
)
f
)
· d s[m−1]

+ s d fq1f
(

d f · x
#–

i f l dx #–ϵ
)

d s[m−2]

Before we continue with ∂(e #–

i ,l, #–ϵ ,m), we carry out the following small calcu-
lation.

q1f

(
d f ·

(
− d f · x

#–

i f l dx #–ϵ + q1f

(
d f · x

#–

i f l dx #–ϵ
)
f
))

Using that d f squares to 0.

= q1f

(
d f · q1f

(
d f · x

#–

i f l dx #–ϵ
)
f
)

Applying Proposition 9.1.3.15 (4) to the outer q1f .

= d f · q1f
(

d f · x
#–

i f l dx #–ϵ
)

Note that by definition we also have the following equality.

− d f · x
#–

i f l dx #–ϵ + q1f

(
d f · x

#–

i f l dx #–ϵ
)
f = −r0f

(
d f · x

#–

i f l dx #–ϵ
)
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Continuing with ∂(e #–

i ,l, #–ϵ ,m), we can plug in the above two calculations to
obtain the following.

∂(e #–

i ,l, #–ϵ ,m)

= −r0f

(
d f · x

#–

i f l dx #–ϵ
)

d s[m−1] − sq1f

(
d f · r0f

(
d f · x

#–

i f l dx #–ϵ
))

d s[m−2]

= −E[m−1]
(
r0f

(
d f · x

#–

i f l dx #–ϵ
))

It follows from Proposition 9.1.3.15 (4) that this is zero for l > 0.
We now turn towards the mixed structure.

d
(
e #–

i ,l, #–ϵ ,m

)

= d
(
x

#–

i f l dx #–ϵ d s[m] + sq1f

(
d f · x

#–

i f l dx #–ϵ
)

d s[m−1]
)

= d
(
x

#–

i f l dx #–ϵ d s[m]
)

+ (−1)1+| #–ϵ | d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
)
s d s[m−1]

)

Applying the definition in Construction 9.2.2.1.

= d
(
x

#–

i f l
)

dx #–ϵ d s[m]

+ (−1)1+| #–ϵ | d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
))
s d s[m−1]

+mq1f

(
d f · x

#–

i f l dx #–ϵ
)

d s[m]

=
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

d s[m]

− s d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
))

d s[m−1]

Replacing the first summand by E[m] − C [m−1](q1f (d f · −)) and the second
summand by C [m−1].

= E[m]
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

− C [m−1]
(
q1f

(
d f · d

(
x

#–

i f l
)

dx #–ϵ +md f · q1f
(

d f · x
#–

i f l
)

dx #–ϵ
))

− C [m−1]
(

d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
)))

= E[m]
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

− C [m−1]
(
q1f

(
d f · d

(
x

#–

i f l dx #–ϵ
)))

− C [m−1]
(
q1f

(
md f · q1f

(
d f · x

#–

i f l
)

dx #–ϵ
))

− C [m−1]
(

d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
)))
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We now apply Proposition 9.2.3.1 (2) for P = x
#–

i f l dx #–ϵ to the second sum-
mand.

= E[m]
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

+ C [m−1]
(
q1f

(
d f · q1f

(
d f · x

#–

i f l dx #–ϵ
)))

+ C [m−1]
(

d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
)))

− C [m−1]
(
q1f

(
md f · q1f

(
d f · x

#–

i f l
)

dx #–ϵ
))

− C [m−1]
(

d
(
q1f

(
d f · x

#–

i f l dx #–ϵ
)))

= E[m]
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

− (m− 1)C [m−1]
(
q1f

(
d f · q1f

(
d f · x

#–

i f l dx #–ϵ
)))

We apply Proposition 9.2.3.1 (3) to the second summand for P = d f and
Q = x

#–

i f l dx #–ϵ

= E[m]
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

− (m− 1)C [m−1]
(
q2f

(
d f · d f · x

#–

i f l dx #–ϵ
))

+ (m− 1)C [m−1]
(
q2f

(
d f · r0f

(
d f · x

#–

i f l dx #–ϵ
)))

Finally, we use that d f squares to 0.

= E[m]
(

d
(
x

#–

i f l
)

dx #–ϵ +mq1f

(
d f · x

#–

i f l
)

dx #–ϵ
)

+ (m− 1)C [m−1]
(
q2f

(
d f · r0f

(
d f · x

#–

i f l dx #–ϵ
)))

9.3. A smaller strict model for the underlying
complex

Assume MonOrdMonicPoly and that Conjecture D holds for the poly-
nomial f . Then Proposition 9.2.2.2 shows that the strict mixed complex
Xf constructed in Construction 9.2.2.1 represents the Hochschild homology
HHMixed(k[x1, . . . , xn]/f). This strict mixed model is significantly “smaller”
than the standard Hochschild complex that we discussed in Section 6.3.1, but
we would nevertheless like to obtain an even smaller model.

There are two ways in which we can relax the problem in the hope of being
able to make progress on this. We could impose stronger conditions on f (so
make the result less general), or we could consider less structure. It is the
latter that we do in this section. Instead of asking for a strict mixed complex
representing HHMixed(k[x1, . . . , xn]/f) as an object in Mixed, we merely ask
for a chain complex representing HH(k[x1, . . . , xn]/f) as an object in D(k).

575



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Such a chain complex was already given in [BACH], obtained by identifying
a decomposition of the normalized standard Hochschild complex11 as a sum
of a small chain complex with a very large acyclic chain complex.

We will instead start from the chain complex Xf from Construction 9.2.2.1
and Propositions 9.2.2.2 and 9.2.3.4, and similarly show that a chain complex
isomorphic to the one obtained in [BACH] is a subcomplex and that the
inclusion is a quasiisomorphism. This gives a new, different proof of the result
in [BACH] (albeit requiring the additional assumption of Conjecture D, which
we only showed for n = 1 and n = 2, additionally assuming that 2 is invertible
in k, in Proposition 7.5.3.1).

We will describe the smaller model as a subcomplex of the complexXf from
Construction 9.2.2.1 in Section 9.3.1, and then show that this subcomplex is
isomorphic to the one described in [BACH] in Section 9.3.2.

9.3.1. The smaller strict model as a subcomplex
In this section we define a subcomplex of Xf from Construction 9.2.2.1

and show that the inclusion of this subcomplex is a quasiisomorphism.

Definition 9.3.1.1. Assume MonOrdMonicPoly. Let

Xf := k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

be the strict mixed complex from Construction 9.2.2.1.
We then define the following sub-graded-k-modules of Xf for every inte-

ger l ≥ 0, where c #–

i ,l′, #–ϵ ,m and e #–

i ,l′, #–ϵ ,m are the basis elements defined in
Definition 9.2.3.2.

Xc
f,l :=

⊕

(
#–

i ,l′, #–ϵ ,m)∈J

l′=l

k · c #–

i ,l′, #–ϵ ,m Xc
f,≥l :=

⊕

l′≥l

Xc
f,l′ Xc

f,≤l :=
⊕

l′≤l

Xc
f,l′

Xe
f,l :=

⊕

(
#–

i ,l′, #–ϵ ,m)∈J

l′=l

k · e #–

i ,l′, #–ϵ ,m Xe
f,≥l :=

⊕

l′≥l

Xe
f,l′ Xe

f,≤l :=
⊕

l′≤l

Xe
f,l′

♦

Proposition 9.3.1.2. Assume MonOrdMonicPoly and let l ≥ 0. Then the
following hold for the sub-graded-k-modules of the strict mixed complex Xf

from Construction 9.2.2.1 that were defined in Definition 9.3.1.1.

∂
(
Xc
f,l

)
⊆ Xe

f,l+1

∂
(
Xe
f,0

)
⊆ Xe

f,0

∂
(
Xe
f,l

)
⊆ 0 if l > 0

11See Section 6.3.1.5.
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In particular, Xe
f,0 as well as the sum

Xc
f,≥l ⊕X

e
f,≥l+1

are closed under the boundary operator and hence subcomplexes of Xf . Both
of these chain complexes are cofibrant, and Xc

f,≥l ⊕X
e
f,≥l+1 is acyclic. ♥

Proof. The statement about the images of the differential follow immediately
from the description of ∂ in Proposition 9.2.3.4.

That Xe
f,0 and Xc

f,≥l ⊕ X
e
f,≥l+1 are cofibrant as chain complexes follows

from [Hov99, 2.3.6], as they are concentrated in nonnegative degree and by
definition free as graded k-modules.

Finally, that Xc
f,≥l ⊕X

e
f,≥l+1 is acyclic also immediately follows from the

description of ∂ in Proposition 9.2.3.4;

e #–

i ,l′, #–ϵ ,m 7→ c #–

i ,l′−1, #–ϵ ,m for
(

#–

i , l′, #–ϵ ,m
)
∈ J, l′ ≥ l + 1

c #–

i ,l′, #–ϵ ,m 7→ 0 for
(

#–

i , l′, #–ϵ ,m
)
∈ J, l′ ≥ l

defines a contracting homotopy, see Definition 9.2.3.2 and Propositions 9.2.3.3
and 9.2.3.4.

Proposition 9.3.1.3. Assume MonOrdMonicPoly and that Conjecture D12

holds for f . Then there is an equivalence

HH(k[x1, . . . , xn]/f) ≃ γ
(
Xe
f,0

)

in D(k), where Xe
f,0 is the cofibrant chain complex defined in Definition 9.3.1.1

and Proposition 9.3.1.2. ♥

Proof. It follows from Proposition 9.2.3.3 that, as a graded k-module, Xf

decomposes as the direct sum of Xe
f,0 and Xc

f,≥0⊕X
e
f,≥1. As both summands

are subcomplexes of Xf by Proposition 9.3.1.2, with the latter chain complex
acyclic, it follows that the inclusion

Xe
f,0 → Xf

is a quasiisomorphism. We hence obtain equivalences

γ
(
Xe
f,0

)
≃ γ(Xf ) ≃ HH(k[x1, . . . , xn]/f)

in D(k), where the first equivalence is induced by the just mentioned quasiiso-
morphism, and the second equivalence is the one from Proposition 9.2.2.2.
12Note that Conjecture D holds if n = 1 or n = 2 with 2 invertible in k by Proposi-

tion 7.5.3.1.
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9.3.2. A different description of the smaller model
In Proposition 9.3.1.3 we showed that the chain complex Xe

f,0 defined in
Definition 9.3.1.1 is a model for HH(k[x1, . . . , xn]/f) as an object in D(k),
assuming some conditions on f . As Xe

f,0 was defined as a subcomplex of Xf

generated by some basis elements, it is slightly unexplicit, and in this section
we give a somewhat more direct description of this complex. In particular,
our description will be nearly the same as the one in [BACH, 2.3 and 3.2]13.

Construction 9.3.2.1. Assume MonOrdMonicPoly.
We let

p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f

be the canonical quotient map. Note that p is a morphism of k-algebras. If
M is a graded k-module, then we will also denote the morphism of graded
k-modules

p⊗ idM : k[x1, . . . , xn]⊗M → k[x1, . . . , xn]/f ⊗M

by p again.
Consider the commutative graded k-algebra

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

with xi of degree 0, dxi of degree 1 and t of degree 2. We define an operator
∂ decreasing degree by 1 by extending the following formulas by k-linearity
and the Leibniz rule, where P ∈ k[x1, . . . , xn]/f , 1 ≤ i ≤ n, and m ≥ 0.

∂(P ) = 0, ∂(dxi) = 0, ∂
(
t[m]
)
= −p(d f)t[m−1]

To show that ∂ is well-defined we need to verify that the formula for ∂(t[m])
is compatible with the Leibniz rule, so as for m,m′ ≥ 0 we have

t[m] · t[m
′] =

(
m+m′

m

)
t[m+m′]

we have to show that the following equality holds.

−p(d f)t[m−1] · t[m
′]− t[m] ·p(d f)t[m

′−1] = −

(
m+m′

m

)
p(d f)t[m+m′−1] (∗)

The left hand side is given by

− p(d f)t[m−1] · t[m
′] − t[m] · p(d f)t[m

′−1]

13The complex constructed here differs from the one in [BACH] in the very minor detail
that our external generators are the the additive inverses of the external generators they
consider. We do this because we will in Section 9.5 also define a mixed structure on this
complex, and prefer the exterior generators to be given by dxi rather than − dxi.
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= −p(d f)
(
t[m−1] · t[m

′] + t[m] · t[m
′−1]
)

= −p(d f)
((

m+m′ − 1

m− 1

)
t[m+m′−1] +

(
m+m′ − 1

m

)
t[m+m′−1]

)

so (∗) follows from
(
m+m′−1
m−1

)
+
(
m+m′−1

m

)
=
(
m+m′

m

)
.

As d f · d f = 0, the operator ∂ squares to zero, and thus makes

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

into a commutative differential graded k-algebra. It is isomorphic to the
one considered in [BACH, 2.3 and 3.2]14, where it is shown that this com-
plex is quasiisomorphic to the normalized standard Hochschild complex for
k[x1, . . . , xn]/f .

Now let

φ : Xe
f,0 → k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

be the morphism of graded k-modules defined on basis elements as follows.

φ
(
e #–

i ,0, #–ϵ ,m

)
:= p

(
x

#–

i
)

dx #–ϵ t[m] for
(

#–

i , 0, #–ϵ ,m
)
∈ J ♦

Proposition 9.3.2.2. Assume MonOrdMonicPoly. Then the morphism of
graded k-modules φ from Construction 9.3.2.1 is an isomorphism of chain
complexes. ♥

Proof. We first check that φ is compatible with the boundary operator. So
let the tuple (

#–

i , 0, #–ϵ ,m) be an element of J.

φ
(
∂
(
e #–

i ,0, #–ϵ ,m

))

We first use Proposition 9.2.3.4.
= φ

(
−E[m−1]

(
r0f

(
d f · x

#–

i dx #–ϵ
)))

= −p
(
r0f

(
d f · x

#–

i
))

dx #–ϵ t[m−1]

We can now use that p sends the ideal generated by f to 0 and hence satisfies
p ◦ r0f = p, and furthermore that p is multiplicative.

= −p
(

d f · x
#–

i
)

dx #–ϵ t[m−1] = −p(d f)p
(
x

#–

i
)

dx #–ϵ t[m−1]

= ∂
(
p
(
x

#–

i
)

dx #–ϵ t[m]
)
= ∂

(
φ
(
e #–

i ,0, #–ϵ ,m

))

It now remains to show that φ is an isomorphism of graded k-modules. For
this it is enough to show that the restriction of the quotient map

p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f

14As noted before, our description deviates in the signs of the external generators, but
this does not change the fact that the differential graded k-algebras themselves are
isomorphic, via an isomorphism from our complex to the one in [BACH, 2.3 and 3.2]
mapping xi to Xi, dxi to −ei, and t[m] to t(m). .
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to the sub-graded-k-module of f -reduced polynomials is an isomorphism.
But this follows immediately from Proposition 9.1.3.10, which shows that
every element of k[x1, . . . , xn]/f has a unique f -reduced representative in
k[x1, . . . , xn].

The following corollary alternatively follows easily from the main result of
[BACH], without requiring the assumption that Conjecture D holds for f .
Our approach gives a different, independent, proof for those cases in which
Conjecture D holds for f .
Corollary 9.3.2.3. Assume MonOrdMonicPoly and that Conjecture D15

holds for f . Then there is an equivalence

HH(k[x1, . . . , xn]/f) ≃ γ(k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t))

in D(k), where

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

is the cofibrant chain complex defined in Construction 9.3.2.1. ♥

Proof. Combine Proposition 9.3.1.3 with Proposition 9.3.2.2.

9.4. Logarithmic dimension of polynomials
Assume MonOrdMonicPoly and that Conjecture D holds for f . In Sec-

tion 9.3.1 we constructed a subcomplex Xe
f,0 of the strict mixed complex

Xf from Construction 9.2.2.1 such that the inclusion is a quasiisomorphism,
which implied that Xe

f,0 represents the Hochschild homology

HH(k[x1, . . . , xn]/f)

as an object of D(k).
We would like to show that the strict mixed structure on Xf restricts to

Xe
f,0, which would allow us to conclude that Xe

f,0 even represents

HHMixed(k[x1, . . . , xn]/f)

as an object of Mixed.
Unfortunately the formula for d we obtained in Proposition 9.2.3.4 is some-

what more complicated than those we obtained for ∂ and it is not obvious
that Xe

f,0 is closed under d. In particular, there is a term of the form

C [m−1]
(
q2f

(
d f · r0f

(
d f · x

#–

i dx #–ϵ
)))

(9.3)

that we would need to vanish, and there is no reason to assume this is always
the case. Indeed, the following example shows that this term can be nonzero.

15Note that Conjecture D holds if n = 1 or n = 2 and 2 is invertible in k by Proposi-
tion 7.5.3.1.
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Example 9.4.0.1. Let k = Z, n = 2, and consider the following polynomial.

f = x1x2 − x
2
2

If we let � be the lexicographic monomial order16, then f is monic and of
degree (1, 1).

We claim that
q2f
(
d f · r0f

(
d f · x21

))

is nonzero, even though x21 is f -reduced. Let us calculate this step by step.

r0f
(
d f · x21

)
= r0f

(
x21x2 dx1 + x31 dx2 − 2x21x2 dx2

)

To calculate for example r0f (x21x2) we start by writing x21x2 = x1f+x1x
2
2 and

then continue with x1x
2
2 = x2f + x32.

= x32 dx1 + x31 dx2 − 2x32 dx2

We next need to multiply by d f , and obtain the following.

d f · r0f
(
d f · x21

)
=
(
x31x2 − 2x42 − x1x

3
2 + 2x42

)
dx1 dx2

Applying q2f amounts to applying q1f twice by Proposition 9.1.3.15 (6), so we
obtain the following.

q2f
(
d f · r0f

(
d f · x21

))

= q1f
(
q1f
(
x31x2 − 2x42 − x1x

3
2 + 2x42

))
dx1 dx2

= q1f
((
x21 + x1x2 + x22

)
− 2 · (0)−

(
x22
)
+ 2 · (0)

)
dx1 dx2

= q1f
(
x21 + x1x2

)
dx1 dx2

= (0 + 1) dx1 dx2 = dx1 dx2 6= 0 ♦

The goal of this section is to describe a criterion for f that is easy to check
and that implies that terms of the form (9.3) that need to be zero for Xe

f,0 to
be closed under d are indeed zero. For this we will generalize r0f (d f ·x

#–

i dx #–ϵ )
to an arbitrary f -reduced polynomial R and ask what the largest integer i is
such that qif (d f ·R) can be nonzero for an f -reduced polynomial R (with f

fixed). We will call this number the log dimension of d f to basis f and will
give an easy to check criterion that implies that this number is at most 1 in
Proposition 9.4.2.5 and Corollary 9.4.2.6.

We will start this section with Section 9.4.1, where we discuss the logarithm
for polynomials, before we turn towards the log dimension in Section 9.4.2.

16So (i1, i2) � (j1, j2) if i1 < j1 or i1 = j1 and i2 < j2.
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9.4.1. Logarithm for polynomials
In this section we introduce a notion of logarithm for multivariable poly-

nomials and point out some basic properties and consistency results.

Definition 9.4.1.1. Assume MonOrdMonicPoly. We define a map

logf : k[x1, . . . , xn]→ Z≥0

as follows. For P an element of k[x1, . . . , xn], we let

logf (P ) := max
({
i ∈ Z≥0

∣∣ rif (P ) 6= 0
})

and call logf (P ) the logarithm to base f of P (with respect to the monomial
order �). Note that the set over which we take the maximum is finite, as all
but finitely many summands in the decomposition from Proposition 9.1.3.12
are zero, so attains a maximum in Z≥0. ♦

Remark 9.4.1.2. Assume MonOrdMonicPoly and let P be an element of
k[x1, . . . , xn]. Then P is f -reduced if and only if logf (P ) = 0. ♦

Remark 9.4.1.3. Assume MonOrdMonicPoly and that we are in the situa-
tion of Construction 9.1.1.11 and that deg�(f) is in the image of ψ. Let P be
an element of k[x1, . . . , xn] and let f ′ and P ′ be the elements of k′[y1, . . . , ym]
corresponding to f and P under the isomorphism of Construction 9.1.1.11.
It then follows from Remark 9.1.3.11 that logf ′(P ′) = logf (P ). ♦

Proposition 9.4.1.4. Assume MonOrdMonicPoly and let P and Q be ele-
ments of k[x1, . . . , xn]. Then the following holds.

logf (P +Q) ≤ max
({

logf (P ), logf (Q)
})

♥

Proof. By Proposition 9.1.3.15 (3), rif is additive for every i ≥ 0, so if
rif (P +Q) 6= 0 for some i ≥ 0, then at least one of rif (P ) and rif (Q) must be
nonzero as well.

9.4.2. Logarithmic dimension for polynomials
Let f be an element of R>1, i. e. a real number bigger than 1, and let us

for a moment consider the logarithm function

logf : R>0 → R

for the real numbers. This function satisfies a compatibility relation with
multiplication; if P and Q are positive real numbers, then

logf (P ·Q) = logf (P ) + logf (Q)

holds. In Section 9.4.1 we defined a logarithm for (multivariable) polynomials,
and we would like to better understand how the logarithm of products relates
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to the individual logarithms as well. The logarithm for polynomials does not
take real values, so to improve the analogy we should first replace logf with
the function

log′f : R>0 → Z≥0, x 7→

{⌊
logf (x)

⌋
if logf (x) ≥ 0

0 otherwise

so we round down the logarithm, but set it to 0 should it be negative. The
rounding destroys the precise property of the logarithm of a product be-
ing the sum of the logarithms, but as for any real number x it holds that
x− 1 < ⌊x⌋ ≤ x, we still obtain an inequality

log′f (P ) + log′f (Q) ≤ log′f (P ·Q) ≤ log′f (P ) + log′f (Q) + 1 (9.4)

for every P and Q in R>0.
If we now let f be an element of k[x1] that is a monic polynomial of positive

degree, and P and Q any elements of k[x1], then the analogue of (9.4) holds,
at least as long k is an integral domain. Indeed, for one-variable polynomials,
it is actually not difficult to see that

logf (P ) =
⌊

deg(P )
deg(f)

⌋

from which the inequality

logf (P ) + logf (Q) ≤ logf (P ·Q) ≤ logf (P ) + logf (Q) + 1

follows as long as k is an integral domain. The inequality

logf (P ·Q) ≤ logf (P ) + logf (Q) + 1

holds for any commutative ring k. We can restate this as saying that the
expression

logf (P ·Q)− logf (P )− logf (Q) (9.5)

is bounded above by 1 as we let f , P , and Q vary.
Let us now consider multivariable polynomials and assume MonOrdMon-

icPoly. The first question we can then ask is whether (9.5) is still bounded
above while letting f , P , and Q range over k[x1, . . . , xn] with f satisfying the
assumptions in MonOrdMonicPoly.

Unfortunately, this is not the case as soon as n ≥ 2. Consider the ex-
ample f = x1x2, with P = xm1 and Q = xm2 , where m ≥ 1. In this case,
logf (P ) = logf (Q) = 0, but logf (P · Q) = m, so the value of (9.5) is un-
bounded if we let f , P , and Q vary.

However, if we fix f , then it is not difficult to find examples where the
value of (9.5) is bounded while letting P and Q range over k[x1, . . . , xn]. For
example consider f = x1. In this case the value of logf (P ) is given by the
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highest exponent of x1 appearing in the monomials of P , and the value of
(9.5) is bounded above by 0.

So we can instead ask, given fixed f , whether the value of (9.5), as P and
Q range over the elements of k[x1, . . . , xn], is bounded above, and if so, what
the maximum value is. In this section we go one step further, and fix both f
as well as P , and consider the supremum of (9.5) when varying Q, calling it
the log dimension to base f of P . In particular, we will establish a condition
that ensures that the log dimension of a polynomial is at most 1.

Definition 9.4.2.1. Assume MonOrdMonicPoly. For P an element of the
polynomial k-algebra k[x1, . . . , xn] we let logdimf (P ) be the element of the
set Z≥0 ∪ {∞} that is defined as

logdimf (P ) := sup
({

logf (P ·Q)− logf (P )− logf (Q)
∣∣ Q ∈ k[x1, . . . , xn]

})

and call logdimf (P ) the log dimension to base f of P . ♦

Remark 9.4.2.2. Assume MonOrdMonicPoly, that we are in the situa-
tion of Construction 9.1.1.11, and that deg�(f) is in the image of ψ. Let
P be an element of k[x1, . . . , xn] and let f ′ and P ′ be the elements of
k′[y1, . . . , ym] corresponding to f and P under the isomorphism of Construc-
tion 9.1.1.11. It then follows from Remark 9.4.1.3 and Remark 9.1.3.9 that
logdimf ′(P ′) = logdimf (P ). ♦

Proposition 9.4.2.3. Assume MonOrdMonicPoly and let P ∈ k[x1, . . . , xn]
be a polynomial. Then it suffices to consider f -reduced polynomials Q in the
definition of logdimf (P ), i. e. there is an equality as follows.

logdimf (P )

= sup
({

logf (P ·R)− logf (P )
∣∣ R ∈ k[x1, . . . , xn], R is f -reduced

})
♥

Proof. For the moment let us denote the right hand side of the equality in
the statement by logdimred

f (P ). The inequality logdimred
f (P ) ≤ logdimf (P )

is clear, so it suffices to show that logdimf (P ) ≤ logdimred
f (P ) also holds.

So let Q be any element of k[x1, . . . , xn]. It suffices to find an f -reduced
polynomial R such that

logf (P ·Q)− logf (P )− logf (Q) ≤ logf (P ·R)− logf (P )

holds, which is equivalent to the following inequality.

logf (P ·Q)− logf (Q) ≤ logf (P ·R)

For this, let us write Q as

Q =

logf (Q)∑

i=0

rif (Q)f i
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so that we obtain the following chain of inequalities.

logf (P ·Q)− logf (Q)

= logf




logf (Q)∑

i=0

P · rif (Q) · f i


− logf (Q)

Using Proposition 9.4.1.4.
≤ max

({
logf

(
P · rif (Q) · f i

) ∣∣ 0 ≤ i ≤ logf (Q)
})
− logf (Q)

Using Proposition 9.1.3.15 (4).
≤ max

({
logf

(
P · rif (Q)

)
+ i

∣∣ 0 ≤ i ≤ logf (Q)
})
− logf (Q)

≤ max
({

logf
(
P · rif (Q)

) ∣∣ 0 ≤ i ≤ logf (Q)
})

+ logf (Q)− logf (Q)

= max
({

logf
(
P · rif (Q)

) ∣∣ 0 ≤ i ≤ logf (Q)
})

We can thus take R to be the f -reduced polynomial rif (Q), where the integer
0 ≤ i ≤ logf (Q) is chosen to maximize logf

(
P · rif (Q)

)
.

Proposition 9.4.2.4. Assume MonOrdMonicPoly, and assume furthermore
that the degree of f satisfies deg�(f) ≥ (1, . . . , 1) and that f #–

i = 0 for any
#–

i ∈ Zn≥0 such that #–

i � deg�(f), i. e. every variable divides the leading mono-
mial of f and every monomial appearing in f divides the leading monomial.

Let P ∈ k[x1, . . . , xn] be an f -reduced polynomial such that P #–

i = 0 for
every #–

i ∈ Zn≥0 such that #–

i � deg�(f), i. e. every monomial in P divides the
lead monomial of f .

Then logdimf (P ) ≤ 1. ♥

Proof. By Proposition 9.4.2.3, it suffices to show that for any f -reduced poly-
nomial Q the inequality logf (P ·Q) ≤ 1 holds. Using Proposition 9.4.1.4 we
can furthermore reduce to the case P = x

#–

j with #–

j < deg�(f) and Q = x
#–

i

with #–

i � deg�(f).
By Proposition 9.1.3.12 we can write the product P ·Q = x

#–

j +
#–

i as

x
#–

j +
#–

i = R2f
2 +R1f +R0 (∗)

such that R1 and R0 are f -reduced polynomials, and R2 is any polynomial.
What we have to show is then that R2 = 0. We prove this by contradiction
and assume that R2 6= 0. It then follows from Proposition 9.1.2.3 (4) that

(
R2f

2
)
deg⪯(R2)+2 deg⪯(f)

6= 0

so that it suffices to show that
(
x

#–

j +
#–

i
)
deg⪯(R2)+2 deg⪯(f)

= (R1f)deg⪯(R2)+2 deg⪯(f)

= (R0)deg⪯(R2)+2 deg⪯(f) = 0
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in contradiction to (∗).
We start with (x

#–

j +
#–

i )deg⪯(R2)+2 deg⪯(f), which could only be nonzero if
the following equation would hold.

#–

j +
#–

i = deg�(R2) + 2 deg�(f)

However, as #–

j < deg�(f) we would then obtain

#–

i =
(

#–

j +
#–

i
)
−

#–

j

>
(
deg�(R2) + 2 deg�(f)

)
− deg�(f)

≥ deg�(f)

which would contradict #–

i � deg�(f). Thus (x
#–

j +
#–

i )deg⪯(R2)+2 deg⪯(f) = 0
must hold.

Next, if (R1f)deg⪯(R2)+2 deg⪯(f) were nonzero, then there would exist two
tuples #–a ,

#–

b ∈ Zn≥0 such that (R1) #–a 6= 0 and f #–

b 6= 0 and such that the
equation

#–a +
#–

b = deg�(R2) + 2 deg�(f)

holds. Using that, by assumption on f , the inequality #–

b ≤ deg�(f) must
hold, we obtain completely like in the previous case, with #–

b taking the place
of #–

j , that
#–a ≥ deg�(f)

which contradicts the assumption that R2 is f -reduced.
Finally, that

(R0)deg⪯(R2)+2 deg⪯(f) = 0

follows directly from R0 being f -reduced.

Proposition 9.4.2.5. Assume MonOrdMonicPoly, and let P ∈ k[x1, . . . , xn]
be an f -reduced polynomial. Assume that for every #–

i ∈ Zn≥0 such that f #–

i 6= 0
or P #–

i 6= 0 the following property holds: If 1 ≤ j ≤ n and deg�(f)j 6= 0, then
#–

i j ≤ deg�(f)j. In other words, we require that every monomial appearing
in f or P divides the leading monomial of f after setting those variables that
do not appear in the leading monomial of f to 1.

Then logdimf (P ) ≤ 1. ♥

Proof. Let {i′1, . . . , i′r} be the subset of {1, . . . , n} of elements for which
deg�(f)i′j = 0, let {i1, . . . , il} be the complement, and let

φ : {i1, . . . , il} → {1, . . . , n}

be the inclusion. Note that deg�(f) is then in the image of ψ from Construc-
tion 9.1.1.11. Denote by f ′ and P ′ the elements of (k[xi′1 , . . . , xi′r ])[xi1 , . . . , xil ]
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corresponding to f and P under the isomorphism of Construction 9.1.1.11.
Note that by Proposition 9.1.3.5, f ′ is monic and deg�(f) = ψ

(
deg�(f ′)

)

by Proposition 9.1.2.4. Then the assumptions on f and P then translate to
f ′ and P ′ satisfying the assumptions required in Proposition 9.4.2.4. We can
thus conclude that logdimf ′(P ′) ≤ 1. As by Remark 9.4.2.2 we also have
logdimf (P ) = logdimf ′(P ′), we are done.

Corollary 9.4.2.6. Assume MonOrdMonicPoly, and assume that f satisfies
the property required in Proposition 9.4.2.5.

Then for every 1 ≤ i ≤ n the partial derivative ∂f
∂xj

satisfies the property

required of P in Proposition 9.4.2.5, and so logdimf

(
∂f
∂xj

)
≤ 1. In particular,

q2f (d f · P ) = 0 for every f -reduced polynomial P . ♥

Proof. Every monomial in ∂f
∂xj

divides a monomial in f .

Notation 9.4.2.7. Assume MonOrdMonicPoly. Then we define logdimf (d f)
as follows.

logdimf (d f) := max
({

logdimf

(
∂f

∂xi

) ∣∣∣∣ 1 ≤ i ≤ n
})

In particular, using this convention the conclusion of Corollary 9.4.2.6 can be
phrased as logdimf (d f) ≤ 1, and logdimf (d f) ≤ 1 implies q2f (d f · P ) = 0
for every f -reduced polynomial P . ♦

9.5. A smaller strict model for the mixed
complex

Assume MonOrdMonicPoly and that Conjecture D holds for f . As was
already discussed in the introduction of Section 9.4, we would like to show
that the strict mixed structure on Xf from Construction 9.2.2.1 restricts
to the subcomplex Xe

f,0 that we constructed in Section 9.3.1, which would
allow us to conclude that Xe

f,0 even represents HHMixed(k[x1, . . . , xn]/f) as
an object of Mixed.

The work of Section 9.4 now allows us to concisely state a condition on
f that implies that the strict mixed structure restricts like that, namely the
condition logdimf (d f) ≤ 1. We show that this indeed implies that the strict
mixed structure of Xf restricts to Xe

f,0 in the short section Section 9.5.1.
In continuation to Section 9.3.2, in which we gave a different (independent

from Xf ) description of the chain complex Xe
f,0 by constructing an isomor-

phism between Xe
f,0 and a chain complex with underlying graded k-module

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t) (9.6)

we will upgrade that isomorphism to an isomorphism of strict mixed com-
plexes in Section 9.5.2.
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9.5.1. Restricting the strict mixed structure
Proposition 9.5.1.1. Assume MonOrdMonicPoly and logdimf (d f) ≤ 1.

Then the strict mixed structure of Xf from Construction 9.2.2.1 restricts to
the subcomplex17 Xe

f,0. Thus the inclusion Xe
f,0 → Xf is a quasiisomorphism

of strict mixed complexes. ♥

Proof. That the inclusion Xe
f,0 → Xf is a quasiisomorphism was already

shown in Proposition 9.3.1.3, so it suffices to show that Xe
f,0 is closed under

d. Unpacking the definition of Xe
f,0 and using the formula for d obtained in

Proposition 9.2.3.4 this means that we need to show that for #–

i � deg�(f),
#–ϵ ∈ {0, 1}n and m ≥ 0 the element

d
(
e #–

i ,0, #–ϵ ,m

)
= E[m]

(
d
(
x

#–

i
)

dx #–ϵ +mq1f

(
d f · x

#–

i
)

dx #–ϵ
)

+ (m− 1)C [m−1]
(
q2f

(
d f · r0f

(
d f · x

#–

i dx #–ϵ
)))

is again in Xe
f,0. For this it suffices to show the following.

(1) d
(
x

#–

i
)

is f -reduced.

(2) q1f

(
d f · x

#–

i
)

is f -reduced.

(3) q2f (d f ·R) = 0 if R is f -reduced.

Claim (1) follows immediately from Proposition 9.2.3.1 (1), claim (2) follows
from logdimf (d f) ≤ 1 with Proposition 9.1.3.15 (6), and claim (3) follows
from logdimf (d f) ≤ 1.

9.5.2. An alternative description of the smaller strict
mixed model

We can now transfer the strict mixed structure on Xe
f,0 via the isomorphism

of chain complexes φ from Construction 9.3.2.1 and Proposition 9.3.2.2. We
first describe the resulting d, and then show that φ is compatible with it.

Construction 9.5.2.1. Assume MonOrdMonicPoly and logdimf (d f) ≤ 1.
Recall the commutative differential graded k-algebra

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t) (9.7)

as well as the morphisms p defined in Construction 9.3.2.1.

17See Definition 9.3.1.1 for the definition and Proposition 9.3.1.2 for being a subcomplex.
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9.5. A smaller strict model for the mixed complex

We will define a k-linear operator18 d that increases degree by 1 on (9.7)
by

d
(
p(P ) dx #–ϵ t[m]

)
:=
(
p
(
d
(
r0f (P )

))
+mp

(
q1f
(
d f · r0f (P )

)))
dx #–ϵ t[m] (9.8)

for P ∈ k[x1, . . . , xn], #–ϵ ∈ {0, 1}n, and m ≥ 0. Note that r0f is zero on the
ideal generated by f , so d as defined above is well-defined. ♦

Proposition 9.5.2.2. Assume MonOrdMonicPoly and logdimf (d f) ≤ 1.
Then the isomorphism

φ : Xe
f,0 → k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

of chain complexes from Construction 9.3.2.1 and Proposition 9.3.2.2 is com-
patible with the operators d defined on either side. In particular, d as defined
in Construction 9.5.2.1 on the codomain defines a strict mixed complex struc-
ture on

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

and this strict mixed complex is isomorphic as a mixed complex to Xe
f,0. ♥

Proof. Using the description for d on Xe
f,0 obtained in the proof of Proposi-

tion 9.5.1.1, we obtain for #–

i � deg�(f), #–ϵ ∈ {0, 1}n and m ≥ 0 the following
calculation.

φ
(

d
(
e #–

i ,0, #–ϵ ,m

))
= φ

(
E[m]

(
d
(
x

#–

i
)

dx #–ϵ +mq1f

(
d f · x

#–

i
)

dx #–ϵ
))

=
(
p
(

d
(
x

#–

i
))

+mp
(
q1f

(
d f · x

#–

i
)))

dx #–ϵ t[m]

=
(
p
(

d
(
r0f

(
x

#–

i
)))

+mp
(
q1f

(
d f · r0f

(
x

#–

i
))))

dx #–ϵ t[m]

= d
(
p
(
x

#–

i
)

dx #–ϵ t[m]
)

= d
(
φ
(
e #–

i ,0, #–ϵ ,m

))

We can now put everything together to obtain the main result.

Proposition 9.5.2.3. Assume MonOrdMonicPoly and logdimf (d f) ≤ 119.
Furthermore assume that Conjecture D20 holds for f .
18We will later show that under the isomorphism φ this operator agrees with the d that is

part of the strict mixed complex structure on Xe
f,0, so that the operator d defined here

defines a strict mixed complex structure will then be automatic.
19Recall from Corollary 9.4.2.6 and Proposition 9.4.2.5 that this holds in particular if for

every #–

i ∈ Zn
≥0 such that f #–

i 6= 0 the following property holds: If 1 ≤ j ≤ n and
deg�(f)j 6= 0, then #–

i j ≤ deg�(f)j .
20Note that Conjecture D holds if n = 1 or n = 2 and 2 is invertible in k by Proposi-

tion 7.5.3.1.
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Then there is an equivalence

HHMixed(k[x1, . . . , xn]/f)

≃ γMixed(k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t))

in Mixed, where

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

is the mixed complex described in Construction 9.3.2.1, Construction 9.5.2.1,
and Proposition 9.5.2.2. ♥

Proof. Combine Proposition 9.2.2.2 with Proposition 9.5.1.1 and Proposi-
tion 9.5.2.2.

Proposition 9.5.2.3 is the last missing piece to prove Theorem A that was
stated in the introduction.

Proof of Theorem A. Combine Proposition 9.5.2.3 with Proposition 7.5.3.1
and Corollary 9.4.2.6.

9.6. On the quasiisomorphisms constructed by
the Buenos Aires Cyclic Homology Group

Assume MonOrdMonicPoly and let A := k[x1, . . . , xn]/f . In [BACH], an
A⊗A-free resolution Rs(A) of A is constructed, together with morphisms of
A⊗A-chain complexes

h : Rs(A)→ CBar
(A) and g : CBar

(A)→ Rs(A)

where CBar
(A) refers to the normalized bar construction that relates to the

bar construction defined in Construction 6.3.2.1 as the normalized standard
Hochschild complex relates to the standard Hochschild complex; in chain
degree n ≥ 0 the complex CBar

(A) is given by A⊗(A/k·{1})⊗n⊗A. It it shown
in [BACH, 2.5.11] that g and h are mutual homotopy inverses. Tensoring over
A⊗A from the left with A one then obtains quasiisomorphisms21

h : Rs(A)→ C(A) and g : C(A)→ Rs(A)

so that γ(Rs(A)) ≃ γ(C(A)) in D(k). By Propositions 6.3.1.10 and 6.3.4.1 the
chain complex Rs(A) is thus a strict model for HH(A) as an object of D(k).
As was remarked in Section 9.3.2, the chain complex Rs(A) is isomorphic
to the chain complex k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn) ⊗ Γ(t) described in

21Compare with Proposition 6.3.2.4 for the identification C(A) ∼= A⊗A⊗A CBar
(A).
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9.6. On the quasiisomorphisms constructed by BACH

Construction 9.3.2.1. Corollary 9.3.2.3 could thus also be deduced directly
from the results of [BACH].

The question now arises whether one could similarly give an alternative
proof of Proposition 9.5.2.3 and Theorem A, perhaps even without requiring
the assumption that Conjecture D holds for f and that logdimf (d f) ≤ 1, by
showing that g or h can be lifted to a morphism of strict mixed complexes,
and using that the normalized standard Hochschild complex C(A) represents
HHMixed(A) even as an object in Mixed by Propositions 6.3.1.10 and 6.3.4.1.

The following two propositions show that this is in general not possible;
there is in general no strict mixed complex structure on Rs(A) that makes g
or h into a morphism of strict mixed complexes. The counterexamples we use
are f = x1x2x3 for g and f = x1x2 for h. Note that both of these polynomials
satisfy logdimf (d f) ≤ 1 by Corollary 9.4.2.6.

This leaves open the question of whether it is possible to prove that g or
h can be upgraded to a strongly homotopy linear morphism of strict mixed
complexes (see Section 4.2.3). This is what the author tried originally for
f = x1x2x3, but without succeeding. The amount of data required for the
higher homotopies combined with the complicated definitions of g and h may
make this infeasible as n gets large.

In the rest of this section we will assume that the reader is familiar with
the definitions and notation from [BACH]. We will however deviate from the
notation from [BACH] when we have already established notation for the
same thing. In particular, if P is an element of k[x1, . . . , xn], then we will
write q1f (P ) rather than P used in [BACH, 2.2.1], and we denote by P the
residue class of P in A/k · {1}, as in Proposition 6.3.1.10. We will denote by
φ the morphism A⊗A⊗A φ, with φ as in [BACH, 2.5.1].

Proposition 9.6.0.1. Let f = x1x2x3 and A := k[x1, x2, x3]/f . Then there
is no strict mixed structure on Rs(A) such that g is a morphism of strict
mixed complexes. ♥

Proof. If g were a morphism of strict mixed complexes, then the following
equation would need to hold.

d(g(x2x3 ⊗ x1 ⊗ x2)) = g(d(x2x3 ⊗ x1 ⊗ x2))

However, we will show that this is not possible no matter what the strict
mixed complex structure on Rs(A) is, as g(x2x3 ⊗ x1 ⊗ x2) is already zero,
making the left hand side zero, while the right hand side is nonzero.

We begin by showing that g(x2x3 ⊗ x1 ⊗ x2) = 0. We begin with the defi-
nition of g from [BACH, 2.5.4].

g(x2x3 ⊗ x1 ⊗ x2)

= x2x3g2(1⊗ x1 ⊗ x2)

= x2x3 ·

(
−q1f (x1x2)g0(1)■ t+ (−1)1

∑

i1<i2

φi2i1(1⊗ x1 ⊗ x2)ei1i2

)
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q1f (x1x2) = 0, so the first summand vanishes. We plug in the definition of φ
from [BACH, 2.5.1].

= x2x3 ·

(
−
∑

i1<i2

(
φ0
i2i1

(1⊗ x1 ⊗ x2) + φ1
i2i1

(1⊗ x1 ⊗ x2)
)
ei1i2

)

= x2x3 ·

(
−
∑

i1<i2

(
∂x1

∂xi2
·
∂x2

∂xi1
+ φ1

i2i1
(1⊗ x1 ⊗ x2)

)
ei1i2

)

The first summand can only be nonzero if both i2 = 1 and i1 = 2, but this
does not actually occur as i1 < i2.

= x2x3 ·

(
−
∑

i1<i2

(
φ1
i2i1

(1⊗ x1 ⊗ x2)
)
ei1i2

)

= x2x3 ·

(
−
∑

i1<i2

(
−1 ·

∂q1f (x1x2)

∂xi2
· φ0

i1
(1⊗ f)

)
ei1i2

)

This is zero as q1f (x1x2) = 0.
It remains to show that g(d(x2x3 ⊗ x1 ⊗ x2)) is not zero. We begin by

evaluating d(x2x3 ⊗ x1 ⊗ x2) using Proposition 6.3.1.10.

g3(d(x2x3 ⊗ x1 ⊗ x2))
= g3(1⊗ x2x3 ⊗ x1 ⊗ x2 + 1⊗ x1 ⊗ x2 ⊗ x2x3 + 1⊗ x2 ⊗ x2x3 ⊗ x1)

= −
(
q1f (x1x2x3)g1(1⊗ x2) + q1f (x1x2)g1(1⊗ x2x3)

+ q1f
(
x22x3

)
g1(1⊗ x1)

)
■ t

+ (φ321(1⊗ x2x3 ⊗ x1 ⊗ x2) + φ321(1⊗ x1 ⊗ x2 ⊗ x2x3)

+ φ321(1⊗ x2 ⊗ x2x3 ⊗ x1)) · e123

We have three elements to which φ321 = φ0
321 + φ1

321 is applied. The φ0
321

component is zero for all three terms; for the first one because ∂x2

∂x1
= 0, for

the second one because ∂x1

∂x3
= 0, and for the last one because ∂x2

∂x3
= 0.

= −g1(1⊗ x2)■ t

+ φ1
321(1⊗ x2x3 ⊗ x1 ⊗ x2) · e123

+ φ1
321(1⊗ x1 ⊗ x2 ⊗ x2x3) · e123

+ φ1
321(1⊗ x2 ⊗ x2x3 ⊗ x1) · e123

The definition of φ1
321 has a factor that is a partial derivative of q1f of the

product of two neighboring tensor factors. q1f of such a product can only pos-
sibly be nonzero if we multiply the first two tensor factors in 1⊗x2x3⊗x1⊗x2
or the last two in 1 ⊗ x2 ⊗ x2x3 ⊗ x1. In both cases the product is x1x2x3,
so that the value of q1f will be 1. Forming any partial derivative then yields
zero.

= −g1(1⊗ x2)■ t
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= (φ1(1⊗ x2) · e1 + φ2(1⊗ x2) · e2 + φ3(1⊗ x2) · e3)■ t

=

(
∂x2

∂x1
· e1 +

∂x2

∂x2
· e2 +

∂x2

∂x3
· e3

)
■ t

= e2t

Proposition 9.6.0.2. Let f = x1x2 and A := k[x1, x2]/f . Then there is no
strict mixed structure on Rs(A) such that h is a morphism of strict mixed
complexes. ♥

Proof. If h were a morphism of strict mixed complexes, then the following
equation would need to hold.

h(d(x1t)) = d
(
h(x1t)

)

However, we will show that this is not possible no matter what the strict
mixed complex structure on Rs(A) is, as d

(
h(x1t)

)
does not lie in the image

of h.
We begin by calculating h(t), for which we have the following by [BACH,

After 2.4.5, 2.2.4 (g), and 1.1].

h(t)

= ϵ0

(
−
T1(x1x2)

T (x1)
(1⊗ x1 ⊗ 1)−

T2(x1x2)

T (x2)
(1⊗ x2 ⊗ 1)

)

= ϵ0(−(1⊗ x2)(1⊗ x1 ⊗ 1)− (x1 ⊗ 1)(1⊗ x2 ⊗ 1))

= ϵ0(−(1⊗ x1 ⊗ x2)− (x1 ⊗ x2 ⊗ 1))

= −
(
1⊗ 1⊗ x1 ⊗ x2

)
− (1⊗ x1 ⊗ x2 ⊗ 1)

= −(1⊗ x1 ⊗ x2 ⊗ 1)

We can thus conclude the following for h(t).

h(t) = −1⊗ x1 ⊗ x2

We can now evaluate d
(
h(x1t)

)
as follows, using Proposition 6.3.1.10.

d
(
h(x1t)

)

= − d(x1 ⊗ x1 ⊗ x2)
= −1⊗ x1 ⊗ x1 ⊗ x2 − 1⊗ x1 ⊗ x2 ⊗ x1 − 1⊗ x2 ⊗ x1 ⊗ x1

Note that C3(A) is a free k-module that has a basis that is given by elements
of the following form.

x
#–

i ⊗ x
#–

j1 ⊗ x
#–

j2 ⊗ x
#–

j3 for #–

i ,
#–

j1,
#–

j2,
#–

j3 ∈ Z2
≥0

such that #–

i ,
#–

j1,
#–

j2,
#–

j3 � (1, 1) and #–

j1,
#–

j2,
#–

j3 6=
#–

0
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We can define a submodule J spanned by the basis elements of the above
form such that there exist 1 ≤ a < b ≤ 3 such that #–

ja = (1, 0) and #–

jb = (0, 1).
In other words, J is spanned elements in which two of the last three tensor
factors are x1 and x2, and appearing in that order. Note that d(h(x1t)) is a
linear combination of three basis elements of C3(A), and while the first two
lie in J , this is not the case for 1⊗ x2 ⊗ x1 ⊗ x1. This implies that d(h(x1t))
does not lie in J , so it suffices to show that the image of h3 is a submodule
of J .
Rs(A)3 is generated by elements of the form x

#–

i ejt with #–

i ∈ Z2
≥0 and

j ∈ {1, 2}. The image of h3 is thus generated by elements of the following
form, using Propositions 6.3.2.10 and 6.3.2.11.

h3

(
x

#–

i ejt
)

= x
#–

i · (−1⊗ xj) · (−1⊗ x1 ⊗ x2)

= x
#–

i ⊗ xj ⊗ x1 ⊗ x2 − x
#–

i ⊗ x1 ⊗ xj ⊗ x2 + x
#–

i ⊗ x1 ⊗ x2 ⊗ xj

This shows that the image of h3 is contained in J .

9.7. On a question of Larsen
Let n be a positive integer and f an element of k[x1, . . . , xn] that is monic

and of positive degree when considered as a polynomial in the single variable
x1 with coefficients in k[x2, . . . , xn]. Then Larsen constructs in [Lar95, 2.11]
a strict mixed complex and asks the question whether it gives the cyclic
homology of k[x1, . . . , xn]/f , having answered this question in the affirmative
for n = 2 in [Lar95, 2.10].

In the n = 2 case, what Larsen actually shows is that there is a strongly
homotopy linear22 quasiisomorphism from the strict mixed complex Larsen
constructs to the normalized standard Hochschild complex. As the normal-
ized standard Hochschild complex as well as the strict mixed complex Larsen
constructs are bounded below, it follows from [Kas87, 2.3] using the argument
of the proof of [Kas87, 2.6] that this strongly homotopy linear quasiisomor-
phism induces an isomorphism of cyclic homology groups.

By Remark 4.4.4.2, the strongly homotopy linear quasiisomorphism con-
structed by Larsen induces an equivalence in Mixed, and as the normalized
standard Hochschild complex represents Hochschild homology as a mixed
complex by Propositions 6.3.4.1 and 6.3.1.10, this implies that Larsen’s strict
mixed complex represents the Hochschild homology HHMixed(k[x1, x2]/f) as
an object of Mixed. Applying [Hoy18, 2.1, 2.2, and 2.3] this in turn also
implies the statement regarding cyclic homology groups, without invoking
[Kas87, 2.3].
22See Definition 4.2.3.1 for a definition. The definition stated in [Lar95, 1.4.1] differs slightly,

likely due to a mistake, see a discussion in Remark 9.7.0.1.
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Using Corollary 9.4.2.6 it is easy to see that the conditions stated at the
start of this section for f imply that logdimf (d f) ≤ 1. If we assume that
Conjecture D holds for f , then Proposition 9.5.2.3 will thus provide a strict
mixed complex representing HHMixed(k[x1, . . . , xn]/f) as an object of Mixed.

We claim that the strict mixed complex

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

used in Proposition 9.5.2.3 and described in Construction 9.3.2.1, Construc-
tion 9.5.2.1, and Proposition 9.5.2.2 is in fact isomorphic as a strict mixed
complex to the strict mixed complex constructed by Larsen in [Lar95, 2.11],
so that proving Conjecture D will result in an affirmative answer to Larsen’s
question. This is essentially clear if one understands both definitions, but due
to the very different notations used, we say some words about this.

That the underlying commutative graded k-algebras are isomorphic via
an isomorphism that maps our xi, dxi, and t[m] to Larsen’s xi, dxi, and
(−1)mz[m] is clear by looking at [Lar95, 2.11]. Comparing the formulas for
the boundary operator (denoted by b in [Lar95]) given in Construction 9.3.2.1
and [Lar95, 2.11], it is also clear that this isomorphism is compatible with
the boundary operators.

The differential d is denoted by B in [Lar95], and defined in [Lar95, 2.11]
by the following formula.

B(α) := dα+

[
df, z

∂α

∂z

]
(9.9)

Let α = p(P )dx
#–ϵ z[m] for P ∈ k[x1, . . . , xn], #–ϵ ∈ {0, 1}n, and m ≥ 0. The

summand dα is then notation for p(d(r0f (P )))dx
#–ϵ z[m], so corresponds to the

first summand in the formula (9.8) in Construction 9.5.2.1.
The term z ∂α

∂z
is given by23

z ·
∂p(P )dx

#–ϵ z[m]

∂z
= z · p(P )dx

#–ϵ z[m−1] = m · p(P )dx
#–ϵ z[m]

so that we are left to consider the term
[
df,m · p(P )dx

#–ϵ z[m]
]
.

The notation [−,−] is defined in [Lar95, 2.1.1], and in our notation
[
df,m · p(P )dx

#–ϵ z[m]
]

corresponds to24

q1f

(
d f · r0f (m · P )dx

#–ϵ z[m]
)

so that the second summand in (9.9) corresponds to the second summand in
(9.8) in Construction 9.5.2.1.
23Recall that z[m] is 1

m!
zm.

24We use that d f is f -reduced.
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Remark 9.7.0.1. A definition of what we call strongly homotopy linear
morphisms of strict mixed complexes is given around [Lar95, 1.4.1], which
however differs in signs from the one we gave in Definition 4.2.3.1, with a
plus sign on the left hand side. It is noted just after [Lar95, 1.4.1] that the sign
conventions differ from those of [Kas87]. However, this changed sign does not
seem to be a matter of convention but rather a mistake, with the definition
of [Lar95] leading to a different notion, making the results of [Kas87] inappli-
cable. Luckily the inductive method to construct i(2k+2) in [Lar95, Display
between (1.4.1) and (1.4.2)] works with the correct definition (4.15), while
the first step of the induction actually fails when using [Lar95, 1.4.1]. Thus
the results of [Lar95] should hold with the corrected definition.

In the following we construct a morphism of chain complexes f : X → Y

between strict mixed complexes that can be extended to a strongly homotopy
linear morphism using the definition we gave in Definition 4.2.3.1 and that is
also used in [Kas87, 2.2] and [Lod98, 2.5.14], but that can not be extended
using the definition of [Lar95, 1.4.1], thereby showing that the sign difference
is not just a matter of conventions.

Let X be the strict mixed complex whose underlying Z-graded k-module is
free with generator x in degree 0 and y in degree 1, with d = 0 and ∂(y) = x.
As the underlying chain complex is cofibrant and acyclic, we should expect
that every chain morphism out of it can be extended to a strongly homotopy
linear morphism. Indeed, this is the case with the definition we give here.
Let f : X → Y be a morphism of chain complexes to any other strict mixed
complex Y . Then setting

f (1)(x) := d(f(y))
f (1)(y) := 0

f (n) := 0 for n > 1

and extending k-linearly defines the necessary data to extend f to a strongly
homotopy linear morphism, as it is easy to check that (4.15) is satisfied.

Let us now consider the strict mixed complex Y whose underlying Z-graded
k-module is free on a in degree 0, on c and e in degree 1, and on g in degree 2,
with d and ∂ defined by extending k-linearly from the following definitions.

∂(a) := 0 ∂(c) := a ∂(e) := 0 ∂(g) := −e

d(a) := e d(c) := g d(e) := 0 d(g) := 0

The following diagram depicts the strict mixed complex Y using the conven-
tions from Convention 4.2.1.7.

g

c e

a

−11

1 1
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Now define a morphism of chain complexes f : X → Y by k-linearly extend-
ing f(x) := a and f(y) := c. Assume that f (1) were a morphism of Z-graded
k-modules from X to Y increasing degree by 2 and satisfying the following
equation.

f (1) ◦ ∂ + ∂ ◦ f (1) = f ◦ d− d ◦ f

Then we obtain

∂
(
f (1)(x)

)
= f(d(x))− d(f(x))− f (1)(∂(x)) = f(0)− d(a)− f (1)(0) = −e

which implies that f (1)(x) = g. We then need

∂
(
f (1)(y)

)
= f(d(y))− d(f(y))− f (1)(∂(y))

= f(0)− d(c)− f (1)(x)
= −g − g = −2g

to hold. However, if 2 6= 0 in k, then this is impossible, as 2g is then not
a boundary in Y . This shows that the notion defined by [Lar95, 1.4.1] is
genuinely different to the notion of strongly homotopy linear morphisms as
defined in (4.15) as well as [Kas87, 2.2] and [Lod98, 2.5.14]. ♦

Remark 9.7.0.2. In [HN20, Theorem 1], a description is given of an object
of D(Z)BT related to HHMixed(k[x1, x2]/f) for f = xa1 − xb2 for a, b ≥ 2
relatively prime integers. It is stated that this description follows from the
results of [Lar95], but as so far there was no proof in the literature that
strongly homotopy linear quasiisomorphisms induce equivalences in Mixed,
this constituted a gap in [HN20], which is filled by Sections 4.2.3 and 4.4.4
and in particular Remark 4.4.4.2.25

If 2 is in invertible in k then one can now also use Proposition 9.5.2.3
in combination with Proposition 7.5.3.1, which gives a new proof of the
statement that the strict mixed complex constructed by Larsen represents
HHMixed(k[x1, x2]/f) in Mixed. However to use this for [HN20, Theorem 1]
slightly more work would be needed to also identify the decomposition – see
Section 1.6 (3). ♦

25However the construction of the higher homotopies of the strongly homotopy linear map
constructed in [Lar95] ultimately depends on the choice of a contracting homotopy Kt

in [Lar95, Lemma 1.3]. It is unclear to the author which choice should be used as the
canonical one to obtain a canonical equivalence in [HN20, Theorem 1] as claimed.
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Chapter 10.

Example: x21 − x2x3

Just like Proposition 8.3.0.1 was a stepping stone for Theorem A, we also
view Theorem A as a stepping stone; for any particular polynomial f of
interest one will most likely want to further simplify the strict mixed complex
provided by Theorem A before using it as input for further calculations.

In this chapter we thus go through one relatively simple but nontrivial
example in detail: Conditional on Conjecture D1 holding for for f we describe
HHMixed(Z[x1, x2, x3]/f), where f is the polynomial f = x21 − x2x3 that
geometrically defines a cone. We will describe the process step by step in the
order one might proceed in when first working out the example.

10.1. Applying Theorem A
In order to be able to apply Theorem A, f needs to be in particular monic

with respect to a chosen monomial order. While f is monic with respect to
any monomial order, which one we choose matters with regards to what the
degree of f will be – either x2x3 or x21 could be chosen as the leading term.

We choose � to be the lexicographic monomial ordering on three vari-
ables so that x21 is the leading term. We then have deg�(f) = (2, 0, 0), and
for #–

i ∈ Z3
≥0 the monomial x

#–

i is f -reduced if and only if i1 ≤ 1. We
can now apply Theorem A to obtain a strict mixed complex representing
HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

)
, conditional on Conjecture D holding for

for f .

Proposition 10.1.0.1. Let f = x21 − x2x3 as an element of Z[x1, x2, x3],
and assume that Conjecture D holds for f . Then there is an equivalence

HHMixed(Z[x1, x2, x3]/f)
≃ γMixed(Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3)⊗ Γ(t))

in Mixed, where

Y := Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3)⊗ Γ(t)

1That the discussion of the example in this chapter is conditional on a conjecture is
of course slightly unsatisfactory, but allows us to discuss an illustrative example with
nontrivial features.
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Chapter 10. Example: x21 − x2x3

is the strict mixed complex with underlying graded abelian group as indicated,
with xi of degree 0, dxi of degree 1 and t of degree 2, and with boundary opera-
tor and differential given by the following formulas2, for a, b ≥ 0, #–ϵ ∈ {0, 1}3,
and m ≥ 0.

∂
(
p
(
xa2x

b
3

)
dx #–ϵ t[m]

)
=

(
− 2 · p

(
x1x

a
2x
b
3

)
dx1 + p

(
xa2x

b+1
3

)
dx2

+ p
(
xa+1
2 xb3

)
dx3

)
· dx #–ϵ t[m−1]

∂
(
p
(
x1x

a
2x
b
3

)
dx #–ϵ t[m]

)
=

(
− 2 · p

(
xa+1
2 xb+1

3

)
dx1 + p

(
x1x

a
2x
b+1
3

)
dx2

+ p
(
x1x

a+1
2 xb3

)
dx3

)
· dx #–ϵ t[m−1]

d
(
p
(
xa2x

b
3

)
dx #–ϵ t[m]

)
=

(
a · p

(
xa−1
2 xb3

)
dx2

+ b · p
(
xa2x

b−1
3

)
dx3

)
· dx #–ϵ t[m]

d
(
p
(
x1x

a
2x
b
3

)
dx #–ϵ t[m]

)
=

(
(1 + 2m) · p

(
xa2x

b
3

)
dx1 + a · p

(
x1x

a−1
2 xb3

)
dx2

+ b · p
(
x1x

a
2x
b−1
3

)
dx3

)
dxϵt[m]

In the formulas above, terms involving negative exponents of a variable are
to be interpreted as 0. ♥

Proof. As x1 is the only variable occurring in the leading term of f and the
exponent of x1 in the other term x2x3 is 0, the assumptions of Theorem A
are satisfied, so that it suffices to check that the formulas for ∂ and d from
Theorem A specialize to the ones given in the statement above. We have

d f = 2x1 dx1 − x3 dx2 − x2 dx3

so the two formulas for ∂ follow directly from their description in Theorem A,
where in the second formula we need only note that p(x21xa2xb3) = p(xa+1

2 xb+1
3 ).

The formula for d from Theorem A is as follows, for η ∈ {0, 1}.

d
(
p
(
x
η
1x

a
2x
b
3

)
dxϵt[m]

)
=
(
p
(
d
(
x
η
1x

a
2x
b
3

))
+m · p

(
q1f
(
d f · xη1xa2xb3

)))
dxϵt[m]

As the maximum exponent of x1 occurring in xa2xb3 and d f is 0 and 1, respec-
tively, d f · xa2xb3 is f -reduced and thus q1f (d f · xa2xb3) = 0, so that the first
formula for d follows.

2We use p as notation for the quotient morphism Z[x1, x2, x3] → Z[x1, x2, x3]/(x2
1−x2x3),

like in Construction 9.3.2.1
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10.2. Comparison with the mixed complex of de Rham forms

For the second formula for d, we first note that

d f · x1xa2xb3 = 2x21x
a
2x
b
3 dx1 − x1xa2xb+1

3 dx2 − x1xa+1
2 xb3 dx3

=
(
2xa2x

b
3 dx1

)
· f + 2xa+1

2 xb+1
3 dx1

− x1x
a
2x
b+1
3 dx2 − x1xa+1

2 xb3 dx3

which implies that
q1f
(
d f · x1xa2xb3

)
= 2xa2x

b
3 dx1

The following calculation then shows the second formula for d from the state-
ment.

d
(
p
(
x1x

a
2x
b
3

)
dxϵt[m]

)

=
(
p
(
d
(
x1x

a
2x
b
3

))
+m · p

(
2xa2x

b
3 dx1

))
dxϵt[m]

=
(
p
(
xa2x

b
3

)
dx1 + a · p

(
x1x

a−1
2 xb3

)
dx2 + b · p

(
x1x

a
2x
b−1
3

)
dx3

+2m · p
(
xa2x

b
3

)
dx1

)
dxϵt[m]

=

(
(1 + 2m) · p

(
xa2x

b
3

)
dx1 + a · p

(
x1x

a−1
2 xb3

)
dx2

+ b · p
(
x1x

a
2x
b−1
3

)
dx3

)
dxϵt[m]

10.2. Comparison with the mixed complex of
de Rham forms

To describe Y it will be useful to compare it to the mixed complex of de
Rham forms. We first note the following about Ω•

Z[x1,x2,x3]/f /Z.

Remark 10.2.0.1. It follows from [Wei94, 9.2.7] that the identification

Ω•
Z[x1,x2,x3] /Z

∼= Z[x1, x2, x3]⊗ Λ(dx1, dx2, dx3)

from Section 7.1 induces an isomorphism

Ω•
Z[x1,x2,x3]/f /Z

∼= (Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3))/d f

of strict mixed complexes3. ♦

We next define a morphism

Y → Ω•
Z[x1,x2,x3]/f /Z

of strict mixed complexes.
3The boundary operators are zero, and the differential d maps xi to dxi and satisfies the

Leibniz rule.
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Chapter 10. Example: x21 − x2x3

Definition 10.2.0.2. Consider the following morphism of graded abelian
groups.

φ : Y → Ω•
Z[x1,x2,x3]/f /Z

p
(
x

#–

i
)

dx #–ϵ t[m] 7→

{
0 m > 0

p(x
#–

i ) dx #–ϵ m = 0
for #–

i ∈ Z3
≥0,

#–ϵ ∈ {0, 1}3,m ≥ 0

It is clear from Proposition 10.1.0.1 that φ is compatible with the chain com-
plex and mixed structure so that φ is a morphism of strict mixed complexes.

We furthermore define the morphism of strict mixed complexes

ψ : K → Y

to be the kernel of φ. ♦

10.3. Grading
To make it easier to discuss K and Y , we equip them with a Z2

≥0-grading.

Construction 10.3.0.1. We upgrade Z[x1, x2, x3] to a Z2
≥0-graded ring

by declaring deggr(x1) = (1, 1), deggr(x2) = (2, 0), and deggr(x3) = (0, 2).
This makes f into a homogeneous polynomial of grading deggr(f) = (2, 2),
so Z[x1, x2, x3]/(f) inherits a grading where deggr(p(x

#–

i )) = deggr(r0f (x
#–

i ))

(note that f being homogeneous ensures that r0f (x
#–

i ) is homogeneous). Declar-
ing deggr(dxi) = deggr(xi) and deggr(t[m]) = m · (2, 2) makes both Y and
Ω•

Z[x1,x2,x3]/f /Z into Z2
≥0-graded strict mixed complexes, as one can easily see

by inspecting the formulas for ∂ and d in Proposition 10.1.0.1. Furthermore,
φ : Y → Ω•

Z[x1,x2,x3]/f /Z clearly respects the grading, so the kernel K obtains
an induced grading, making ψ : K → Y into a morphism of Z2

≥0-graded strict
mixed complexes as well.

Let us denote the sub-mixed-complex of Y (of Ω•
Z[x1,x2,x3]/f /Z, of K) of

homogeneous elements of grading #–

j ∈ Z2
≥0 by Y (

#–

j ) (by Ω•
Z[x1,x2,x3]/f /Z(

#–

j ),
by K(

#–

j )), so that we obtain a sum decomposition as a strict mixed complex

Y ∼=
⊕

#–

j ∈Z2
≥0

Y
(

#–

j
)

and similarly for Ω•
Z[x1,x2,x3]/f /Z and K. ♦

Remark 10.3.0.2. Note that the additive submonoid of Z2
≥0 generated by

(1, 1), (2, 0), and (0, 2) is not equal to all of Z2
≥0; it contains precisely those
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10.4. Non-diagonal pieces

elements (a, b) for which the sum a+ b is even4. It follows that

Y (
#–

j ) ∼= Ω•
Z[x1,x2,x3]/f /Z(

#–

j ) ∼= K(
#–

j ) ∼= 0

if #–

j ∈ Z2
≥0 such that j1 + j2 is odd.

Note that the mixed complexes Y (
#–

j ) for #–

j ∈ Z2
≥0 such that j1 + j2 is

even might look different depending on the parity of j1; In the even case,
x1 and dx1 must always “occur together”, while in the odd case they never
do. Indeed, one consequence is that the summand (1 + 2m) · p

(
xa2x

b
3

)
dx1 in

the second formula for d in Proposition 10.1.0.1 vanishes in the even case, as
dx1 · dx1 = 0. ♦

10.4. Non-diagonal pieces

10.4.1. A first look at Y ((6, 4)) and Y ((7, 5))

We will next look at two illustrative examples to understand the mixed
complexes Y (

#–

j ) better, one where j1 is even and one where it is odd. We will
depict the strict mixed complexes diagrammatically in the manner introduced
in Convention 4.2.1.7, with respect to the basis given by elements of the form
p(x

#–

i ) dx #–ϵ t[m]. In this basis, the components of ∂ all have absolute value
0, 1, or 2. To make the diagram more readable, we omit the labels to the
respective arrows and instead use a normal arrowhead to indicate an absolute
value of 1, and a double arrowhead to indicate an absolute value of 2, while
not indicating the sign to avoid overloading the diagram. We also omit p from
the notation and write e. g. x32x23 instead of p(x32x23).

We first consider Y ((6, 4)).

4This is obviously an additive condition, so as it holds for the three generators it holds
for the full submonoid. On the other hand, if (a, b) ∈ Z2

≥0 with a + b = 2c even, and
without loss of generality say b > a, then (a, b) = a · (1, 1) + (c− a) · (0, 2).
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Chapter 10. Example: x21 − x2x3

dx2t[2]

x2t
[2] x1 dx1 dx2t[1] x2 dx2 dx3t[1]

x1x2 dx1 dx2 dx3 x1x2 dx1t[1] x2x3 dx2t[1] x22 dx3t[1]

x1x2x3 dx1 dx2 x1x
2
2 dx1 dx3 x22x3 dx2 dx3 x22x3t

[1]

x1x
2
2x3 dx1 x22x

2
3 dx2 x32x3 dx3

x32x
2
3

1

−1 −1
2

1
−2

2
1

−2
−1 −2 3

3
2

Next, the following diagram depicts Y ((7, 5)) as representative of the odd
case.

dx1 dx2t[2]

x2 dx1t[2] x1 dx2t[2] x2 dx1 dx2 dx3t[1]

x1x2t
[2] x2x3 dx1 dx2t[1] x22 dx1 dx3t[1] x1x2 dx2 dx3t[1]

x22x3 dx1 dx2 dx3 x22x3 dx1t[1] x1x2x3 dx2t[1] x1x
2
2 dx3t[1]

x22x
2
3 dx1 dx2 x22x3 dx1 dx3 x1x

2
2x3 dx2 dx3 x1x

2
2x3t

[1]

x32x
2
3 dx1 x1x

2
2x

2
3 dx2 x1x

3
2x3 dx3

x1x
3
2x

2
3

−1
5

5 1

1

−2
3

−2

−13 −13

2

2 −2 1 3 2
1

−3

−21 −21
3

1 3

2

Looking at these diagrams we can see that in both cases we can split of
a large acyclic subcomplex (ignoring the mixed structure for now). Let us
discuss the first case Y ((6, 4)). Starting from the top, we can first replace the
basis element p(x2) dx2 dx3t[1] with the following element

∂(dx2t[2]) = −p(x2) dx2 dx3t[1] − 2 · p(x1) dx1 dx2t[1]
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10.4. Non-diagonal pieces

Then dx2t[2] and the new basis element generate a subcomplex that splits off
as an acyclic summand. Continuing downward, we can replace p(x22) dx3t[1]
with ∂(p(x2)t[2]), and so on. In the end, the only basis elements that “survive”
are p(x32x23), p(x1x22x3) dx1, p(x22x23) dx2, and p(x1x2x3) dx1 dx2.

10.4.2. A new basis
In general, we would like to do the following. For a, ϵ1, ϵ2 ∈ {0, 1} and

b, c,m ≥ 0, we would like to replace the basis element

p(xa1x
b
2x
c
3) dxϵ11 dxϵ22 dx3t[m]

of Y (
#–

j ) by the element ∂(p(xa1xb−1
2 xc3) dxϵ11 dxϵ22 t[m+1]). Roughly, we divide

by x2 dx3, increase the divided power of t by one, and then take the boundary.
This is of course not possible if b = 0. So when could b = 0 happen? If
p(xa1x

c
3) dxϵ11 dxϵ22 dx3t[m] is in Y (

#–

j ), then we have j1 = 2m + a + ϵ1 + 2ϵ2
and j2 = 2m + a + 2c + ϵ1 + 2. As ϵ2 ≤ 1 this implies that such an element
can only occur in Y (

#–

j ) if j1 ≤ j2.
So we are lead to distinguish three cases: For Y (

#–

j ) with j1 > j2, we can
“eliminate” basis elements divisible by dx3, and for Y (

#–

j ) with j1 < j2, we
can analogously “eliminate” basis elements divisible by dx2, leaving the case
of Y (

#–

j ) with j1 = j2 to still be analyzed (and which will indeed turn out to
be more interesting).

We will now carry out the idea we just sketched and first construct the
indicated new basis for Y (

#–

j ) for #–

j ∈ Z2
≥0 with j1 6= j2. We will then be able

to use this to show that K(
#–

j ) is acyclic.

Definition 10.4.2.1. To ease notation in the following, we make the follow-
ing definitions for #–

j ∈ Z2
≥0.

V = {0, 1} × Z2
≥0 × {0, 1}

3 × Z≥0

V ′ = {0, 1} × Z2
≥0 × {0, 1}

2 × Z≥0

V
(

#–

j
)
=

{
(a, b, c, ϵ1, ϵ2, ϵ3,m) ∈ V

∣∣∣

deggr
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 dxϵ33 t[m]

)
=

#–

j

}

V2

(
#–

j
)
=

{
(a, b, c, ϵ1, ϵ2,m) ∈ V ′

∣∣∣

deggr
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

)
=

#–

j

}

V3

(
#–

j
)
=

{
(a, b, c, ϵ1, ϵ3,m) ∈ V ′

∣∣∣

deggr
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ33 t[m]

)
=

#–

j

}
♦
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Proposition 10.4.2.2. Let #–

j ∈ Z2
≥0 with j1 > j2. Then the set

B2(
#–

j ) =
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j )
}

∪
{
∂
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

) ∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j ),m > 0
}

forms a basis of Y (
#–

j ). Analogously, let #–

j ∈ Z2
≥0 with j1 < j2. Then the set

B3(
#–

j ) =
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ33 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ3,m) ∈ V3(
#–

j )
}

∪
{
∂
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ33 t[m]

) ∣∣∣ (a, b, c, ϵ1, ϵ3,m) ∈ V3(
#–

j ),m > 0
}

forms a basis of Y (
#–

j ). ♥

Proof. We only discuss the statement for j1 > j2, the other is completely anal-
ogous. We will refer to the basis given by elements of the form p(x

#–

i ) dx #–ϵ t[m]

used up to now as the monomial basis. We wrote B2(
#–

j ) as a union, and will
call elements of the first set elements of the first type and elements of the
second set elements of the second type.

Note that the monomial basis can be written as follows, following the dis-
cussion before Definition 10.4.2.1 showing that any element of the monomial
basis divisible by dx3 must have x2 as a factor as well.

{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j )
}

∪
{
p
(
xa1x

b+1
2 xc3

)
dxϵ11 dxϵ22 dx3t[m−1]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j ),m > 0
}

In this subdivision of the basis elements of the monomial basis, the first
subset is exactly equal to the elements of B2(

#–

j ) of the first type.
For the elements of the second type we note that for (a, b, c, ϵ1, ϵ2,m) an

element of V2(
#–

j ) with m > 0, they have the following form.

∂
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

)

= (−1)ϵ1+ϵ2p
(
xa1x

b+1
2 xc3

)
dxϵ11 dxϵ22 dx3t[m−1]

(−1)ϵ1p
(
xa1x

b
2x
c+1
3

)
dxϵ11 dxϵ2+1

2 t[m−1] − 2p
(
xa+1
1 xb2x

c
3

)
dxϵ1+1

1 dxϵ22 t[m−1]

Note that the first summand is always the negative of the corresponding (also
indexed by (a, b, c, ϵ1, ϵ2,m)) basis element of second type in the monomial
basis, while the other two summands are multiples of elements of the first
type. This shows the claim.

10.4.3. Non-diagonal pieces of K are acyclic
Proposition 10.4.3.1. Let #–

j ∈ Z2
≥0 with j1 6= j2. Then K(

#–

j ) is acyclic. ♥
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Proof. We again only discuss the case j1 > j2, as the other case is completely
analogous.

Using Remark 10.2.0.1 and the same kind of argument as in the proof of
Proposition 10.4.2.2 shows that

{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22

∣∣∣ (a, b, c, ϵ1, ϵ2, 0) ∈ V2(
#–

j )
}

is a basis of Ω•
Z[x1,x2,x3]/f /Z(

#–

j ). It thus follows immediately from Proposi-
tion 10.4.2.2 that

{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j ),m > 0
}

∪
{
∂
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

) ∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j ),m > 0
}

is a basis for K(
#–

j ). We can thus easily define a contracting homotopy h of
K(

#–

j ) as follows, where (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j ) with m > 0.

h
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

)
:= 0

h
(
∂
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

))
:= p

(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

10.5. Diagonal pieces

10.5.1. A first look at Y ((5, 5)) and Y ((6, 6))

Let us now look at what happens when when j1 = j2. The following is the
diagram for Y ((5, 5)). We use the same conventions as we did for Y ((6, 4))
and Y ((7, 5)) above.
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Chapter 10. Example: x21 − x2x3

dx1t[2] dx1 dx2 dx3t[1]

x1t
[2] x3 dx1 dx2t[1] x2 dx1 dx3t[1] x1 dx2 dx3t[1]

x2x3dx1dx2dx3 x2x3 dx1t[1] x1x3 dx2t[1] x1x2 dx3t[1]

x2x
2
3 dx1 dx2 x22x3 dx1 dx3 x1x2x3 dx2 dx3 x1x2x3t

[1]

x22x
2
3 dx1 x1x2x

2
3 dx2 x1x

2
2x3 dx3

x1x
2
2x

2
3

5

1

−1
3

−1

−13 −13

1

2 −2 1 3 1
1

−2

−21 −21

2

1 2
2

As mentioned in Remark 10.3.0.2, Y ((j, j)) may differ in character depend-
ing on the parity of j, so let us also look at Y ((6, 6)).

dx2 dx3t[2] t[3]

x1 dx1t[2] x3 dx2t[2] x2 dx3t[2] x1 dx1 dx2 dx3t[1]

x2x3t
[2] x1x3 dx1 dx2t[1] x1x2 dx1 dx3t[1] x2x3 dx2 dx3t[1]

x1x2x3dx1dx2dx3 x1x2x3 dx1t[1] x2x
2
3 dx2t[1] x22x3 dx3t[1]

x1x2x
2
3 dx1 dx2 x1x

2
2x3 dx1 dx3 x22x

2
3 dx2 dx3 x22x

2
3t

[1]

x1x
2
2x

2
3 dx1 x22x

3
3 dx2 x32x

2
3 dx3

x32x
3
3

−1

1

1 1
1 −1

−1 −1 −2
2

2 −2 2 2

−2 −2 −3 3

3
3
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We can already see the difference between these two cases as well as Y (
#–

j )
with j1 6= j2 in these two examples. Indeed, note how in the diagrams for both
Y ((5, 5)) and Y ((6, 6)) the upper element in the rightmost column represents
a nonzero element in the homology of K, showing that K(

#–

j ) is in general not
acyclic for j1 = j2, in contrast to the case j1 6= j2 (see Proposition 10.4.3.1).
In Y ((6, 6)) this element in homology is of order 2, in contrast to Y ((5, 5)),
where it is of infinite order.

10.5.2. A new basis
To simplify Y (

#–

j ) for j1 = j2 we make a similar base change as we did for
j1 6= j2. We again try to eliminate replace basis elements from the monomial
basis that are divisible by dx3, as in Proposition 10.4.2.2. This time, we will
not be able to write all of the relevant elements as boundaries, however the
formulas themselves still make sense.

Notation 10.5.2.1. Let j ≥ 0 be an integer and (a, b, c, ϵ1, ϵ2, 1,m) an el-
ement of V ((j, j)). We will define an element b(a,b,c,ϵ1,ϵ2,m) of Y ((j, j)), by
distinguishing three cases. If b > 0, then we define b(a,b,c,ϵ1,ϵ2,m) as follows.

b(a,b,c,ϵ1,ϵ2,m) := ∂
(
p
(
xa1x

b−1
2 xc3

)
dxϵ11 dxϵ22 t[m+1]

)

= (−1)ϵ1+ϵ2p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 dx3t[m]

+ (−1)ϵ1p
(
xa1x

b−1
2 xc+1

3

)
dxϵ11 dx1+ϵ22 t[m]

− 2p
(
xa+1
1 xb−1

2 xc3
)

dx1+ϵ11 dxϵ22 t[m]

If instead b = 0, then note that this implies ϵ2 = 1 and c = 0. We then make
the following definitions.

b(0,0,0,ϵ1,1,m) := (−1)ϵ1+1 dxϵ11 dx2 dx3t[m]

b(1,0,0,ϵ1,1,m) := (−1)ϵ1+1p(x1) dxϵ11 dx2 dx3t[m] − 2p(x3) dx1+ϵ11 dx2t[m] ♦

Proposition 10.5.2.2. Let j ≥ 0. Then the following form a basis for
Y ((j, j)).

B((j, j)) =
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j))
}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}

♥

Proof. The proof is very similar to Proposition 10.4.2.2. The monomial basis
can be written as follows.

{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(
#–

j )
}

∪
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 dx3t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}
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Again the elements of B((j, j)) of the first type correspond to elements of the
monomial basis of the first type, and the element of the second type indexed
by (a, b, c, ϵ1, ϵ2, 1,m) is – up to sign – the sum of the corresponding element
of the second type indexed by (a, b, c, ϵ1, ϵ2, 1,m) of the monomial basis and
a linear combination of elements of the first type.

We can record the following behavior of the new basis with respect to the
boundary operator.

Proposition 10.5.2.3. Let j ≥ 0. Then the following holds in Y ((j, j)) for
elements (a, b, c, ϵ1, ϵ2,m) of V2((j, j)).

∂
(
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

)
=

{
0 if m = 0

b(a,b+1,c,ϵ1,ϵ2,m−1) if m > 0

Furthermore, the following holds for (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j)).

∂
(
b(a,b,c,ϵ1,ϵ2,m)

)
=

{
2 · b(1,0,0,1,1,m−1) if (a, b, ϵ1) = (0, 0, 0) and m > 0

0 otherwise
♥

Proof. The first formula follows immediately from the definitions in Nota-
tion 10.5.2.1. The second formula follows from ∂2 = 0 if b > 0 and from
Proposition 10.1.0.1 if m = 0. So we can assume that b = 0 and m > 0.
We distinguish three cases: first ϵ1 = 1, then (a, ϵ1) = (0, 0), and finally
(a, ϵ1) = (1, 0). In each case the formula follows by writing out the elements
and using Proposition 10.1.0.15.

∂
(
b(a,0,0,1,1,m)

)
= ∂

(
p(xa1) dx1 dx2 dx3t[m]

)
= 0

∂
(
b(0,0,0,0,1,m)

)
= ∂

(
− dx2 dx3t[m]

)

= 2p(x1) dx1 dx2 dx3t[m−1] = 2 · b(1,0,0,1,1,m−1)

∂
(
b(1,0,0,0,1,m)

)
= ∂

(
−p(x1) dx2 dx3t[m] − 2p(x3) dx1 dx2t[m]

)

= 2p(x2x3) dx1 dx2 dx3t[m−1]

− 2p(x2x3) dx1 dx2 dx3t[m−1]

= 0

Note that we can see a distinction between the cases of Y ((j, j)) with j

odd and even in Proposition 10.5.2.3; the first (non-zero) case in the formula
for ∂

(
b(a,b,c,ϵ1,ϵ2,m)

)
only occurs if j is even.

5Note that b = 0 implies ϵ2 = 1 and c = 0.
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10.5.3. Another look at Y ((5, 5))

We can now look at Y ((5, 5)) again, but in this new basis.

dx1t[2] b(0,0,0,1,1,1)

x1t
[2] x3 dx1 dx2t[1] b(0,1,0,1,0,1) b(1,0,0,0,1,1)

b(0,1,1,1,1,0) x2x3 dx1t[1] x1x3 dx2t[1] b(1,1,0,0,0,1)

x2x
2
3 dx1 dx2 b(0,2,1,1,0,0) b(1,1,1,0,1,0) x1x2x3t

[1]

x22x
2
3 dx1 x1x2x

2
3 dx2 b(1,2,1,0,0,0)

x1x
2
2x

2
3

5
1

−5

1 5 1 −5

2 −5

5
1

2 5 2 −5

5 2

(10.1)
Note that the Z-graded-abelian group generated by the underlined basis

elements is closed under both boundary operator and differential. It is also
acyclic, so the the quotient map from Y ((5, 5)) obtained by dividing out this
sub-mixed-complex is a quasiisomorphism. The following diagram depicts the
resulting strict mixed complex.

b(0,0,0,1,1,1)

x3dx1dx2t
[1] b(1,0,0,0,1,1)

b(0,2,1,1,1,0) x1x3dx2t
[1]

x2x
2
3dx1dx2 b(1,1,1,0,1,0)

x22x
2
3dx1 x1x2x

2
3dx2

x1x
2
2x

2
3

1
−5

5 1

2
−5

5 2

5
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From this we can read off thatK((5, 5)) will not be acyclic, but rather equiv-
alent to the strict mixed subcomplex generated by b(1,0,0,0,1,1) and b(0,0,0,1,1,1),
which is isomorphic to D−5[4], where we use notation from Definition 4.2.1.5.

10.5.4. Another look at Y ((6, 6))

Let us now consider the even case. The following diagram depicts Y ((6, 6))
in the basis from Proposition 10.5.2.2.

b(0,0,0,0,1,2) t[3]

x1 dx1t[2] x3 dx2t[2] b(0,1,0,0,0,2) b(1,0,0,1,1,1)

x2x3t
[2] x1x3 dx1 dx2t[1] b(1,1,0,1,0,1) b(0,1,1,0,1,1)

b(1,1,1,1,1,0) x1x2x3 dx1t[1] x2x
2
3 dx2t[1] b(0,2,1,0,0,1)

x1x2x
2
3 dx1 dx2 b(1,2,1,1,0,0) b(0,2,2,0,1,0) x22x

2
3t

[1]

x1x
2
2x

2
3 dx1 x22x

3
3 dx2 b(0,3,2,0,0,0)

x32x
3
3

−1

2 1

1
−2

1 4 2 −2

2 −4
4

2

2 6 3 −4

6
3

We again underlined basis elements that generate an acyclic sub-mixed-
complex that we can divide out, obtaining the strict mixed complex depicted
in the diagram below.
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10.5. Diagonal pieces

b(0,0,0,0,1,2)

x3 dx2t[2] b(1,0,0,1,1,1)

x1x3 dx1 dx2t[1] b(0,1,1,0,1,1)

b(1,1,1,1,1,0) x2x
2
3 dx2t[1]

x1x2x
2
3 dx1 dx2 b(0,2,2,0,1,0)

x1x
2
2x

2
3 dx1 x22x

3
3 dx2

x32x
3
3

−1

1
−2

4 2

2
−4

6 3

6

This time we see that K((6, 6)) will be equivalent to Z/2[5], generated by
b(1,0,0,1,1,1).

10.5.5. A basis for K((j, j))

We will now show how the description above of K((j, j)) generalizes to
j ≥ 5 other than 5 and 6, whereas K((j, j)) for j < 5 is acyclic. We start by
describing a basis of K((j, j)).

Proposition 10.5.5.1. Let j ≥ 5. Then a basis of K((j, j)) is given by the
following set.

{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j)),m > 0
}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}

Furthermore, K((0, 0)) ∼= 0, K((1, 1)) ∼= 0, a basis of K((2, 2)) is given by
{
b(0,1,0,0,0,0), t

[1]
}

a basis of K((3, 3)) is given by
{
b(1,1,0,0,0,0), b(0,1,0,1,0,0), x1t

[1], dx1t[1]
}
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and a basis of K((4, 4)) is given by the following set.
{
b(0,2,1,0,0,0), b(1,1,0,1,0,0), b(0,1,1,0,1,0), 2 · b(1,0,0,1,1,0)

}

∪
{
p(x2x3)t

[1], p(x1) dx1t[1], p(x3) dx2t[1], b(0,1,0,0,0,1), b(0,0,0,0,1,1), t[2]
}

♥

Proof. We first consider the case j ≥ 5. This assumption implies that if
(a, b, c, ϵ1, ϵ2, ϵ3, 0) is an element of V ((j, j)), then b > 0. In other words,
every element of grading (j, j) of the monomial basis of

Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3)

is divisible by x2. Like in Proposition 10.4.3.1 we can thus conclude that
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22

∣∣ (a, b, c, ϵ1, ϵ2, 0) ∈ V2((j, j))
}

is a basis of Ω•
Z[x1,x2,x3]/f /Z((j, j)).

By Proposition 10.5.2.2 the set
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22

∣∣ (a, b, c, ϵ1, ϵ2, 0) ∈ V2((j, j))
}

∪
{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j)),m > 0
}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}

is a basis of Y ((j, j)), and elements of the first type (of this decomposi-
tion into three subsets) are mapped by φ to the corresponding element of
Ω•

Z[x1,x2,x3]/f /Z. It thus suffices to show that elements of the second and
third type are mapped to 0 by φ. If m > 0 in either of the two types of
elements, then this is clear. So it remains to consider elements of the form
b(a,b,c,ϵ1,ϵ2,0) for (a, b, c, ϵ1, ϵ2, 1, 0) ∈ V ((j, j)). As mentioned at the start, this
implies b > 0. It thus follows from Proposition 10.5.2.3 that

b(a,b,c,ϵ1,ϵ2,0) = ∂
(
p(xa1x

b−1
2 xc3 dxϵ11 dxϵ22 t[m+1])

)

from which φ(b(a,b,c,ϵ1,ϵ2,0)) = 0 follows from the m > 0 case as φ is a
morphism of chain complexes.

The cases of 0 ≤ j ≤ 4 can be done by inspecting each case individually.
The difference to the case j ≥ 5 is that terms that are divisible by dx3
but not by t need not automatically be divisible by x2 as well. This means
that for example b(1,0,0,1,1,0) is not in the kernel of φ (but 2 · b(1,0,0,1,1,0) is),
whereas the analogous element of Y ((6, 6)), namely b(1,1,1,1,1,0), does lie in
the kernel.
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10.5.6. K((j, j)) for j < 5

We can now already finish the case of j < 5.

Proposition 10.5.6.1. Let 0 ≤ j < 5. Then K((j, j)) is acyclic. ♥

Proof. This follows immediately from Proposition 10.5.5.1 in combination
with Proposition 10.5.2.3.

10.5.7. Splitting an acyclic summand off of K((j, j)) for
j > 5

We now turn back to K((j, j)) for j ≥ 5. We start by splitting off an acyclic
summand.

Proposition 10.5.7.1. Let j ≥ 5. Then define Kacyc((j, j)) to be the sub-Z-
graded-abelian-group of K((j, j)) with basis the following set (compare Propo-
sition 10.5.5.1).

{
p
(
xa1x

b
2x
c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j)),m > 0
}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j)), b > 0
}

Furthermore, we define K ′((j, j)) to be the sub-Z-graded-abelian-group of
K((j, j)) with basis the following set.

{
b(a,0,0,ϵ1,1,m)

∣∣ (a, 0, 0, ϵ1, 1, 1,m) ∈ V ((j, j))
}

Then the following hold.

(1) Kacyc((j, j)) is a subcomplex of K((j, j)).

(2) Kacyc((j, j)) is acyclic.

(3) K ′((j, j)) a subcomplex of K((j, j)).

(4) K((j, j)) is the sum of Kacyc((j, j)) and K ′((j, j)) as chain complexes.

(5) The inclusion of K ′((j, j)) into K((j, j)) is a quasiisomorphism. ♥

Proof. Proof of claims (1), (2) and (3): Follows immediately from Proposi-
tion 10.5.2.3.

Proof of claim (4): If (a, 0, c, ϵ1, ϵ2, 1,m) is an element of V ((j, j)), then
this implies that c = 0 and ϵ2 = 1. The claim now follows from Proposi-
tion 10.5.5.1.

Proof of claim (5): Immediate consequence of the preceding claims.
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10.5.8. Description of the strict mixed structure
We next need to understand how d acts on K ′((j, j)).

Proposition 10.5.8.1. Let j ≥ 5. Then a basis of K ′((j, j)) is given by the
following set.

{
b(0,0,0,0,1, j−2

2 ), b(1,0,0,1,1, j−4
2 )

}
if 2 | j

{
b(0,0,0,1,1, j−3

2 ), b(1,0,0,0,1, j−3
2 )

}
if 2 ∤ j

Furthermore, the following holds for m ≥ 0.

d
(
b(0,0,0,0,1,m)

)
= 0

d
(
b(1,0,0,1,1,m)

)
= 0

d
(
b(0,0,0,1,1,m)

)
= 0

d
(
b(1,0,0,0,1,m)

)
= −(2m+ 3) · b(0,0,0,1,1,m)

♥

Proof. The claim about the basis follows directly from Proposition 10.5.7.1,
it merely involves spelling out what a, ϵ1, and m can be such that the tuple
(a, 0, 0, ϵ1, 1, 1,m) is an element of V ((j, j)).

For the formulas for d, we use the definition from Notation 10.5.2.1 and
then apply Proposition 10.1.0.1.

d
(
b(0,0,0,0,1,m)

)
= d

(
− dx2 dx3t[m]

)
= 0

d
(
b(1,0,0,1,1,m)

)
= d

(
p(x1) dx1 dx2 dx3t[m]

)
= 0

d
(
b(0,0,0,1,1,m)

)
= d

(
dx1 dx2 dx3t[m]

)
= 0

d
(
b(1,0,0,0,1,m)

)
= d

(
−p(x1) dx2 dx3t[m] − 2 · p(x3) dx1 dx2t[m]

)

= −(1 + 2m) dx1 dx2 dx3t[m] − 2 · dx1 dx2 dx3t[m]

= −(2m+ 3)b(0,0,0,1,1,m)

10.5.9. A smaller model for K((j, j)) for j > 5

Proposition 10.5.8.1 implies that K ′((j, j)) is equivalent as a strict mixed
complex to K((j, j)) for j ≥ 5, as we record next.

Proposition 10.5.9.1. Let j ≥ 5. Then the strict mixed structure of K((j, j))
restricts to K ′((j, j)) and the inclusion K ′((j, j)) → K((j, j)) is a weak
equivalence of strict mixed complexes.

Furthermore, if j is even, then K ′((j, j)) is isomorphic to the mapping
cone of Z[j − 1]

2·−
−−→ Z[j − 1]. If j is odd, then K ′((j, j)) is isomorphic to

Dj [j − 1] (see Definition 4.2.1.5 for the notation). ♥
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10.6. HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
as a non-split extension

Proof. That the strict mixed structure of K((j, j)) restricts to K ′((j, j)) fol-
lows directly from Proposition 10.5.8.1, and that the inclusion is a weak
equivalence of strict mixed complexes then follows from Proposition 10.5.7.1
(5).

The identification of K ′((j, j)) up to isomorphism follows from Proposi-
tion 10.5.2.3 and Proposition 10.5.8.1. For the isomorphism to Dj [j−1], note
that Dj

∼= D−j .

10.6. HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
as a

non-split extension
We can now sum up all the results by coming back to Hochschild homology.

Proposition 10.6.0.1. Assume that Conjecture D holds for the polynomial
f = x21 − x2x3 in Z[x1, x2, x3]. Then there is a cofiber sequence


 ⊕

j≥5,2|j

Z/2[j − 1]


⊕


 ⊕

j≥5,2∤j

γMixed(Dj [j − 1])




→ HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
→ γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

in Mixed that does not split. ♥

Proof. By definition of K we have a pullback square

K Y

0 Ω•
Z[x1,x2,x3]/f /Z

ψ

φ

in Mixed. It is clear from Definition 10.2.0.2 and Remark 10.2.0.1 that φ is
levelwise surjective and hence a fibration in Mixed. As every object in Mixed
is fibrant, it follows from [HTT, A.2.4.4] that the above square is also a
homotopy pullback square.

We can apply γMixed(−cof) (where −cof is the cofibrant replacement functor
for Mixed) to this diagram to obtain a commutative square in Mixed that is a
pullback square by [HA, 1.3.4.23]6 By Proposition 4.4.3.1 Mixed is stable, so
said square is also a pushout square, so we have shown existence of a cofiber
sequence as follows.

γMixed
(
Kcof)→ γMixed

(
Y cof)→ γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

6See Propositions 4.4.1.7 and 4.4.2.2 for Mixed being the underlying ∞-category of the
model category Mixed.
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We can identify γMixed(Y cof) with HHMixed(Z[x1, x2, x3]/f) along the equiva-
lence from Proposition 10.1.0.1, and for γMixed(Kcof) we obtain a sequence of
equivalences

γMixed
(
Kcof)

≃ γMixed



⊕

#–

j ∈Z2
≥0

K(
#–

j )cof




≃
⊕

#–

j ∈Z2
≥0

γMixed
(
K(

#–

j )cof
)

≃


 ⊕

j≥5,2|j

cofib
(
Z[j − 1]

2·−
−−→ Z[j − 1]

)

⊕


 ⊕

j≥5,2∤j

γMixed(Dj [j − 1])




where in the first equivalence we used the decomposition from Construc-
tion 10.3.0.1 and that coproducts of quasiisomorphisms are again quasiiso-
morphisms, in the second we used that coproducts of cofibrant objects are
homotopy coproducts and [HA, 1.3.4.24], and in the third we used Propo-
sitions 10.4.3.1, 10.5.6.1 and 10.5.9.17. This shows existence of a cofiber se-
quence as claimed.

It remains to show that this cofiber sequence does not split. So suppose
that there is a morphism

γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)
→ HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

)

in Mixed such that postcomposition with the morphism induced by φ is homo-
topic to the identity on γMixed((Ω•

Z[x1,x2,x3]/f /Z)
cof). By Propositions 4.4.1.7

and 4.4.2.2 and [Hov99, 1.2.10 (ii)] we can then lift this section to a triangle

(
Ω•

Z[x1,x2,x3]/f /Z

)cof

Y Ω•
Z[x1,x2,x3]/f /Z

is

φ

in Mixed that commutes up to homotopy, with i a quasiisomorphism. We
will denote (Ω•

Z[x1,x2,x3]/f /Z)
cof by C below. The following argument will use

Y ((5, 5)), and it will likely be helpful to follow along with diagram (10.1).
We will in particular read off ∂ and d from that diagram; to verify those
formulas one uses the formulas in Proposition 10.1.0.1 and the definition

7Note that Dn has cofibrant underlying chain complex.
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10.6. HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
as a non-split extension

of the basis elements in Notation 10.5.2.1. The diagram below provides an
overview over the argument; The left column depicts elements of C and the
right column of Y ((5, 5)) In both columns we depict where the elements are
mapped by ∂ and d using the conventions of Convention 4.2.1.7, and the
horizontal arrows correspond to application of s followed by the projection
Y → Y ((5, 5)) associated with the decomposition from Construction 10.3.0.1.

δ ?

dβ (2− 5d) · b(0,0,0,1,1,1)

β 2 · p(x3) dx1 dx2t[1] + c · b(0,1,0,1,0,1) + d · b(1,0,0,0,1,1)

dα 2 · b(0,1,1,1,1,0)

α p(x2x
2
3) dx1 dx2

As the homology of the fiber of φ is concentrated in degrees above 3 by the
already obtained cofiber sequence, H2(φ) is an isomorphism. From diagram
(10.1) we can read off that p(x2x23) dx1 dx2 is a cycle in Y2 that represents
a nontrivial homology class. There must thus be a cycle α ∈ C2 such that
s(α) = p(x2x

2
3) dx1 dx2 + ∂y, with y ∈ Y3.

As α is a cycle, we have

∂(dα) = − d(∂α) = 0

so dα is a cycle. We furthermore obtain

s(dα) = d(s(α)) = d
(
p(x2x

2
3) dx1 dx2 + ∂y

)

= 2 · b(0,1,1,1,1,0) + d ∂y = ∂
(
p(x3) dx1 dx2t[1] − d y

)

so that s(dα) is a boundary. As H3(s) has to be injective, this implies that
dα must be a boundary. So let β ∈ C4 be such that ∂β = dα.

Using the description of a basis for Y4((5, 5)) from Proposition 10.5.2.2 we
can write s(β) as

s(β) = a · p(x1)t
[2] + b · p(x3) dx1 dx2t[1] + c · b(0,1,0,1,0,1) + d · b(1,0,0,0,1,1) + z

with a, b, c, d ∈ Z, and z ∈
⊕

#–

j ∈Z2
≥0
,

#–

j 6=(5,5) Y4(
#–

j ). It follows that

2 · b(0,1,1,1,1,0) + d ∂y = s(dα) = s(∂β)
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= ∂(s(β))

= a · b(1,1,0,0,0,1) + b · b(0,1,1,1,1,0) + c · 0 + d · 0 + ∂z

where both d ∂y and ∂z are elements of
⊕

#–

j ∈Z2
≥0
,

#–

j 6=(5,5) Y3(
#–

j ), so we can
conclude that a = 0 and b = 2.

We have
∂(dβ) = − d(∂β) = − d(dα) = 0

so dβ is a cycle. As H5(Ω
•
Z[x1,x2,x3]/f /Z)

∼= 0, it thus follows that dβ must
be of the form ∂δ for some element δ ∈ C6, and hence d s(β) = s(dβ) must
be a cycle in Y5 that is also a boundary. But we can calculate

d s(β) = d
(
2 · p(x3) dx1 dx2t[1] + c · b(0,1,0,1,0,1) + d · b(1,0,0,0,1,1) + z

)

= 2 · b(0,0,0,1,1,1) + 0− 5d · b(0,0,0,1,1,1) + d z
= (2− 5d) · b(0,0,0,1,1,1) + d z

which, as z lies in
⊕

#–

j ∈Z2
≥0
,

#–

j 6=(5,5) Y4(
#–

j ) and (2− 5d) · b(0,0,0,1,1,1) is a cycle
representing a nontrivial homology class, is in contradiction to d s(β) being
a boundary.

10.7. Non-formality of
HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

)

Let M be a strict mixed complex. Then the relation d ◦ ∂ + ∂ ◦ d = 0
ensures that d : M∗ → M∗+1 maps cycles to cycles, and thus induces an
operator increasing degree by 1 on homology. Equipping H•(X) with the
zero boundary operator we can then consider H•(M) again as an object of
Mixed.

Now let M be a mixed complex, i. e. an object in the ∞-category Mixed.
Then we can make a similar construction using the functors

H∗ : D(k)→ LModk(Ab)

defined in Definition 4.3.3.1. From the element d in H1(D) we obtain with
Proposition 4.3.2.1 (5) a morphism k[1] → D in D(k) which induces a mor-
phism

M [1] ≃ k[1]⊗M → D⊗M →M

in D(k), where the second morphism is the action of D on M . This morphism
induces an operator increasing degree by 1 in H∗, and d2 = 0 in H∗(D) implies
that this operator squares to 0. Equipping H•(M) with this operator as d
and the zero boundary operator we again obtain a strict mixed complex.
Proposition 4.3.3.2 ensures that the just discussed two constructions agree,
i. e. if M is a strict mixed complex with cofibrant underlying chain complex,
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10.7. Non-formality of HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

then the strict mixed complexes H•(γMixed(M)) and H•(M) are naturally
isomorphic.

Given an object M of Mixed, we can now ask whether M is formal, i. e.
whether there is an equivalence

M ≃ γMixed
(
H•(M)cof

)

in Mixed. In the next proposition we show that, still assuming that Conjec-
ture D holds for the polynomial x21 − x2x3 in Z[x1, x2, x3], that

HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

is not formal. Note that

H•

(
γMixed

(
H•(M)

cof
))
∼= H•(M)

for every mixed complex M . This implies (under the assumption of Conjec-
ture D) that there are at least two mixed complexes whose homology, as a
strict mixed complex, is isomorphic to

H•

(
HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

))

so the mixed complex HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
can not be recov-

ered from its homology (even including the action of d) alone.

Proposition 10.7.0.1. Assume that Conjecture D holds for the polynomial
f = x21 − x2x3 in Z[x1, x2, x3]. Then there is no equivalence between

HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

and
γMixed

(
H•

(
HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

))cof)

in Mixed. ♥

Proof. We will make use of the cofiber sequence constructed in Proposi-
tion 10.6.0.1, for which we will use the following notation.

F → Z
Φ
−→ R

We show the claim by contradiction and assume that there is an equivalence

Θ: γMixed
(

H•(Z)
cof
)

≃
−→ Z

in Mixed.
Note that F has homology concentrated in degrees ≥ 4, so Φ induces an

isomorphism in homology on degrees ≤ 3. As R has homology concentrated
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in degrees ≤ 3, it follows that there is a unique morphism of underlying chain
complexes s : H•(R)→ H•(Z) such that H•(Φ) ◦ s is the identity.

We claim that s is in fact also compatible with d and thus a morphism in
Mixed. As H•(Φ) is an isomorphism in degrees ≤ 3, it automatically follows
that d ◦ s = s ◦ d on elements of degree ≤ 2. What remains to show is that
d applied to every element of H3(Z) is zero. From Proposition 10.6.0.1 and
the previous discussion in this chapter we know that the elements of

H4(Z) ∼= H4(Y )

are precisely represented by the integer multiples of the element b(1,0,0,0,1,1) of
Y ((5, 5)) (see in particular Propositions 10.5.8.1 and 10.5.9.1). From the sum
decomposition of Y it follows that it suffices to show that there is no cycle
in Y ((5, 5)) that is mapped by d to a linear combination of basis elements
of Y ((5, 5)) with respect to the basis from Proposition 10.5.2.2, in which
b(1,0,0,0,1,1) has nonzero coefficient. But this follows from Proposition 10.5.2.3
and can be read off of the first diagram in Section 10.5.3.

Note that
R = γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

and that are isomorphisms as follows in Mixed;

H•

(
γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof))
∼= H•

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

as discussed before this proposition,

H•

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)
∼= H•

(
Ω•

Z[x1,x2,x3]/f /Z

)

induced by the cofibrant replacement, and

H•

(
Ω•

Z[x1,x2,x3]/f /Z

)
∼= Ω•

Z[x1,x2,x3]/f /Z

as Ω•
Z[x1,x2,x3]/f /Z has zero boundary operator.

Combining these isomorphisms and applying γMixed(−cof) we obtain an
equivalence

α : R
≃
−→ γMixed

(
H•(R)

cof
)

in Mixed.
We can now consider the composition

λ : R
α
−→ γMixed

(
H•(R)

cof
)

γMixed(s
cof)

−−−−−−−→ γMixed
(

H•(Z)
cof
)

Θ
−→ Z

Φ
−→ R

in Mixed. As α and Θ are equivalences, they induce isomorphisms on homol-
ogy. The morphism s induces an isomorphism in homology in degrees ≤ 3, so
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(
Z[x1, x2, x3]/(x21 − x2x3)

)

γMixed(scof) does so too, and we already used above that Φ induces an isomor-
phism in homology in degrees ≤ 3. It follows that λ induces an isomorphism
in degrees ≤ 3. As R has homology concentrated in those degrees, it follows
that λ actually induces an isomorphism on homology in all degrees and is
thus an equivalence.

Now define ϱ to be the composition

R
λ−1

−−→ R
α
−→ γMixed

(
H•(R)

cof
)

γMixed(s
cof)

−−−−−−−→ γMixed
(

H•(Z)
cof
)

Θ
−→ Z

in Mixed. Then it follows that

Φ ◦ ϱ ≃ λ ◦ λ−1 ≃ idZ

so ϱ is a section of Φ. This contradicts the fact that the cofiber sequence from
Proposition 10.6.0.1 does not split.
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Appendix A.

∞-category theory
This is the first of two appendices in which we collect a number of small

results on various basic staples of ∞-category theory, the second one being
Appendix D1.

In Section A.1 we will see that the homotopy category of the underly-
ing ∞-category of a model category is canonically equivalent to the homo-
topy category of the model category. We will then discuss mapping spaces in
∞-categories in Section A.2, and collect some results relating to the (∞, 2)-
category of ∞-categories Cat∞ in Section A.3.

A.1. Homotopy categories of model categories
Given a model category C with a class of weak equivalences W , we can form

its homotopy category HoW (C) of C, as discussed for example in [Hov99, Sec-
tion 1.2]. There is also another way to produce a 1-category called “homotopy
category” from C: We can first pass to the underlying ∞-category C[W−1]
of C (see [HA, 1.3.4.1]), and then take the homotopy category Ho(C[W−1])
of this ∞-category as explained in [HTT, 1.2.3]. The following proposition
shows that these two notions of “homotopy category” are consistent with
each other, i. e. they are canonically equivalent.

Proposition A.1.0.1. Let C be a model category with class of weak equiv-
alences W . Then there exists an equivalence HoW C ≃ Ho

(
C[W−1]

)
fitting

into a commutative diagram as follows

C C[W−1]

HoW C Ho
(
C[W−1]

)
γ

α

β

≃

where HoW C is the homotopy category of the model category C (see [Hov99,
1.2]), Ho

(
C[W−1]

)
is the homotopy category of the ∞-category C[W−1] (see

[HTT, 1.2.3]), and the functors α, β, and γ are the canonical ones. ♥

1Some parts of Appendix D depend on Appendices B and C.

625



Appendix A. ∞-category theory

Proof. The functor α sends morphisms in W to equivalences2, and β sends all
equivalences to isomorphisms as Ho

(
C[W−1]

)
is a 1-category. The universal

property of HoW C (see [Hov99, 1.2.2]) furnishes us with a functor Φ making
the following diagram commute.

C C[W−1]

HoW C Ho
(
C[W−1]

)
γ

α

β

Φ

As isomorphisms are in particular equivalences, the universal property of
C[W−1] (see [HA, 1.3.4.1]) provides us with a functor ψ : C[W−1] → HoW C
satisfying ψ ◦α ≃ γ. Applying Ho we obtain a commuting diagram as follows.

C

C[W−1] HoW C

Ho C[W−1] Ho(HoW C)

α γ

β

ψ

∼=
Ψ

As HoW C already is a 1-category, we can identify Ho(HoW C) with HoW C.
Call the resulting functor Ψ: Ho C[W−1]→ HoW C.

Using the uniqueness part of the universal properties of α, β, and γ one
concludes that the compositions Φ ◦Ψ and Ψ ◦Φ are naturally isomorphic to
the respective identity functors.

A.2. Mapping spaces
In this section we discuss two results relating to mapping spaces of ∞-cat-

egories. In Proposition A.2.0.1 we show that mapping spaces can be calcu-
lated as certain pullbacks in Cat∞. We will then apply this result in Propo-
sition A.2.0.2 to show that a pullback diagram in Cat∞ induces pullback
diagrams of the respective mapping spaces.
Proposition A.2.0.1. Let C be an ∞-category and X and Y two objects of
C. Then there is a natural (in C) pullback square in Cat∞

MapC(X,Y ) C[1]

{(X,Y )} C × C

where the right vertical functor sends a morphism f : A→ B to (A,B). ♥
2See [HA, 1.3.4.1] for a definition of C[W−1].
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Proof. We give a proof for this claim in the setting of quasicategories. The
discussion in [HTT, Discussion after 1.2.2.5 and 4.2.1.8] exhibits the map-
ping space as a pullback of quasicategories, so we need to argue why this
is a homotopy pullback in the Joyal model structure, and then identify the
resulting (iterated) homotopy pullback with the pullback square we claimed.
So let C be a quasicategory modeling the ∞-category C. In [HTT, 4.2.1.8], a
model for MapC(X,Y ) is identified with the pullback in simplicial sets of the
following diagram.

C{X}/ → C← {Y }
Applying [HTT, 4.2.1.6]3 to X = C, S = {Y }, K = {X}, and K0 = ∅, we
obtain that

C{X}/ → C∅/ ×{Y }∅/ {Y }{X}/ ∼= C×{Y } {Y } ∼= C

is a left fibration. By [HTT, 2.4.2.4 and 3.3.1.4] this implies that the pullback
of

C{X}/ → C← {Y }
is already a homotopy pullback in the Joyal model structure.

Unpacking the definition of C{X}/ (see [HTT, after 4.2.1.4]) one can write
C{X}/ as the pullback in simplicial sets of the following diagram.

{X} → C{0} ← C∆1

It follows from [HTT, 2.4.7.12] (applied to idC) that C∆1

→ C{0} is a cartesian
fibration, so again by [HTT, 3.3.1.4] the pullback in simplicial sets is already
a homotopy pullback in the Joyal model structure. Together this implies that
the ∞-groupoid MapC(X,Y ) is naturally equivalent to the iterated pullback

(
{X} ×C{0} C[1]

)
×C{1} {Y }

in Cat∞. Using [HTT, 4.4.2.2] one can rewrite this iterated pullback into the
form that was stated in the claim.

Proposition A.2.0.2. Let

C D

E F

F

G H (∗)

be a pullback square in Cat∞, and X,Y two objects in C. Then the commutative
diagram in S induced by (∗) on mapping spaces

MapC(X,Y ) MapD(F (X), F (Y ))

MapE(G(X), G(Y )) MapF (H(F (X)), H(F (Y )))

3C → {Y } is a categorical fibration by [HTT, 2.4.6.1].
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is a pullback diagram. ♥

Proof. As C is given as a pullback in Cat∞ and products as well as Fun([1],−)
preserve limits, we can write MapC(X,Y ) as a pullback of pullbacks by ap-
plying Proposition A.2.0.1: The ∞-groupoid MapC(X,Y ) is the pullback of
the following diagram.

{(G(X), G(Y ))} ×{(H(F (X)),H(F (Y )))} {(F (X), F (Y ))}

(E × E)×(F×F) (D ×D)

E [1] ×F [1] D[1]

Commuting the two limits [HTT, 5.5.2.3] and applying Proposition A.2.0.1
again we can conclude that the commutative square

MapC(X,Y ) MapD(F (X), F (Y ))

MapE(G(X), G(Y )) MapF (H(F (X)), H(F (Y )))

induced by (∗) is a pullback diagram in Cat∞, and hence a pullback diagram
in S by [HTT, 1.2.13.7].

A.3. The (∞, 2)-category of ∞-categories
In this section we discuss some results concerning the (∞, 2)-category of
∞-categories. We will characterize pullbacks in the underlying ∞-category
Cat∞ in Section A.3.1, and show that checking that a natural transformation
is an equivalence can be done pointwise in Section A.3.2.

A.3.1. Pullbacks in Cat∞
Proposition A.3.1.1. Let

C D

E F

F

G H (A.1)
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be a commutative diagram in Cat∞. Then diagram (A.1) is a pullback diagram
if and only if the induced diagram on ∞-groupoid cores

C≃ D≃

E≃ F≃

(A.2)

as well as the induced diagram on mapping spaces

MapC(X,Y ) MapD(F (X), F (Y ))

MapE(G(X), G(Y )) MapF (H(F (X)), H(F (Y )))

(A.3)

for every pair of objects X and Y in C are pullback diagrams in S. ♥

Proof. The functor (−)≃ : Cat∞ → S is right adjoint to the inclusion (see
[HTT, 1.2.5]) and thus preserves pullbacks, which together with Proposi-
tion A.2.0.2 shows the “only if”-direction.

For the “if”-direction, consider the following commutative diagram in Cat∞
induced by (A.1), where the small square is to be a pullback diagram.

C

C D

E F

Φ

It suffices to show that Φ is an equivalence. The already proven “only if”-
direction and the assumption that (A.2) is a pullback diagram imply that Φ≃

is an equivalence of spaces, which implies that Φ is essentially surjective (see
[HTT, 1.2.10.1]). Analogously we deduce from (A.3) that Φ is fully faithful
(see [HTT, 1.2.10.1] and Definition B.2.0.1 below). Thus Φ is an equivalence.

Remark A.3.1.2. In Proposition A.3.1.1, if diagrams (A.3) are pullback
diagrams, then it follows immediately from the proof that we can replace the
condition that diagram (A.2) is a pullback diagram with the a-priori weaker
claim that the map Φ≃ constructed in the proof is induces a surjection on
π0. As (−)≃ preserves pullbacks we can identify Φ≃ with the induced functor
C≃ → D≃ ×E≃ F≃. ♦

A.3.2. Natural transformations
Proposition A.3.2.1 ([Lur21, Theorem 01DK]). Let C and D be ∞-cate-
gories, F and G two functors C → D, and Φ: F → G a natural transformation.
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Then Φ is an equivalence in Fun(C,D) if and only if ΦX : F (X) → F (X) is
an equivalence in D for every object X of C. ♥

Proof. Equivalences can be described via colimits; A morphism f in some
∞-category E is an equivalence if and only if the corresponding functor
[0]▷ ≃ [1]→ E is a colimit diagram, see [HTT, 4.4.1 and 1.2.4.1]. The claim
now follows from the fact that colimits in functor categories can be detected
pointwise by [HTT, 5.1.2.3 (2)].
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(Fully) faithful functors and
monomorphisms in Cat∞

In this appendix we discuss three important classes of functors of ∞-cate-
gories that are all in some sense analogues to the notion of injections of sets.
These are the faithful functors, fully faithful functors, as well as monomor-
phisms in Cat∞.

The notion of monomorphism can be defined in any ∞-category, not just
Cat∞, so we begin by discussing monomorphisms in this greater generality
in Section B.1. We then define (fully) faithful functors Section B.2 and dis-
cuss some immediate consequences of the definitions. Before discussing these
three classes of functors of ∞-categories further, we will need to show an
intermediate result in Section B.3, stability of (fully) faithful functors under
Fun(I,−) for an ∞-category I. We will then be ready to discuss monomor-
phisms in Cat∞ in detail in Section B.4. In Section B.5 we will cover a number
of stability results, including descriptions of replete images, for (fully) faith-
ful functors and monomorphisms in Cat∞, under Fun(I,−), pullbacks along
another functor, and pullbacks. We will end this section with Section B.6, in
which we will discuss the correspondence between monomorphisms in Cat∞
with codomain a fixed ∞-category C and replete subcategories of Ho C.

B.1. Monomorphisms
Let C be an ∞-category and f : X → Y a morphism in C. Then f is called

a monomorphism1 if the morphism

f∗ : MapC(Z,X)→ MapC(Z, Y )

is a monomorphism in S for every object Z of C.
In Section B.1.1 we will give a number of equivalent characterizations for

monomorphisms in S, before discussing the interaction of monomorphisms
with compositions in Section B.1.2 and with limits in Section B.1.3.

1See the definition given in [HTT, Between 5.5.6.13 and 5.5.6.14] as well as [HTT, 5.5.6.8].
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B.1.1. Monomorphisms in the ∞-category S

The following proposition recalls the notion of monomorphisms in the
∞-category S.

Proposition B.1.1.1. Let f : X → Y be a morphism in S. Then the following
are equivalent.

(1) f is a monomorphism in the sense of [HTT, Directly after 5.5.6.13],
i. e. if f is (−1)-truncated in the sense of [HTT, 5.5.6.8].

(2) For every point y in Y the fiber of f over y is (−1)-truncated, i. e.
empty or contractible.

(3) For every point x in X the fiber of f over f(x) is (−2)-truncated, i. e.
contractible.

(4) For every point x in X the morphism induced by f

πn(X,x)→ πn(Y, f(x)) (B.1)

is a bijection for n > 0 and an injection for n = 0.

(5) The induced morphism on path components π0(f) is injective and the
commutative diagram

X Y

π0(X) π0(Y )

f

π0(f)

is a pullback diagram in S.

(6) Considering f as a functor of ∞-categories (via the inclusion of ∞-
groupoids into Cat∞) the induced map on mapping spaces2

MapX(x, x′)→ MapY (f(x), f(x′)) (B.2)

is an equivalence for every pair of points x and x′ in X.

♥

Proof. Proof that (1) is equivalent to (2): This is [HTT, 5.5.6.9].
Proof that (2) is equivalent to (3): Follows from the fact that points in Y

are equivalent to f(x) for a point x in X if and only if the fiber of f over y
is not empty.

2These are the path spaces if we think of X and Y as spaces.
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Proof that (5) implies (1): As any injective morphism of discrete spaces
satisfies (3) and hence (1), and monomorphisms are stable under taking pull-
backs by [HTT, 5.5.6.12], (5) implies (1).

Proof that (3) is equivalent to (4): Follows immediately from the long exact
sequence of homotopy groups.

Proof that (3) implies (5): That π0(f) is injective is part of (4). Now
consider the following diagram, where the small square is a pullback square.

X

P Y

π0(X) π0(Y )

f

φ

ψ

π0(f)

It suffices to show that φ is an equivalence. By the long exact sequence of
homotopy groups, it suffices for this to show that π0(φ) is surjective and
the fiber of φ over every point in P is contractible. As Y → π0(Y ) is 1-
connective (see [HTT, 6.5.1.10] for a definition) we obtain that P → π0(X)
is 1-connective by [HTT, 6.5.1.16 (6)], and as X → π0(X) is 1-connective as
well it follows that π0(φ) must be an isomorphism.

Now let p be a point in P . Consider the following diagram of pullback
squares.

fibp(φ) {p}

fibψ(p)(f) fibψ(p)(ψ) {ψ(p)}

X P Y

π0(X) π0(Y )

φ ψ

As π0(φ) is surjective, ψ(p) is equivalent to f(x) for some point x in X, so
it follows from the assumption that fibψ(p)(f) is contractible. Furthermore,
as fibψ(p)(ψ) can be identified as a fiber of a map of discrete spaces, it is
discrete as well. It follows, using the long exact sequence of homotopy groups
associated to the fiber sequence

fibp(φ)→ fibψ(p)(f)→ fibψ(p)(ψ)

that fibp(φ) is contractible.
Proof that (6) is equivalent to (4): Let x and x′ be points of X. We

distinguish two cases. If x and x′ are not in the same path component,
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then MapX(x, x′) is empty, and so (B.2) is an equivalence if and only if
MapY (f(x), f(x′)) is empty. That this is the case for all points x and x′ in
different path components of X is equivalent to π0(f) being injective.

If x and x′ are two points of X that lie in the same path component, then
the map (B.2) can be identified with the induced map on loop spaces.

Ωx(X)
Ωx(f)
−−−−→ Ωf(x)(Y )

As πn(Ωx(f)) ∼= πn+1(f) (where on the left we use the constant loop at x
as the basepoint, and at the right the point x) we can conclude that (B.2)
being an equivalence for all x and x′ in the same path component of X is
equivalent to (B.1) being an isomorphism for n > 0.

B.1.2. Monomorphisms and composition
Proposition B.1.2.1. Let C be an∞-category and f : X → Y and g : Y → Z

two morphisms in C such that g is a monomorphism. Then g◦f is a monomor-
phism if and only if f is a monomorphism. ♥

Proof. The statement for C = S follows immediately from criterion Proposi-
tion B.1.1.1 (4). The claim for general C now follows immediately from the
definition.

B.1.3. Monomorphisms and limits
Proposition B.1.3.1. Let I and C be ∞-categories, A,B : I → C two func-
tors, and F a natural transformation from A to B. Assume that for every
object X of I the morphism F (X) : A(X) → B(X) in C is a monomor-
phism. Then the morphism limI A

limI F−−−−→ limI B in C is a monomorphism
as well. ♥

Proof. We first prove the claim for C = S. Let y be a point in limI B. We
have to show that fiby(limI F ) is (−1)-truncated. But as limits commute
with limits, we have an equivalence

fiby
(

lim
•∈I

F (•)

)
≃ lim

•∈I

(
fibpr•(y) F (•)

)

so that the claim follows from the closure of (−1)-truncated objects under
limits, see [HTT, 5.5.6.5].

The case of general C now follows from this special case using that for every
object X of C the functor

MapC(X,−) : C → S

preserves limits.
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B.2. (Fully) faithful functors
In this section we define the notions of (fully) faithful functors of ∞-cate-

gories3 and record some direct consequences of the definition.

Definition B.2.0.1. Let ι : C′ → C be a functor of∞-categories. We say that
ι is (fully) faithful if for every pair of objects X and Y of C′ the morphism
in S induced by ι

MapC′(X,Y )→ MapC(F (X), F (Y ))

is a monomorphism (is an equivalence). ♦

Remark B.2.0.2. It is clear from the definition, that the notions of (fully)
faithfulness agree with the classical definitions on 1-categories. Furthermore,
as π0 : S → Set sends equivalences to isomorphisms and monomorphisms to
monomorphisms (see Proposition B.1.1.1), if a functor ι of ∞-categories is
(fully) faithful, then the same is true for the functor Ho ι of ordinary categories.

♦

Proposition B.2.0.3. Let ι : C′ → C be a faithful functor of ∞-categories.
Then the commutative diagram

C′ C

Ho(C′) Ho(C)

ι

Ho ι

(B.3)

is a pullback diagram in Cat∞. ♥

Proof. We use Proposition A.3.1.1 and Remark A.3.1.2. Let X and Y be two
object of C′. Diagram (B.3) induces the following diagram of mapping spaces.

MapC′(X,Y ) MapC(ιX, ιY )

π0(MapC′(X,Y )) π0(MapC(ιX, ιY ))

It follow from Proposition B.1.1.1 that this square is a pullback square in S.
It now remains to show that

C′≃ → C≃ ×Ho(C)≃ Ho(C′)≃

induces a surjection on π0. The map4

C′≃ → Ho(C′)≃ ≃ Ho(C′≃) ≃ τ≤1(C
′≃)

3Fully faithful functors are defined in [HTT, 1.2.10.1].
4That Ho(C)≃ ≃ Ho(C≃) can be seen directly using the definitions, it boils down to

the subspace of MapC′ (X,Y ) spanned by the equivalences consisting exactly of the
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is 2-connective. Similarly, C≃ → Ho(C)≃ is 2-connective, so by [HTT, 6.5.1.16
(6)] the projection pr2 : C≃×Ho(C)≃ Ho(C′)≃ → Ho(C′)≃ is 2-connective as well.
We thus have a commuting triangle

C′≃ C≃ ×Ho(C)≃ Ho(C′)≃

Ho(C′)≃
pr2

where the two non-horizontal maps are 2-connective, so the horizontal map
must in particular induce a surjection on π0.

Proposition B.2.0.4. Let ι : C′ → C be a faithful functor. Then for any
objects X and Y of C′, the induced map

MapC′≃(X,Y )→ MapC≃(ιX, ιY ) (B.4)

is a monomorphism in S. ♥

Proof. The map in question is by definition the induced vertical map by
taking limits of the horizontal diagrams in the following commutative diagram

MapC′(X,Y ) π0(MapC′(X,Y )) π0(MapC′≃(X,Y ))

MapC(X,Y ) π0(MapC(X,Y )) π0(MapC≃(X,Y ))

where the vertical maps are induced by ι, the horizontal maps from the left to
the middle are the canonical ones, and the horizontal maps from the right to
the middle are the inclusions of the path components spanned by invertible
morphisms.

As all vertical maps are monomorphisms, we can apply Proposition B.1.3.1
to conclude that (B.4) is a monomorphism as well.

B.3. (Fully) Faithful functors and Fun
When we discuss monomorphisms in Cat∞ in Section B.4, we will need to

use a first stability result for (fully) faithful functors that we prove in this
path components that as elements of π0(MapC′ (X,Y )) = MorHo C′ (X,Y ) correspond
to isomorphisms in Ho C′. That Ho(C′≃) ≃ τ≤1(C

′≃) amounts to the fact that the
diagram of inclusions

S≤1 S

Cat Cat∞
is left adjointable in the sense of [HTT, 7.3.1.1]. However, in this situation this follows
from the horizontal functors being fully faithful.
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section; for an∞-category I, the functor Fun(I,−) : Cat∞ → Cat∞ preserves
(fully) faithful functors.

Proposition B.3.0.1. Let ι : C′ → C be a (fully) faithful functor of ∞-
categories and let I be some ∞-category. Then the induced functor

ι∗ : Fun(I, C′)→ Fun(I, C)

is (fully) faithful as well. ♥

Proof. Let F and G be two objects of Fun(C,D′). Mapping spaces in func-
tor categories can be written as ends, see [Gla16, 2.3]. Concretely, the map
induced by ι∗ on mapping spaces

MapFun(C,D′)(F,G)→ MapFun(C,D)(ι ◦ F, ι ◦G)

can be identified with the following map of ends, induced by the maps induced
by ι on mapping spaces MapD′(•, •)→ MapD(ι(•), ι(•)).

∫

•∈C

MapD′(F (•), G(•)) −→

∫

•∈C

MapD(ι(F (•), ι(G(•)))

If ι is fully faithful, then this is an equivalence as ends, like other limits,
are invariant under equivalences, so ι∗ is fully faithful as well.

If ι is faithful, then we can use that limits commute with limits, so for
φ : F → G a morphism in Fun(C,D′) we obtain

fibφ
(

MapFun(C,D′)(F,G)→ MapFun(C,D)(ι ◦ F, ι ◦G)
)

≃

∫

•∈C

fibφ•(MapD′(F (•), G(•))→ MapD(ι(F (•), ι(G(•))))

≃

∫

•∈C

∗ ≃ ∗

where in the second-to-last step we use that ι is faithful in combination with
criterion (3) of Proposition B.1.1.1, and in the last step we use that a limit
of a diagram that is pointwise a terminal object (which is a limit over the
empty diagram) is the terminal object (as limits commute with limits). Thus
ι∗ is again faithful.

B.4. Monomorphisms in Cat∞
In this section we discuss monomorphisms in Cat∞. We will start in Sec-

tion B.4.1 by giving several equivalent characterizations of monomorphisms
in Cat∞, that will be crucial for later results. In Section B.4.2 we will then
discuss the analogue of monomorphism in Cat∞ for 1-categories, the notion
of pseudomonic functors, as well as the relation between monomorphisms
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in Cat∞ and pseudomonic functors in Cat. Section B.4.3 will provide the
important criterion for lifting along monomorphisms in Cat∞. Finally, we
end this section with Section B.4.4, where we show that faithful functors are
monomorphisms.

B.4.1. Equivalent characterizations of monomorphisms
in Cat∞

In this section we provide a number of equivalent characterizations of
monomorphisms in Cat∞. We also show that monomorphisms in Cat∞ are
conservative functors, i. e. reflect equivalences.
Proposition B.4.1.1. Let ι : C′ → C be a functor of ∞-categories. Then the
following are equivalent.

(1) ι is a monomorphism in Cat∞ in the sense of [HTT, After 5.5.6.13].

(2) For every ∞-category I, the induced map

(ι∗)
≃
: Fun(I, C′)≃ → Fun(I, C)≃

is a monomorphism in S.

(3) ι is faithful and the induced functor on ∞-groupoid cores ι≃ : C′≃ → C≃

is a monomorphism in S.

(4) ι is faithful and for every two objects X and Y in C′ and equivalence
f : ιX → ιY there is an equivalence f ′ : X → Y such that ιf ′ is homo-
topic to f .

♥

Proof. Proof that (1) is equivalent to (2): This follows immediately by un-
packing the definition of monomorphisms and using that

MapCat∞(I,−) ≃ Fun(I,−)≃

by definition [HTT, 3.0.0.1].
Proof that (2) implies (3): Applying the assumption to I = [0], we deduce

immediately that ι≃ is a monomorphism in S. Let X and Y be objects of
C′. Using that (−)≃ preserves pullbacks as a right adjoint [HTT, 1.2.5] we
obtain from Proposition A.2.0.1 that the map induced by ι

MapC′(X,Y )→ MapC(ιX, ιY ) (∗)

is the map induced on limits of the horizontal diagrams in the following
commutative diagram.

Fun([1], C′)≃ Fun({0, 1}, C′)≃ {(X,Y )}

Fun([1], C)≃ Fun({0, 1}, C)≃ {(ιX, ιY )}
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where the vertical maps are induced by ι, the horizontal maps from the left
to the middle are induced by precomposition with the inclusion of {0, 1} into
[1] and the horizontal maps from the right to the middle are the inclusions
of the functors sending 0 to the first component of the tuple and 1 to the
second component. The vertical map on the right is an equivalence and thus
a monomorphism, and the other two vertical maps are monomorphisms by
assumption. It follows from Proposition B.1.3.1 that (∗) is a monomorphism
as well.

Proof that (3) implies (4): Follows immediately from description Proposi-
tion B.1.1.1 (6) of monomorphisms in S applied to ι≃.

Proof that (4) implies (2): Let I be an ∞-category. As

MapCat∞(I,−) ≃ Fun(I,−)≃

preserves limits, we obtain from Proposition B.2.0.3 a pullback diagram of
spaces as follows

Fun(I, C′)≃ Fun(I, C)≃

Fun(I,Ho C′)≃ Fun(I,Ho C)≃

(ι∗)
≃

((Ho ι)∗)
≃

where the vertical maps are induced by postcomposition with the canoni-
cal functors. We have to show that the top map is a monomorphism, so as
monomorphisms are stable under pullback by [HTT, 5.5.6.12], it suffices to
show that ((Ho ι)∗)≃ is a monomorphism in S. Note that as Ho ι is a functor
of 1-categories, we can identify ((Ho ι)∗)≃ with the following functor.

((Ho ι)∗)
≃
: Fun(Ho I,Ho C′)≃ → Fun(Ho I,Ho C)≃

Let F and G be two functors from Ho I to Ho C′, considered as objects of
Fun(Ho I,Ho C′)≃. By criterion Proposition B.1.1.1 (6) it suffices to show
that postcomposition with Ho ι induces an equivalence on mapping spaces as
follows.

MapFun(Ho I,Ho C′)≃(X,Y )→ MapFun(Ho I,Ho C)≃(ι ◦X, ι ◦ Y ) (∗∗)

By Remark B.2.0.2 together with Proposition B.3.0.1 the functor (Ho ι)∗
is faithful, so by Proposition B.2.0.4, the map (∗∗) is already a monomor-
phism, so that it suffices to show that it induces a surjection on π0. So let
Φ: ι ◦ F → ι ◦ G be a natural isomorphism of functors from Ho I to Ho C.
We have to show that we can lift Φ to a natural transformation from F to
G. Let X be an object of Ho I. Then we can apply the assumption on ι and
lift the isomorphism ΦX : ι(F (X)) → ι(G(X)) in Ho C′ to an isomorphism
Φ′
X : F (X)→ G(X) in Ho C such that ι(Φ′

X) = ΦX . It remains to check that
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Φ′ defines a natural transformation from F to G. As F and G are functors
of 1-categories, this is a property, not data, and it suffices to check that for
every morphism f : X → Y in I, the diagram

F (X) G(X)

F (Y ) G(Y )

Φ′
X

F (f) G(f)

Φ′
Y

commutes. But as Ho ι is faithful, it suffices to check that ι applied to this
square yields a commutative square, which is the case as Φ is a natural
transformation.

Proposition B.4.1.2. Let ι : C′ → C be a monomorphism in Cat∞. Then ι

is conservative, i. e. reflect equivalences. ♥

Proof. Let f : X → Y be a morphism in C′ such that ι(f) is an equivalence.
By Proposition B.4.1.1 (4) we can lift ι(f) to an equivalence f ′ : X → Y in
C′. But faithfulness of ι implies that π0(MapC′(X,Y )) → π0(MapC(ιX, ιY ))
is injective, hence f and f ′ must be homotopic, so f is an equivalence as
well.

B.4.2. Pseudomonic functors and replete images
The notion of monomorphisms in Cat∞ corresponds to the notion of pseu-

domonic functors of 1-categories, as we discuss in this section. Like injective
maps of sets, pseudomonic functors of 1-categories are, up to equivalence, de-
termined by their image. In the case of pseudomonic functors we will usually
consider a more invariant notion of image, the replete image, which we also
introduce below.

Remark B.4.2.1. Let ι : C′ → C be a monomorphism in Cat∞. Then if
follows immediately from Proposition B.4.1.1 (4) and Remark B.2.0.2 that
Ho ι : Ho C′ → Ho C is a pseudomonic functor, i. e. Ho ι satisfies the following
two conditions.

(1) Ho ι is faithful.

(2) If X and Y are two objects of Ho C′ and f : (Ho ι)(X) → (Ho ι)(Y ) is
an isomorphism in Ho C, then f lifts to an isomorphism f ′ : X → Y in
Ho C′ such that (Ho ι)(f ′) = f .

If ι : C′ → C is a pseudomonic functor of 1-categories, then it follows simi-
larly that ι is a monomorphism in Cat∞. ♦

Definition B.4.2.2. Let C′ be a subcategory of the 1-category C. We say
that C′ is a replete subcategory of C if the collection of morphisms in C′ is
closed under isomorphisms in the arrow category Fun([1],C).
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If F : C→ D is a functor of 1-categories, then the replete image ImF of F
is the replete subcategory of D generated by the image of F , i. e. it consists
of those objects isomorphic to an object of the form F (X) for X in C, and
those morphisms isomorphic in the arrow category of D to a morphism of the
form F (f) for f a morphism in C. ♦

Remark B.4.2.3. Let ι : C′ → C be a pseudomonic functor of 1-categories.
Then it follows directly from the definitions that the induced functor

ι′ : C′ → Im ι

is essentially surjective as well as fully faithful and thus an equivalence. ♦

B.4.3. Lifting along monomorphisms
We now show that monomorphisms in Cat∞ have the expected property:

We can check whether two functors into the domain of a monomorphism ι

are homotopic by checking their compositions with ι, and any functor into
the target of ι can be lifted as long as its image is contained in the image of
ι.

Proposition B.4.3.1. Let ι : D′ → D be a monomorphism in Cat∞ and
F : C → D a functor of ∞-categories.

Then F can be lifted along ι, i. e. there exists a commutative diagram as
follows

D′

C D

ιF ′

F

if and only if Im(HoF ) is contained in Im(Ho ι). If this is the case, then the
lift is essentially unique in the sense that the fiber over F of the map

(ι∗)
≃
: Fun(C,D′)

≃
→ Fun(C,D)≃

is contractible. ♥

Proof. Proof of the “only if”-direction: Clear.
Proof of the “if”-direction: By Proposition B.4.1.1 ι is faithful and so the

right square in the following commutative diagram is a pullback square by
Proposition B.2.0.3.

D′ HoD′

C D HoD

ι Ho ιF ′

F

It thus suffices to show that the composition F̃ of F with the canonical functor
D → HoD can be lifted along Ho ι. But Ho ι factors by Remark B.4.2.3
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as an equivalence composed with the inclusion Im(Ho ι) → Ho C, and by
assumption F̃ factors over this inclusion.

Proof that the lift is essentially unique if it exists: As we assume a lift
exists, the fiber can not be empty. That it is then contractible follows from
Proposition B.4.1.1 (2).

B.4.4. (Fully) faithful functors are monomorphisms
In this short section we show that (fully) faithful functors are monomor-

phisms.

Proposition B.4.4.1. Fully faithful functors of ∞-categories are monomor-
phisms in Cat∞. ♥

Proof. Let ι : C′ → C be a fully faithful functor. We will use criterion Propo-
sition B.4.1.1 (4). That ι is faithful is clear. Let X and Y be objects of C′
and f : ιX → ιY an equivalence in C. Let f−1 be an inverse of f . As ι is fully
faithful, we can lift f to a morphism f ′ : X → Y and f−1 to a morphism
f ′′ : Y → X. But as ι also induces an equivalence

MapC′(X,X)→ MapC(ιX, ιX)

we can also lift the homotopy f−1 ◦ f ≃ idιX to a homotopy f ′′ ◦ f ′ ≃ idX ,
and similarly f ′ ◦f ′′ ≃ idY , so f ′ : X → Y is an equivalence with ιf ′ ≃ f .

B.5. Stability properties of (fully) faithful
functors and monomorphisms in Cat∞

In this section we show that monomorphism in Cat∞ as well as (fully) faith-
ful functors are stable under various constructions. In Section B.5.1 we handle
the case of induced functors on functor ∞-categories, and in Sections B.5.2
and B.5.3 we discuss two types of stability under taking pullbacks.

Section B.5.2 concerns taking the pullback along an arbitrary other functor,
i. e. we show that if ιD is faithful (fully faithful, a monomorphism), then the
functor ιC , defined via a pullback diagram

C′ C

D′ D

ιC

F ′ F

ιD

in Cat∞, with F any functor, is so as well.
In Section B.5.3 we instead consider stability under taking pullbacks in the

arrow ∞-category; in Proposition B.1.3.1 we already showed that a natural
transformation between two diagrams that is pointwise a monomorphism in-
duces a monomorphism between the two limits. Section B.5.3 specializes this
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to the case of pullbacks in Cat∞, and adds additional information regarding
the replete image of the induced functor.

B.5.1. Functor ∞-categories
Proposition B.5.1.1. Let ι : C′ → C be a monomorphism in Cat∞ and I an
∞-category. Then the induced functor

ι∗ : Fun(I, C′)→ Fun(I, C)

is a monomorphism in Cat∞ as well.
Let J be defined to be the replete subcategory of Ho Fun(I, C) where

• a functor F : I → C considered as an object of Ho Fun(I, C) is in J if
and only if Im(HoF ) is contained in Im(Ho ι).

• a natural transformation Φ: F → G of functors I → C, considered as
a morphism from F to G in Ho Fun(I, C), is in J if and only if F and
G are objects of J and ΦX is in Im(Ho ι) for every object X of I.

Then the replete image Im(Ho ι∗) of the functor

Ho(ι∗) : Ho Fun(I, C′)→ Ho Fun(I, C)

is equal to J. ♥

Proof. Proof that ι∗ is a monomorphism: Follows from description Proposi-
tion B.4.1.1 (2) using that for any∞-category J there is a natural equivalence
as follows.

Fun(J ,Fun(I,−)) ≃ Fun(J × I,−)

Proof that Im(Ho ι∗) is contained in J: Clear
Proof that J is contained in Im(Ho ι∗): It suffices to show an inclusion of

the respective collection of morphisms, as the case of objects is covered by
the identity morphisms. So let Φ: F → G be a natural transformation of
functors I → C, considered as a morphism from F to G in Ho Fun(I, C),
and assume that Φ lies in J. What we have to show is that Φ can be lifted
along ι, i. e. that there is a natural transformation Φ′ of functors I → C′ such
that ι ◦ Φ′ ≃ Φ. But we can encode Φ as a functor Φ̃ : [1] × I → C, and the
assumptions mean precisely that Im(Ho Φ̃) is contained Im(Ho ι). That we
can lift Φ along ι now follows from Proposition B.4.3.1.

Remark B.5.1.2. Let ι : C′ → C be a fully faithful functor. By B.4.4.1 ι is
also a monomorphism in Cat∞, so we can apply Proposition B.5.1.1. In this
case, the replete subcategory J of Ho Fun(I, C) appearing in the statement
of Proposition B.5.1.1 has a simpler description, using that Ho ι is full: J is
the full subcategory of Ho Fun(I, C) spanned by those functors F : I → C for
which F (X) is in the essential image of Ho ι for every object X of I. ♦
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B.5.2. Pullbacks along another functor
Proposition B.5.2.1. Let

C′ C

D′ D

ιC

F ′ F

ιD

(B.5)

be a pullback square in Cat∞ and assume that ιD is faithful (fully faithful,
a monomorphism). Then ιC is faithful (fully faithful, a monomorphism) as
well.

Furthermore, if ιD is a monomorphism5, then the induced diagram on
homotopy categories

Ho(C′) Ho(C)

Ho(D′) Ho(D)

Ho ιC

HoF ′ HoF

Ho ιD

(B.6)

is a pullback6. ♥

Proof. That ιC is a monomorphism in Cat∞ if ιD is follows immediately from
pullbacks of monomorphisms being pullbacks again, see [HTT, 5.5.6.12].

We next show the first statement for (fully) faithful functors. Let X and
Y be objects of C′. We have to show that the map in S

MapC′(X,Y )→ MapC(ιC(X), ιC(Y ))

induced by ιC is a monomorphism (is an equivalence). By Proposition A.2.0.2
the commutative square induced by (B.5)

MapC′(X,Y ) MapC(ιC(X), ιC(Y ))

MapD′(F ′(X), F ′(Y )) MapD(ιD(F
′(X)), ιD(F

′(Y )))

is a pullback diagram in S. As ιD is (fully) faithful the lower horizontal map
is a monomorphism (equivalence), and hence so is the upper horizontal map
(see [HTT, 5.5.6.12] for monomorphisms being preserved by pullbacks) This
shows that ιC is (fully) faithful.

Finally it remains to show that diagram (B.6) is a pullback diagram if ιD is
a monomorphism in Cat∞. By Remark B.4.2.1, the functors Ho ιD and Ho ιC
are pseudomonic, so this boils down to showing that the replete image of

5Recall that by Proposition B.4.4.1 fully faithful functors are automatically monomor-
phisms in Cat∞.

6We take the pullback in the ∞-category of 1-categories.
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Ho ιC is equal to the HoF -preimage of the replete image of Ho ιD. It is clear
that HoF maps the replete image of Ho ιC to the replete image of Ho ιD. On
the other hand, if f is a morphism in C such that HoF (f) is in the replete
image of Ho ιD, then there must exist a morphism g′ in D and an equivalence
ιD(g

′) ≃ F (f) in Fun([1],D). We can interpret the situation as a commuting
square as depicted as the outer square in the following diagram.

[1]

C′ C

D′ D

constf

constg′

ιC

F ′ F

ιD

As the small square is a pullback square we obtain the dashed functor, which
we can interpret as a morphism in C′ that is mapped by Ho ιC to a morphism
isomorphic to C. That the objects of the two replete subcategories we are to
compare agree can be proven analogously, or deduced from this by considering
identity morphisms.

B.5.3. Pullbacks
Proposition B.5.3.1. Let

C′ D′

C D

E ′ F ′

E F

FC FD

R′P

Q

FE
S′

FF

S

R
(B.7)

be a commuting cube of ∞-categories such that FD, FE , and FF are faithful
(fully faithful, monomorphisms) and the front and back squares are pullback
squares in Cat∞. Then the functor FC is faithful (fully faithful, a monomor-
phism) as well.

Furthermore, if FF is a monomorphism7 in Cat∞, then an object (mor-
phism) in Ho C is in Im(HoFC) if and only if it is mapped by HoP and HoQ
to an object (morphism) in Im(HoFD) and Im(HoFE), respectively. ♥

Proof. To show that FC is again faithful or fully faithful we apply Proposi-
tion A.2.0.2 and use Proposition B.1.3.1 and that the formation of pullbacks

7By Proposition B.4.4.1, fully faithful functors are monomorphisms as well.
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is invariant under equivalences. The case of monomorphisms in Cat∞ is even
simpler, as it follows directly from Proposition B.1.3.1.

It remains to show the statement concerning replete images. The “only if”-
direction is clear. We show that a morphism in Ho C satisfying the assumption
lies in Im(HoFC), the statement for objects follows from this by considering
identity morphisms. As the front of (B.7) is a pullback diagram, a morphism
in C satisfying the assumptions corresponds to a commutative square

[1] D

E F

ΦD

ΦE R

S

such that Im(HoΦD) is contained in Im(FD) and Im(HoΦE) is contained
in Im(FE). What we have to show is that we can extend this square to a
commutative cube as follows.

[1] D′

[1] D

E ′ F ′

E F

id[1]

ΦD′

ΦE′

FD

R′

ΦD

ΦE

FE
S′

FF

S

R
(∗)

The assumptions on Im(HoΦD) and Im(HoΦE) imply that we can fill the
dashed arrows together with the top and left squares by Proposition B.4.3.1,
as FD and FD are monomorphisms. We are left to find a filler for the back
square and the cube. But this amounts to lifting the homotopy between
FF ◦ R

′ ◦ ΦD′ and FF ◦ S
′ ◦ ΦE′ encoded by the other sides to a homotopy

between R′ ◦ΦD′ and S′ ◦ΦE′ . This is possible as the following map induced
by FF

Map(Fun([1],F ′)≃)(R
′ ◦ ΦD′ , S′ ◦ ΦE′)

→ Map(Fun([1],F)≃)(FF ◦R
′ ◦ ΦD′ , FF ◦ S

′ ◦ ΦE′)

is an equivalence by Proposition B.4.1.1 (2) and Proposition B.1.1.1 (6).

B.6. Subcategories
In this short section we briefly discuss how monomorphisms into a fixed
∞-category C correspond to replete subcategories of Ho C.
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Remark B.6.0.1. Let C be an∞-category and (Ho C)′ a replete subcategory
of Ho C. Then define ι : C′ → C as in the following pullback diagram

C′ C

(Ho C)′ Ho C

ι

ι′

where the right vertical functor is the canonical one. As the inclusion of a re-
plete subcategory of a 1-category is a pseudomonic functor of 1-categories, it
follows from Remark B.4.2.1 that ι′ is a monomorphism in Cat∞. By Proposi-
tion B.5.2.1 ι is also a monomorphism, and furthermore the induced functor
Ho(C′)→ Ho(C)′ is an equivalence8, so Im(Ho ι) = (Ho C)′.

By Proposition B.4.3.1, two monomorphisms ι′ : C′ → C and ι′′ : C′′ → C are
equivalent as functors to C in the sense that there is a commutative triangle

C′

C

C′′

ι′

≃

ι′′

if and only if Im(Ho ι′) = Im(Ho ι′′). This implies that all monomorphisms
arise up to equivalence from the above construction, and that there is a
bijection between equivalence classes of monomorphisms with target C and
replete subcategories of Ho C. ♦

8As Ho C → Ho(Ho C) is.
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Appendix C.

(Co)Cartesian Fibrations
For many technical parts of this thesis, (co)cartesian fibrations play a cru-

cial role. For a very readable model-independent introduction [Maz19] can
be recommended. For a full introduction to (co)cartesian fibrations and their
properties in the setting of quasicategories see [HTT, 2.4]. We will follow
[Maz19] in deviating somewhat from Lurie’s terminology by using a more
model-independent definition: For us, a cartesian fibration is a morphism in
Cat∞ that can be represented by a morphism of quasicategories that is a
cartesian fibration in Lurie’s sense (see [HTT, 2.4.2.1]). Equivalently, those
are the functors of ∞-categories which satisfy condition [HTT, 2.4.1.1 (2)],
with the pullback in the definition of cartesian morphisms in [HTT, 2.4.1.1]
replaced by the homotopy pullback in Cat∞. For a definition along these lines,
see [Maz19, 3]. It is shown in [Maz19, 4.3 and 4.4] that these two descriptions
coincide, and we can thus use the latter model-independent definition while
still making use of all the properties of (co)cartesian fibrations proved in
[HTT].

In this appendix we collect some statements relating to (co)cartesian fi-
brations that we need; in Section C.1 we will show a number of stability
statements, and in Section C.2 we will discuss compatibility of cocartesian
fibrations with products.

C.1. Stability properties of (co)cartesian
fibrations

In this section we discuss stability of (co)cartesian fibrations under some
constructions. Concretely, in Section C.1.1 we consider pullbacks of cartesian
fibrations along any other functor, in Section C.1.2 we discuss a condition
under which restrictions of cartesian fibrations along fully faithful functors
are again cartesian fibrations, and in Section C.1.3 we show that if p : C → D
and q : D → E are cartesian fibrations, then p is also a morphism of carte-
sian fibrations from qp to q, i. e. maps qp-cartesian morphisms to q-cartesian
morphisms.

Remark C.1.0.1. The definitions of cocartesian and cartesian fibrations
are dual to each other: p : C → D is a cocartesian fibration if and only if
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pop : Cop → Dop is a cartesian fibration [HTT, 2.4.2.1]. Because of this it
suffices to prove many statements for only one of the two (usually cartesian
fibrations), the other case following by passing to opposite ∞-categories. To
avoid overly long statements we will not state the dual versions in the propo-
sitions below, but use them without further comment. ♦

C.1.1. Pullbacks
We record the following fact, that is clear from [HTT, 2.4.1 and 2.4.2], but

not stated like this.

Proposition C.1.1.1. Let

C′ C

D′ D

F

p′ p

be a pullback diagram of ∞-categories where p is a cartesian fibration.
Then p′ is also a cartesian fibration and a morphism φ : X → Y in C′ is

p′-cartesian if and only if F (φ) is p-cartesian. ♥

Proof. That p′ is also a cartesian fibration is [HTT, 2.4.2.3 (2)], which follows
from [HTT, 2.4.1.3 (2)], which also covers the “if”-direction. For the “only
if”-direction, let φ : X → Y be a p′-cartesian morphism in C′. Then φ is in
particular locally p′-cartesian1, so we can apply [HTT, 2.4.1.12] to conclude
that F (φ) is locally p-cartesian. As p is a cartesian fibration we can then
apply [HTT, 2.4.2.13] to show that F (φ) is in fact p-cartesian.

C.1.2. Restriction along fully faithful functors
Proposition C.1.2.1. Let p′ : C′ → D be a cartesian fibration of ∞-cate-
gories and ι : C → C′ a fully faithful functor. Assume that for every object Y
in C and every p′-cartesian morphism f ′ : X ′ → ι(Y ) in C′ there is an object
X in C with ι(X) ≃ X ′.

Let p = p′ι. Then p is also a cartesian fibration, and a morphism f in C is
p-cartesian if and only if ι(f) is p′-cartesian. ♥

Proof. We start by noting that the “if”-direction, i. e. the criterion for check-
ing when a morphism of C is p-cartesian, follows immediately from [HTT,
2.4.4.3].

We can now use this criterion to show that p has a sufficient supply
of cartesian lifts to be a cartesian fibration. So let Y be an object in C
and g : X → p(Y ) a morphism in D. Then there exists a p′-cartesian lift

1This follows from the already proved “if”-direction. See [HTT, 2.4.1.11] for a definition
of locally p′-cartesian morphisms.
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g′ : X
′
→ ι(Y ) in C′, as p′ is a cartesian fibration. By the assumption on ι,

there exists an object X of C such that ι(X) ≃ X
′. As ι is also fully faith-

ful, there exists a morphism g : X → Y in C such that ι(g) ≃ g′ and hence
p(g) ≃ g. We can now use the already proven criterion to deduce that g
is p-cartesian from g′ being p′-cartesian. This finishes the proof that p is a
cartesian fibration.

Finally, let f : X → Z be a p-cartesian morphism in C. We want to show
that ι(f) is p′-cartesian. In C′ we can factor ι(f) as ι(f) = ψ′ ◦ φ′, where ψ′

is p′-cartesian and φ′ is a morphism in C′p(X), as depicted in the following
commutative diagram

ι(X) Y ′

ι(Z)

φ′

ι(f)
ψ′

lying over the following commutative diagram in D.

p(X) p(X)

p(Z)

idp(X)

p(f)
p(f)

Using the assumptions on ι, we can find an object Y in C together with an
equivalence ϑ : Y ′ ≃

−→ ι(Y ), as well as a commuting diagram

X Y

Z

φ

f ψ

in C which maps to the following composite commutative diagram in C′.

ι(X) ι(Y )

Y ′

ι(Z)

ι(φ)

ι(f)

φ′

ι(ψ)

ψ′

ϑ

As ϑ is an equivalence and ψ′ is p′-cartesian, also ι(ψ) is p′-cartesian, so that
we can conclude that ψ is p-cartesian by the already proven “if”-direction. If
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follows from [HTT, 2.4.1.7] that φ is also p-cartesian. Furthermore, p(φ) is
an equivalence as the composition of the two equivalences idp(X) and p′(ϑ),
so by [HTT, 2.4.1.5] φ itself is an equivalence. Thus ι(φ) is an equivalence
and hence by [HTT, 2.4.1.5] p′-cartesian, and so ι(f) is p′-cartesian by [HTT,
2.4.1.7].

C.1.3. Morphisms of cartesian fibrations
Proposition C.1.3.1. Let

C D

E

p

s q

be a commutative diagram of ∞-categories such that p, q, and s are cartesian
fibrations.

Then p is a morphism of cartesian fibrations over E, i. e. maps s-cartesian
morphisms to q-cartesian morphisms. ♥

Proof. Let f : X → Y be an s-cartesian morphism in C. As q is a cartesian fi-
bration, there exists a q-cartesian lift g : Z → p(Y ) inD of s(f). As p is a carte-
sian fibration, we can further lift g to a p-cartesian morphism f ′ : X ′ → Y in
C. By [HTT, 2.4.1.3 (3)] f ′ is even s-cartesian, so by uniqueness of cartesian
lifts (see [HTT, 2.4.1.9]) f ′ and f are equivalent as morphisms in C and hence
p(f) ≃ p(f ′) ≃ g is q-cartesian because g is.

C.2. Cocartesian fibrations and products
Let D be an ∞-category and F : D → Cat∞ a functor. Let O be an
∞-operad. By [HA, 2.4.2.4] the ∞-category MonO(Cat∞) of O-monoids in
Cat∞ can be identified with the∞-category of O-monoidal∞-categories. If F
preserves products, then we obtain an induced functor on O-monoids, which
we can thus interpret as functorially producing O-monoidal∞-categories out
of O-monoids in D. We will be very interested in this situation in this thesis,
in particular in Chapter 3. However, it will usually be easier to construct and
work with the cocartesian fibration p : C → D associated to F rather than
with F directly. For this reason we will start this section by describing the
property of F preserving products in terms of the cocartesian fibration p (see
Definition C.2.0.1), and will then prove some consequences of this property,
as well as one result (see Proposition C.2.0.4) that can help deduce that a
cocartesian fibration has this property.

Definition C.2.0.1. Let p : C → D be a cocartesian fibration. We say that
p has fibers compatible with products if D admits all products and for any set
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I and collection of objects Yi in D for i ∈ I, the functor

C∏
i∈I Yi

∏
i∈I(pri)!

−−−−−−−→
∏

i∈I

CYi
♦

is an equivalence of ∞-categories, where prj :
∏
i∈I Yi → Yj is the projection

and (prj)! is the functor induced by prj on fibers.

Remark C.2.0.2. Let p : C → D be a cocartesian fibration that is classified
by a functor F : D → Cat∞. Then p has fibers compatible with products if
and only if D admits all products and F preserves products. ♦

If p : C → D is a cocartesian fibration whose fibers are compatible with
products, then we will see in the next proposition that C admits all products
as well, and p preserves them. In fact we can say more and also describe
concretely how to construct products in C.

Proposition C.2.0.3. Let p : C → D be a cocartesian fibration whose fibers
are compatible with products in the sense of Definition C.2.0.1.

Let I be a set and (Xi)i∈I a collection of objects in C. As fibers of p are
compatible with products, we obtain the following equivalence.

C∏
i∈I p(Xi)

∏
i∈I(pri)!

−−−−−−−→
∏

i∈I

Cp(Xi)

There thus exists an object X in C lying over
∏
i∈I p(Xi) together with

p-cocartesian morphisms pri : X → Xi lying over the projections

pri :
∏

i∈I

p(Xi)→ p(Xi)

in D.
Then the morphisms pri exhibit X as a product of the collection of objects

Xi for i ∈ I in C. In particular, C admits all products and p preserves
products. ♥

Proof. We use notation as in the statement. By [HTT, 4.4.1] we need to prove
for every object Z of C that the map

MapC(Z,X)

∏
i∈I(pri◦−)

−−−−−−−−→
∏

i∈I

MapC(Z,Xi)

is an equivalence. This map fits into the following commutative square as the
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left vertical map, with the horizontal maps being induced by p.

MapC(Z,X) MapD

(
p(Z),

∏

i∈I

p(Xi)
)

∏

i∈I

MapC(Z,Xi)
∏

i∈I

MapD(p(Z), p(Xi))

∏
i∈I(pri◦−) ∏

i∈I(pri◦−) (∗)

As by definition the projections pri exhibit
∏
i∈I p(Xi) as a product of (Xi)i∈I ,

it follows by [HTT, 4.4.1] that the right vertical map is an equivalence. Let
f : p(Z) →

∏
i∈I p(Xi) be a morphism. We can extend diagram (∗) to a

morphism of fiber sequences by taking the fiber of the top horizontal map
over f and of the lower horizontal map over (pri ◦f)i∈I . By the five lemma
it will then suffice to show that for every such f the induced map on fibers
is an equivalence.

To identify this induced map on fibers, we let f : Z → f!Z be a p-cocarte-
sian lift of f , let

prj ′ : f!Z → prj !(f!Z)

be a p-cocartesian lift of

prj :
∏

i∈I

p(Xi)→ p(Xj)

and ponder the following diagram.

MapC∏
i∈I p(Xi)

(f!Z,X) MapC(Z,X) MapD

(
p(Z),

∏

i∈I

p(Xi)
)

MapCp(Xj)

(
prj !(f!Z), Xj

)
MapC(Z,Xj) MapD(p(Z), p(Xj))

−◦f

pr!

p

prj◦− prj◦−

−◦(prj ′◦f) p

(∗∗)
The top and bottom rows come with homotopies of the composition to constf
and constprj◦f , respectively. For the top horizontal sequence this homotopy is
indicated in the following diagram, the case for the lower horizontal diagram
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is analogous.

MapC∏
i∈I p(Xi)

(f!Z,X)

MapC(Z,X) MapC(f!Z,X)

MapD

(∏

i∈I

p(Xi),
∏

i∈I

p(Xi)
)

MapD

(
p(Z),

∏

i∈I

p(Xi)
)

−◦f

constid

constfp

−◦f

p

−◦f

By [HTT, 2.4.4.2 and the discussion preceding it], this homotopy upgrades
the top row of diagram (∗∗) into a fiber sequence, and analogously for the
bottom row.

Unpacking the various definitions we can also upgrade the vertical mor-
phisms in diagram (∗∗) into a morphism of fiber sequences. For example
commutativity of the left square essentially boils down to the functor

prj : C∏ p(Xi) → CXj

by definition sending a morphism g : f!Z → X to the essentially unique mor-
phism pri!g that fits in a commutative diagram

f!Z pri!f!Z

X pri!X

g pri!g

where the horizontal morphisms are p-cocartesian lifts of pri, see [HTT, 5.2.1].
We have thus shown that the induced morphism on fibers (which we have

to show is an equivalence) can be identified with the morphism
∏

i∈I

(pri!) : MapC∏
i∈I p(Xi)

(f!Z,X)→
∏

i∈I

MapCp(Xj)

(
prj !(f!Z), Xj

)

But that this is an equivalence follows immediately from
∏

i∈I

(pri!) : C∏i∈I p(Xi) →
∏

i∈I

Cp(Xj)

being an equivalence and mapping spaces in products of ∞-categories being
equivalent to the respective product of mapping spaces.
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The following proposition will be key to show that some cocartesian fibra-
tions we are interested in have fibers that are compatible with products.

Proposition C.2.0.4. Let

C′ C

D

p′

F

p

be a morphism of cocartesian fibrations over D and assume that p′ and p have
fibers that are compatible with products in the sense of Definition C.2.0.1.

If F is also a cocartesian fibration, then its fibers are also compatible with
products. ♥

Proof. Let I be a set and (Xi)i∈I a collection of objects in C. Proposi-
tion C.2.0.3 provides us with an object X in C∏

i∈I p(Xi) together with, for
every element j of I, p-cocartesian lifts pri : X → Xj of the projections
prj :

∏
i∈I p(Xi) → p(Xj), such that the collection of morphisms (pri)i∈I

exhibits X as the product of (Xi)i∈I in C.
As F is a morphism of cocartesian fibrations, we obtain a commutative

square as depicted as the right hand square in the following diagram.

C′X C′∏
i∈I p(Xi)

C∏
i∈I p(Xi)

∏

i∈I

C′Xi

∏

i∈I

C′p(Xi)

∏

i∈I

Cp(Xi)

F∏
i∈I p(Xi)

∏
i∈I

(
(pri)

p′

!

) ∏
i∈I((pri)

p
! )

∏
i∈I Fp(Xi)

(∗)

Taking fibers in the horizontal direction, over X in the top line, and over
(Xi)i∈I in the bottom line, we obtain the induced commutative square de-
picted on the left. As by assumption both p′ and p have fibers that are
compatible with products, the middle and right vertical functors are equiv-
alences, and hence so is the induced left vertical functor. We are not quite
done however, as a priori this functor is the induced functor constructed from
p′-cocartesian morphisms, whereas we need to show that the functor

∏

i∈I

(pri)
F
! : C′X →

∏

i∈I

C′Xi
(∗∗)

is an equivalence, which is constructed from F -cocartesian morphisms.
So let Y be an object in C′X and let pri′ : X → pri!(X) be an F -cocartesian

lift of pri. As pri′ maps under F to the p-cocartesian morphism pri, we can
conclude by [HTT, 2.4.1.3 (3)] that pri′ is in fact also an p′-cocartesian lift
of pri. We can thus identify the functor (∗∗) with the left vertical functor in
diagram (∗).
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If p : C → D is a cocartesian fibration whose fibers are compatible with
products, then by Proposition C.2.0.3 C admits products and p preserves
products, so we obtain an induced symmetric monoidal functor p× : C× → D×

with respect to the cartesian symmetric monoidal structures, see [HA, 2.4.1.8].
It will be useful for us to know that p× is again a cocartesian fibration, so
we will show this as Proposition C.2.0.6 below, after the following technical
prerequisite.

Proposition C.2.0.5. Let p : C → D be a cocartesian fibration with fibers
compatible with products in the sense of Definition C.2.0.1. Then products of
p-cocartesian morphisms are again p-cocartesian. ♥

Proof. Let I be a set and let fi : Ci → C ′
i be a p-cocartesian morphism in C

for every element i of I. We have to show that the product

f :=
∏

i∈I

fi :
∏

i∈I

Ci →
∏

i∈I

C ′
i

is p-cocartesian. By Proposition C.2.0.3, p preserves products, so f lies over
the morphism

∏
i∈I p(fi). We can then factor f as indicated in the following

diagram

φ!

(∏
i∈I Ci

)

∏

i∈I

Ci
∏

i∈I

C ′
i

ψ

f

φ

where φ is a p-cocartesian lift of
∏
i∈I p(fi) and ψ lies over id∏

i∈I p(C
′
i)

. It
then suffices to show that ψ is an equivalence.

Let i be an element of I, and let pri : φ!(
∏
i∈I Ci)→ C ′′

i be a p-cocartesian
lift of pri :

∏
i∈I p(C

′
i)→ p(C ′

i). It then follows from Proposition C.2.0.3 that
the collection (pri)i∈I exhibits φ!(

∏
i∈I Ci) as a product

∏
i∈I C

′′
i . Further-

more, ψ induces morphisms ψj : C ′′
j → C ′

j for every element j of I as in the
following diagram, and ψ can thus be identified with the product

∏
i∈I ψi.

∏

i∈I

C ′′
i

∏

i∈I

C ′
i

C ′′
j C ′

j

ψ

prj prj
ψj
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The following commuting diagram depicts the situation:

∏

i∈I

Ci
∏

i∈I

C ′
i

∏

i∈I

C ′′
i

Cj C ′
j C ′′

j

f

prj

φ

prj

∏
i∈I ψi

prj

fj ψj

In the outer commuting diagram, all morphisms except possibly ψj are p-
cocartesian, so by [HTT, 2.4.1.7] also ψj is p-cocartesian. It then follows
from [HTT, 2.4.1.5] and p(ψj) = idp(Cj) that ψj is even an equivalence. Hence
ψ =

∏
i∈I ψi is an equivalence, and thus f is p-cocartesian as it is equivalent

to the p-cocartesian morphism φ.

Proposition C.2.0.6. Let p : C → D be a cocartesian fibration whose fibers
are compatible with products in the sense of Definition C.2.0.1. Let

p× : C× → D×

be the induced symmetric monoidal functor between the respective cartesian
symmetric monoidal structures on C and D as in [HA, 2.4.1.8] (using that C
has all products and p preserves products by Proposition C.2.0.3).

Then p× is also a cocartesian fibration. ♥

Proof. We will apply [GHN15, 9.6]2 to the commutative triangle

C× D×

Fin∗

q

p×

r

where q and r are the cocartesian fibrations that are part of the structure
of a symmetric monoidal ∞-category. In this situation (the dual version of)
[GHN15, 9.6] states that p× is a cocartesian fibration if the following hold:

(a) q and r are cocartesian fibrations.

(b) p× sends q-cocartesian morphisms to r-cocartesian morphisms.

(c) For each object 〈n〉 in Fin∗, the induced functor on fibers

p×〈n〉 : C
×
〈n〉 → D

×
〈n〉

is a cocartesian fibration.
2[GHN17] is the published version of [GHN15], but does not contain [GHN15, 9.6].
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(d) Let n,m ≥ 0, let f1, . . . , fn and g1, . . . , gm be morphisms in C (with
fi : Xi → X ′

i and gi : Yi → Y ′
i ), and let φ and ψ be morphisms in C×

such that the following square in C× commutes3

X1 ⊕ · · · ⊕Xn Y1 ⊕ · · · ⊕ Ym

X ′
1 ⊕ · · · ⊕X

′
n Y ′

1 ⊕ · · · ⊕ Y
′
m

φ

f1⊕···⊕fn g1⊕···⊕gm

ψ

(∗)

and lies over a commuting square of the following form in Fin∗, with
α : 〈n〉 → 〈m〉 some morphism.

〈n〉 〈m〉

〈n〉 〈m〉

id

α

id

α

Assume that φ and ψ are q-cocartesian and f1 ⊕ · · · ⊕ fn is (p×)〈n〉-
cocartesian. Then g1 ⊕ · · · ⊕ gm is (p×)〈m〉-cocartesian.

Condition (a) holds by definition, and (b) holds as p× is a symmetric
monoidal functor from C× to D× (see the definition in [HA, 2.1.3.7]). The
functor p×〈n〉 can be identified with p×n : C×n → D×n, so (c) follows from the
fact that products of cocartesian fibrations are again cocartesian fibrations
(which follows from [HTT, 2.4.2.3]).

So now suppose we are in the situation of condition (d). We have to show
that g1⊕· · ·⊕gm is p×〈m〉-cocartesian. Unpacking the data of the commutative
square (∗) we see that it corresponds to the data of a commutative square

∏

α(i)=j

Xi Yj

∏

α(i)=j

X ′
i Y ′

j

∏
α(i)=j fi

φj

gj

ψj

in C for every 1 ≤ j ≤ m. That φ and ψ are q-cocartesian implies that φj and
ψj are equivalences, so we can conclude that gj is equivalent to

∏
α(i)=j fi

in C. As f1 ⊕ · · · ⊕ fn is p×〈n〉-cocartesian, it follows from the identification
p×〈n〉 ≃ p×n in combination with [HTT, 3.1.2.1] that fi is p-cocartesian for

3We are using the notation from [HA, 2.1.1.15]: For f1, . . . , fn : C → C we denote by
f1 ⊕ · · ·⊕ fn the morphism in C〈n〉 which under the equivalence C〈n〉 ≃ Cn corresponds
to the tuple (f1, . . . , fn).
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each 1 ≤ i ≤ n. Applying Proposition C.2.0.5 we can then conclude that∏
α(i)=j fi is also p-cocartesian, so gj is equivalent to a p-cocartesian mor-

phism and thus p-cocartesian as well. Applying the equivalence p×〈m〉 ≃ p×m

and [HTT, 3.1.2.1] again we conclude that g1⊕· · ·⊕gm is p×〈m〉-cocartesian.

660



Appendix D.

More ∞-category theory
This appendix is really a continuation of Appendix A and collects some

facts about more basic concepts of ∞-category theory: Undercategories in
Section D.1 and adjunctions in Section D.2.

D.1. Undercategories
In this section we discuss undercategories. [HTT, 1.2.9.5] gives a defini-

tion in terms of quasicategories, so we start in Section D.1.1 by providing a
model independent construction that can be carried out in Cat∞. We then
show in Section D.1.2 that the property of a functor being (fully) faithful or
a monomorphism is preserved by passing to induced functors on undercate-
gories. Finally, in Section D.1.3 we describe mapping spaces in an overcate-
gory CX/ as pullbacks of mapping spaces in C.

D.1.1. Model independent construction
Proposition D.1.1.1. Let C be an ∞-category and X an object of C. Let C
be a quasicategory representing C and X an object of C representing X.

Then the undercategory CX/ defined as in [HTT, 1.2.9.5], together with its
projection functor CX/ → C represent the functor

ev1 ◦ pr1 : Fun([1], C)×C {X} → C

in Cat∞, where the pullback is taken with respect to the functor ev0 and the
inclusion of {X} into C. ♥

Proof. The inclusion of {0} into [1] is a cofibration of simplicial sets, so the
functor

ev0 : sSet([1], C)→ C

is a Kan fibration by [Hov99, 4.2.8 and 4.2.2]. In particular, using [HTT,
3.3.1.4 and 2.4.2.4], the pullback (along morphisms like in the statement)
sSet([1], C)×C {X} is a homotopy pullback in the Joyal model structure, and
thus represents Fun([1], C)×C {X}.

The claim now follows from checking that sSet([1], C) satisfied the defining
universal property of CX/ (see [HTT, 1.2.9.5 and 1.2.9.2]).

661



Appendix D. More ∞-category theory

D.1.2. Undercategories, faithful functors, fully faithful
functors, and monomorphisms

Proposition D.1.2.1. Let F : C → D be a monomorphism (faithful functor,
fully faithful functor) in Cat∞ and X an object of C. Then the induced functor
on undercategories CX/ → DF (X)/ is a monomorphism (faithful functor, fully
faithful functor) as well. ♥

Proof. Using the description of undercategories from Proposition D.1.1.1,
this follows immediately from Proposition B.5.1.1, Proposition B.3.0.1, and
Proposition B.5.3.1.

D.1.3. Mapping spaces in undercategories
In this section we show that mapping spaces in undercategories can be

calculated through the expected pullback diagram. Before we can show this,
we need the following small result on how initial objects interact with functors
which are retractions.

Proposition D.1.3.1. Let ι : C → D and r : D → C be functors of ∞-
categories and assume that r ◦ ι is homotopic to the identity functor.

Let X be an initial object of D. As X is initial, there is an essentially
unique morphism f : X → ιrX in D. Assume that rf : rX → rιrX is an
equivalence. Then rX is an initial object of C. ♥

Proof. Let Y be an object of C and consider the following commutative dia-
gram of mapping spaces.

MapC(rX, Y )

MapD(ιrX, ιY ) MapD(X, ιY )

MapC(rιrX, rιY ) MapC(rX, rιY )

ι

r

f∗

r

r(f)∗

The left vertical composite is homotopic to the identity by the assumption
that rι ≃ idC and the bottom horizontal functor is an equivalence as r(f) is
an equivalence by assumption. As the mapping space in the middle right is
contractible by the assumption that X is initial, it thus follows that the top
left mapping space MapC(rX, Y ) is also contractible1, which is what we need
to show.

Proposition D.1.3.2. Let C be an ∞-category, X an object of C, and
f : X → Y and g : X → Z morphisms in C. Let p : CX/ → C be the pro-
jection functor.

1As a retract of a contractible space.
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D.1. Undercategories

Then the commutative diagram in S

MapCX/
(f, g) {g}

MapC(Y, Z) MapC(X,Z)

p

f∗

is a pullback diagram. ♥

Proof. Note that there is a degenerate commutative triangle

X

X Y

idX f

f

in C that we interpret as a morphism idX → f in CX/, which we will call f ′.
By [HTT, 2.1.2.2], p : CX/ → C is a left fibration, and hence by (the dual

of) [HTT, 2.4.2.4] a cocartesian fibration such that every morphism of CX/

is p-cocartesian. Applying (the dual of) [HTT, 2.4.4.3] to the p-cocartesian
morphism f ′ : idX → f , we obtain the following pullback diagram in S.

MapCX/
(f, g) MapCX/

(idX , g)

MapC(Y, Z) MapC(X,Z)

f ′∗

p p

f∗

Note that
X

X Z

idX g

g

is a point in MapCX/
(idX , g) that maps to g under p, so it suffices to show

that the mapping space MapCX/
(idX , g) is contractible, i. e. that idX is an

initial object in CX/.
We provide a quick proof for this fact here in the setting of quasicategories.

So let C be a quasicategory and X an object of C. To show that idX is an
initial object of CX/ it suffices by Proposition D.1.3.12 to provide a retraction
r of the inclusion CX/ → {i} ⋆ CX/ that sends the unique morphism i→ idX
in {i} ⋆ CX/ to an equivalence.

Using the universal property of CX/ (see [HTT, 1.2.9.2]) it suffices for this
to give a morphism3

φ : ({x} ⋆ {i}) ⋆ CX/ → C
2The idea for this argument is from the proof of [HTT, 1.2.12.5].
3We are using associativity of the join operation ⋆, see [HTT, 1.2.8].
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such that the restriction of φ to {x} ⋆ CX/ → C is adjoint to the identity of
CX/ (this corresponds to r being a retraction of the inclusion) and such that
the unique 2-simplex

x

idX

i

in ({x} ⋆ {i}) ⋆ CX/ is mapped by φ to the degenerate 2-simplex

X

X

X

idX

idX

idX

which covers the condition of the unique morphism i→ idX being sent to an
equivalence.

We can define such a morphism as follows: Let q : {x} ⋆ {i} → {x} be the
unique morphism. Then we take the composite

({x} ⋆ {i}) ⋆ CX/

q⋆idCX/
−−−−−−→ {x} ⋆ CX/ −→ C

where the second morphism is adjoint to idCX/
.

D.2. Adjunctions
In this section we discuss adjunctions of ∞-categories. In Section D.2.1 we

briefly recall the two equivalent descriptions of adjunctions that are explicitly
given in [HTT] and prove that they are equivalent to a third characterization.
In Section D.2.2 we discuss the interaction of adjunctions with Fun(C,−) for
some ∞-category C.

D.2.1. Equivalent characterizations of adjoints
There are several ways to define adjunctions of∞-categories. The definition

used in [HTT] describes adjunctions as cocartesian and cartesian fibrations
over [1] (see [HTT, 5.2.2.1]). Lurie also shows that adjunctions are equiva-
lently given by pairs of functors F : C → D and G : D → C together with a
unit transformation u : idC → G ◦ F satisfying the usual property for map-
ping spaces (see [HTT, 5.2.2.7 and 5.2.2.8]). We will use both descriptions
and refer to [HTT, 5.2.2] for full definitions and how to translate between
the two descriptions. We will also need a related third description, which we
prove in the next proposition.
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Proposition D.2.1.1. Let F : C → D and G : D → C be functors of ∞-
categories, and η : idC → G ◦F a natural transformation. Then the following
are equivalent.

(1) There exists a natural transformation ϵ : F ◦G→ idD and the composite
natural transformations

F
Fη
−−→ FGF

ϵF
−−→ F

and
G

ηG
−−→ GFG

Gϵ
−−→ G

are homotopic to idF and idG.

(2) η is a unit transformation for (F,G) in the sense of [HTT, 5.2.2.7]. ♥

Proof. Let us first assume (2). The proof of (1) is really an extension of what
is shown in the proof of [HTT, 5.2.2.8], so we will assume the reader is familiar
with that proof and sketch the additions that need to be made.

In [HTT, 5.2.2.8], assuming (2), an adjunction q :M→ [1] in the sense of
[HTT, 5.2.2.1] associated to F and G is constructed from η. Let

Φ: [1]× C →M

be the pointwise (in C) q-cocartesian natural transformation from the inclu-
sion4 of C into M to F exhibiting F as associated to q and similarly Ψ for
G.

It is clear from unpacking the definitions, that the unit transformation
extracted from q in the other direction of [HTT, 5.2.2.8] can be identified with
η. One can extract a natural transformation ϵ : F ◦G→ idD in a completely
analogous manner, as we will also explain in more detail now.

Both natural transformations η and ϵ are obtained are by combining [HTT,
3.1.2.1]5 and [HTT, 2.4.1.4] to lift find fillers in certain diagrams of natural
transformations. For example, for ϵ we consider the following diagram of
functors D →M

idD

G

FG

Ψ

ΦG

ϵ

where a filler for the dashed arrow and the triangle can be found as the
bottom left arrow is cocartesian.

4We identify C with M0 and D with M1.
5That induced functors q∗ : Fun(J ,M) → Fun(J , [1]) are again (co)cartesian fibrations

and natural transformations are q∗-(co)cartesian if and only if they are pointwise q-
(co)cartesian.
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To show that
F

Fη
−−→ FGF

ϵF
−−→ F

is homotopic to the identity, we can now ponder the following diagram of
functors C →M.

F

GF FGF

idC F

ΨF

ΦGF

ΨF

ϵF

Φ

η Fη

The dashed arrow on the left comes with a filler for the triangle at the bottom
left and uses that ΨF is q∗-cartesian. The dashed arrow on the bottom right
then comes with a filler for the lower square and uses that Φ is q∗-cocartesian.
The dashed arrow on the upper right comes with a filler for the upper triangle
and uses that ΦGF is q∗-cocartesian. We can thus conclude that ϵF ◦ Fη is
a filler in the following diagram.

GF F

idC F

ΨF

Φ

η ϵF◦Fη

But by definition of η (see the lower left triangle in the previous diagram),
one such filler is idF , so it follows that ϵF ◦ Fη ≃ idF . The other case is
completely analogous. This shows (1).

We now assume (1) and show that η is a unit transformation for (F,G).
For this we have to show that for every object C in C and object D in D, the
composition

MapD(F (C), D)
G
−→ MapC(GF (C), G(D))

(ηC)∗

−−−−→ MapC(C,G(D))

is an equivalence. Using ϵ we can define a map in the opposite direction as

MapC(C,G(D))
F
−→ MapD(F (C), FG(D))

(ϵD)∗
−−−→ MapD(F (C), D)

and it follows immediately from (1) that these two maps are inverse equiva-
lences.
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D.2.2. Adjunctions and Fun
In this short section we show that whenever C is an ∞-category, the func-

tor Fun(C,−) preserves adjunctions in a manner made precise in the next
proposition.

Proposition D.2.2.1. Let p :M→ [1] be a cartesian and cocartesian func-
tor, and F : M0 → M1 the corresponding left adjoint, G : M1 → M0 the
corresponding right adjoint, and u : idM0 → G ◦ F the corresponding unit
transformation.

Let C be an ∞-category. Then the functor p′ :M′ → [1] that is defined by
the following pullback diagram

M′ Fun(C,M)

[1] Fun(C, [1])

p′ p∗

const

is also a cartesian and cocartesian fibration and hence defines an adjunction.
Furthermore, the fibers M′

0 and M′
1 can be identified with Fun(C,M0) and

Fun(C,M1), and under this identification the encoded left adjoint can be
identified with F∗, the encoded right adjoint with G∗, and the corresponding
unit transformation with u∗. ♥

Proof. That p′ is again a cartesian and cocartesian fibration follows from
[HTT, 3.1.2.1] and Proposition C.1.1.1. Using composability of pullback dia-
grams and Fun(C,−) preserving pullbacks we obtain the following chain of
equivalences with which we can identify M′

i as stated.

M′
i ≃ Fun(C,M)×Fun(C,[1]) {consti}
≃ Fun(C,M)×Fun(C,[1]) Fun(C, {i})
≃ Fun

(
C,M×[1] {i}

)

≃ Fun(C,Mi)

Let the commuting diagram

M0 × [1] M

[1]

F ′

pr2 p

exhibit F as the left adjoint to p (see [HA, 5.2.1.1 and 5.2.2.1]). We can then
construct a diagram exhibiting F∗ as the left adjoint to p′ as indicated in the
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following diagram

Fun(C,M0)× [1] Fun(C,M0 × [1])

M′ Fun(C,M)

[1] Fun(C, [1])

pr2

(F∗)
′

F ′
∗

(pr2)∗

p′ p∗

const

where the top horizontal functor is the composition

Fun(C,M0)× [1]
id× const
−−−−−−→ Fun(C,M0)× Fun(C, [1]) ≃

−→ Fun(C,M0 × [1])

That (F∗)
′ as constructed in the above diagram indeed exhibits F∗ as the left

adjoint associated to p′ follows from the description of cocartesian morphisms
in [HTT, 3.1.2.1] and Proposition C.1.1.1.

The statements regarding G∗ and u∗ can be proven analogously.

668



Appendix E.

∞-operads and algebras

This appendix collects various results concerning ∞-operads and their ∞-
categories of algebras.

We begin in Section E.1 with generic facts on (morphisms of) ∞-operads.
For most of the remaining sections we then turn towards∞-categories of alge-
bras. In Section E.2 we will look into the relationship between ∞-categories
of algebras and base changes of ∞-operads, and in Section E.3 we show that
passing from morphisms of ∞-operads to functors between the respective
∞-categories of algebras preserves various properties.

If O is an ∞-operad and C is a symmetric monoidal ∞-category, then
AlgO(C) inherits an induced symmetric monoidal structure, which will be
discussed in Section E.4. If O′ is another ∞-operad, then the symmetric
monoidal structure on AlgO(C) allows us to take O′-algebras in AlgO(C). In
Section E.5 we will show that there is another way to describe O′-algebras
in O-algebras in C, namely as O ⊗O′-algebras in C. In Section E.6 we then
discuss the commutative ∞-operad Comm and show that the tensor product
of ∞-operads of any ∞-operad O with Comm is equivalent to Comm again.

In Section E.7 we discuss colimits of algebras as well as free algebras,
and in particular when they are preserved by induced functors on algebra
∞-categories. Finally, in Section E.8 we discuss relative tensor products and
when monoidal functors preserve them. We also show that pushouts of com-
mutative algebras are given by relative tensor products.

E.1. ∞-operads
In this section we collect three statements relating to properties of mor-

phisms of ∞-operads or helpful for showing that a functor is a morphism
of ∞-operads or a symmetric monoidal functor. Concretely, Section E.1.1
helps showing that a morphism of ∞-operads between symmetric monoidal
∞-categories is symmetric monoidal, Section E.1.2 is about consequences of
a morphism of ∞-operads being conservative, and Section E.1.3 discusses
functors that are pullbacks of a morphism of ∞-operads along a cocartesian
fibration of ∞-operads and vice versa.
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E.1.1. Symmetric monoidal functors
By definition1, a morphism of ∞-operads between symmetric monoidal
∞-categories is symmetric monoidal if it is a morphism of cocartesian fibra-
tions, so preserves all cocartesian morphisms2. In the following proposition,
we show that it suffices to check cocartesian lifts of two select morphisms
in Fin∗: The multiplication µ : 〈2〉 → 〈1〉 and unit ϵ : 〈0〉 → 〈1〉. This is an
analogue of [HA, 2.1.2.9] which similarly reduces the amount of inert mor-
phisms that need to be checked to verify a functor over Fin∗ is a morphism
of ∞-operads.

Proposition E.1.1.1. Let

C⊗ D⊗

Fin∗

F⊗

pC pD

be a commutative diagram of morphisms of ∞-operads, and assume that pC
and pD exhibit C⊗ and D⊗ as symmetric monoidal ∞-categories. Then the
following two conditions are equivalent.

(1) F⊗ is symmetric monoidal, i. e. maps pC-cocartesian morphisms to
pD-cocartesian morphisms.

(2) F⊗ maps pC-cocartesian lifts of the active morphism3 µ : 〈2〉 → 〈1〉
and pC-cocartesian lifts of the unique morphism ϵ : 〈0〉 → 〈1〉 to pD-
cocartesian morphisms. ♥

Proof. It is clear that (1) implies (2), so it remains to show the converse
direction. Morphisms in Fin∗ are generated (by composition) by morphisms
of the following forms (compare [HA, 2.1.2.2]).

(A) Inert morphisms4.

(B) For every n ≥ 1 the morphism µn : 〈n+1〉 → 〈n〉 that sends an element
i of 〈n+ 1〉◦ to i if i ≤ n, and to n otherwise5.

(C) For every n ≥ 0 the inclusion ϵn : 〈n〉 → 〈n+ 1〉 (i. e. sending i to i).

As the collection of cocartesian morphisms is closed under composition [HTT,
2.4.1.7] and cocartesian lifts with fixed source object are unique up to equiv-
alence [HTT, 2.4.1.9], it suffices to prove that F⊗ maps pC-cocartesian lifts
of morphisms of type (A), (B), and (C) to pD-cocartesian morphisms. By

1See [HA, 2.1.3.7].
2With respect to the respective canonical cocartesian fibrations of ∞-operads to Fin∗.
3So this is the morphism that sends 1 and 2 to 1.
4Note that in particular all isomorphisms are inert.
5So n is the unique element of the target that has two preimages, n and n+ 1.
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assumption we already know that F⊗ is a morphism of∞-operads and hence
preserves inert morphisms, so this covers type (A).

We now show that F⊗ maps pC-cocartesian lifts of morphisms of type
(B) to pD-cocartesian morphisms. So let n ≥ 1, let µn be the morphism of
Fin∗ defined in (B), and let f : X → Y be a pC-cocartesian lift of µn. As
pD is a cocartesian fibration, we can lift µn to a pD-cocartesian morphism
f : F⊗(X) → (µn)!(F

⊗(X)), and obtain an induced morphism g lying over
id〈n〉, such that there is a commutative diagram as follows.

(µn)!(F
⊗(X))

F⊗(X) F⊗(Y )

g
f

F⊗(f)

By [HTT, 2.4.1.7 and 2.4.1.5], F⊗(f) is pD-cocartesian if and only if g is an
equivalence, so we prove the latter.

Let us first consider ρj! (g) for 1 ≤ j < n. This is the induced morphism
indicated in the following diagram, where r and r are pD-cocartesian lifts of
ρj .

(µn)!(F
⊗(X)) (ρj ◦ µn)!(F

⊗(X))

F⊗(X) F⊗(Y ) ρ
j
! (F

⊗(Y ))

g

r

ρ
j
! (g)

f

F⊗(f) r

But note that for 1 ≤ j < n the composition ρj ◦ µn is equal to ρj . The
morphism ρ

j
! (g) is thus also equivalent to the morphism

gj : ρ
j
! (F

⊗(X))→ ρ
j
!

(
F⊗(Y )

)

induced by r ◦ F⊗(f). Now let

Y ρ
j
! (Y )

X Y ρ
j
! (Y )

id

s

ρ
j
! (id)

f

f s

be the diagram constructed completely analogously from f in C⊗, with s a
pC-cocartesian lift of ρj . In this case we can use f itself as a pC-cocartesian
lift of µn, and the identity morphism can play the role of g. In particular,
the morphism fj : ρ

j
! (Y )→ ρ

j
! (Y ) induced by s ◦ f is an equivalence. As F⊗

preserves inert morphisms F⊗(s) can be identified with r, and F⊗(s◦f) with
r ◦ f . This implies that F⊗(fj) ≃ gj , and as F⊗ preserves equivalences, gj
must be an equivalence.
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Let us now consider ρn(g). In this case ρn ◦ µn is not ρn, but µ ◦ ρn,n+1,
where ρn,n+1 : 〈n+1〉 → 〈2〉 maps i to ∗ if i < n, maps n to 1, and maps n+1
to 2. We can argue completely analogously to the previous case, but have
to additionally use that F⊗ maps pC-cocartesian lifts of µ to pD-cocartesian
morphisms, which is the case by assumption (2).

As the functor

D〈n〉

∏
1≤j≤n ρ

j
!

−−−−−−−→ D×n
〈1〉

is an equivalence and we showed that ρ
j
! (g) is an equivalence for every

1 ≤ j ≤ n, we can conclude that g is an equivalence. Thus we have shown
that F⊗ maps pC-cocartesian lifts of morphisms of type (B) to pD-cocartesian
morphisms.

The case of morphisms of type (C) is similar, in this case we will need to
use the assumption regarding ϵ.

E.1.2. Conservative morphisms of ∞-operads
In the following proposition we record a very useful consequence of a mor-

phism of ∞-operads being conservative.

Proposition E.1.2.1. Let

C⊗ D⊗

Fin∗

F⊗

pC pD

be a commutative diagram of morphisms of ∞-operads, and assume that F⊗

is a conservative functor, i. e. reflects equivalences. Then the following hold.

(1) A morphism f in C⊗ is inert if and only if F⊗(f) is inert.

(2) Assume that pC and pD exhibit C⊗ and D⊗ as symmetric monoidal
∞-categories, and that F⊗ is symmetric monoidal. Then a morphism
f in C⊗ is pC-cocartesian if and only if F⊗(f) is pD-cocartesian. ♥

Proof. In both cases the “only if”-direction is handled directly by the assump-
tion that F⊗ is a morphism of ∞-operads, and that F⊗ is even symmetric
monoidal in the case of (2).

We will prove the “if”-direction of both (1) and (2) at the same time. So
let f : X → Y be a morphism in C⊗ that lies over a morphism φ in Fin∗

and is mapped by F⊗ to a pD-cocartesian morphism in D⊗. For (1) assume
additionally that φ is inert. We have to show that f is pD-cocartesian.
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We can factor f as indicated in the following commutative diagram in C⊗

φ!X

X

Y

f ′′

f ′

f

such that f ′ is pC-cocartesian and f ′′ lies over an identity morphism in Fin∗.
Both F⊗(f ′) and F⊗(f) are pD-cocartesian morphisms, so by [HTT, 2.4.1.7
and 2.4.1.5] F⊗(f ′′) is an equivalence. As F⊗ is conservative, it follows that
f ′′ is also an equivalence, which by [HTT, 2.4.1.7 and 2.4.1.5] implies that f
is pC-cocartesian.

E.1.3. Base changes of cocartesian fibrations of
∞-operads

By Proposition C.1.1.1 a pullback of a cocartesian fibration along any func-
tor is again a cocartesian fibration. The next proposition can be considered
an upgrade of this statement to the situation in which both functors are
morphisms of ∞-operads.

Proposition E.1.3.1. Let

C′⊗ C⊗

O′⊗ O⊗ Fin∗

q

p′ p

r pO

be a commutative diagram in Cat∞ such that the square is a pullback square,
pO and r are morphisms of ∞-operads, and p is a cocartesian fibration of
∞-operads.

Then p′ is a cocartesian fibration of ∞-operads and q is a morphism of
∞-operads. Furthermore, a morphism f in C′⊗ is inert if and only if q(f)
and p′(f) are inert. ♥

Proof. By Proposition C.1.1.1 p′ is a cocartesian fibration, and the descrip-
tion of p′-cocartesian morphisms also implies that if n ≥ 0 and Xi are objects
in O′ for 1 ≤ i ≤ n, and fi : X1 ⊕ · · · ⊕ Xn → Xi are the canonical inert
morphisms in O′⊗, then the induced functor on fibers

C′⊗X1⊕···⊕Xn

∏
1≤i≤n fi!

−−−−−−−→ C′⊗Xi
(∗)

can be identified with the following functor that is induced on the fibers of
p.

C⊗
r(X1⊕···⊕Xn)

∏
1≤i≤n r(fi)!

−−−−−−−−−→ C⊗
r(Xi)
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As r is a morphism of ∞-operads we can for each 1 ≤ i ≤ n identify r(fi)
with the inert morphism r(X1)⊕ · · · ⊕ r(Xn)→ r(Xi). As p is a cocartesian
fibration of ∞-operads, it thus follows that (∗) is an equivalence, so p′ is a
cocartesian fibration of ∞-operads6.

Let f be a morphism in C′⊗. It remains to show that f is inert if and
only if q(f) and p′(f) are inert. Denote the compositions from the four
∞-categories in the square to Fin∗ by p with subscript the name of the un-
derlying ∞-category.

Assume that f is inert. Then f is by definition pC′ -cocartesian, and as p′
preserves inert morphisms, p′(f) is inert, so pO′ -cocartesian. It follows from
[HTT, 2.4.1.3 (3)] that f is p′-cocartesian. By Proposition C.1.1.1 we then
obtain that q(f) is p-cocartesian. Furthermore, p(q(f)) = r(p′(f)) is inert, i. e.
pO-cocartesian, as r is a morphism of ∞-operads. We can again use [HTT,
2.4.1.3 (3)] to conclude that q(f) is pC-cocartesian, so inert.

Now assume that q(f) and p′(f) are inert. Again, as r is a morphism
of ∞-operads, p(q(f)) = r(p′(f)) is inert, so by [HTT, 2.4.1.3 (3)] q(f) is
p-cocartesian, which by Proposition C.1.1.1 implies that f is p′-cocartesian,
from which we can deduce with another application of [HTT, 2.4.1.3 (3)] that
f is pC′ -cocartesian, so inert.

E.2. Alg and base change
This section concerns the interaction of Alg with base changes, with the

upshot being the following. Given a commutative diagram

C′⊗ C⊗

O′′⊗ O′⊗ O⊗

F⊗

p′ p

α β

of ∞-operads such that the square is a pullback diagram in Cat∞, we will
obtain an induced pullback diagram

AlgO′′/O′(C′) AlgO′′(C)

{β ◦ α} AlgO′′(O)

AlgO′′ (p)

in Cat∞ of ∞-categories of algebras.

6See [HA, 2.1.2.13 and 2.1.2.12].
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Construction E.2.0.1. Let

C′⊗ C⊗

O′′⊗ O′⊗ O⊗

F⊗

p′ p

α β

be a commutative diagram of ∞-operads such that the square is a pullback
diagram in Cat∞.

Applying Fun(O′′⊗,−) to the pullback square we obtain the pullback on
the right in the following diagram, with the left square a pullback square as
well, by definition.

FunO′⊗(O′′⊗, C′⊗) Fun(O′′⊗, C′⊗) Fun(O′′⊗, C⊗)

{α} Fun(O′′⊗,O′⊗) Fun(O′′⊗,O⊗)

F⊗
∗

p′∗ p∗

β∗

Comparing the combined outer pullback square [HTT, 4.4.2.1] to the pull-
back square

FunO⊗(O′′⊗, C⊗) Fun(O′′⊗, C⊗)

{β ◦ α} Fun(O′′⊗,O⊗)

p∗

we obtain a canonical equivalence

FunO′⊗

(
O′′⊗, C′⊗

)
≃ FunO⊗

(
O′′⊗, C⊗

)

of ∞-categories. ♦

Proposition E.2.0.2. In the situation of Construction E.2.0.1 the equiva-
lence

FunO′⊗

(
O′′⊗, C′⊗

)
≃ FunO⊗

(
O′′⊗, C⊗

)

restricts to an equivalence on the full subcategories of algebras as follows.

AlgO′′/O′(C′) ≃ AlgO′′/O(C) ♥

Proof. Unpacking the definitions the statement boils down to the following:
Let

O′′⊗ C′⊗

O′⊗

A

α p′
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be a commuting diagram and let f be an inert morphism in O′′⊗. Denote
by q : O⊗ → Fin∗ the unique morphism of ∞-operads. We have to show that
A(f) is qβp′-cocartesian if and only if F⊗(A(f)) is qp-cocartesian.

As α is a morphism of ∞-operads, it preserves inert morphisms, so the
morphism α(f) = p′(A(f)) is qβ-cocartesian. Then [HTT, 2.4.1.3 (3)] implies
that A(f) is qβp′-cocartesian if and only if A(f) is p′-cocartesian. By Propo-
sition C.1.1.1 A(f) is p′-cocartesian if and only if F⊗(A(f)) is p-cocartesian.
But as β ◦ α preserves inert morphisms, β(α(f)) is q-cocartesian, so again
by [HTT, 2.4.1.3 (3)] F⊗(A(f)) is p-cocartesian if and only if F⊗(A(f)) is
qp-cocartesian.

Proposition E.2.0.3 ([HA, 2.1.3.1]). Let γ : O′⊗ → O⊗ and p : C⊗ → O⊗

be morphisms of ∞-operads. Then the pullback diagram of ∞-categories

FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

{γ} Fun(O′⊗,O⊗)

p∗

induces on full subcategories a pullback diagram

AlgO′/O(C) AlgO′(C)

{γ} AlgO′(O)

AlgO′ (p)

of ∞-categories7. ♥

Proof. There is a commutative cube in Cat∞

AlgO′/O(C) AlgO′(C)

FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

{γ} AlgO′(O)

{γ} Fun(O′⊗,O⊗)

with all functors from the back to the front inclusions of full subcategories.
One can use Proposition B.5.2.1 to show that the top and bottom squares are

7We are using the the definition given in [HA, 2.1.3.1] for AlgO′/O(C) as a full subcategory
of FunO⊗ (O′⊗, C⊗). The alternative description as the pullback given in this statement
is also mentioned in [HA, 2.1.3.1].
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pullback squares as follows: For the top square, consider the induced diagram

AlgO′/O(C)

D AlgO′(C)

FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

θ

where D is constructed as a pullback of the square. The right vertical functor
is fully faithful, so by Proposition B.5.2.1 the left vertical functor is fully faith-
ful as well. As we also know that the functor AlgO′/O(C)→ FunO⊗(O′⊗, C⊗)
is also fully faithful, it follows that the induced functor θ is fully faithful too.
To show that θ is an equivalence it thus suffices to show essential surjectivity
[HTT, 1.2.10]. As D → FunO⊗(O′⊗, C⊗) is fully faithful, an object in D can
be thought of as an object in FunO⊗(O′⊗, C⊗), i. e. a commutative triangle

O′⊗ C⊗

O⊗

A

γ p
(E.1)

such that the corresponding object in Fun(O′⊗, C⊗), i. e. A, lies in AlgO′(C),
i. e. A must be a morphism of ∞-operads. But this is precisely the condition
for an object of FunO⊗(O′⊗, C⊗) to lie in AlgO′/O(C), so θ is essentially
surjective and hence an equivalence, which implies that the top square of the
cube is a pullback diagram. That the bottom square is a pullback diagram
can be proven analogously.

As the top and front of the cube are pullback diagrams, the composite
of those two squares is a pullback diagram as well by [HTT, 4.4.2.1]. This
composite is equivalent to the composite formed by the back and bottom
squares, so using that the bottom square is a pullback and the other direction
of [HTT, 4.4.2.1] we can conclude that the back square is a pullback as
well.

Remark E.2.0.4. Combining Proposition E.2.0.2 and Proposition E.2.0.3
in the situation of Construction E.2.0.1, we obtain the following pullback
diagram

AlgO′′/O′(C′) AlgO′′(C)

{β ◦ α} AlgO′′(O)

AlgO′′ (p)

in Cat∞. Tracing through the definitions is is not difficult to see that this
square is also natural in C (with O,O′, and O′′ staying fixed and C′ changing
with C as a pullback). ♦
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E.3. Properties preserved by Alg

In this section we show that passing to ∞-categories of algebras preserves
several properties of functors. Specifically, we will discuss pullbacks in Sec-
tion E.3.1, cocartesian fibrations in Section E.3.2, adjoints in Section E.3.3,
the property of a functor being conservative in Section E.3.4, and fully faith-
fulness in Section E.3.5.

E.3.1. Pullbacks

Proposition E.3.1.1. Let

C⊗ D⊗ O′⊗

E⊗ F⊗ O⊗

F⊗

G⊗ H⊗ α⊗

K⊗ pF

be a commutative diagram of ∞-operads such that the square is a pullback
diagram in Cat∞. Assume furthermore that a morphism f in C⊗ is inert if
and only if F⊗(f) and G⊗(f) are inert.

Then the induced commutative diagram

AlgO′/O(C) AlgO′/O(D)

AlgO′/O(E) AlgO′/O(F)

AlgO′/O(F )

AlgO′/O(G) AlgO′/O(H)

AlgO′/O(K)

is a pullback diagram in Cat∞. ♥

Proof. As Fun(O′⊗,−) preserves pullbacks and limits commute with each
other, we first obtain an induced pullback square as follows.

FunO⊗(O′⊗, C⊗) FunO⊗(O′⊗,D⊗)

FunO⊗(O′⊗, E⊗) FunO⊗(O′⊗,F⊗)

F⊗
∗

G⊗
∗ H⊗

∗

K⊗
∗
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Let P be defined to be the pullback in the square in the following diagram

AlgO′/O(C)

P AlgO′/O(D)

FunO⊗(O′⊗, C⊗) AlgO′/O(E) AlgO′/O(F)

AlgO′/O(F )

AlgO′/O(G)

φ

ι

ψ AlgO′/O(H)

AlgO′/O(K)

where φ and ψ are the induced functors, and ι is the canonical fully faithful in-
clusion. It suffices to show that φ is an equivalence. By Proposition B.5.3.1, ψ
is fully faithful with essential image spanned by those functors A : O′⊗ → C⊗

over O⊗ whose compositions with F⊗ and G⊗ send inert morphisms to inert
morphisms. But by the assumptions on inert morphisms in C⊗, this means
that the essential image of ψ is exactly the essential image of ι. It now fol-
lows from Proposition B.4.4.1 and Proposition B.4.3.1 that φ is an equiva-
lence.

E.3.2. Cocartesian fibrations

Proposition E.3.2.1. Let

C⊗ D⊗

O⊗

F⊗

p q

be a commuting diagram of maps of ∞-operads, and let α : O′⊗ → O⊗ be
another map of ∞-operads.

If F⊗ is a cocartesian fibration, then the induced functor

AlgO′/O(F ) : AlgO′/O(C)→ AlgO′/O(D)

is a cocartesian fibration as well. ♥
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Proof. Consider the following commutative diagram induced by F⊗

AlgO′/O(C)

E FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

AlgO′/O(D) FunO⊗(O′⊗,D⊗) Fun(O′⊗,D⊗)

AlgO′/O(F )

φ

ιC

ιE

p F⊗
∗ F⊗

∗

ιD

where E is defined to be the pullback of the middle square, ιC , ιD, and the
two right horizontal functors are the canonical ones, and φ is the induced
functor into the pullback.

By [HTT, 3.1.2.1], the right vertical morphism F⊗
∗ = Fun(idO′⊗ , F⊗) is a

cocartesian fibration, so as both squares are pullback squares we can apply
Proposition C.1.1.1 to conclude that p is also a cocartesian fibration. As
cocartesian fibrations are closed under composition [HTT, 2.4.2.3 (3)], it thus
suffices to show that φ is a cocartesian fibration.

By definition, ιD and ιC are inclusions of full subcategories and hence fully
faithful, and as a pullback of ιD, Proposition B.5.2.1 implies that ιE is fully
faithful as well. It follows that φ is also fully faithful, so by Proposition C.1.2.1
it suffices to show that for any object A in AlgO′/O(C) and p-cocartesian
morphism θ : φ(A) → B′ in E there exists an object B in AlgO′/O(C) such
that φ(B) is equivalent to B′.

Unpacking definitions, this means the following. Assume we have given a
morphism θ : A→ B in FunO⊗(O′⊗, C⊗), which we can think of as a natural
transformation between two commuting triangles as in the following diagram.

O′⊗ C⊗

O⊗

A

B

α

θ

p

We furthermore assume that:

(a) A preserves inert morphisms. This corresponds to A lying in the full
subcategory AlgO′/O(C) of FunO⊗(O′⊗, C⊗).

(b) F⊗ ◦B : O′⊗ → D⊗ preserves inert morphisms. This corresponds to B
lying in the full subcategory E of FunO⊗(O′⊗, C⊗).

(c) For every object O in O′⊗, the morphism θO : A(O) → B(O) in C is
F⊗-cocartesian. This corresponds to θ (considered as a morphism in E)
being p-cocartesian.
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We then have to show that B preserves inert morphisms.
In the following we let qC : C⊗ → Fin∗ and qD : D⊗ → Fin∗ be the canonical

maps of ∞-operads. Let f : U → V be an inert morphism in O⊗. We have to
show that B(f) is qC-cocartesian. The natural transformation θ induces the
following commuting square in C⊗.

A(U) B(U)

A(V ) B(V )

A(f)

θU

B(f)

θV

By (a), A preserves inert morphisms, so A(f) is inert, hence qC-cocartesian.
As F⊗ is a map of ∞-operads it also preserves inert morphism, and thus
F⊗(A(f)) is qD-cocartesian. It then follows from [HTT, 2.4.1.3 (3)] that
A(f) is F⊗-cocartesian. By (c) both θU and θV are also F⊗-cocartesian,
so it follows from [HTT, 2.4.1.7] that B(f) is F⊗-cocartesian as well. Finally,
F⊗(B(f)) is qD-cocartesian by (b), so by applying [HTT, 2.4.1.3 (3)] in the
other direction we can conclude that B(f) is qC-cocartesian.

E.3.3. Adjoints
Proposition E.3.3.1. Let pC : C

⊗ → O⊗, pD : D⊗ → O⊗, as well as
α : O′⊗ → O⊗ be maps of ∞-operads and let furthermore F⊗ : C⊗ → D⊗

and G⊗ : D⊗ → C⊗ be maps of ∞-operads over O⊗. Let u : idC⊗ → G⊗ ◦ F⊗

be a natural transformation exhibiting F⊗ as left adjoint to G⊗ and assume
that pC maps u to the identity natural transformation of pC (in other words,
u is a unit for an adjunction between F⊗ and G⊗ relative to O⊗ in the sense
of [HA, 7.3.2.3]).

Then the induced natural transformation

AlgO′/O(u) : idAlgO′/O(C) → AlgO′/O(G ◦ F )

exhibits AlgO′/O(F ) as left adjoint to AlgO′/O(G). ♥

Proof. Applying Fun(O′⊗,−) we obtain two commuting triangles as indi-
cated in the following diagram

Fun(O′⊗, C⊗) Fun(O′⊗,D⊗)

Fun(O′⊗,O⊗)

pC∗

F⊗
∗

pD∗

G⊗
∗

as well as a natural transformation u∗ : idFun(O′⊗,C⊗) → G⊗
∗ ◦F

⊗
∗ . By Propo-

sition D.2.2.1, u∗ exhibits F⊗
∗ as left adjoint to G⊗

∗ . As pC∗ maps u∗ to the
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identity natural transformation of pC∗, this makes u∗ into the unit for an ad-
junction between F⊗

∗ and G⊗
∗ relative to Fun(O′⊗,O⊗) in the sense of [HA,

7.3.2.3]. Taking the pullback of this adjunction along {α} → Fun(O′⊗,O⊗)
and applying [HA, 7.3.2.5] yields an induced adjunction between the ∞-cat-
egories FunO⊗(O′⊗, C⊗) and FunO⊗(O′⊗,D⊗). The claim now follows by
restricting the relevant functors and natural transformation to the full sub-
categories of ∞-operad maps [HA, 2.1.2.7].

E.3.4. Reflecting equivalences
Proposition E.3.4.1. Let C and D be symmetric monoidal ∞-categories
and F : C → D a symmetric monoidal functor. Let O be an ∞-operad.

Assume that F is conservative, i. e. reflects equivalences. Then AlgO(F ) is
conservative as well. ♥

Proof. There is a commutative diagram as follows for every object X in O.

AlgO(C) AlgO(D)

C D

AlgO(F )

evX evX

F

Now suppose that φ is a morphism in AlgO(C) such that AlgO(F )(φ) is an
equivalence. By [HA, 3.2.2.6] evX preserves equivalences, so the morphism

evX(AlgO(F )(φ)) = F (evX(φ))

is an equivalence for every object X of O. As F is conservative, this implies
that evX(φ) is an equivalence for every object X of O, which by another
application of [HA, 3.2.2.6] implies that φ is an equivalence.

E.3.5. Fully faithfulness
Proposition E.3.5.1. Let

C′⊗ C⊗

O′⊗ O⊗

ι⊗

pC′ pC

α⊗

be a commutative diagram of ∞-operads and assume that ι is fully faithful.
Then the functor

AlgO′/O(ι) : AlgO′/O(C
′)→ AlgO′/O(C)

is fully faithful. Furthermore, an object A of AlgO′/O(C) lies in the essential
image of AlgO′/O(ι) if and only if for every object X of O′ the evaluation
evX(A) of A at X lies in the essential image of ι. ♥
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Proof. Combining Propositions B.3.0.1, B.5.1.1 and B.5.3.1 we obtain that

ι⊗∗ : FunO⊗

(
O′⊗, C′⊗

)
→ FunO⊗

(
O′⊗, C⊗

)

is fully faithful with essential image spanned precisely by those functors
F⊗ : O′⊗ → C⊗ over O⊗ for which F⊗(X) lies in the essential image of
ι⊗ for every object X of O′⊗. There is a commutative diagram

FunO⊗(O′⊗, C′⊗) FunO⊗(O′⊗, C⊗)

AlgO′/O(C) AlgO′/O(C
′)

ι⊗∗

AlgO′/O(ι)

where the the vertical functors are the canonical inclusions and thus by
definition fully faithful, so it follows that AlgO′/O(ι) is also fully faithful,
with essential image spanned by those algebras whose associated functors
F⊗ : O′⊗ → C⊗ are such that F⊗(X) lies in the essential image of ι⊗ for
every object X of O′⊗.

As F⊗ and α⊗ are morphisms of ∞-operads, we obtain a commutative
diagram

O′⊗
〈n〉 C⊗〈n〉 C′⊗〈n〉

O′×n C×n C′×n

F⊗
⟨n⟩

≃ ≃

α⊗
⟨n⟩

≃

F×n α×n

for every n ≥ 0 that shows that F⊗(X) lying in the essential image of ι⊗ for
every object X of O′⊗ is equivalent to F (X) lying in the essential image of
ι for every object X of O.

E.4. Induced ∞-operad structures on Alg
Let C be a symmetric monoidal ∞-category and O an ∞-operad. Then

the tensor product on C induces a symmetric monoidal structure on AlgO(C)
such that the forgetful functor AlgO(C) → C can be upgraded to a sym-
metric monoidal functor. In the setting of quasicategories, this structure is
constructed in [HA, 3.2.4.1, 3.2.4.2, and 3.2.4.3]. However, it is not immedi-
ately obvious from the definition that this construction does not depend on
the choice of representatives (or in other words, whether it is invariant under
categorical equivalences). In Section E.4.1 we will give a description of the
construction that can be performed entirely in Cat∞, i. e. without the help
of models like quasicategories, and show that it agrees with the one given
by Lurie. Apart from the aesthetic gain from being able to work as model
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independently as possible, the reformulated description will also be helpful
in some results we will prove later.

In Section E.4.2 we will then collect a number of properties that the induced
∞-operad structure has, deducing most of them from the results of [HA, 3.2.4].
It would also be possible to prove these statements without referring back to
the quasicategorical model. However, we need to show agreement of the two
approaches anyway, as throughout the text we will need to make use of several
other results from [HA] using the induced ∞-operad structure on algebras,
so giving an independent, more model-independent proof of the statements
discussed in Section E.4.2 would not save us from having to go through the
comparison in Section E.4.1.

E.4.1. The quasicategorical model
In this section we discuss Lurie’s quasicategorical model for induced ∞-

operad structures on ∞-categories of algebras, and compare it to a more
model-independent definition.

We will make use of the following convention during our discussion.

Convention E.4.1.1. In contrast with the rest of the text, wherever we
explicitly invoke this convention every notion should be taken to refer to
the respective quasicategorical notion as defined in [HTT] and [HA]. So for
example the claim that a diagram of quasicategories commutes means that it
is a strictly commuting diagram of simplicial sets, and an∞-operad is a map
of simplicial sets O⊗ → Fin∗ where O is a quasicategory and such that the
map satisfies some properties, rather than a morphism O⊗ → Fin∗ in Cat∞
satisfying some properties. ♦

We start by reviewing the construction given in [HA, 3.2.4.1].

Definition E.4.1.2 ([HA, 3.2.4.1]). We make use of Convention E.4.1.1 in
this construction. Let pO : O⊗ → Fin∗, pO′ : O′⊗ → Fin∗, and pO′′ : O′′⊗ → Fin∗

be ∞-operads, and let q : C⊗ → O′′⊗ be a fibration of ∞-operads, i. e. a map
of ∞-operads where q is also a categorical fibration of quasicategories (see
[HA, 2.1.2.10]). Let f : O⊗ × O′⊗ → O′′⊗ be a bifunctor of ∞-operads, i. e. a
functor of quasicategories such that the diagram

O⊗ × O′⊗ O′′⊗

Fin∗ × Fin∗ Fin∗

f

pO×pO′ pO′′

∧

commutes and such that f sends pairs of inert morphisms to inert morphisms,
see [HA, 2.2.5.3].
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Define Φ̃ to be the functor sSet/O⊗ → Set that sends g : K→ O⊗ to the set
of commutative diagrams as indicated below.

K× O′⊗ C⊗

O⊗ × O′⊗ O′′⊗

F

g×idO′⊗ r

f

(E.2)

Furthermore, define Φ: sSet/O⊗ → Set to be the functor which sends a map
g : K→ O⊗ to the subset of Φ̃(g) of commutative diagrams (E.2) which have
the property that F(idk, α) is inert for every vertex k of K and every inert
morphism α in O′′⊗.

We say that an object r in sSet/O⊗ is a quasicategorical model (a quasicat-
egorical pre-model) for the ∞-operad structure on algebras with respect to
f, q, etc. as introduced above, if there exists a natural bijection of functors
sSet/O⊗ → Set between MorsSet/O⊗

(−, r) and Φ (between MorsSet/O⊗
(−, r) and

Φ̃).
Note that the Yoneda lemma implies that if a quasicategorical (pre-)model

for the∞-operad structure on algebras exists, then it is unique up to isomor-
phism in sSet/O⊗ . We will give a more concrete construction of a quasicate-
gorical (pre-)model for the ∞-operad structure on algebras below. ♦

Remark E.4.1.3. In this remark we make use of Convention E.4.1.1, and
assume that we are in the situation of Definition E.4.1.2. Let

r̃ : ÃlgO′/O′′(C)⊗ → O⊗

be a quasicategorical pre-model for the ∞-operad structure on algebras, and
let ϕ be a natural bijection MorsSet/O⊗

(−, r̃) ∼= Φ̃. We then define a sub-
simplicial set AlgO′/O′′(C)⊗ of ÃlgO′/O′′(C)⊗ as the sub-simplicial set spanned
by those vertices A which correspond under ϕ to maps

O′⊗ ∼= {A} × O′⊗ F
−→ C⊗

that preserve inert morphisms.
Let r : AlgO′/O′′(C)⊗ → O⊗ be the restriction of r̃ to AlgO′/O′′(C)⊗. As the

condition defining the natural subset Φ of Φ̃ can be checked vertex-wise (in K,
where we use the notation from (E.2)), it is clear that ϕ restricts to a bijection
between MorsSet/O⊗

(−, r) and Φ. We conclude that r is a quasicategorical
model for the ∞-operad structure on algebras. ♦

Proposition E.4.1.4. In this proposition Convention E.4.1.1 applies. As-
sume we are in the situation of Definition E.4.1.2. Let r̃ be the functor

r̃ : Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗ pr2−−→ O⊗
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where the functor Fun
(
O′⊗, C⊗

)
→ Fun

(
O′⊗, O′′⊗

)
that is part of the pullback

is q∗, and the functor O⊗ → Fun
(
O′⊗, O′′⊗

)
is the adjoint functor to f. Let r

be the restriction of r̃ to Fun
(
O′⊗, C⊗

)′
×Fun(O′⊗,O′′⊗) O⊗, where Fun

(
O′⊗, C⊗

)′
is the sub-simplicial set of Fun

(
O′⊗, C⊗

)
spanned by the vertices which are

functors O′⊗ → C⊗ that preserve inert morphisms.
Then r̃ is a quasicategorical pre-model for the ∞-operad structure on al-

gebras and r is a quasicategorical model for the ∞-operad structure on alge-
bras. ♥

Proof. Let g : K→ O⊗ be an object in sSet/O⊗ . There is a chain of bijections
which are natural in g as follows.

MorsSet/O⊗
(g, r̃)

∼= MorsSet
(
K,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗

)
×MorsSet(K,O⊗) {g}

∼= MorsSet
(
K× O′⊗, C⊗

)
×MorsSet(K×O′×,O′′⊗) MorsSet

(
K, O⊗

)
×MorsSet(K,O⊗) {g}

∼= MorsSet
(
K× O′⊗, C⊗

)
×MorsSet(K×O′×,O′′⊗) {f ◦ (g× idO′⊗)}

∼= Φ̃(g)

This shows the claim about r̃. The claim for r follows using Remark E.4.1.3
after noting that for a vertex A of Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗ considered

as a functor
a : {A} → Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗

the composition of the chain of bijections above with the projection to

MorsSet
(
{A} × O′⊗, C⊗

)
∼= MorsSet

(
O′⊗, C⊗

)

sends a to pr1(A).

We can now state the construction of the induced ∞-operad structure on
∞-categories of algebras without referring to quasicategories.

Proposition E.4.1.5. Let pO : O⊗ → Fin∗, pO′ : O′⊗ → Fin∗, as well as
pO′′ : O′′⊗ → Fin∗ be ∞-operads and let q : C⊗ → O′′⊗ be a morphism of
∞-operads. Let f : O⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads.

Let pO : O⊗ → Fin∗, pO′ : O′⊗ → Fin∗, and pO′′ : O′′⊗ → Fin∗ be func-
tors of quasicategories which represent pO, pO′ , and pO′′ , respectively. Let
q : C⊗ → O′′⊗ be a categorical fibration of quasicategories representing q and
let f : O⊗ × O′⊗ → O′′⊗ be a functor of quasicategories representing f .

Define AlgO′/O′′(C), ÃlgO′/O′′(C), r̃, r, s′, and s via the following diagram,
where the two squares are to be pullback diagrams, f̂ is adjoint to f, and iFun
is the inclusion of the full sub-simplicial set spanned by those vertices which
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correspond to functors that preserve inert morphisms.

AlgO′/O′′(C)⊗ ÃlgO′/O′′(C)⊗ O⊗

Fun
(
O′⊗, C⊗

)′ Fun
(
O′⊗, C⊗

)
Fun

(
O′⊗, O′′⊗

)

iAlg

s

r

r̃

s′ f̂

iFun q∗

(E.3)

Then the above diagram represents the following diagram in Cat∞, were
both squares are pullback diagrams as well, f̂ is adjoint to f , and ιFun is the
inclusion of the full subcategory spanned by those functors that preserve inert
morphisms.

AlgO′/O′′(C)
⊗ ÃlgO′/O′′(C)

⊗ O⊗

Fun(O′⊗, C⊗)
′ Fun(O′⊗, C⊗) Fun(O′⊗,O′′⊗)

ιAlg

s

r

r̃

s′ f̂

ιFun q∗

♥

Proof. What we have to show is that both squares in diagram (E.3) are
homotopy pullback diagrams with respect to the Joyal model structure. We
begin by showing that q∗ and iFun are categorical fibrations.

By assumption q : C⊗ → O′′⊗ is a categorical fibration of quasicategories. A
map of simplicial sets is a categorical fibration if and only if it has the right
lifting property with respect to maps of simplicial sets which are monomor-
phisms as well as categorical equivalences (see [HTT, 2.2.5.1]). By adjoining
the lifting problems we need to solve to show that q∗ is a categorical fibra-
tion we are reduced to showing that if j is a map of simplicial sets which is
a monomorphism as well as a categorical equivalence, then j× idO′⊗ is so as
well. That j × idO′⊗ is again a monomorphism is clear, and that it is also a
categorical equivalence is [HTT, 2.2.5.4].

We next argue that iFun is also a categorical fibration. As Fun
(
O′⊗, C⊗

)
is

a quasicategory by [HTT, 1.2.7.3 (1)], we can apply [HTT, 2.4.6.5] so that
it suffices to show that iFun is an inner fibration and that for any natural
equivalence φ : g → g′ of functors O′⊗ → C⊗ such that g preserves inert
morphisms it follows that g′ preserves inert morphisms as well. The latter
property follows immediately from the fact that cocartesian morphisms are
closed under equivalences. It remains to show that iFun is an inner fibration.
But note that every horn inclusion Λni ⊆ ∆n for 0 < i < n is an isomorphism
on 0-simplices, and as iFun is the inclusion of a full sub-simplicial set lifting
positive dimensional simplices is always possible, so iFun is an inner fibration.
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We have now shown that q∗ and iFun are both categorical fibrations. By
assumption O⊗ is a quasicategory and Fun

(
O′⊗, O′′⊗

)
is a quasicategory by

[HTT, 1.2.7.3 (1)], so it follows from [HTT, A.2.4.4, variant (i) and A.2.4.5]
that the right square in diagram (E.3) is a homotopy pullback square with
respect to the Joyal model structure. As a pullback of the categorical fibration
q∗ is the functor r̃ a categorical fibration as well, so as O⊗ is a quasicategory,
ÃlgO′/O′′(C)⊗ is also a quasicategory [HTT, 2.4.6.1]. It was already mentioned
that Fun

(
O′⊗, C⊗

)
is a quasicategory, so we can apply [HTT, A.2.4.4, variant

(i) and A.2.4.5] again to conclude that the left square in diagram (E.3) is also
a homotopy pullback square with respect to the Joyal model structure.

E.4.2. Properties of the induced ∞-operad structure
In Proposition E.4.1.5 we gave a construction of the induced ∞-operad

structure on∞-categories of algebras that could be formulated without refer-
ring back to quasicategorical models. In this section we collect the properties
of this construction.

Remark E.4.2.1. In the situation of Proposition E.4.1.5, it follows from
Proposition B.5.2.1 that as ιFun is a fully faithful functor, so is ιAlg. We can
thus identify

ιAlg : AlgO′/O′′(C)⊗ → Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

with the inclusion of the full subcategory spanned by those objects whose
projection to the first factor is a functor O′⊗ → C⊗ that preserves inert
morphisms. ♦

Remark E.4.2.2. Let O, O′, and O′′ be ∞-operads, let

C⊗ D⊗

O′′⊗

F⊗

qC qD

be a commutative diagram of ∞-operads, and let f : O⊗ × O′⊗ → O′′⊗

be a bifunctor of ∞-operads. Then the functor indicated as the right vertical
functor in the following diagram induces a functor AlgO′/O′′(F )⊗ on algebras
that makes the diagram commute

AlgO′/O′′(C)⊗ Fun(O′⊗, C⊗)×Fun(O′⊗,O′′⊗) O
⊗

AlgO′/O′′(D)⊗ Fun(O′⊗,D⊗)×Fun(O′⊗,O′′⊗) O
⊗

AlgO′/O′′ (F )⊗

ιCAlg

(F⊗)
∗
×idid

ιDAlg
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where ιCAlg and ιDAlg are as in Remark E.4.2.1. This follows immediately from
the description in Remark E.4.2.1, as F preserves inert morphisms as a mor-
phism of ∞-operads. From the definition it is also clear that AlgO′/O′′(F )⊗

is compatible with the projections to O⊗. ♦

In light of Proposition E.4.1.4 and Proposition E.4.1.5, all the properties
listed in [HA, 3.2.4.2 and 3.2.4.3] apply to r : AlgO′/O′′(C)

⊗ → O⊗. We re-
state them as the proposition below for easier reference.

Proposition E.4.2.3 ([HA, 3.2.4.2 and 3.2.4.3]). Let O, O′, as well as
O′′ be ∞-operads, let qC : C⊗ → O′′⊗ be a morphism of ∞-operads, and let
f : O⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads.

Let
ιCAlg : AlgO′/O′′(C)⊗ → Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

be as in Proposition E.4.1.5 and Remark E.4.2.1 and denote by rC the com-
position pr2 ◦ιCAlg. Then the following hold:

(0) Let X be an object of O. Then AlgO′/O′′(C)⊗X can be identified with
AlgO′/O′′(C), where the latter ∞-category of algebras is taken with re-
spect to the following morphism of ∞-operads.

fX : O′⊗ ≃ {X} × O′⊗ → O⊗ ×O′⊗ f
−→ O′′⊗

This identification is compatible with the respective inclusions into the
following ∞-categories.

(
Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗
)
×O⊗ {X}

≃ Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) {fX}

(1) The functor rC is a morphism of ∞-operads.

(2) A morphism α in AlgO′/O′′(C)⊗ lying over an inert morphism in O⊗

is inert if and only if for every object X of O′, the morphism

evX
(
pr1(ιCAlg(α))

)

in C⊗ is inert.

(3) If qC is a cocartesian fibration of ∞-operads, then so is rC.

(4) Assume that qC is a cocartesian fibration of ∞-operads. Then a mor-
phism α in AlgO′/O′′(C)⊗ is rC-cocartesian if and only if for every object
X of O′, the morphism obtained by evaluating at X, i. e.

evX
(
pr1(ιCAlg(α))

)

is qC-cocartesian.
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(5) Let X be an object of O′. Then the functor evX ◦pr1◦ιCAlg is a morphism
of ∞-operads and fits into a commutative diagram

AlgO′/O′′(C)⊗ C⊗

O⊗ O′′⊗

evX◦pr1◦ιCAlg

rC
qC

where the bottom horizontal functor is the following composition.

O⊗ ≃ O⊗ × {X}
f
−→ O′′⊗

Furthermore, if qC is a cocartesian fibration of∞-operads, then the com-
position evX◦pr1◦ιCAlg sends rC-cocartesian morphisms to qC-cocartesian
morphisms.

We can also consider how the above properties behave under induced func-
tors as in Remark E.4.2.2. So let

C⊗ D⊗

O′′⊗

F⊗

qC qD

be a commutative diagram of ∞-categories, and let ιDAlg and rD be defined
analogously to ιCAlg and rC. Then the following hold.

(6) Let X be an object of O. Then there is a commutative diagram

AlgO′/O′′(C)⊗X AlgO′/O′′(C)

AlgO′/O′′(D)⊗X AlgO′/O′′(D)

AlgO′/O′′ (F )⊗
X

≃

AlgO′/O′′ (F )

≃

where the horizontal functors are the equivalences from (0).

(7) The functor

AlgO′/O′′(F )⊗ : AlgO′/O′′(C)⊗ → AlgO′/O′′(D)⊗

is a morphism of ∞-operads.

(8) If qC and qD are cocartesian fibrations of ∞-operads, and F is an O′′-
monoidal functor, then the functor

AlgO′/O′′(F )⊗ : AlgO′/O′′(C)⊗ → AlgO′/O′′(D)⊗

is O-monoidal.
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(9) Let X be an object of O′. Then there is a commutative diagram

AlgO′/O′′(C)⊗ AlgO′/O′′(D)⊗

C⊗ D⊗

AlgO′/O′′ (F )⊗

evX◦pr1◦ιCAlg evX◦pr1◦ιDAlg

F⊗

of ∞-operads. ♥

Proof. Claims (0) to (4) are just restatements of [HA, 3.2.4.2 and 3.2.4.3]
which applies in this form due to Proposition E.4.1.4 and Proposition E.4.1.5.

Claim (5) follows directly from (2) and (4). Claim (6) follows immediately
from Remark E.4.2.2 and (0). Combining that F is a morphism of∞-operads
with the description of inert morphisms in (2) implies (7), and if F is a O′′-
monoidal, then combining this with (4) implies (8). Finally, (9) is immediate
from the definitions.

Remark E.4.2.4. Let OL, O′
L, OR, and O′ be∞-operads, let qC : C⊗ → O′⊗

be a morphism of ∞-operads, let

f : O⊗
L ×O

⊗
R → O

′⊗

be a bifunctor of ∞-operads, and let α⊗ : O′
L → OL be a morphism of

∞-operads.
We obtain another bifunctor of ∞-categories f ′ as the following composi-

tion.
f ′ : O′⊗

L ×O
⊗
R

α⊗×id
−−−−→ O⊗

L ×O
⊗
R

f
−→ O′⊗

We obtain a pullback diagram as follows

Fun
(
O⊗
R , C

⊗
)
×Fun(O⊗

R
,O′⊗) O

′⊗
L O′⊗

L

Fun
(
O⊗
R , C

⊗
)
×Fun(O⊗

R
,O′⊗) O

⊗
L O⊗

L

id×idα
⊗

pr2

α⊗

pr2

where the pullbacks on the left are take with respect to the morphisms as
in Proposition E.4.1.5, on the top with respect to f ′ and the bottom with
respect to f .

It is clear from the definition of ιAlg (see Remark E.4.2.1) that an object
lies in the essential image of the functor ιAlg associated to the bifunctor f ′ if
and only if id ×id α

⊗ maps that object to the essential image of the functor
ιAlg associated to the bifunctor f .
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It thus follows from Proposition B.5.3.1, Proposition B.4.4.1, and Propo-
sition B.4.3.1 that the above pullback diagram induces another pullback di-
agram as follows, where the AlgOR/O′(C)

⊗ at the top left is the one with
respect to the bifunctor f ′ and the one at the bottom left is with respect to
the bifunctor f .

AlgOR/O′(C)
⊗ O′⊗

L

AlgOR/O′(C)
⊗ O⊗

L

pr2◦ιAlg

α⊗

pr2◦ιAlg

By Proposition E.4.2.3 (7), the horizontal functors are morphisms of ∞-op-
erads, α⊗ is by assumption a morphism of ∞-operads, and it then follows
from Proposition E.4.2.3 (2) that the left vertical functor is also a morphism
of ∞-operads. ♦

E.5. Iterating Alg
Proposition E.4.2.3 allows us to “iterate” passing to the ∞-category of

algebras. In this section we show that there is an alternative description
of algebras of algebras: There is an equivalence of ∞-categories between the
∞-category of O-algebras in O′-algebras AlgO(AlgO′(C)) and the∞-category
of O⊗O′-algebras AlgO⊗O′(C). This equivalence goes through an intermedi-
ate step, the ∞-category BiFunc(O,O′, C) of bifunctors of ∞-operads.

Proposition E.5.0.1. Let pO : O⊗ → Fin∗, p′O : O′⊗ → Fin∗, as well as
pC : C

⊗ → Fin∗ be ∞-operads.
Then there is a commutative diagram as follows8

BiFunc(O,O′; C) Fun(O⊗ ×O′⊗, C⊗)

AlgO(AlgO′(C)) Fun(O⊗,Fun(O′⊗, C⊗))

Φ2 ≃ (̂−)

where AlgO′(C) carries the ∞-operad structure from Proposition E.4.2.3, see
[HA, 3.2.4.4] 9, the horizontal functors are the canonical ones, and the functor
(̂−) sends a functor G to its adjoint Ĝ. The functor Φ2 is an equivalence. ♥

Proof. We consider the following diagram, in which the outer square cor-
responds to the square from the statement. We will explain the individual

8See [HA, 2.2.5.3] for a definition of BiFunc.
9There is a bifunctor of ∞-operads Fin∗ ×O′⊗

id ×pO′
−−−−−→ Fin∗ × Fin∗

−∧−
−−−→ Fin∗ and it is

with respect to this bifunctor that we apply Proposition E.4.2.3.
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functors in the text below.

BiFunc(O,O′; C) AlgO(AlgO′(C))

FunFin∗(O
⊗,AlgO′(C)⊗)

E := FunFin∗

(
O⊗,Fun(O′⊗, C⊗)×Fun(O′⊗,Fin∗) Fin∗

)

FunFin∗(O
⊗ ×O′⊗, C⊗) FunFun(O′⊗,Fin∗)(O

⊗,Fun(O′⊗, C⊗))

Fun(O⊗ ×O′⊗, C⊗) Fun(O⊗,Fun(O′⊗, C⊗))

Φ2

≃

j

i

(ιAlg)
∗

P3
V

≃

P1

W≃

P2

(̂−)

≃

}(−)

Functors P1, P2, and P3 are constructed from the relevant projection and
forgetful functors: P1 forgets that the functor was over Fin∗, and similarly
for P2. The functor P3 additionally postcomposes with the projection to the
first factor. Functors }(−) and (̂−) send functors to their respective adjoints,
both are equivalences.

We use notation from Proposition E.4.2.3, so ιAlg is the inclusion of the
full subcategory AlgO′(C)⊗ of Fun(O′⊗, C⊗) ×Fun(O′⊗,Fin∗) Fin∗ of those ob-
jects whose projection to the first factor is a functor O′⊗ → C⊗ preserving
inert morphisms. It follows from Proposition B.3.0.1 that (ιAlg)∗ is also fully
faithful, and applying Proposition B.5.3.1 and Remark B.5.1.2 we can further
conclude that the functor ιAlg∗ in the diagram is fully faithful, with essential
image spanned by precisely those objects of E which are mapped by P3 to
functors

O⊗ → Fun
(
O′⊗, C⊗

)

which evaluated at every object of O⊗ yield a functor O′⊗ → C⊗ that pre-
serves inert morphisms.

The functor i is the canonical inclusion of the full subcategory of those
functors O⊗ → AlgO′(C)⊗ over Fin∗ which send inert morphisms to inert mor-
phisms. Using Proposition C.1.2.1, Proposition C.1.1.1, and [HTT, 3.1.2.1]
we can reformulate this condition: i is the inclusion of the full subcategory of
objects who are mapped by P3 ◦ (ιAlg)∗ to functors

O⊗ → Fun
(
O′⊗, C⊗

)

which send an inert morphism in O⊗ to a natural transformation for which
every component is an inert morphism in C⊗.
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The above discussion can be summarized as follows: The composition
(ιAlg)∗ ◦ i is fully faithful, and an object E of E is in the essential image
of (ιAlg)∗ ◦ i precisely when ­P3(E) is a functor O⊗ × O′⊗ → C⊗ that pre-
serves inert morphisms separately in each variable. As identity morphism in
O⊗ and O′⊗ are inert [HTT, 2.4.1.5] and cocartesian morphisms are closed
under composition [HTT, 2.4.1.7], this condition is equivalent to the functor
sending pairs of inert morphisms to inert morphisms in C⊗.

The functor W is an equivalence and constructed using compatibility of
Fun with pullbacks, the × − Fun-adjunction, as well as the pasting law for
pullbacks [HTT, 4.4.2.1]; It is the following composition.

FunFun(O′⊗,Fin∗)

(
O⊗,Fun

(
O′⊗, C⊗

))

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
×Fun(O⊗,Fun(O′⊗,Fin∗)) {

̂(pO ∧ pO′)}

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
×Fun(O⊗,Fun(O′⊗,Fin∗)) Fun

(
O⊗,Fin∗

)

×Fun(O⊗,Fin∗) {
̂(pO ∧ pO′)}

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

)
×Fun(O⊗,Fin∗) {

̂(pO ∧ pO′)}

≃ FunFin∗

(
O⊗,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

)

It is clear that W defined like this satisfies P3 ◦W ≃ P2.
The equivalence V is defined using quite similar manipulations, as indicated

below.

FunFin∗

(
O⊗ ×O′⊗, C⊗

)

≃ Fun
(
O⊗ ×O′⊗, C⊗

)
×Fun(O⊗×O′⊗,Fin∗) {pO ∧ pO′}

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
×Fun(O⊗,Fun(O′⊗,Fin∗)) { ˜pO ∧ pO′}

≃ FunFun(O′⊗,Fin∗)

(
O⊗,Fun

(
O′⊗, C⊗

))

It is clear that then P2 ◦ V ≃ (̂−) ◦ P1.
The description obtained above of the essential image of the fully faithful

functor (ιAlg)∗ ◦ i now implies that the composition V −1 ◦W−1 ◦ (ιAlg)∗ ◦ i is
fully faithful with essential image spanned by those functors O⊗×O′⊗ → C⊗

that map pairs of inert morphisms to inert morphisms. But this is by defini-
tion [HA, 2.2.5.3] precisely the essential image of the fully faithful functor j.
This shows that an induced functor Φ2 making the diagram commute exists
and that Φ2 is an equivalence.

Proposition E.5.0.2. Let pO : O⊗ → Fin∗, p′O : O′⊗ → Fin∗, as well as
pC : C

⊗ → Fin∗ be ∞-operads, and let F : O⊗×O′⊗ → O′′⊗ be a bifunctor of
∞-operads (see [HA, 2.2.5.3]). Then there exists a commutative diagram as

694



E.6. The commutative ∞-operad

follows
AlgO′′(C) Fun(O′′⊗, C⊗)

BiFunc(O,O′; C) Fun(O⊗ ×O′⊗, C⊗)

Φ1 F∗

where the horizontal functors are the canonical ones.
By definition [HA, 2.2.5.3] F exhibits O′′⊗ as a tensor product of O⊗ and

O′⊗ if and only if Φ1 is an equivalence for every ∞-operad C. ♥

Proof. The existence of the induced dashed functor Φ1 on full subcategories
in the following diagram follows immediately from the fact that F maps pairs
of inert morphisms to inert morphisms.

AlgO′′(C) BiFunc(O,O′;O′′)

FunFin∗(O
′′⊗, C⊗) FunFin∗(O

⊗ ×O′⊗,O′′⊗)

Φ1

≃

F∗

E.6. The commutative ∞-operad
Let O be an∞-operad. In the next proposition we show that the∞-operad

Comm has the property that the tensor product of O and Comm is given by
Comm again.

Proposition E.6.0.1. Let pO : O⊗ → Fin∗ be a reduced10 ∞-operad and
denote the essentially unique object in O by o.

Then the bifunctor of ∞-operads11

α : O⊗ × Comm⊗ pO×id
−−−−→ Comm⊗ × Comm⊗ −∧−

−−−→ Comm⊗

exhibits Comm as a tensor product of O and Comm.
Let pC : C⊗ → Fin∗ be an ∞-operad. By applying Proposition E.4.2.3 to the

bifunctor of ∞-operads − ∧ − we obtain an induced ∞-operad AlgComm(C)
⊗,

and the forgetful functor ev〈1〉 : AlgComm(C) → C can by Proposition E.4.2.3
(5) be upgraded to a morphism of ∞-operads.

10See [HA, 2.3.4.1] for a definition. It means that O is a unital ∞-operad and that the
underlying ∞-category O is a contractible ∞-groupoid.

11See [HA, 2.2.5.1] for − ∧−.
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Then there is a commutative diagram as follows.

AlgO(AlgComm(C))

AlgComm(C) AlgO(C)

AlgO(ev⟨1⟩)evo

≃

p∗O

(E.4)

Furthermore, the forgetful functor evo is an equivalence. In particular, if
pO = idFin∗ , then AlgComm(ev〈1〉) is homotopic to ev〈1〉 and an equivalence. ♥

Proof. Let pC : C⊗ → Fin∗ be an ∞-operad. What we have to show for the
first part of the claim is that the functor

Φ1 : AlgComm(C)→ BiFunc(O,Comm; C)

from Proposition E.5.0.2 is an equivalence. Note that by Proposition E.5.0.1,
the functor

Φ2 : BiFunc(O,Comm; C)→ AlgO(AlgComm(C))

is an equivalence. We consider the following diagram of commutative squares
that summarizes the situation.

AlgComm(C) Fun(Fin∗, C
⊗)

BiFunc(O,Comm; C) Fun(O⊗ × Fin∗, C
⊗)

AlgO(AlgComm(C)) Fun(O⊗,Fun(Fin∗, C
⊗))

AlgComm(C) Fun(Fin∗, C
⊗)

Φ1 (α)∗

Φ2 ≃ (̂−)

evo
evo

(∗)

Define Φ′
C to be the left vertical composition Φ′

C := evo ◦ Φ2 ◦ Φ1. As the
∞-operad AlgComm(C)

⊗ is cocartesian by [HA, 3.2.4.10], we can apply [HA,
2.4.3.9], which states that the forgetful functor evo is an equivalence. To show
that α exhibits Comm as a tensor product of O and Comm it thus suffices to
show that Φ′

C is an equivalence.
Using naturality of (̂−) we can identify the right vertical composition with

precomposition with the following functor.

Fin∗
consto×idFin∗−−−−−−−−→ O⊗ × Fin∗

pO×idFin∗−−−−−−→ Fin∗ × Fin∗
−∧−
−−−→ Fin∗

This functor is naturally equivalent to idFin∗ , so we conclude that the vertical
composition on the right in diagram (∗) is naturally equivalent to the identity.
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Diagram (∗) is natural in C12, so it follows that the morphism of∞-operads
pC : C

⊗ → Fin∗ induces a commutative cubes as follows.

AlgComm(C) Fun(Fin∗, C
⊗)

AlgComm(Comm) Fun(Fin∗,Fin∗)

AlgComm(C) Fun(Fin∗, C
⊗)

AlgComm(Comm) Fun(Fin∗,Fin∗)

Φ′
C

id

Φ′
Comm

id

Note that the functor AlgComm(Comm) → Fun(Fin∗,Fin∗) can be identified
with the inclusion of {idFin∗}, from which it also follows that Φ′

Comm can be
identified with the identity. Passing to the induced functors from AlgComm(C)
into the pullbacks of the top and bottom squares we conclude that there is a
commutative squares as indicated below

AlgComm(C) FunFin∗(Fin∗, C
⊗)

AlgComm(C) FunFin∗(Fin∗, C
⊗)

Φ′
C id

where the horizontal functors are the canonical inclusions. As both horizontal
functors are by definition the same inclusion of a full subcategory, it follows13
that Φ′

C is homotopic to the identity functor and hence an equivalence.
It remains to show that there exists a commutative diagram (E.4). For this

we can proceed very analogously. As we now know that Φ1 in diagram (∗) is
an equivalence, it suffices to construct a homotopy between p∗O ◦ evo ◦Φ2 ◦Φ1

and AlgO(ev〈1〉) ◦ Φ2 ◦ Φ1. Completely analogously to the arguments above,
this time using that the compositions

O⊗ pO
−−→ Fin∗

consto×idFin∗−−−−−−−−→ O⊗ × Fin∗
pO×idFin∗−−−−−−→ Fin∗ × Fin∗

−∧−
−−−→ Fin∗

and

O⊗ idO⊗×const⟨1⟩
−−−−−−−−−→ O⊗ × Fin∗

pO×idFin∗−−−−−−→ Fin∗ × Fin∗
−∧−
−−−→ Fin∗

12One can check that the two squares involving Φ1 and Φ2 are natural in C by going
through their definitions. This is also discussed in Remark F.3.0.4 below.

13See Proposition B.4.4.1 and Proposition B.4.3.1.
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are both naturally equivalent to pO, one can obtain commutative diagrams

AlgComm(C) FunFin∗(Fin∗, C
⊗)

AlgO(C) FunFin∗(O
⊗, C⊗)

p∗O

for both p∗O ◦ evo ◦ Φ2 ◦ Φ1 as well as AlgO(ev〈1〉) ◦ Φ2 ◦ Φ1 as the left ver-
tical functor. We thus obtain a homotopy between p∗O ◦ evo ◦ Φ2 ◦ Φ1 and
AlgO(ev〈1〉) ◦ Φ2 ◦ Φ1 by using that the bottom horizontal functor is the
inclusion of a full subcategory and applying Proposition B.4.4.1 and Propo-
sition B.4.3.1.

E.7. Colimits and free algebras
In this section we discuss (operadic) colimits and free algebras, as well as

compatibility of functors

AlgO(F ) : AlgO(C)→ AlgO(D)

induced by a symmetric monoidal functor F : C → D, with free algebras and
colimits.

We start in Section E.7.1 by discussing operadic colimits, which will be an
ingredient for the later sections. In Section E.7.2 we then discuss free algebras,
and in analogy we will also briefly show that induced functors on∞-categories
of left modules preserve free modules in Section E.7.4. In Section E.7.3 we
provide a result for AlgO(F ) preserving small colimits.

E.7.1. Operadic colimits
In this section we discuss some helpful results regarding operadic col-

imit diagrams. Section E.7.1.1 covers a criterion that simplifies checking
whether certain types of diagrams in a symmetric monoidal ∞-category are
operadic colimit diagrams, and Section E.7.1.2 applies this to show that
colimit-preserving symmetric monoidal functors also preserve operadic colim-
its. Both statements as well as their proofs are essentially taken from [GH15,
A.2.9]14.

E.7.1.1. A criterion for operadic colimits

We record the following proposition whose proof is essentially given in the
proof of [GH15, A.2.9].
14The paper [GH15] is however concerned with the theory of non-symmetric ∞-operads,

rather than the symmetric ∞-operads used in [HA], which is why we do not merely cite
[GH15, A.2.9].
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Proposition E.7.1.1 ([GH15, A.2.9]). Let q : C⊗ → Fin∗ be a symmetric
monoidal ∞-category that is compatible with small colimits in the sense of
[HA, 3.1.1.18] and let p : K▷ → C⊗ be a diagram such that q◦p is the constant
functor with value 〈i〉. Let m : 〈i〉 → 〈1〉 be the unique active morphism.

Then the following two conditions are equivalent.

(1) p is an operadic q-colimit diagram15.

(2) The composition
K▷ p
−→ C⊗〈i〉

m!−−→ C (E.5)

is a colimit diagram. ♥

Proof. By [HA, 3.1.1.16] the condition (1) is equivalent to the following con-
dition.

(3) For every object Y of C⊗ the composition

K▷ p
−→ C⊗〈i〉

−⊕Y
−−−→ C⊗〈i〉⊕q(Y )

m′
!−−→ C (∗)

is a colimit diagram, where m′ : 〈i〉 ⊕ q(Y ) → 〈1〉 is the unique active
morphism.

Note that given an object Y of C⊗, we can write the unique active morphism

m′ : 〈i〉 ⊕ q(Y )→ 〈1〉

as the composition
m′ = µ ◦ (m⊕m′′)

with m′′ : q(Y )→ 〈1〉 and µ : 〈2〉 → 〈1〉 the unique active morphisms. By [HA,
2.2.4.8], we can identify (m⊕m′′)! with m!⊕m

′′
! , so that the composition in

(∗) can be identified with

K▷ p
−→ C⊗〈i〉

−⊕Y
−−−→ C⊗〈i〉⊕q(Y )

m!⊕m
′′
!−−−−−→ C⊗〈2〉

µ!−→ C

which can be further identified, using the functoriality of ⊕, with the compo-
sition

K▷ p
−→ C⊗〈i〉

m!−−→ C⊗〈1〉
−⊕m′′

! (Y )
−−−−−−−→ C⊗〈2〉

µ!−→ C

which finally can be identified with the following composition.

K▷ p
−→ C⊗〈i〉

m!−−→ C
−⊗m′′

! (Y )
−−−−−−−→ C (∗∗)

As we assumed that the symmetric monoidal structure on C is compatible
with small colimits, (∗∗) is a colimit diagram for all objects Y of C⊗ if and
only if (E.5) is a colimit diagram16.
15See [HA, 3.1.1.2] for the definition.
16The composition (E.5) can be identified with (∗∗) in the special case of Y = 1C .
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E.7.1.2. Symmetric monoidal functors and operadic colimits

The following statement is given in [GH15, A.2.9] with the same proof as
given below.
Proposition E.7.1.2 ([GH15, A.2.9]). Let q : C⊗ → Fin∗ and q′ : C′⊗ → Fin∗

be symmetric monoidal ∞-categories that are compatible with small colimits
in the sense of [HA, 3.1.1.18] and let F⊗ : C⊗ → C′⊗ be a symmetric monoidal
functor such that F preserves colimits.

Let p : K▷ → C⊗act be a operadic q-colimit diagram. Then F⊗◦p is a operadic
q′-colimit diagram. ♥

Proof. Let p0 = q ◦ p and let r0 be the constant functor K▷ → Fin∗ with
image p0(∞)17. Then there is a unique natural transformation α0 : p0 → r0.
By [HTT, 3.1.2.1] we can lift this natural transformation to a natural trans-
formation α : p → r of functors K▷ → C⊗ such that for each object k of K
the morphism αk : p(k)→ r(k) is q-cocartesian.

Note that by construction of α0 the functor α factors through C⊗act. Further-
more, α∞ is q-cocartesian and lies over the equivalence idp0(∞) and is thus
an equivalence by [HTT, 2.4.1.5]. Hence all the assumptions for [HA, 3.1.1.15
(2)] are satisfied and we can conclude that as p is an operadic q-colimit dia-
gram, so is r.

As F⊗ maps q-cocartesian morphisms to q′-cocartesian morphisms and
preserves equivalences, we can apply [HA, 3.1.1.15 (2)] also to F⊗ ◦ α to
conclude that F ◦ p is an operadic q′-colimit diagram if and only if F ◦ r is,
so it now suffices to show that F ◦ r is an operadic q′-colimit diagram.

Let m : p0(∞) → 〈1〉 be the unique active morphism. Then by Proposi-
tion E.7.1.1 the composite

K▷ r
−→ C⊗

p0(∞)

m!−−→ C (∗)

is a colimit diagram, and it suffices to show that

K▷ r
−→ C⊗

p0(∞)

F⊗

−−→ C′⊗
p0(∞)

m!−−→ C′ (∗∗)

is a colimit diagram.
But as F is symmetric monoidal, composition (∗∗) can be identified with

K▷ r
−→ C⊗

p0(∞)

m!−−→ C
F
−→ C′

so that this is a colimit diagram follows from (∗) being a colimit diagram and
F preserving colimit diagrams by assumption.

E.7.2. Free algebras
In this section we discuss free algebras; existence of free algebras in Sec-

tion E.7.2.1 and compatibility of induced functors on∞-categories of algebras
with free algebras in Section E.7.2.2.
17∞ denotes the cone point of K▷.

700



E.7. Colimits and free algebras

E.7.2.1. Detection of free algebras

Let C be a symmetric monoidal ∞-category, O an ∞-operad, and X an
object of the underlying ∞-category of O. We can then ask whether the
forgetful functor

evX : AlgO(C)→ C

has a left adjoint, i. e. a free algebra functor18. In a more general setting, [HA,
3.1.3.4] shows existence of a free algebra functor, under some assumptions.
However, those assumptions, requiring existence of certain operadic colimit
diagrams, are not a priori easy to verify19. In the next proposition we thus
provide easier to check conditions for C in the case that O is either Assoc or
E0 that imply the existence of free algebras, and discuss descriptions of the
free algebra generated by a an object of C.

Proposition E.7.2.1 ([HA, 4.1.1.18 and 4.1.1.19]). Let q : C⊗ → Fin∗ be a
symmetric monoidal ∞-category. Let O be either Assoc or E0. Furthermore,
assume the following.

• If O = Assoc, assume that C admits countable coproducts and that the
tensor product preserves countable coproducts in each variable.

• If O = E0, assume that C admits finite coproducts and that the tensor
product preserves finite coproducts in each variable.

Then the forgetful functor

ev〈1〉 : AlgO(C)→ C

admits a left adjoint FreeAlgO and for every object X of C, the unit

X → ev〈1〉

(
FreeAlgO (X)

)

of the adjunction exhibits FreeAlgO (X) as a q-free O-algebra generated by
X20.

Let X be an object of C, let A be an object of AlgO(C), and let furthermore
f : X → ev〈1〉(A) be a morphism in C. Then the following are equivalent.

(1) f exhibits A as a q-free O-algebra generated by X.

(2) The morphism
FreeAlgO (X)→ A

that is adjoint to f is an equivalence in AlgO(C).
18See [HA, 3.1].
19Unless much stronger assumptions are available, such as the symmetric monoidal struc-

ture on C being compatible with small colimits. See [HA, 3.1.3.5].
20See [HA, 3.1.3.1 and 3.1.3.12] for a definition.
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(3) • If O = Assoc: The composition
∐

n≥0

X⊗n

∐
n≥0 f

⊗n

−−−−−−−→
∐

n≥0

ev〈1〉(A)
⊗n → ev〈1〉(A)

is an equivalence, where the morphisms ev〈1〉(A)
⊗n → ev〈1〉(A)

are those associated to the evaluation of A at an active morphism
〈n〉 → 〈1〉 in Assoc⊗21.

• If O = E0: The composition

1∐X
id1 ∐f
−−−−→ 1∐ ev〈1〉(A)

i∐id
−−−→ ev〈1〉(A)

is an equivalence, where i is the morphism associated to the eval-
uation of A at the unique morphism 〈0〉 → 〈1〉 in (E0)

⊗. ♥

Proof. For O = Assoc, this is precisely [HA, 4.1.1.18]22, albeit under stronger
assumptions regarding what colimits C needs to be admit and its tensor
product needs to be compatible with. That countable coproducts suffice is
remarked in [HA, 4.4.1.19]. This follows by tracing through the proof of [HA,
4.1.1.18], where one is ultimately led to [HA, 3.1.3.4], where one needs to
ensure that one can construct certain operadic q-colimit diagrams. One then
notes that in the specific situation we need to apply this the diagram category
is equivalent to

∐
n≥0 P(n), where P(n) are the spaces defined in [HA, 3.1.3.9].

For Assoc these spaces can easily seen to be contractible23, so colimits indexed
by this diagram category are countable coproducts.

The proof for O = E0 is completely analogous; the relevant P(n) are empty
for n > 1 rather than contractible.

E.7.2.2. Symmetric monoidal functors and free algebras

Given a symmetric monoidal functor F : C → D, an ∞-operad O, and
an object X of the underlying ∞-category of O, the induced functor on
∞-categories of algebras

AlgO(F ) : AlgO(C)→ AlgO(D)

is compatible with the respective forgetful functors evX . The next proposition
gives conditions for C, D, and F such that AlgO(F ) is also compatible with
the respective free algebra functors.
Proposition E.7.2.2. Let α⊗ : O⊗ → O′⊗ be a morphism of ∞-operads,
qC : C

⊗ → Fin∗ and qD : D⊗ → Fin∗ symmetric monoidal ∞-categories, and
F⊗ : C⊗ → D⊗ a symmetric monoidal functor.

Assume one of the following sets of assumptions.
21Which active morphism is chosen does not change whether the composition is an equiv-

alence or not.
22The proof can be found above the statement.
23See [HA, above 4.1.1.18].
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(1) • C and D admit small colimits.
• The tensor product functors of C and D preserve small colimits

separately in each variable.
• F : C → D preserves small colimits.

(2) • O⊗ = Triv⊗ and O′⊗ = Assoc.
• C and D admit countable coproducts.
• The tensor product functors of C and D preserve countable coprod-

ucts separately in each variable.
• F : C → D preserves countable coproducts.

(3) • O⊗ = Triv⊗ and O′⊗ = E0.
• C and D admit finite coproducts.
• The tensor product functors of C and D preserve finite coproducts

separately in each variable.
• F : C → D preserves finite coproducts.

Then the following commutative diagram induced by F (where the two
horizontal functors are the forgetful functors given by precomposition with α)

AlgO′(C) AlgO(C)

AlgO′(D) AlgO(D)

AlgO′ (F )

UC

AlgO(F )

UD

(E.6)

is left adjointable24, i. e. UC and UD have left adjoints FreeAlgO′ (C)
AlgO(C) and

FreeAlgO′ (D)

AlgO(D) , and the associated push-pull transformation

FreeAlgO′ (D)

AlgO(D) ◦AlgO(F )→ AlgO′(F ) ◦ FreeAlgO′ (C)
AlgO(C)

is a natural equivalence. ♥

Proof. By [HA, 3.1.3.5] in case (1) and Proposition E.7.2.1 in cases (2) and
(3), the left adjoints exist and for A an object of AlgO(C) the unit

ηCA : A→ UC

(
FreeAlgO′ (C)

AlgO(C) (A)
)

of the adjunction exhibits FreeAlgO′ (C)
AlgO(C) (A) as the free O′-algebra generated

by A, and completely analogously for the other adjunction, whose unit we
denote by ηD.
24See [HTT, 7.3.1.1] for the definition.
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Let A be an object in AlgO(C). We have to show25 that the morphism
(

FreeAlgO′ (D)

AlgO(D) ◦AlgO(F )
)
(A)→

(
AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

that is adjoint to the following composition26

(AlgO(F ))(A)
AlgO(F )(ηCA)
−−−−−−−−−→

(
AlgO(F ) ◦ UC ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

≃
−→
(
UD ◦AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

is an equivalence (see [HTT, beginning of 7.3.1]).
But by definition of FreeAlgO′ (D)

AlgO(D) (see [HA, 3.1.3.5 and 3.1.3.1] in case (1)
and see Proposition E.7.2.1 in cases (2) and (3)), the former morphism is an
equivalence if and only if the latter morphism exhibits

(
AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

as a qD-free O′-algebra generated by (AlgO(F ))(A) – so this is what we need
to show.

Similarly, by definition of FreeAlgO′ (C)
AlgO(C) , the morphism

ηCA : A→
(
UC ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

exhibits FreeAlgO′ (C)
AlgO(C) (A) as a qC-free O′-algebra generated by A.

Proof in case (1): Unpacking the definitions of free algebras (see [HA,
3.1.3.1]) one sees that the claim boils down to showing that F⊗ preserves cer-
tain operadic colimit diagrams, so the claim follows from Proposition E.7.1.2.

Proof in cases (2) and (3): In these cases we can use the criteria from Propo-
sition E.7.2.1 and thus the claim follows from F being symmetric monoidal
and preserving countable/finite colimits.

E.7.3. Induced functors on Alg and colimits
In the following proposition we show that a colimit preserving symmetric

monoidal functor induces a colimit preserving functor on ∞-categories of
algebras.

25By Proposition A.3.2.1 a natural transformation is a natural equivalence if and only if
it is a pointwise equivalence.

26The equivalence used is to be the one obtained from the equivalence
AlgO(F ) ◦ UC ≃ UD ◦ AlgO′ (F ) encoded in the commutative diagram (E.6).
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Proposition E.7.3.1. Let C and D be symmetric monoidal ∞-categories
and F : C → D a symmetric monoidal functor. Assume that C and D admit
all small colimits, that the tensor product functors of C and D preserve small
colimits separately in each variable, and that F preserves small colimits.

Let O be an∞-operad. Then AlgO(F ) preserves small colimits as well. ♥

Proof. Consider the commutative diagram

AlgO(C) AlgO(D)

Fun(O, C) Fun(O,D)

AlgO(F)

UC UD

F∗

(∗)

where UC and UD are the forgetful functors.
To show that AlgO(F) preserves colimits it suffices by combining [HTT,

4.2.3.12] with [HA, 1.3.3.10 (2)] to show that AlgO(F) preserves sifted colim-
its as well as coproducts.

By [HA, 3.2.3.1]27 together with [HTT, 5.1.2.3 (2)], the two vertical func-
tors in diagram (∗) detects sifted colimits. As F preserves all small colimits
by assumption, we obtain with [HTT, 5.1.2.3 (2)] that the bottom horizontal
functor in diagram (∗) preserves all small, so in particular all sifted, colimits.
We can thus conclude that AlgO(F) preserves sifted colimits.

It then follows from the proof of [HA, 3.2.3.3]27 that AlgO(F) also preserves
coproducts if the composition with the left adjoint FreeC of UC does. But by
Proposition E.7.2.2 there is a commutative diagram

AlgO(C) AlgO(D)

Fun(O, C) Fun(O,D)

AlgO(F)

F∗

FreeC FreeD

where FreeD is the left adjoint of UD. That the composition from the bottom
left to the top right in this diagram preserves coproducts now follows im-
mediately from F∗ preserving small colimits as mentioned above and FreeD
preserving colimits as a left adjoint [HTT, 5.2.3.5].

E.7.4. Free modules
Similarly to Proposition E.7.2.2, which dealt with compatibility of induced

functors on∞-categories of algebras with free algebras, the next propositions
discusses compatibility of induced functors on ∞-categories of left modules
with free modules.
27 Which is applicable to our situation by Proposition E.2.0.2.
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Appendix E. ∞-operads and algebras

Proposition E.7.4.1. Let F : C → D be a monoidal functor of monoidal
∞-categories and let R be an (associative) algebra in C. Then the commutative
diagram

LModR(C) C

LModF (R)(D) D

evm

LModR(F ) F

evm

(E.7)

induced by F is left adjointable in the sense of [HTT, 7.3.1.1], i. e. the asso-
ciated push-pull transformation

FreeD ◦ F → LModR(F ) ◦ FreeC

is an equivalence, where FreeC and FreeD are the free module functors for C
and D, respectively (see [HA, 4.2.4.8]).

In other words, F preserves free left-R-modules. The analogous statement
is true for right-R-modules. ♥

Proof. Let X be an object of C. By Proposition A.3.2.1 it suffices to show
that the push-pull morphism

(FreeD ◦ F )(X)→ (LModR(F ) ◦ FreeC)(X)

is an equivalence, and as evm is conservative by [HA, 4.2.3.3], we actually
only need to show that evm of that morphism is an equivalence.

Consider the following commutative diagram that will be explained below.

F (R)⊗ F (X) F (R)⊗ (evm ◦ FreeD ◦ F )(X) (evm ◦ FreeD ◦ F )(X)

F (R)⊗ (evm ◦ LModR(F ) ◦ FreeC)(X) (evm ◦ LModR(F ) ◦ FreeC)(X)

F (R)⊗ F (X) F (R)⊗ F ((evm ◦ FreeC)(X)) F ((evm ◦ FreeC)(X))

F (R⊗X) F (R⊗ (evm ◦ FreeC)(X)) F ((evm) ◦ FreeC(X))

The left horizontal morphisms are induced by the units of the adjunctions
FreeD ⊣ evm and FreeC ⊣ evm, and the right horizontal morphisms are (in-
duced by) the action morphism of the respective modules. The top vertical
morphisms on the left and the bottom vertical morphism on the right are the
identity morphisms, and the bottom vertical morphism in the left and mid-
dle column are the equivalences arising from monoidality of F . In the middle
and right column, the top vertical morphism is induced by the push-pull-
transformation, and the middle vertical morphisms arise are the equivalences
that arise from commutativity of (E.7).
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The composition of the top two horizontal morphisms is an equivalence by
the definition of free modules [HA, 4.2.4.1], and so is the composition of the
bottom two horizontal morphisms. The two left vertical morphisms as well
as the bottom and middle vertical morphism on the right are equivalences as
well, so it follows that the vertical morphism at the top right is an equivalence,
which is what needed to be shown.

E.8. Relative tensor products
Let C be a monoidal category and R, S, and T associative algebras in C.

If M is an R-S-bimodule and N an S-T -bimodule, then we can form the
relative tensor product of M with N over S, denoted by M ⊗S N , which
yields an R-T -bimodule.

This construction is generalized to the∞-categorical setting in [HA, 4.4]28,
and can be (very) roughly summarized as follows. If C is a monoidal ∞-cate-
gory that is compatible with ∆

op-indexed colimits,R an associative algebra in
C, M a right-R-module, and N a left-R-module, then there exists a simplicial
object in C denoted by BarR(M,N) that is given in level n by29 M⊗R⊗n⊗N
and has structure morphisms constructed from the unit morphism of R, the
multiplication of R, and the action of R on M and N . The relative tensor
product M ⊗R N is then the geometric realization of BarR(M,N). See [HA,
4.4.2.8].

In this section we will record some properties of relative tensor products
that we will need.

Proposition E.8.0.1. Let C and D be monoidal∞-categories and F : C → D
a monoidal functor. Assume that C and D admit ∆op-indexed colimits, their
tensor product functors commute with ∆

op-indexed colimits in each variable
separately, and F preserves ∆

op-indexed colimits.
Then F preserves relative tensor products. ♥

Remark E.8.0.2. Let us clarify what the statement of Proposition E.8.0.1
actually means at a more concrete or technical level. Let pC : C⊗ → Assoc⊗
and pD : D⊗ → Assoc⊗ be the cocartesian fibrations of ∞-operads that ex-
hibit C and D as monoidal ∞-categories. Suppose we have given a morphism
28Unfortunately there seems to be a mistake in the definition of Tens⊗ in [HA, 4.4.1.1].

For morphisms one should additionally require for any element j of 〈n′〉◦ such that
c′−(j) 6= c′+(j) that the preimage of j under α is non-empty. One can think of it like
this: Any nontrivial step from c′−(j) to c′+(j) needs to come from a step in the preimages.

The same mistake occurs in the description [HA, 4.3.1.5] of the ∞-operad encoding
bimodules. Here one needs to make the same correction. Without this correction alge-
bras over this operad would not consist of triples (R,M,S) with R and S associative
algebras and M an R-S-bimodule, but such triples together with an additional unit
morphism 1 → M for M , encoded by the morphism from the unique object ∅ over 〈0〉
to m.

29That this is really how the bar construction looks like in level n can be seen by digging
through and unpacking the definition [HA, 4.4.2.7], but it is a bit tedious.
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of generalized ∞-operads φ fitting into the following commutative diagram

C⊗ D⊗

Tens⊗
�

Assoc⊗

pC

F⊗

pD

φ

where the bottom horizontal functor is the forgetful functor. Then the state-
ment of Proposition E.8.0.1 is that if φ is an operadic pC-colimit diagram,
then F⊗ ◦ φ is an operadic pD-colimit diagram, see [HA, 4.4.2.3].

From this the various other, perhaps more concrete, formulations of what
it means for a monoidal functor to preserve relative tensor products follow.
For example we then have a commutative square

BiMod(C)×Alg(C) BiMod(C) BiMod(D)×Alg(D) BiMod(D)

BiMod(C) BiMod(D)

where the horizontal functors are those induced by F and the vertical functors
are the relative tensor product functors of [HA, 4.4.2.11]. ♦

Proof of Proposition E.8.0.1. We will make use the notation and setup from
Remark E.8.0.2. Let the restriction of φ to Tens⊗[2] correspond to a quin-
tuple (R,M,S,N, T ), with R, S, and T associative algebras in C, with M

an R,S-bialgebra, and N an S,T -bialgebra, see [HA, 4.4.2.2]. Similarly, let
the restriction to Tens⊗[1] correspond to a triple (R′, X, T ′) with R′ and T ′

associative algebras and X an R′,T ′-bialgebra.
By [HA, 4.4.2.8], the morphisms R → R′ and T → T ′ induced by φ are

equivalences30 and the comparison morphism

|BarS(M,N)| → evm(X)

is an equivalence. What we have to show is that the morphisms F (R)→ F (R′)
and F (T )→ F (T ′) induced by F⊗ ◦φ are equivalences and that the compar-
ison morphism

∣∣BarF (S)(F (M), F (N))
∣∣→ F (evm(X)) (∗)

is an equivalence.
The former is clear because these morphisms are just given by F applied

to the analogous morphisms R→ R′ and T → T ′ in C.
30Condition (i) boils down to this, as Assoc is reduced, see [HA, 4.4.2.6].
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As F⊗ maps pC-cocartesian morphisms to pD-cocartesian morphisms, it
follows from the definition that

BarF (S)(F (M), F (N)) ≃ F ◦ BarS(M,N)

see [HA, 4.4.2.7]. That (∗) is an equivalence now follows from combining this
with F preserving ∆

op-indexed colimits by assumption.

Proposition E.8.0.3. Let C be a cocartesian symmetric monoidal struc-
ture31 such that the underlying ∞-category of C admits ∆

op-indexed colimits
as well as pushouts

Then the tensor product of C is compatible with ∆
op-indexed colimits as

well as pushouts in the sense of [HA, 3.1.1.18].
Let R, S, and T be associative algebras in C. Let f : M →M ′ be a morphism

in BiModR,S(C) and g : N → N ′ a morphism in BiModS,T (C). We obtain a
commutative diagram

M ⊗S N M ⊗S N
′

M ′ ⊗S N M ′ ⊗S N
′

idM⊗idS
g

f⊗idS
idN f⊗idS

idN′

idM′⊗idS
g

in BiModR,T (C). Then this diagram is a pushout square. ♥

Proof. We first show that the symmetric monoidal structure on C is compat-
ible with pushouts and ∆

op-indexed colimits. So let X be an object of C. Let
I be either ∆

op or Λ2
0 = (• ← • → •) and F : I → C a functor. It suffices to

show that the canonical comparison morphism

colim(X ∐ F )→ X ∐ colimF

is an equivalence. As colimits commute with colimits [HTT, 5.5.2.3] this mor-
phism factors as an equivalence colim(X ∐ F ) ≃ (colim constX) ∐ (colimF )
and the canonical morphism (colim constX) ∐ (colimF ) → X ∐ colimF . It
thus suffices to show that (colim constX) → X is an equivalence, which fol-
lows from [HTT, 4.4.4.10], as I is weakly contractible32.

We can now apply [HA, 4.3.3.9] to conclude that pushouts are detected
by the forgetful functor evm : BiModR,T (C)→ C, so combining this with the
description of relative tensor products from [HA, 4.4.2.8] it suffices to show

31See [HA, 2.4.0.1] for a definition.
32This means that the ∞-groupoid completion of I is contractible as a space.
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that the commutative diagram

|BarS(M,N)| |BarS(M,N ′)|

|BarS(M ′, N)| |BarS(M ′, N ′)|

|BaridS
(idM ,g)|

|BaridS
(f,idN )| |BaridS

(f,idN′ )|

|BaridS
(idM′ ,g)|

is a pushout square in C.
Using compatibility of colimits with colimits again it suffices to show for

every n ≥ 0 that the commutative square

M ∐ (
∐n
i=1 S)∐N M ∐ (

∐n
i=1 S)∐N

′

M ′ ∐ (
∐n
i=1 S)∐N M ′ ∐ (

∐n
i=1 S)∐N

′

idM∐id∐g

f∐id∐idN f∐id∐idN′

idM′∐id∐g

is a pushout square in C, which yet again follows from colimits commuting
with colimits, as this is evidently a coproduct of pushout diagrams.

Construction E.8.0.4. Let C be a symmetric monoidal ∞-category, and
assume that the underlying ∞-category admits ∆

op-indexed colimits, and
that the tensor product functor preserves ∆op-indexed colimits separately in
each variable.

Let f : R → S and g : R → T be morphisms in CAlg(C). We can upgrade
f and g to morphisms in right-R-modules and left-R-modules in CAlg(C), as
we now explain for g, the case for f being completely analogous.

By [HA, 3.2.4.7] the induced symmetric monoidal structure on CAlg(C) is
cocartesian, so by [HA, 2.4.3.9] the forgetful functor

eva : Alg(CAlg(C))→ CAlg(C)

is an equivalence, and so we can upgrade g to a morphism g in Alg(CAlg(C))
with eva(g) ≃ g.

By applying the section Alg(CAlg(C))→ LMod(CAlg(C)) discussed in [HA,
4.2.1.17] we obtain a morphism g̃ : (R,R) → (T, T ) in LMod(CAlg(C)) to-
gether with equivalences eva(g̃) ≃ g and evm(g̃) ≃ g. The forgetful functor
LMod(CAlg(C))→ Alg(CAlg(C)) is a cartesian fibration by [HA, 4.2.3.2] and
a cartesian lift of g with target (T, T ) lies over an equivalence in CAlg(C).
This cartesian lift can be interpreted as the restriction of the T -action on T

to R along g. We obtain an induced morphism of left-R-modules g′ : R→ T

with evm(g
′) ≃ g.

By [HA, 3.2.3.2] the∞-category CAlg(C) admits ∆op-indexed colimits, and
as the forgetful functor ev〈1〉 : CAlg(C) → C is both symmetric monoidal by
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Proposition E.4.2.3 (5) as well as preserves and detects ∆op-indexed colimits
by [HA, 3.2.3.2], it follows that the induced tensor product on CAlg(C) is
compatible with ∆

op-indexed colimits as well.
We thus obtain a commutative diagram in CAlg(C) as follows

R T

R⊗R R R⊗R T

S S ⊗R R S ⊗R T

≃

g

f

≃

idR⊗idR
g′

f ′⊗idR
idR f ′⊗idR

idT

≃ idS⊗idR
g′

(E.8)

where the unlabeled equivalences are the unitality equivalences of the relative
tensor product discussed in [HA, 4.4.3.16], see also [HA, 4.4.3.18]. ♦

Proposition E.8.0.5. Assume that we are in the situation of Construc-
tion E.8.0.4, and that C additionally admits small colimits and that the tensor
product preserves small colimits separately in each variable.

Then the commutative square

R T

S S ⊗R T

g

f

from (E.8) is a pushout square in CAlg(C). ♥

Proof. It suffices to show that the smaller square on the lower right in diagram
(E.8) is a pushout square.

Note that by [HA, 3.2.3.3] CAlg(C) again admits small colimits. We can
thus apply Proposition E.8.0.3, which shows the claim.
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Appendix F.

Cartesian symmetric monoidal
∞-categories

In this appendix we collect some results relating to cartesian symmet-
ric monoidal ∞-categories. In Section F.1 we discuss how cocartesian fi-
brations whose fibers are compatible with products in the sense of Defi-
nition C.2.0.1 interact with cartesian symmetric monoidal structures. The
short section Section F.2 describes limits in ∞-categories of monoids. The
main part of this section is Section F.3, in which we discuss how to relate
AlgO⊗O′(C), MonO⊗O′(C), MonO(MonO′(C)), and AlgO(AlgO′(C)), where C
is an ∞-category admitting finite products that is equipped with the carte-
sian symmetric monoidal structure, and O and O′ are ∞-operads.

F.1. Cocartesian fibrations and cartesian
symmetric monoidal structures

Let p : C → D be a cocartesian fibration whose fibers are compatible with
products in the sense of Definition C.2.0.1, and let πD : D× → D be the
cartesian structure on the cartesian symmetric monoidal structure on C (see
[HA, 2.4.1]). By Proposition C.2.0.3, p preserves products. The goal of this
section is to show that the induced functor p× : C× → D× can be obtained as
a pullback of p along πD. Before we can prove this, we first show the following
statement regarding how cocartesian morphisms interact with weak cartesian
structures.

Proposition F.1.0.1. Let q : C⊗ → Fin∗ be a symmetric monoidal ∞-cate-
gory and π : C⊗ → D a weak cartesian structure1 on C⊗.

Let C ≃ C1 ⊕ · · · ⊕ Cn be an object of C〈n〉 with Ci an object of C for
1 ≤ i ≤ n. Let φ : 〈n〉 → 〈m〉 be a morphism in Fin∗ and let f : C → C ′ be a
q-cocartesian lift of φ.

1See [HA, 2.4.1.1] for a definition
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Then there exists a commutative diagram

π(C) π(C ′)

∏

1≤i≤n

π(Ci)
∏

1≤i≤n,
φ(i) 6=∗

π(Ci)

π(f)

≃ ≃

where the bottom horizontal morphism is the projection to the subproduct,
the right vertical morphism is an equivalence, and the left vertical morphism
is induced by the canonical morphisms π(C) → π(Ci) (which are induced by
inert morphisms lying over ρi), and thus an equivalence as π is a lax cartesian
structure. ♥

Proof. We first consider the case in which φ is inert. Then we can identify f
with the following canonical projection morphism.

⊕

1≤i≤n

Ci →
⊕

1≤i≤n,
φ(i) 6=∗

Ci

Let
gj :

⊕

1≤i≤n,
φ(i) 6=∗

Ci → Cj

be the canonical projection morphism for 1 ≤ j ≤ n with φ(j) 6= ∗ and define
hj similarly to be the projection

⊕
1≤i≤n Ci → Cj for 1 ≤ j ≤ n. That π is

lax cartesian means that the morphism

π


 ⊕

1≤i≤n

Ci




∏
1≤i≤n hi

−−−−−−−→
∏

1≤i≤n

π(Ci)

is an equivalence, and similarly for
⊕

1≤i≤n,φ(i) 6=∗ Ci. The claim now follows
from the fact that for 1 ≤ i ≤ n with φ(i) 6= ∗ the composition gi ◦ f can be
identified with hi.

Let us now consider the general case. Let g : C ′ → C ′′ be a q-cocartesian
lift of the active morphism 〈m〉 → 〈1〉. As π is a weak cartesian structure,
π(g) is an equivalence. It thus suffices to consider the case where m = 1. We
can factor φ as a composition φ = α◦β where β is inert and α active (see [HA,
2.1.2.2]). Lifting β and α to a commuting triangle f ≃ g ◦ h of q-cocartesian
morphisms, with h a lift of β and g a lift of α, we can again use the fact that
π is a weak cartesian structure (and that m = 1) to conclude that π(g) is an
equivalence. We are thus reduced to the case of inert morphisms, which we
have already proven.
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Proposition F.1.0.2. Let p : C → D be a cocartesian fibration whose fibers
are compatible with products in the sense of Definition C.2.0.1, and let
πC : C

× → C and πD : D× → D be the cartesian structures on the cartesian
symmetric monoidal structures on C and D, respectively (see [HA, 2.4.1.5
(5)]).

Then the square induced via [HA, 2.4.1.8 and 2.4.1.6] by the product pre-
serving functor p (see Proposition C.2.0.3)

C× C

D× D

πC

p× p

πD

is a pullback in Cat∞. ♥

Proof. Consider the following commutative diagram, where the square is a
pullback square.

C×

C⊗ C

D× D

θ⊗

πC

p×

π

p⊗ p

πD

It suffices to show that θ⊗ is an equivalence.
The ∞-category D× comes with a cocartesian fibration, which we will de-

note by q : D× → Fin∗, that makes D× into a symmetric monoidal∞-category
with underlying ∞-category D (see [HA, 2.4.1.5 (4)]). With this we can now
state the three claims through which the proof will proceed:

(A) p⊗ is a cocartesian fibration of ∞-operads2.

It follows from (A) that the functor q ◦p⊗ : C⊗ → Fin∗ upgrades C⊗ to a sym-
metric monoidal∞-category. Note that by construction p× : C× → D× arises
as a symmetric monoidal functor between symmetric monoidal∞-categories,
so in particular p× can be lifted to a functor over Fin∗. It then follows that
also θ⊗ can be lifted to a functor over Fin∗. This gives meaning to the next
claim.

(B) The functor θ⊗ can be upgraded to a symmetric monoidal functor.

(C) The functor θ = θ⊗〈1〉 is an equivalence.

2See [HA, 2.1.2.13] for the definition.
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Once we have proven these three claims, the statement follows immediately
from [HA, 2.1.3.8], which states that as a symmetric monoidal functor (by
(B)), θ⊗ is already an equivalence if θ is is an equivalence (which it is by
(C)).

Proof of (A): As p is a cocartesian fibration we can conclude by Proposi-
tion C.1.1.1 that p⊗ is also a cocartesian fibration. We will use [HA, 2.1.2.12]
to show that p⊗ is even a cocartesian fibration of ∞-operads. So let

D ≃ D1 ⊕ · · · ⊕Dn

be an object in D×
〈n〉 with Di objects in D for 1 ≤ i ≤ n, and let f i : D → Di

for 1 ≤ i ≤ n be the canonical inert morphisms. We have to show that the
induced morphism on fibers

C⊗D

∏
1≤i≤n f

i
!

−−−−−−−→
∏

1≤i≤n

C⊗Di
(F.1)

is an equivalence of∞-categories. The fiber of p⊗ over some object D′ can be
identified with the fiber of p over πD(D′), and it follows from the description
of p⊗-cocartesian morphisms in Proposition C.1.1.1 that this identification
is compatible with the respective induced morphisms on fibers. We can thus
identify functor (F.1) with the following functor.

CπD(D)

∏
1≤i≤n πD(fi)!

−−−−−−−−−−→
∏

1≤i≤n

CπD(Di) (F.2)

As πD is a lax cartesian structure3 we can identify πD(D) with the product∏
1≤i≤n πD(Di) and the morphisms πD(f j) : πD(D)→ πD(Dj) for 1 ≤ j ≤ n

with the projection prj . We can thus identify functor (F.2) with the following
functor.

C∏
1≤i≤n πD(Di)

∏
1≤i≤n pri!

−−−−−−−−→
∏

1≤i≤n

CπD(Di)

But the cocartesian fibration p has by assumption fibers compatible with
products, and this means exactly that functors of this form are equivalences.

Proof of (B): Let f be a q ◦ p⊗ ◦ θ⊗-cocartesian morphism in C×. Then we
have to show that θ⊗(f) is q ◦ p⊗-cocartesian. As p× is symmetric monoidal,
the morphism p×(f) = p⊗(θ⊗(f)) is q-cocartesian, so by [HTT, 2.4.1.3 (3)] it
suffices to show that θ⊗(f) is p⊗-cocartesian. Applying Proposition C.1.1.1
we are further reduced to showing that π(θ⊗(f)) = πC(f) is p-cocartesian.
As πC is a weak cartesian structure, Proposition F.1.0.1 shows that πC(f) is
a projection from a product to a factor, and by the description of products in
C given in Proposition C.2.0.3, projection morphisms in C are p-cocartesian.

3See [HA, 2.4.1.1].
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Proof of (C): Consider the commuting diagram

C×〈1〉 C×

C⊗〈1〉 C⊗ C

D×
〈1〉 D× D

{〈1〉} Fin∗

θ θ⊗
πC

p⊗

π

p

πD

q

where the horizontal functors on the left are all the respective inclusions,
and the vertical functors on the left are the functors induced by vertical
functors in the middle. All squares in the diagram are pullback squares. As
πD is a cartesian structure, the composition D×

〈1〉 → D in the third row is
an equivalence. As the two squares in the middle row are pullbacks (and
hence so is the outer commuting rectangle in the middle row) it follows that
the composition C⊗〈1〉 → C in the second row is an equivalence as well. As
πC is a cartesian structure, the composition C×〈1〉 → C at the top is also an
equivalence. It follows that θ must also be an equivalence.

Remark F.1.0.3. Let p : C → D be a cocartesian fibration whose fibers are
compatible with products in the sense of Definition C.2.0.1. Then combining
Proposition F.1.0.2 with Proposition C.1.1.1 we obtain another, independent,
proof of Proposition C.2.0.6. ♦

F.2. Monoids and limits
In this short section we briefly discuss limits in ∞-categories of monoids.

Proposition F.2.0.1. Let O be an ∞-operad and C an ∞-category.
Let I be a small ∞-category and assume that C admits I-indexed limits.

Then MonO(C) (for a definition see [HA, 2.4.2.1]) admits I-indexed limits as
well, and they are preserved and detected by the inclusion functor

ι : MonO(C)→ Fun
(
O⊗, C

)

as well as the composition

MonO(C)
ι
−→ Fun

(
O⊗, C

) j∗

−→ Fun(O, C)

where j : O = O⊗
〈1〉 → O

⊗ is the inclusion. ♥
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Proof. As ι is the inclusion of a full subcategory, it follows from [HTT,
1.2.13.7] that to show that MonO(C) admits I-indexed limits and that ι

preserves and detects them it suffices to show that MonO(C) is closed un-
der I-indexed limits in Fun(O⊗, C). But this follows immediately from the
definition [HA, 2.4.2.1] in combination with the fact that limits in functor
categories are computed pointwise [HTT, 5.1.2.3], and that limits commute
with limits [HTT, 5.5.2.3].

For the composition j∗ ◦ ι, note that there is a commutative diagram as
follows

AlgO(C) MonO(C)

FunFin∗(O
⊗, C×) Fun(O⊗, C×) Fun(O⊗, C)

Fun(O, C) Fun(O, C)

≃

ι

π∗

j∗

id

where the unlabeled functors are the obvious forgetful functors or inclusions,
and the top horizontal functor is an equivalence by [HA, 2.4.2.5]. That j∗ ◦ ι
preserves and detects I-indexed limits now follows from [HA, 3.2.2.4] in com-
bination with [HTT, 5.1.2.3] and Proposition E.2.0.2.

F.3. Cartesian symmetric monoidal
∞-categories and iterating Mon and Alg

Let C be an∞-category admitting finite products and let O and O′ be two
∞-operads. Then C can be upgraded to a symmetric monoidal ∞-category
with the cartesian symmetric monoidal structure C× (see [HA, 2.4.1.5]). We
can then consider the ∞-category of O ⊗ O′-algebras in C×, denoted by
AlgO⊗O′(C). By [HA, 2.4.2.5] this∞-category is equivalent to an∞-category
that can be constructed without invoking C×, namely the ∞-category of
O ⊗O′-monoids MonO⊗O′(C).

On the other hand, the cartesian symmetric monoidal structure C× induces
a symmetric monoidal structure on AlgO′(C), and there is an equivalence

AlgO⊗O′(C) ≃ AlgO(AlgO′(C))

as we saw in Section E.5. One would expect that the induced symmetric
monoidal structure on AlgO′(C) is again cartesian so that we can identify
AlgO′(C)⊗ with AlgO′(C)× and hence with MonO′(C)×, so that we ultimately
obtain further equivalences such as

AlgO⊗O′(C) ≃ AlgO(AlgO′(C)) ≃ MonO(MonO′(C))
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in Cat∞.
In this section we will show that this is indeed the case, and describe the

steps involved in these types of equivalences in detail, as we will need to
know not only that such equivalences exist but also concrete descriptions of
the corresponding objects under those equivalences.

Construction F.3.0.1. Let pO′ : O′⊗ → Fin∗ be an ∞-operad, let fur-
thermore pC : C

⊗ → NFin∗ be a symmetric monoidal ∞-category, and let
π : C⊗ → C be a cartesian structure4.

There is a bifunctor of ∞-operads

f : Fin∗ ×O
′⊗ idFin∗×pO′

−−−−−−−→ Fin∗ × Fin∗
∧
−→ Fin∗

where ∧ is the bifunctor of ∞-operads defined in [HA, 2.2.5.1].
Consider the functor56

q : AlgO′(C)⊗
ιAlg
−−→ Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

pr2−−→ Fin∗ (F.3)

defined as in Proposition E.4.1.5, which by Proposition E.4.1.5 and [HA,
3.2.4.2 and 3.2.4.3 (3)] defines a symmetric monoidal structure on AlgO′(C).

Finally, define π̃′ as the following composition.

π̃′ : AlgO′(C)
⊗ pr1◦ιAlg
−−−−−→ Fun

(
O′⊗, C⊗

) π∗−→ Fun
(
O′⊗, C

)
♦

Proposition F.3.0.2. In the situation of Construction F.3.0.1, the functor
π̃′ factors through MonO′⊗(C), i. e. there exists a functor π̃ fitting into a
commuting diagram

AlgO′(C)
⊗ MonO′(C)

Fun(O′⊗, C)
π̃′

π̃

where the functor MonO′(C)→ Fun(O′⊗, C) is the canonical inclusion7.
Furthermore, π̃ is a cartesian structure on AlgO′(C)

⊗. ♥

4See [HA, 2.4.1.1] for the definition.
5We write AlgO′ instead of AlgO′/Fin∗ .
6One should be careful not to confuse the functor Fin∗ → Fun(O′⊗,Fin∗) appearing in

the pullback with the inclusion of the constant functors. Instead this functor is the one
adjoint to the composition

Fin∗ ×O′⊗ id×pO′
−−−−−→ Fin∗ × Fin∗

∧
−→ Fin∗

In particular, this means that the functors O′⊗ → C⊗ one obtains from objects of
AlgO′ (C)⊗ by projecting to the first factor are generally not functors over Fin∗, so even
though they preserve inert morphisms we can not interpret them as maps of ∞-operads.

7MonO′⊗ (C) is defined as a full subcategory of Fun
(
O′⊗, C

)
, see [HA, 2.4.2.1]
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Proof. Let A be an object of AlgO′(C)⊗, lying over 〈n〉, i. e. q(A) = 〈n〉. What
we have to show is that the functor

π̃′(A) = π ◦ (pr1(ιAlg(A))) : O′⊗ pr1(ιAlg(A))
−−−−−−−−→ C⊗

π
−→ C

is an O′-monoid. For ease of notation we will write A′ := pr1(ιAlg(A)).
So let X ≃ X1 ⊕ · · · ⊕Xm be an object of O′⊗

〈m〉, with Xi objects of O′ for
1 ≤ i ≤ m. For 1 ≤ i ≤ m, let gi : X → Xi be an inert morphism lying over
ρi : 〈m〉 → 〈1〉. We have to show that then

π(A′(X))

∏
1≤i≤m π(A′(gi))

−−−−−−−−−−−−→
∏

1≤i≤m

π(A′(Xi)) (∗)

is an equivalence in C.
By definition, A′ : O′⊗ → C⊗ preserves inert morphisms, so the morphisms

A′(gi) are inert morphisms in C⊗. Furthermore, for 1 ≤ i ≤ m we have

pC(A
′(gi)) = pC(pr1(ιAlg(A))(gi))

= ((pC∗ ◦ pr1)(ιAlg(A)))(gi)

=
((
f̂ ◦ pr2

)
(ιAlg(A))

)
(gi)

= f
(

id(pr2 ◦ιAlg)(A), gi

)

= f
(
idq(A), gi

)

= f
(
id〈n〉, gi

)

= id〈n〉 ∧pO′(gi)

= id〈n〉 ∧ρ
i

where f̂ : Fin∗ → Fun(O′⊗,Fin∗) is the adjoint of f and thus the functor
occurring in the pullback in (F.3). So for 1 ≤ i ≤ m the morphism A′(gi) in
C⊗ is a pC-cocartesian lift of id〈n〉 ∧ρ

i.
Let Yi be an object in C for each element i in (〈n〉 ∧ 〈m〉)◦ such that there

is an equivalence
A′(X) ≃

⊕

i∈(〈n〉∧〈m〉)◦

Yi

in C⊗〈n〉∧〈m〉. Applying Proposition F.1.0.1 we have an identification

π(A′(X)) ≃
∏

i∈(〈n〉∧〈m〉)◦

π(Yi)

such that for each 1 ≤ j ≤ m the morphism π(A′(gj)) corresponds to the
following projection to the subfactor.

∏

i∈(〈n〉∧〈m〉)◦

π(Yi)→
∏

i∈(〈n〉∧〈m〉)◦,

(id⟨n⟩ ∧ρ
j)(i) 6=∗

π(Yi)
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As 〈m〉◦ can be written as the disjoint union
⋃

1≤j≤m

{
i ∈ 〈m〉◦

∣∣ ρj(i) 6= ∗
}

it follows that we also have a decomposition of (〈n〉 ∧ 〈m〉)◦ as a disjoint
union as follows

(〈n〉 ∧ 〈m〉)◦ =
⋃

1≤j≤m

{
i ∈ (〈n〉 ∧ 〈m〉)◦

∣∣ (id〈n〉 ∧ρ
i
)
(i) 6= ∗

}

which implies that the morphism (∗) is an equivalence, and π̃′ thus factors
over MonO′(C).

It remains to show that π̃ is a cartesian structure. We start by showing that
π̃ is a lax cartesian structure. So let Ai be objects of AlgO′(C) for 1 ≤ i ≤ n,
and let gi : A := A1 ⊕ · · · ⊕An → Ai be an inert lift of ρi for each 1 ≤ i ≤ n.
We have to show that

π̃(A)

∏
1≤i≤n π̃(gi)

−−−−−−−−−→
∏

1≤i≤n

π̃(Ai) (∗∗)

is an equivalence in MonO′(C). As the inclusion MonO′(C) → Fun(O′⊗, C)
is fully faithful and equivalences in functor categories are detected pointwise
(see Proposition A.3.2.1), it suffices to check that for every m ≥ 0 and every
object X of O′⊗

〈m〉 evaluation at X of morphism (∗∗) is an equivalence in C.
As by Proposition F.2.0.1 the inclusion MonO′(C) → Fun(O′⊗, C) preserves
products, and as products in functor categories are detected pointwise [HA,
5.1.2.3] we can thus identify the evaluation at X of the morphism (∗∗) with
the morphism

π̃′(A)(X)

∏
1≤i≤n(π̃

′(gi)(X))
−−−−−−−−−−−−−→

∏

1≤i≤n

π̃′(Ai)(X)

in C, which by using the definition of π̃ is the following morphism

π((pr1 ◦ ιAlg)(A)(X))

∏
1≤i≤n(π(hi))

−−−−−−−−−−→
∏

1≤i≤n

π((pr1 ◦ ιAlg)(Ai)(X)) (∗ ∗ ∗)

where we use the notation hi := (pr1 ◦ ιAlg)(gi)(X).
Let 1 ≤ j ≤ n. By assumption, gi is q-cocartesian, which by [HA, 3.2.4.3

(4)] implies that hj is pC-cocartesian. Unwrapping the definition completely
analogously to when we showed that π̃′ factors over monoids we find that
pC(hi) = ρi ∧ id〈m〉. That (∗ ∗ ∗) is an equivalence can now be shown com-
pletely analogously to before.

We next need to show that π̃ is in fact a weak cartesian structure. So assume
that g : A→ A′ is a q-cocartesian morphism lying over the active morphism
α : 〈n〉 → 〈1〉. We have to show that π̃(g) is an equivalence in MonO′(C). Sim-
ilarly to before it suffices to check that for each m ≥ 0 and object X ∈ O′⊗

〈m〉

the morphism π(h) is an equivalence, where h := (pr1 ◦ ιAlg)(g)(X). Also anal-
ogously to the case above, we find that h is a pC-cocartesian lift of α∧ id〈m〉,
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which is an active morphism as α is active. That π(h) is an equivalence now
follows from Proposition F.1.0.1.

Finally, it remains to show that the weak cartesian structure π̃ is a cartesian
structure. Consider the following commutative diagram, where the two top
squares and the square on the right are pullback squares.

AlgO′(C)⊗〈1〉 FunFin∗(O
′⊗, C⊗) {〈1〉}

AlgO′(C)⊗ Fun(O′⊗, C⊗)×Fun(O′⊗,Fin∗) Fin∗ Fin∗

Fun(O′⊗, C⊗) Fun(O′⊗,Fin∗)

MonO′(C) Fun(O′⊗, C)

k

j r

ιAlg

π̃

pr2

pr1 f̂

pC∗

π∗

The ∞-category of functors FunFin∗(O
′⊗, C⊗) over Fin∗ is to be taken with

respect to pO′ and pC – this description uses that as 〈1〉 ∧ − is naturally
isomorphic to the identity functor on Fin∗ we can identify f̂(〈1〉) with pO′ .

What we need to show is that π̃ ◦ j is an equivalence. As ιAlg is the in-
clusion of the full subcategory of objects A such that pr1(A) preserves inert
morphisms, we can apply Proposition B.5.2.1 to conclude that k is the inclu-
sion of the full subcategory of objects A such that (pr1 ◦r)(A) preserves inert
morphisms. This implies that the composite π̃ ◦ j can be identified with the
functor AlgO′(C)→ MonO′(C) that is an equivalence by [HA, 2.4.2.5].

Proposition F.3.0.3. Let pO : O⊗ → Fin∗ and p′O : O′⊗ → Fin∗ be ∞-
operads, let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-category, and let
π : C⊗ → C be a cartesian structure. Let F : O⊗×O′⊗ → O′′⊗ be a bifunctor
of ∞-operads (see [HA, 2.2.5.3]).

Then there is a commutative diagram as follows such Ψ, Φ2, Φ3 and Ψ′

are equivalences. If F exhibits O′′⊗ as a tensor product of O⊗ and O′⊗, then
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Φ1 is an equivalence as well.

MonO′′(C) Fun(O′′⊗, C)

AlgO′′(C) Fun(O′′⊗, C⊗)

BiFunc(O⊗,O′⊗; C⊗) Fun(O⊗ ×O′⊗, C⊗)

AlgO(AlgO′(C)) Fun(O⊗,Fun(O′⊗, C⊗))

MonO(MonO′(C)) Fun(O⊗,Fun(O′⊗, C))

AlgO(MonO′(C)) Fun
(
O⊗,Fun(O′⊗, C)

×
)

Ψ ≃

Φ1

π∗

F∗

Φ2 ≃ (̂−)

Φ3 ≃ (π∗)∗

Ψ′ ≃ (πFun(O′⊗,C))∗

(F.4)

The symmetric monoidal ∞-category MonO′(C) appearing on the bottom left
carries the cartesian symmetric monoidal structure MonO′(C)× (see [HA,
2.4.1.5]) and AlgO′(C) appearing on the left in the middle row carries the sym-
metric monoidal structure from Construction F.3.0.1. The horizontal functors
are all the respective canonical functors that combine the various inclusions
and forgetful functors or projections. The functor −̂ sends a functor G to its
adjoint, which we denote by Ĝ. ♥

Proof. The existence of equivalences Ψ and Ψ′ making the topmost and bot-
tommost square of (F.4) commute is shown in [HA, 2.4.2.5].

Construction of Φ1 and Φ2 fitting into the diagram was handled in Propo-
sition E.5.0.2 and Proposition E.5.0.1.

We are left to construct Φ3. Proposition F.3.0.2 provides us with a cartesian
structure

π̃ : AlgO′(C)
⊗ → MonO′(C)

Applying [HA, 2.4.2.5] we obtain Composition with π̃ then induces an equiv-
alence Φ3 as in the following commuting diagram by

AlgO(AlgO′(C)) MonO(MonO′(C))

FunFin∗

(
O⊗,AlgO′(C)

⊗
)

Fun(O⊗,MonO′(C))

Fun(O⊗,Fun(O′⊗, C⊗)) Fun(O⊗,Fun(O′⊗, C))

Φ3

≃

π̃∗◦pr

(π∗)∗
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where pr denotes the forgetful functor

FunFin∗

(
O⊗,AlgO′(C)

⊗
)
→ Fun

(
O⊗,AlgO′(C)

⊗
)

and the vertical functors are the canonical functors constructed the various
forgetful functors, inclusions, and projections. The bottom square commutes
by definition of π̃, see Construction F.3.0.1.

Remark F.3.0.4. The right column of (F.4) is covariantly functorial in C⊗
(together with its cartesian structure) and contravariantly functorial in F .

Let
O ×O′ O′′

U × U ′ U ′′

F

α⊗×β⊗ γ⊗

G

be a commutative diagram of functors over Fin∗ with α⊗, β⊗, and γ⊗ mor-
phisms of ∞-operads, and F and G bifunctors of ∞-operads.

Let
C⊗ D⊗

C D

H⊗

πC πD

H

be a commutative diagram of ∞-categories with H⊗ a symmetric monoidal
functor of symmetric monoidal ∞-categories and πC and πD cartesian struc-
tures.

Then the induced commutative diagram on the right column of (F.4) re-
stricts to a commutative diagram as follows.

MonU ′′(C) MonO′′(D)

AlgU ′′(C) AlgO′′(D)

BiFunc(U⊗,U ′⊗; C⊗) BiFunc(O⊗,O′⊗;D⊗)

AlgU (AlgU ′(C)) AlgO(AlgO′(D))

MonU (MonU ′(C)) MonO(MonO′(D))

AlgU (MonU ′(C)) AlgO(MonO′(D))

Monγ(H)

Ψ ≃

Algγ(H)

Φ1

Ψ≃

Φ1

BiFunc(α⊗,β⊗;H⊗)

Φ2 ≃ Φ2≃

Algα(Algβ(H))

Φ3 ≃ Φ3≃

Monα(Monβ(H))

Ψ′ ≃

Algα(Monβ(H))

Ψ′≃

724



F.3. Cartesian sym. monoidal ∞-categories and iterating Mon and Alg

One could argue for this by considering the individual constructions, or one
could use that the first, third, fourth, and fifth horizontal functor in (F.4)
are monomorphisms89 and apply the uniqueness part of Proposition B.4.3.1.
This also implies compatibility with compositions.

Additionally, note that construction of Φ1 and Φ2 does not need the as-
sumption that C carries a cartesian symmetric monoidal structure10, so if we
only consider the part of the above diagram involving Φ1 and Φ2, then we
can drop this assumption. ♦

8That we only need those horizontal functors to be monomorphisms is because they are
the “targets” in the diagram.

9The first and third horizontal functors are by definition fully faithful, so monomorphisms
by Proposition B.4.4.1. The third and fourth horizontal functors are equivalent, so the
fourth one is a monomorphism as well. Finally, the fifth horizontal functor is a monomor-
phism by a combination of the definitions, Proposition B.4.4.1, Proposition B.5.1.1, and
Proposition B.1.2.1.

10See Proposition E.5.0.2 and Proposition E.5.0.1.
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