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Chapter 7.

Hochschild homology of
polynomial algebras

In Definition 6.2.1.2 we defined a monoidal functor
HHoixea: Alg(D(k)) — Mixed
that thus induces a functor
Algg, (D(k)) ~ Alg(Alg(D(k))) — Alg(Mixed)

that we will also denote by HHoixed-

An important collection of examples of commutative (so in particular Es-)
algebras in D(k) is given by polynomial algebras, i.e. algebras of the form
k[X] for X a set!, and the goal of this chapter is to describe HHytixed Of
polynomial algebras as algebras in Mixed. Concretely, given a set X, we would
like to obtain a strict model for HHyyixea (K[ X]), as an object of Alg(Mixed),
i.e. an object A in Alg(Mixed.of) such that there is an equivalence

HHMixed (k [X]) =~ Alg(’YMixed) (A)

in Alg(Mixed). We would also like A to be as efficient (i. e. small) as possible.

By the results of Section 6.3.4 we know that the standard Hochschild com-
plex C(k[X]) of a polynomial k-algebra k[X], considered as either a commu-
tative differential graded algebra, or a strict mixed complex, represents HH
and HHyyixeq Of k[X], respectively. However, we have no comparison result
available that compares C(k[X]) and HHyyixea (k[ X]) as associative algebras
of mixed complexes — while the standard Hochschild complex is a strict mixed
complex as well as a differential graded algebra, it satisfies the Leibniz rule
only up to homotopy, so we can not even consider it as a strict algebra in
strict mixed complexes?! Even without this obstacle, C(k[X]) would not be
the kind of strict model we hope for, as it is not very efficient.

The first step on the road to finding a small strict model for HHygixea (k[ X])
as an object of Alg(Mixed) thus needs to be to define an object in Alg(Mixed)

1See Definition 7.0.0.1 for a definition.
2See Warning 6.3.2.13
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Chapter 7. Hochschild homology of polynomial algebras

that we later hope to prove is such a strict model. For R a commutative k-
algebra we will thus in Section 7.1 review the definition of the strict mixed
complex of de Rham forms on R, denoted by 5, Ik which has a very concise
description. Indeed, as the underlying complex has no non-zero boundary
operators, so it is not possible to find a “smaller” quasiisomorphic chain
complex.

Our goal, which we will only be able to prove if |X| < 2, and which is
formulated as Conjecture B, is then to produce an equivalence

HHovtixed (K[X]) 2 Alg(Mixed) (Qi[x]/k)

in Alg(Mixed), i.e. to show that QF x1/x 1s a strict model for HHytixed (k[X])
as an object of Alg(Mixed).

In Section 7.2 we will begin comparing Q;[ X1/k with Hochschild homology
of k[X] by constructing a quasiisomorphism ex from Q y, ;. to the normal-
ized standard Hochschild complex C(k[X]). This quasiisomorphism is multi-
plicative, so as we already know that C(k[X]), and hence also C(k[X]), is a
strict model for HH(k[X]) as an object of Alg(D(k)), we can conclude that
Q;[X]/k is so as well.

To show that Q;[X]/k is also a strict model for HHygixea(k[X]) as an ob-
ject of Mixed it would suffice to show that ex is even a morphism of strict
mixed complexes. This is unfortunately not the case, but we can instead up-
grade ex to a strongly homotopy linear quasiisomorphism?, and will do so in
Section 7.3.

The partial results regarding only the algebra and only the mixed structure
from Sections 7.2 and 7.3 will then be used as input in Section 7.4, where we
will show that Q7 . is even a strict model for HH)\tixeda (k[ X]) as an object
of Alg(Mixed) as long as | X| < 2.

Suppose now that X is a set with |X| < 2 and f an element of k[X].
Denote the morphism of commutative k-algebras k[t] — k[X] that maps ¢ to
f by F. Now that we know that €2, , represents HHixea (k[t]) and Q% 1/
represents HHyixea (k[X]) we can ask whether the induced morphism Q3.
also represents the morphism HHyyixeq (F) in Alg(Mixed). We are thus asking
for a commutative square

HH o tiea (K[ X]) = Alg(Mixed) (Qi[x]/k)
HHtixea (F) Alg('YMixed)(Q;?/k)
HHvtixed (k[Y]) ——=—— Alg(7Mixed) (QEM/k)

3See Section 4.2.3 for this notion.
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in Alg(Mixed) such that the two horizontal morphisms are equivalences. We
will formulate the claim that such a square exists for F' as Conjecture C,
and prove this conjecture for | X| < 1, as well as for |X| = 2 as long as 2 is
invertible in k, in Section 7.5. We will also discuss Conjecture D, which is
very closely related to Conjecture C and will be an essential ingredient in the
results of later chapters.

We end the introduction to this chapter by fixing some notation concerning
polynomial algebras.

Definition 7.0.0.1. Let X be a set. Then k[X] denotes the polynomial k-
algebra generated by X, i.e. the free commutative k-algebra generated by X.
Its underlying k-module is free, and a basis is given by elements of the form*
2" with 7 an element of Zig( such that all but finitely many components are
zero. We also use notation such as k[z1,...,z,] for the polynomial k-algebra
that is generated by n formal variables x1,...,z,, and trust that this will
not lead to confusion.

Note that as the underlying k-module of a polynomial k-algebra is free, a
polynomial k-algebra is cofibrant when considered as a chain complex con-
centrated in degree 0.5 o

7.1. The mixed complex of de Rham forms

Given a commutative k-algebra R, we denote by Q}% Ik the k-module of

Kahler differentials — for a definition see [Lod98, 1.1.9 and 1.3.7 to 1.3.9]. One
then defines [Lod98,1.3.11] Q% for n > 0 to be the exterior product A%Q}%/k.
Equipping QF, Jk with the zero boundary operator we obtain a commutative

differential graded algebra. Q}% /k also comes with a derivation [Lod98, 1.3.8]
d: Q%/k =R— Q}Q/k, and the unique extension of d to an operator of degree
1 on Q;%/k that satisfies d od = 0 and the Leibniz rule makes Q?%:/k into an

object of CAlg(Mixed)®, called the mized complex of de Rham forms of R.
Elements of Q%/k are of the form rodry---dr,, with

d(rodry---dry) =drodry---dr,
and

(rodry---dry) - (rodry---dr) =rorgdry - -dr,dr)---drl,

describing the differential and multiplication [Lod98, 1.3.11 and 2.3.1]. This
construction is functorial in morphisms of commutative k-algebras f: R — R’
— there is a unique morphism in CAlg(Mixed) from Q;:i/k: to Q;%,/k that is given
by f in degree 0.

4See Section 2.3 (32) for this notation.
5See [Hov99, 2.3.6]
5See Remark 4.2.1.12.
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For R = k[X] for some set X, the k[X]-module Q,lc[x]/k is free with basis
givenby {dz | z € X } —see [Lod98, 1.3.10 and 1.3.11]. It follows that we can
identify Qp v,/ with k[X] @ Ag(k-{dz |z € X }), where k-{dz |z € X }
is the chain complex that is freely generated by {dx |2 € X }, where we
give the elements d z chain degree 1. In particular, Q;[ X1k 18 levelwise free
as a k-module, and hence cofibrant by [Hov99, 2.3.6]. We can thus make the
following definition.

Definition 7.1.0.1. We denote by
Q° 5.+ CAlg(LModg(Ab)) — CAlg(Mixed)

the functor sending a k-algebra R to the commutative algebra in strict mixed
complexes Y, Jk discussed above. We also denote by”

Qp-yyk s Set = CAlg(Mixedcor)
the functor sending a set X to Q;[X]/k. &

Remark 7.1.0.2. Q'_/k is also functorial in k: For ¢: k — &’ a morphism of
commutative rings and R a k-algebra, there is an evident isomorphism
kl ®k; Q;%/k‘ = Q;’@;ﬂR/k"
a® (rodry---drp) = (a®ro)d(l1®@ry) - d(l®7,)

in CAlg(Mixedy) that is natural in R and exhibits

Q°
CAlg(LMody (Ab)) ——— CAlg(Mixedy,)

k/®k_J Jk/(@k_

CAlg(LMody (Ab)) o CAlg(Mixedy)

,/k/

as a commutative diagram in Cat. &

7.2. De Rham forms as a strict model in

CAlg(Ch(k))

The reason the mixed complex of de Rham forms is relevant for us is the
close relationship with the (normalized) standard Hochschild complex that
we will discuss in this section.

In Section 6.3.2.1 we discussed the bar resolution C®*(A) of an associa-
tive algebra A and saw in Proposition 6.3.2.4 that the standard Hochschild

7See Definition 4.2.1.2 for a definition of Mixedcof.
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complex of A is given by the relative tensor product A ® gz Aop CBM(A). In
Section 7.2.1 we will, for a set X, construct a morphism €y of left-k[X]|@k[X]-
modules (in chain complexes) C™™(X) — CP* (k[X]). Tensoring with k[X]
over k[X]® k[X] we then obtain a morphism of chain complexes that we will
be able to identify with a morphism €2 v, , — C(k[X]). In this manner we
will obtain a natural transformation

e Qi — C(R[-])

of functors Set — CAlg(Ch(k)°°f) that will turn out to be a pointwise quasi-
isomorphism, thereby providing a convenient multiplicative model Q;[X] Jk
for HH(k[X]). This will be discussed in Section 7.2.2.

While ex (for a set X) is a morphism of differential graded algebras, it is
not a morphism of strict mixed complexes. However ex can be upgraded to
a strongly homotopy linear morphism in the sense of Section 4.2.3. This will
be shown in the next section, Section 7.3.

7.2.1. A smaller replacement for the bar complex

In this section we will in Construction 7.2.1.1 first construct C*™(X) and
€x, before showing in Proposition 7.2.1.2 that they have good homotopical
properties.

Construction 7.2.1.1 ([Lod98, 3.2.2]). Let X be a set. We will construct a
commutative triangle of left-k[X] ® k[X]-modules in Ch(k)

Cn(x) ——= CE (4[X))

N

k[X]

where CP*(E[X]) refers to the bar resolution as constructed in Construc-
tion 6.3.2.1, and the right diagonal morphism is the one also defined in Con-
struction 6.3.2.1. We will use notation from Section 2.3 (34).

Definition of C*™(X) as a graded left-k[X] @ k[X]-module: We define

C™(X),, = k[X] @ A"(k - X) ® k[X]

and the action of k[X] ® k[X] as follows, with I’,7/,1, r elements of k[X] and
T1,...,T, elements of X.

l'er)y - (@x -z, @r)=ll®@x1 - 2H @77

Note that if there exist ¢ # j with x; = x;, then the right hand side is also 0,
so the action is well-defined®.

8See (29) in Section 2.3 for a definition of the exterior algebra A(k - X).
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Definition of the boundary operator on C™(X): We make the following
definition for [, r elements of k[X] and 1, ..., z, elements of X.

n

@ar- - zy®r) = Z(—l)iil ((Zmi @y i1 Tip1 Ty ®T)

i=1

For well-definedness, assume that 1 < j < 5/ < n such that x; = xj. We
then have to check that the formula just given for 0l ® 1 - - -z, ® 1) is zero.
One can immediately see that the summands for i ¢ {j,j'} vanish, as the
middle tensor factor = ---x;_1 - ;41 - - - T, then contains both z; and x;/ as

factors. Thus we are left with the following sum.
7l @@y @y - gy 2 @)
(T @ o wg T @ 1)

(1)
(1)

+ (—1)j/_1(l$j/ QX1 Xjr—1 - Tjrgp1- T & 7’)
(1

) —1
1)/ (l®x1...mj,71.mj,+1...xn®xj,/r')

To see that this is zero, we will argue that the first and third terms cancel, the
argument for the second and fourth term canceling is completely analogous.
For this, we carry out the following calculation.

(71)%1(1% QTy + Tjo1 Tjp1 Ty @T)
= (_1)%1(1% Q@1 Tj1 Tyl Tjr—1 Tjr Tjrp1 Ty @T)
Using that z; = x;.
= <_1)j_1(l$j’ Q@1 Tj1 Tjg1 Xjr—1 Tj - Tjrg1 Ty @ T)

Now we move the factor x; in the inner tensor factor to the spot between
xj—1 and z;41. This involves moving past j' — j — 1 other factors, so incurs
a sign (—1)7 -1,

= ()T @y ey @)
= —(—1)j,_1(l1:jf Ry Tjr1 - Tjrg1 Ty ®T)
It is clear from the definition that 0 is compatible with the left-k[X]|® k[X]-
module structure.

0 squares to zero on C*(X): For I,r elements of k[X] and z1,...,z,
elements of X we obtain the following calculation?, where we use 1;-; as ad

gy -+ Tj_1-%j41- - Ti—1-Titl - Tp is to be as interpreted as the product from z1 to

zp, while omitting z; and x;, also when j > 1.
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hoc notation for 0 if j % ¢ and 1 if j > 4.

00l ®@xy- 2, ®7))

= 5‘<Z(1)i1((l$¢ @ Ty W1 Tijp1 Ty @ T)))

-0 <Z(—1)i_1((l QX1 Xi—1 " Tig1 " Tn @ x/l‘)))
i=1
The indices in the sums below range from 1 to n.
X (o
i#]

(lxlm](gxlx]_l .xj+1...xi_1.xi+1...xn®7ﬂ)>
— Z ((_I)i—l(_l)j—1j>7~,—1

.(lxi®x1...xj_1.mj+1...xi_1.$i+1...xn®xjr))

=Y (e

i#]

.(lxj®w1”'xj71'ijrl'.'xi*l'mi+1'.'xn®x’i7ﬂ))

+ 3 (e

i#]
'(l®1'1"'17j—1'xj+1"'17i—1'l"i+1"'17n®17j1'i7‘)>

The second and third line cancel by pairing the summand within the second
line indexed by (4, j) with the summand within the third line indexed by (3, ),
as the sign arising from the 1;-; expression will differ between the two terms.
Furthermore, the first and fourth line each already vanish individually, which
one sees by pairing the summand indexed by (7, j) with the one indexed by
(i i)-

Definition of C™(X) — k[X] as a morphism of graded k[ X]|@k[X]-modules:
We define this morphism to be given by

(e ) l-r ifn=0
“ee n H

e 0 otherwise
for I, elements of k[X] and x1,...,x, elements of X. It is clear that this is
well-defined and compatible with the k[X] ® k[X]-action.

Compatibility of C™™(X) — k[X] with J: Let I and r be elements of k[X]
and = an element of X. We have to show that 9(l ® z ® r) is mapped to zero.
But we have 0(l®@ z ® r) = lz ® r — [ ® xr, which is mapped to lzr — lzr = 0.
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Definition of €x as a morphism of graded k[X] ® k[X]-modules: For [ and
r elements of k[X] and x1,...,2, elements of X, we make the following
definition.

gx(l@.%‘l c Ty ®7’) = Z Sgn(o‘)l@xg—l(l) Q@ BTo—1(n) AT
oceX,

To see that this is well-defined on k[X] ® A™(k - X) ® k[X], we need to verify
that the formula on the right hand side is 0 if #; = x; for some 1 <7 < j < n.
But we can split up X,, as the union of left cosets of the subgroup {id, (7 j)}
in X,,, where (i j) denotes the transposition that exchanges ¢ and j, and thus
carry out the following calculation.

Z sgn(o)l @ To-1(1) @ @ Tp—1(n) QT
cEeED,

= > (Sgn(d)l BTo-1(1) @ O Tg-i(n) ST
[o]l€Xn /(i 5)

+sgn(o o (LI @ T j)e-11) ® O TG o1 () @ T)
As x; = zj, we can simplify the indices of z in the second summand. We also
use that sgn((i j)) = —1.

= Z (sgn(a)l@ngl(l) R RTo-1(n) T
[0]€2, /(i 4)

—sgn(o)l ® To-1(1) @ @ Xg—1(n) ® 7“)

=0

That the definition of €x is compatible with the left-k[X] ® k[X]-module
structures is clear.

Some comments on how to relate €x with actions of ¥,: We can define
an action of the symmetric group X, on C®*(k[X]),, that is given by per-
muting the inner n tensor factors, i.e. we make the following definition for
Yo, - - -, Yn+1 elements of k[X].

0 (YWY D ®Yn @Ynt1) = Yo D Yo-1(1) @ @ Yo-1(n) ® Yn+1

In particular we can then write €x as follows, where [, x1,...,x,,r are ele-
ments of k[X].

ex(I®@x -2y @T) = Z sen(o)(oc-(lQx1- 2, 7))
oEYX,

Finally, let us note that if S is a set with n elements and we write an
element of CP* (k[X]),, as | ® Yp(1) @ -+ @ Yp(n) @7 for p: {1,...,n} = S a
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bijection and 1,y (1), - - - » Yp(n), T elements of k[X], then the action of o € X,
takes the following form.

0 (1@ Yp1) @ @ Ypn) ®T) =L@ Yp(o-1(1)) @+ @ Yp(o-1(m)) ®T  (¥)

Compatibility of €x with 0: We carry out the following calculation, for [
and r elements of k[X] and x1,...,z, elements of X.

Iex(I®@xy- 2, QT))

= 8( Z sgn(0)l ® To-1(1) @+ @ Ty-1(n) ®@ r)

oeX,

We apply the formula for the boundary operator of CBar(k[X ]) as defined in
Construction 6.3.2.1, writing the summands for ¢ = 0 and ¢ = n as separate
terms.

= Z sgn(o)r,-1(1) @ To-1(2) @+ @ Ty-1(n) AT

cEX,

n—1
ICOIDY

1=1 oEX,

sgn(a)l QD Tr-1(1) @ Q To=1(1)To=1(i4+1) @ @ To-1(n) QT
+ (—1)" Z Sgn(o)l D To-1(1) @+ @ To-1(n—-1) ® Lo—1(n)T

G'EEn

We now split up the set ¥,, the sum in the second line is indexed over as
the union of the right cosets of the subgroup generated by the transposition
(¢ i+ 1). Note that the right cosets have the form {o, (i i + 1)o}.

= Z Sgn(a)lazafl(l) QTo-1(2) @ " QTy=1(n) QT

oeEX,
n—1 ]
D ICOEDY
i=1 [o]le(i i+1)\XZ,
(sgn(a)l ® Ty-1(1) @+ @ To—1(1)To—1(i41) @+ @ Tg-1(n) T
4 sgn((z i + 1) 1o O')l ® xo'*l(l) R ® '1:0*1(14»1)1‘0'71(1') R---R xo'*l(n) ® 7’)

+ (_1)77. Z bgn(o-)l ® To—1(1) R LTo—1(n—1) ® LTo—1(n)T
oeX,
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= Z Sgn(o)lma—1(1) W To-1(2) @ D Ty=-1(n) T
gEX,

YIS

[ole(@i+1)\Z,
(sgn(a)l QTe-1(1) @ Q To=1(5)To-1(i41) @+ Q@ To—1(n) QT
—sgn(o)l ® To-1(1) @ @ Lo-1(i41)To-1(5) ® "+ @ To-1(n) ® 7”)

+ (_1)71 Z SgH(O’)Z & 1’0—1(1) Q- ® xo'_l(nfl) ® xo_l(n)r

oEX,

The middle summands now cancel, using that z,-1(;) and z,-1(;41) commute
in k[X].

= Z sgn(o)lxafl(l) (29 To-1(2) R R To—1(n) XXr
oe¥,

+ (_1)n Z sgn(o)l & 1‘0—1(1) Q- xa'*l(nfl) X xofl(n)r
oeEX,

Now let ¢’ be an element of ¥,, and assume that ¢ is such that o'(i) = 1.
Then o = 01_,,, 0 0’ 0 0,,_; fixes n, so that we can consider ¢ as an element
of'% 33,,_1. The upshot is that if o’ maps i to 1, then we can write it uniquely
as 0/ = 0,41 00 0 0;_, for o an element of ¥,,_1. Analogously, if ¢’ maps

1 to n, then we can write it uniquely as ¢/ = o o g;_,,, for o an element of
Yn-1-

Continuing the calculation from above, we can now rewrite the sums as
follows.

= Z Z (sgn(anﬁl 0000 4n)

i=10€X,,_1
) Zx(o'naloo'oo'i%n)_l(l) ® "I;(o'"‘}loo'oo',-‘,n)_l(Q)
® o ® x(analoaoaian)il(n) ® T')

+(—1)"Z Z (sgn(aoaiﬁn)

i=10€X,, 1

1 ® x(00‘71,—>n)71(1) Q- Q 1‘(0001’_)”)71(”_1) ® x(aoa'ian)il(n)r)

10We consider ¥, _1 as a subset of ¥, by extending with n — n.

360



7.2. De Rham forms as a strict model in CAlg(Ch(k))

The sign of o,/ is (—1)74_3',7 as one can see by writing o;_,; as the compo-
sition of transpositions ((5' +1) ) o ((j' +2) 4/ +1)---0(j ( — 1)) if 5 > j/,
and similarly if j > j.

> () sgn(o)

loexX, 1
Ao, (01 (015n(1)) © Loy i(o (010 (2))
@ QTo, (0= (o15n(n)) @ 7”)
DY > (D sen(o)
i=1 0€EX,_1

1@ To, i(0=1(1)) @ ® Ty i(0-2(n-1) @ %M(ofl(n))’")

n

=2

i=1c€EX,_1

(( 1) sgn(o)lzi @ T4, i (0-11) @ ® o, y(0-1(n-1)) @ 7“)
i=1o0€X,_1

((—1)i_1 sgn(o) @ Ty, (0-1(1) @ @ Ty, (6~ (n-1)) @ ﬂfﬂ‘)

We can now apply ().
Z (—=1)tsgn(o) (U . (la:i R T, (1)@ O Ty, (n-1) ® r))
- (1) sgu(o) (0 (1® 20, 1) @ @ Lo, (n1) @ TiT))

We now evaluate o,,_,; in the indices.

:Z Z )L sgn(o)

Eznl
(o (lz; @21 Q- QEi_1 QT Q- QT ®T))

3 Y 0 i)

i=10c€EX,_1
(0 (l@21 @ QX1 QLit1 @+ Q Ty @ T;T))
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= Z sgn(o)

cEX 1

. (0-. <Z(_1)i_1l$i®1‘1®"'®xi—1®mi+l ®®xn®7~>>
=1

- Z sgn(o)

oCEX 1

n

. (0-. <Z(—1)l_1l®$1®"'®xi—l®xi+1®"'®xn®xir>>
=1

We can now plug in the definition of the boundary operator on C*™(X).

= > sgu(o)(o- (0l @ @z, ®7)))

oEX 1
Finally, we can use the definition of €x.

=ex(O(l®@r1® - Q@x, Q7))
Commutativity of diagram (7.1): Clear from the definitions. &

We next show that €x is an equivalence between cofibrant replacements of

Proposition 7.2.1.2. For X a set the following hold.

(1) C*"(X) as defined in Construction 7.2.1.1 is cofibrant as an object
in the model category LMody x|k x](Ch(k)) with respect to the model

structure of Theorem 4.2.2.1 (where Ch(k) carries the model structure
of Fact 4.1.3.1).

(2) The morphism of chain complezes €x: C™(X) — CP*(X) as defined
in Construction 7.2.1.1 is a quasiisomorphism. V)

Proof. Proof of claim (1): The category of left-k[X]|®k[X]-modules in Ch(k) is
isomorphic to Ch(k[X]®k[X]). We can equip Ch(k[X]®k[X]) with the projec-
tive model structure from Fact 4.1.3.1, and comparing weak equivalences and
fibrations we then see that the isomorphism between LModyx1grpx](Ch(k))
and Ch(k[X] ® k[X]) is even an isomorphism of model categories. As C*(X)
is concentrated in nonnegative degrees and is levelwise free as an k[ X]|Q k[X]-
module we can then apply [Hov99, 2.3.6], which shows the claim.

Proof of claim (2): The proof of this claim follows the ideas of [Lod98,
3.2.2]. Considering only the underlying chain complexes, it follows directly
from the definitions that morphisms in diagram (7.1) are natural in the set
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X. We thus obtain a commutative triangle

Csm(_) € CBar(k[—D

of natural transformations of functors Set — Ch(k). That the right diagonal
morphism is a quasiisomorphism has been shown in Proposition 6.3.2.2, so it
suffices to show that for any set X the left diagonal morphism

px: C(X) — k[X]

is a quasiisomorphism.
Both k[—] as well as A™(k - —), considered as functors

Set — LMody (Ab)

preserve filtered colimits.'? Colimits of chain complexes are detected levelwise,
the tensor product commutes with colimits in each variable separately, and
if J is a filtered category and n > 0 an integer, then the diagonal functor
J — J™ is cofinal [HTT, 5.3.1.22 and 4.1.1.8]. This implies that C*"(—) and
k[—] preserve filtered colimits as functors Set — Ch(k). Homology preserves
filtered colimits as well [Wei94, 2.6.15], so quasiisomorphisms are closed under
filtered colimits. As any set can be written as the filtered colimit of its finite
subsets, this implies that it suffices to show that p: C*™(—) — k[—] is a
quasiisomorphism on finite sets.

11One can prove this by directly checking the universal property. We sketch this for
A"(k - —). So let J be a filtered category, F': J — Set a functor, Y a k-module,
and g;: A"(k- F(i)) — Y a morphism of k-modules for each object ¢ of J such that
gi o (A"(k - F(f))) = g; for every morphism f: j — 4 in J. Then we have to check
that there exists a unique morphism of k-modules g: A™(k - (colim F')) — Y such that
go (A"™(k-;)) = g; for every object ¢ in J, where ¢;: F(i) — colim F' is the morphism
that exhibits colim F' as a colimit. The k-module A™(k - (colim F')) is free, with basis

given by elements of the form x1 ---z, with z1,...,z, elements of colim F' such that
ZTa # xp for a # b. For such z1,...,zy, there must be (as J is filtered) an object ¢ of J
and elements 2/, ..., ], of F(i) such that zq = ¢;(z},) for 1 < a < n (filteredness was

used to find a single such ¢ that works for all n elements at once). But then we must
have g(z1 -+ xn) = (go (A" (k- ;) () - - 2},) = gi(2 - - x},). This shows uniqueness.

n
If ¢/ is a different object of J and xz,..., ], elements of F(i') such that x4 = vy ()

for 1 < a < n, then, as J is filtered, there must exist morphisms f: i — j and f’: i — j
in J such that F(f)(z}) = F(f')(z)) for 1 < a < n. We thus obtain

gi (a1 - a) = (g5 0 (A" (k- F(f))) (21 2h) = g; (F(H)(h) - F(F)(x7))
=g;(FUN @) F(f)(@y) = (g5 0 (A" (k- F(f)) (2 - -a) = gir (27 -+ 277)

so that the above formula for g(z1---z,) is independent of the choice of zf,...x},

which implies that this defines a morphism g that is compatible with the g; as required.
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Now suppose that the set X is the disjoint union of Y and Y’, with
1Y — X and ¢/: Y’ — X the inclusions. We obtain a commutative dia-
gram of chain complexes as follows, to be explained below.

C(Y) © CM(Y) ——— C(X)

Py ®py1J JpX

EY]® kY] ———— k[X]

The top horizontal morphism is defined by k-linearly extending the assign-
ment

(l@y-yn@r)@l' @y -y, @)
= k[ - k1) @ elyr) - eyn) - (W) - ¢ (yn) @ K[ (r) - K[S]()

where [, r are elements of k[Y], y1,. ..y, are elements of Y, I’ 7’ are elements
of k[Y'], and v, ...,y are elements of Y'. It is immediate that this is well-
defined, and checking compatibility with the boundary operator requires only
unpacking the definitions and using that k[X] is commutative. The bottom
horizontal morphism is given by composing k[¢]® k[¢'] with the multiplication
k[ X]® k[ X] — k[X].

Both the horizontal morphisms in the above diagram are isomorphisms,
as one can easily see by considering the respective bases consisting of ten-
sor products of monomials. To show that px is a quasiisomorphism, it thus
suffices to show that py ® py+ is a quasiisomorphism.

Assume for the moment that py and py are quasiisomorphisms. As k[Y]
and k[Y’] are concentrated in degree 0, we can read off their homology and can
thus conclude that C*™(Y), C*™(Y”), k[Y], and k[Y”] are all chain complexes
that have free homology. The Kiinneth spectral sequences'? that converge to
the homology of the tensor products C*™(Y)®@ C™(Y”) and k[Y]®k[Y”] thus
collapse already on the second page, from which we can deduce that py ® py-
is also a quasiisomorphism.

It thus suffices to show that py and py- are quasiisomorphisms in order to
conclude that px is a quasiisomorphism as well, if X is the disjoint union of
Y and Y’. As every finite set can be written as the disjoint union of sets that
have exactly one element, we have thus reduced the claim to showing that
Pz} is a quasiisomorphism.

We now show that py,} is a chain homotopy equivalence. Note that the
chain complex A(k - {z}) is free with basis 1 in degree 0, free with ba-
sis ¢ in degree 1, and zero in other degrees. We can define a section s of
Pz} by s(r) = 1 ®r, so it suffices to construct a morphism of k-modules
h: k[z] @ k[z] — klz] ® k - {z} ® k[z] that satisfies 0 o h = id — s o py,} on

123ee for example [Rot08, 10.90].
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elements of degree 0 and hod = id on elements of degree 1. For this we define
h as follows on basis elements, where n,m > 0.

n—1

h(z" @ z™) = Z vt @a @ttt
=0

Then we obtain the following calculation for the first identity.
O(h(z" @ ™))
=Y I’ @zt

i=0

n—1

_ § (xz-i-l ® xn-&-m—z—l _ {I?Z ® xn—i—m—z)
=0
n—1

n

— in ® xn+m—i _ Z in ® xn—l—m—i
=1 =0

:xn®xm_1®$n+m

= (id — s o pgyy) (2" @ 2™)

The following calculation shows the second identity.

h(a(m Rxrz™))
:h(x" ) —h(m”@x’”“)
n n—1
:Z ®x®zn+mz Zx ®z®xn+mz
1=0 1=0
=2"Qra™
=idz" @z ®a™)
This proves the claim. O

7.2.2. A quasiisomorphism between de Rham forms and
the standard Hochschild complex

In this section we define and discuss ¢, a natural quasiisomorphism from
Qg to C(R[=)).

Construction 7.2.2.1. For every set X we are going to construct a mor-
phism of chain complexes

ex: Uxyn — C(k[X])

where C refers to the normalized standard Hochschild complex defined in
Proposition 6.3.1.10.
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So let X be a set. We define ex as a composition as follows, where we will
explain the individual morphisms below.

O ix1/k = C(k[X])
KX]® Ak - X) C(k[X])

k[X] @pxjerx) CM(X) k[X] @kixgenx) Co (k[X])

k[ X]®kx)@k[x]€X

In k[X] ® A(k - X) the elements of X in the exterior product are to have
degree 1, and we make the resulting graded k-module into a chain complex by
equipping it with the zero boundary operator. The isomorphism € is then
the one suggested in Section 7.1, its inverse is defined by

l®xy--xp—1l-dxy---dax,

where [ is an element of k[X] and 1, ..., z, are elements of X.
C*™(X) is as in Construction 7.2.1.1, so is given by k[X] @ A(k- X) ® k[X]
as a graded k-module. We can thus define €4 as

@y —=1l(1Qx 2, ®1)

where [ is an element of k[X] and x1,...,x, are elements of X, and it is clear
that this is an isomorphism of graded k-modules. We still have to check that
€’ is a morphism of chain complexes, i.e. is compatible with the boundary
operators, which the following calculations shows it is.

(le(l®xy -z, ®1))
= (7

1)i71l® ($i®1’1"‘$z’—1 “Tig1 T @1

<.
—

—1®$1"'$i—1'$i+1"'$n®$i>

(—1)i_1 (.’Ell & (1 QX1 Xj—1 " Tig1 " Ty @ 1)

|

N
Il
—

—l$z®(1®x1$zflx1+1$n®1))

(-1)"t0=0

I

s
Il
-

366



7.2. De Rham forms as a strict model in CAlg(Ch(k))

ex was defined in Construction 7.2.1.1, and the lower horizontal morphism
is just the induced one. The isomorphism €% is to be the isomorphism from

Proposition 6.3.2.4, given by
a® (ag® - Qant1) = (Apy1-a-a)Ra; @+ R ay,

with a, ag, ..., a, elements of k[X]. Finally, the morphism from the standard
Hochschild complex to the normalized standard Hochschild complex is the
quotient morphism from Proposition 6.3.1.10.

Going through all the definitions, ex is described by the following formula®?

ex(r-dzy---day,) = Z Sgn(o)r @ To-1(1) @ -+ @ Ty—1(n)

oEX,
= Z sgn(o)o - (rTI®- - QTp)
oEX,
where r is an element of k[X] and x1,...,x, are elements of X. &

Proposition 7.2.2.2. The following statements hold regarding the mor-
phisms constructed in Construction 7.2.2.1.

(1) Let X be a set, x1,...,x, elements of X, and r an element of k[X].
Then ex maps the element rdzy---dz, of QZ[X]/k to the element

rdxy---dz, of Cp(k[X]).

(2) Let X be a set. Then ex is a morphism of commutative differential
graded algebras, with respect to the commutative algebra structure on
the normalized standard Hochschild complex from Proposition 6.53.2.11.

(8) The morphisms ex assemble to a natural transformation
€: Q;[f]/k — é(k[—])
of functors Set — CAlg(Ch(k)).

(4) For every set X the chain complezes Q) ond C(k[X]) are cofibrant,
so the natural transformation e: Q3 — C(k[-]) from claim (3) can
be lifted to a natural transformation of functors Set — CAlg(Ch(k)<°f).

(5) Let p: k — k' be a morphism of commutative rings. Then the diagram
k' @y Gy — k' @5 C(k[-])
= (7.2)

o

Q) —— C(K[-))

I3For the action of ¥, on C(k[X]), see Definition 6.3.2.9.
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of natural transformations of functors Set — CAlg(Ch(k")*°f) commutes,
where the horizontal functors are induced by €, the left natural isomor-
phism is the one from Remark 7.1.0.2'4, and the right natural isomor-
phism is the one from Remark 6.3.1.11.

(6) For every set X, the morphism ex is a quasiisomorphism. V)

Proof. Proof of claim (1): If x is an element of X, then we can consider z
as an element of k[X] and thus of Co(k[X]). By Proposition 6.3.1.10 we then
have dz = 1 ® 7 in C;(k[X]), and using Proposition 6.3.2.10 we obtain that
for x1,...,x, and r as in the claim the equation

r-dey---de, = Z sgn(o)r X To-1(1) ® - @ Ty—1()
o€,

holds in C,,(k[X]), which shows the claim, as the right hand side is the formula
for ex(r-day---da,) given in Construction 7.2.2.1.

Proof of claim (2): Follows immediately from claim (1).

Proof of claim (8): Let f: X — Y be a map of sets, and denote by F = k[f]
the induced morphism of commutative k-algebras k[X] — k[Y]. We have to
show that C(F)oex = ey o Q}/k. So let x1,...,x, be elements of X and r
an element of k[X]. We first evaluate the left hand side on rdzy ---dz,. By
(1), ex maps rdx; ---dx, tordz; ---dx,. As C(F) is compatible with the
strict mixed structure as well as multiplication, and given by F' on degree 0
(see Propositions 6.3.1.10, 6.3.2.7 and 6.3.2.11) we obtain the following.

(C(F)oex)(rday---dmz,) = F(r)d f(z1)---d f(z,)

We now evaluate ey o Q;,/k on rdz---dx,. The morphism Q;,/k maps
this element to F(r)d f(z1)---d f(x,). It is crucial to note at this point that
this description of this element is again of the form that allows us to apply
(1), i.e. f(=z;) is an element of the set Y, not merely an element of k[Y], see
also Warning 7.2.2.5. We can thus apply (1) to conclude that

(ey OQ}/k)(rdx1~~~dzn) =F(r)d f(zy)---d f(z,)

which shows the claim.
Proof of claim (4): For Q% xy/x this is discussed before Definition 7.1.0.1.

For C(k[X]), note that k[X] and (k[X]) = k[X]/(k - 1) are free k-modules

with bases { z7 ‘ 7 € Z*X } and { x7 ‘ 7 € 7*X, 7 #* 0 }, respectively,

and thus C(k[X]) is cofibrant by Proposition 6.3.1.10 and [Hov99, 2.3.6].
Proof of claim (5): Tt suffices to check that the square commutes when

evaluated at a set X, which can be checked by writing a generic element of

14Composed with the natural isomorphism Q;’®kk[—]/k~ = Q;’[—]/k that is induced by the
natural isomorphism k' ®j k[—] 2 k’'[—] that is given by [ @ r — [ - @[—](r).
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the upper left chain complex as ' ® (rdxzy---da,) for z1,...,z, elements
of X, r an element of k[X], and r’ an element of k', and verifying that the
images in the lower right along the two compositions agree, by applying claim
(1) in a manner similar to the proof of claim (3).

Proof of claim (6): ex is defined as the composite of five morphisms in
Construction 7.2.2.1. Three of those were already remarked to be isomor-
phisms in Construction 7.2.2.1, and a fourth morphism is the quotient mor-
phism C(k[X]) — C(k[X]), which was shown in Proposition 6.3.1.10 to be a
quasiisomorphism. It thus remains to show that the fifth involved morphism,
E[X] ®px)2k[x] €x, 18 a quasiisomorphism as well.

For this, we note as in the proof of claim (1) of Proposition 7.2.1.2 that the
model categories LModyx1(Ch(k)) and LModyx)gkx](Ch(k)) are isomorphic
to Ch(k[X]) and Ch(k[X] ® k[X]), respectively. The functor

can be identified with the extension of scalars functor along the multipli-
cation morphism k[X] ® k[X] — Ek[X] and is thus by Fact 4.1.5.1 a left
Quillen functor and hence preserves weak equivalences between cofibrant ob-
jects by [Hov99, 1.1.12]. But €x is a quasiisomorphism by claim (2) of Propo-
sition 7.2.1.2, C*™(X) is cofibrant as an object of LModx)ekx](Ch(k)) by
claim (1) of Proposition 7.2.1.2, and CP* (k[X]) is cofibrant as an object of
LModxjekx](Ch(k)) by Proposition 6.3.2.3. O

As an immediate conclusion of Proposition 7.2.2.2 we obtain the following
result showing that Q;[X] /i 15 @ strict multiplicative (but not mixed) model
for HH(k[X]).

Corollary 7.2.2.3. Let X be a set. Then there is an equivalence
HH(K[X]) = CAlg(y) (241

in CAlg(D(k)). Concretely, such an equivalence is given by the composition!®
HH(K[X]) = CAlg(y)(C(k[X])) ~=» CAlg(y) (C(K[X]) <= CAlg(1) (1)

where the left equivalence is the one from Proposition 6.5.4.3, the middle one
is induced by the quotient morphism from Propositions 6.3.1.10 and 6.3.2.11,
and the right equivalence is induced from ex as constructed in Construc-
tion 7.2.2.1. Q

Proof. Follows directly from Propositions 6.3.4.3, 6.3.1.10 and 6.3.2.11 in
combination with Proposition 7.2.2.2 (2), (4), and (6). O

151f we later refer to “the equivalence from Corollary 7.2.2.3” we mean this specific one.
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Proposition 7.2.2.4. Let ¢: k — k' be a morphism of commutative rings
and X a set. Then there is a commutative square

K @ HH(k[X]) —=—— K @, CAlg(y) (%X]/k)

HH(K' @y, k[X]) CAlg(7) (k: ok /k) (7.3)

HH(K[X]) ———=—— CAlz() (2300

in CAlg(D(K'")), where the two horizontal equivalences are (induced from)
those from Corollary 7.2.2.3, the top left vertical equivalence is the one from
Remark 6.2.1.6, the bottom left vertical equivalence is induced from the iso-
morphism k' @ k[ X] = k'[X] that is given by including both tensor factors in
k' [X] and then multiplying, the top right vertical equivalence is the one from
Remark 4.4.1.3, and the bottom right equivalence is induced by the isomor-
phism that is given by applying the unit in the first tensor factor and Q:k X]/k
in the second, and then multiplying.

Proof. Consider the following diagram in CAlg(D(k')) that will be explained
below. To save space we write v for CAlg(~y) in this diagram.

k' @, HH(E[X]) —=— HH(K ® k[X]) —=— HH(K'[X])

kK @y (Ck[X])) —=— (K @ C(k[X])) —=— ~7(C(K'[X]))

k' @ CAlg(y)(ex) |~ CAlg(7) (k' ®pex) |~ CAlg(v)(ex) |~

K @y W(Q;[X]/k) — v(k’ ®k %pq/k) — W(%[xw)

The big outer rectangle is exactly given by the transpose of diagram (with-
out a filler so far) (7.3), after replacing the horizontal equivalences by their
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definition in Corollary 7.2.2.3. The middle vertical morphisms are all induced
by the quotient morphism from the standard Hochschild complex to the nor-
malized standard Hochschild complex, see Propositions 6.3.1.10 and 6.3.2.11.
The two middle left horizontal equivalences are the ones from Remark 4.4.1.3,
the middle right horizontal equivalences are the ones from Remarks 6.3.1.7
and 6.3.1.11, combined with the equivalence k' ®; k[X] = k'[X] that was
already mentioned in the statement.

It now suffices to give a filler for all the small squares and rectangles in the
above diagram. The top rectangle has a filler by Remark 6.3.4.4 and minor
considerations regarding the isomorphism k' ®j k[ X]| = k'[X] using naturality
of the equivalence Proposition 6.3.4.3. The middle left and bottom left squares
have fillers by naturality of the equivalences from Remark 4.4.1.3. The middle
right square has a filler by Remark 6.3.1.11. The bottom right square has a
filler by Proposition 7.2.2.2 (5). O

Warning 7.2.2.5. Let X be a nonempty set. Then ex is not not strictly
compatible with the strict mixed structures on domain and codomain. Indeed,
if z is an element of X, then we have

d(ex(2?)) =d(2?) = 1® a2
which is not equal (though homologous) to the following.
ex(d(z?)) = ex(2zdz) =22®7

In Section 7.3 we will however see that e can be upgraded to a strongly
homotopy linear morphism. &

Warning 7.2.2.6. A previous version of this text claimed that e as defined
in Construction 7.2.2.1 can even be considered as a natural transformation
Q° e C(—) of functors from the full subcategory of the category of k-

algebras spanned by the polynomial algebras, to CAlg(Ch(k)°f), a claim that
fed into the eventual proof of the main result Theorem A.

That claim is however incorrect, as was pointed out by Thomas Nikolaus.
Indeed, if we consider the morphism of commutative rings ¢: Z[z] — Z[y]
that maps z to 32, then the diagram

a1z — C(2Z[a))

Q;/ZJ JC(W)

Dz ey CL2B)
does not commute, as one can check using the element dx of the top left;
The composition along the top right maps this element to 1 ® y2 in the bot-
tom right, whereas the composition along the bottom left maps this element
to 2y ® y. This phenomenon is closely related to e failing to preserve the
differential, see Warning 7.2.2.5. O
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7.3. De Rham forms as a strict model in Mixed

Let X be a set. As a conclusion to Section 7.2 we showed in Corollary 7.2.2.3
that Qp v, is a strict model for HH(k[X]) as an object in CAlg(D(k)). In

this section we show that it is also a model for HHyixeq (K[X]) as an object
in Mixed.

To do so we show that ex can be upgraded to a strongly homotopy linear
morphism in the sense of Section 4.2.3. We will define the data necessary for
this, i. e. morphisms eg? for | > 0 (where eg?) = €x), in Section 7.3.1, and the
rest of the section will then be devoted to proving that this makes ex into a
strongly homotopy linear morphism.

As Q;[X]/k has zero boundary operator, this amounts to

do egl() = egl;l) od—do egl;l) (7.4)

holding for I > 1. We will be able to use the partial Leibniz rule for d
on the normalized standard Hochschild complex that we proved in Proposi-
tion 6.3.2.14 to reduce to only needing to show the above identity for elements
of degree 0. This will make up the bulk of this section.

A general pattern that will occur many times in this verification will be
that we are given a sum of two sums, each of which are indexed over somewhat
complicated indexing sets. We then produce a bijection between those two
sets and show that the summands that correspond along this bijection agree,
perhaps up to sign. The strategy to show that (7.4) holds will thus be to write
both sides as sums over some indexing set, then to subdivide the respective
indexing sets sufficiently to be able to pairwise match up the subsets; some
will match up on the same side of (7.4) and cancel, others from one side
will match with the other side. As the indexing sets we consider will often
involve permutations, we will make heavy use of notation and definitions from
Section 2.3 (34).

We now give a short overview over the main steps of the proof.

In Section 7.3.2 we will begin by writing the left hand side of (7.4) as a
sum indexed by a set I. We then write I as a disjoint union of various subsets,
some of which have “cancel” in their notation, and show that the sums over
those subsets vanish.

In Section 7.3.3 we begin by considering egl(_l) od, and immediately sub-
divide the resulting summands into two types. We will also match up the
summands of the first type with sums over some subsets of I, i.e. with sum-
mands from the left hand side of (7.4). In Section 7.3.4 we will then turn
towards the summands of the second type, and rewrite them as a sum over
a new indexing set I¢ that is better suited for later simplifications. In Sec-
tion 7.3.5 we consider doegl(_l) and write this as a sum over a indexing set I*.
We then sum up the progress made so far in showing (7.4) in Section 7.3.6.

While T4 and I' are defined using similar notions, this does not hold for I,
so in Section 7.3.7 we replace the remaining subsets of I (those over which the
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sums have not been matched up yet) by sets 12,
in a way similar to 19 and I'.
In Section 7.3.8 we then write I2

and I? S4a that are defined

9 ons 12,4, 19, and I' as disjoint unions
of various subsets. In Section 7.3.9 we show how the sums over some of the
subsets of 19 cancel with each other, and in Section 7.3.10 we show how the
remaining sums match up with each other.

Finally, we put everything together in Section 7.3.11 to prove that eg;)
indeed upgrades ex to a strongly homotopy linear morphism.

7.3.1. Definition of the higher homotopies

Construction 7.3.1.1. Let X be a totally ordered set. We will construct
morphisms of Z-graded k-modules

¢ Qb — C(R[X))

of degree 2[ for every [ > 0, such that eg?) = €x, where ex is as defined in
Construction 7.2.2.1.

The construction and later verifications that we will need to do to show
that 6_();) forms a strongly homotopy linear morphism are somewhat involved,
so we begin by introducing some auxiliary notation and definitions.

First let [ > 1 be an integer. Then we let E; be the following subset of the
symmetric group Y2;'¢, where we consider o to be extended by ¢(0) = 0.

£ = {o’ € Yo | V0 <1t <1[-—1: 0 cyclically preserves the

ordering of {2i,2i +1,2i + 2}}

Note that as ¢(0) was defined to be 0 the condition in particular implies that
(1) < o(2).
Next, if I, m > 0 are integers, then we first define a set C'(I,m) as follows.

C(l,m) = {(Cl,...,Cl+1) c{l,...,m+1}*! | clir =m+ 1 and
+1§ci+171f0r1§i§l}
Let I,m > 0 be integers, y1, ..., Ym elements of k[X], and (c1,...,¢41) an

element of C(l,m). Then we define an element T'((y1,. .., ¥m), (c1,...,c141))
in Cq(k[X]) as follows.

c1—1 co—1 ci41—1
T((y1,-- - ym), (c1,- .-, a41)) Hyj®yc1® I veo oo I] v
j=ci1+1 j=c;+1

16The symmetric group o is the group of bijections of the set {1,...,2l}.
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Note that as ¢;+1 —1 = m+1—1 = m, the last tensor factor does not contain
undefined factors. The condition ¢; + 1 < ¢;41 — 1 in the definition of C(I,m)

is made precisely to ensure that the products H;jjg_ll y; are not 1 and thus
that T((y1,.--,Ym), (¢c1,-..,ci+1)) is not zero. We will furthermore use the

notation T'((y1, ..., ¥Ym), (c1,...,¢141));, where 0 <4 < 21, for the i-th tensor
factor of T((y1,.--,Ym), (€1, C141))-

We can now define eg? on degree 0, where we can prescribe the value on
monomials in X and then extend k-linearly. Every monomial in X can be
written uniquely as H;n:1 y; where m > 0, each y; is an element of X, and
such that j < j’ implies y; < y;. For example if X = {z1, 22,23} with
x1 < w3 < x3, then the monomial z3xo23 would be written as the product

. l
T1-T1 X - T3 T3 -x3. On elements of this form we define eg() as

SN Tw | = X sen@ - | 3 Ty e )

ceE; (c1,--C141)
eC(l,m)

Note that in the case | = 0 the set Ej consists only of the identity, C(I, m) only
of the 1-tuple (m+1), and that T'((y1, - . ., Ym), (m+1)) = [[;Z, y;. The above

definition of eg?) thus recovers the definition of € x from Construction 7.2.2.1
on elements of degree 0.
To define egl() in degrees other than 0, we set

eg?(fdx1~-dxn) = eg?(f) cex(dxy---dxy)

for f an element of k[X] and 1, ..., z, elements of X, and extend k-linearly.
Note that Proposition 7.2.2.2 (2) implies that eg?) = €x. &

7.3.2. Simplification of the boundary
We begin the verification that

aoegl() = 6;1;1) Od—doegl{l)

holds for [ > 1 by subdividing the left side, and showing that some parts
cancel directly.

Definition 7.3.2.1. Let X be a set. Then we define for integers 0 < i < n
a morphism of k-modules

9;: Cn(k[X]) = Cp_1(k[X])

as the k-linear extension of

ai:xﬁa@xﬁ@...@xm|_>x176®...®xv11—1®m77;+7111+1®m71i+2®...®x'm
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for0<i<n-—1and

Op: 20 QM @ Q@ o gt QT @ - @ et

for ¢ = n, with v9,...,v, elements of Z)z(o (with all but finitely many compo-
nents zero) such that v7,...,v, are non-zero. &

Remark 7.3.2.2. Let X be a totally ordered set. Then it follows directly
from the definition of the boundary operator on the normalized standard
Hochschild complex of k[X] in Propositions 6.3.1.9 and 6.3.1.10 that for n > 1

0: Cp(k[X]) = Cp_1(k[X])
is given by the following sum.
0="> (-1)0;
i=0

This implies in particular the following formula, where ! > 1, and y1, ..., ym
and other notation is as in Construction 7.3.1.1.

ol TIw )= X (~1)i-sen(o)-di(o-T((y1,- - ym), T))
j=1 0<i<2l,
o€eE;
zeC(l,m)
&

Definition 7.3.2.3. In this definition we will use notation from Construc-
tion 7.3.1.1. Let X be a totally ordered set, [ > 1 and m > 0 integers, and
Y1, -- -, Ym as in Construction 7.3.1.1. We will define several subsets of the set

I:={0,...,21} x E; x C(l,m)

that by Remark 7.3.2.2 is the indexing set of a sum that 8(65?(]_[?;1 y;)) can
be expressed as.
For 1 < i < 2] — 1 we define the following set.

Jeancel — {(i',o, c)el } i’ =i and for all 0 < p <[ —1 it holds that

(o7 (i), 07 i+ 1)} ¢ {2p,2p + 172p+2}}

For ¢ = 0 and ¢ = 2] we make the following definitions.
Igeneel = {(i’,a, €)el|id=0ando (1) # 1}

1= {(i',0,T) € T | =20 and o} (20) £ 2}
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The above three subsets of I cover the large part of I where o~ !(i) and
o71(i + 1) do not take certain special values. We now define a number of
additional subsets to deal with the remaining elements. We begin with the
case in which ¢ is neither 0 nor 2[, and where 2p + 1 is involved. So we make
the following definitions for 1 <i<2[—land 1 <p<I[l-—1.

Iyt = {(i’, 0,C) el |i =iand o (i) = 2p
and o t(i4+1)=2p+1
and cpy1 +1 < cppo — 1}

I3 ppe = {10, @) €T | =iand 07} (i) = 2p+ 1
and o (i +1) =2p+2
and ¢, +1 < cpq1 —1}

ance

While p = 0 would be impossible in the definition of I, 92p721p 11, it is possible

3
for Ii%‘;cflmp |9, though we need a slightly different definition, as there is no
co- So we make the following definition for 1 < i < 2] — 1.

It = {(i’,a, ¢)ell|i'=iando '(i)=1and o~ (i +1) =2
and 0 < ¢ — 1}

Now we consider the case where 2p+1 is not involved. We make the following
definition for 1 <i<2l—land 1 <p <1l —1.

Liopyo,2p = {(i’,a, c)el ’ i' =iand o1 (i) = 2p + 2
and o (i +1) = 2p}
We next consider the cases i = 0 and i = 2[.'7
Iganeel = {(i’,a, Syel|i=0ando (1) =1and ¢; + 1< cs - 1}
T = {(i',o, F)el|i=0ando (1) =1and c; +1=c, — 1}
Inta = {(z 0, @) el | i =2and o' (2) = 2}

We now need to cover the left over complement. So we make the following
definition for 1 <i<2l—land 1 <p<I[-—1.

Liopapin = {(z", 0, €) el | i =iand o (i) = 2p
and o1 (i+1) =2p+1
and ¢pp1 +1 = cpyo — 1}
Liopiiopre = {(z 0, @) el |i'=iand o (i) =2p+1

and o7 (i + 1) = 2p +2
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and ¢, +1 = cpy1 — 1}
Finally, we define the following for 1 < < 2] — 1.
Liro = {(i’,a, T)el|i=iando (i) =1and o }(i+1)=2

and ¢; = 1}

Still with I, m, and y1,...,ym as above, we also introduce the following
shorthand notation. For (i,0, ¢) an element of T we define

B((i,0, €)) = (=1)" -sgn(0) - 8i(o - T((y1,- -, Ym), ©))

so that we with Remark 7.3.2.2 have the following concise formula for the
(OF s L
boundary of e ([[;Z; ¥;)-

ol [Tw || =3 BWw)
j=1

vel

%

Proposition 7.3.2.4. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, | > 1 and
m > 0 integers, and y1,...,Ym as in Construction 7.3.1.1. Then I is the
disjoint union of the following subsets.

Iganeel for 0 < i < 21

Iﬁ%’;f;;+1 for1<i<2l—1and1<p<l-—1

5o Jorl<i<2—land0<p<i-1
Lispyooy  for1<i<2l—1landl<p<Il-1
Ligpopyr  for1<i<2l—1and1<p<Il-1

Iiopi1,2p12 forl<i<2l—1land0<p<i-1

cancel
0,0,1

Ipo,1
Is2,0 Q

Proof. We provide a proof here, but even the very diligent reader that oth-
erwise reads all proofs might prefer to go through the case distinctions for
themselves rather than reading the proof. The only arguments appearing
apart from nested case distinctions is to look into the definitions of F; and
C(I,m) to see how they exclude certain values, e.g. o~1(i) can not be 0 if
i>0or o(2p) =0(2p+ 1) + 1 is not possible.

17Note that [ > 1 implies that co is well-defined.
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In all listed subsets there is a unique integer occurring as the first compo-
nent of the elements. We can thus consider the possible values for the first
component separately.

We begin with the value 0. So let (0,0, ¢) be an element of I. We have to
show that (0,0, €) is an element of exactly one of the subsets I§m!, I575!,
and Ip 1. If 71(1) # 1, then the element lies in I§*"°°! but not in the other
two subsets. If instead o~ *(1) = 1, then the element lies in I§73'5 if and only
ifer+1<eca—landinlpp; ifandonlyifci+1=co—1. Asci+1<cp—1
by the definition of C(I,m), this covers all cases.

We next consider elements for which the first component is 2I. So let
(21,0, ) be an element of I. We have to show that (0,0, ¢) is an element of
exactly one of the subsets I;?HCEI and Ig; 2. But the element is in Igla“cel if
and only if 071(20) # 2, and in Iy, otherwise.

Now let 1 < i <20 —1 and (i,0, ¢) an element of I. We have to show that
this element lies in precisely one of the following subsets of I.

1

Iicance
Iﬁ%;f§;+1 for1<p<i-1
I gppe for0<p<i-—1

Liopi22py for1<p<i-1
L 2p 2p+1 for1<p<i-1
Iiopy1,2p42 for0<p<i-1

We first note that (i,0,¢) is an element of Il if and only if for all
0 < p < 1-—1it holds that {o71(i),c (i + 1)} € {2p,2p + 1,2p + 2}.
It thus remains to show that (i,0,¢) is an element of one of the other
subsets listed above if and only if there exists a 0 < p < [ — 1 such that
{o7@),07(i+1)} € {2p,2p+1,2p+2}. It follows directly from the defini-
tions that if (¢, 0, ¢) is an element of one of those subsets, then there exists
sucha 0<p<I[-—1.
We thus assume that 0 < p <[ —1 is such that

{o7' (@), 07 i+ 1)} € {2p,2p + 1,2p + 2}

and what we need to show is that (¢, 0, ) is an element of exactly one of the
subsets of I listed below.
I 2p12,2p for1<p<l—1
Iaes . for1<p<i-—1
Liopop+1 for1<p<i-1
Iz'c,%gﬂzpw for0<p<i—-1

Lioptiopte for0<p<i-—-1
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By definition of E; it must hold either that

o(2p) <o(2p+1)<o(2p+2)
o(2p+2) < o(2p) <o(2p+1)
or

o(2p+1) <o(2p+2) <o(2p)

which implies that it is not possible to have one of the following three equal-
ities.

oc(2p+1)=0(2p+2)+1
c(2p+2)=0c(2p)+1
o(2p)=0c(2p+1)+1

This means that we must be in precisely one of the following three cases.
(a) o7 1(i) =2p+2and o7 1(i + 1) = 2p.
(b) o) =2pand o~ (i+1) =2p+ 1.
(c) o7l(i)=2p+1land o7 1(i+1) =2p+2.

We now go through these cases individually.

In case (a), we first note that (i, 0, €) can only possibly be an element of
a subset of the first type listed above. Furthermore, note that p can not be 0,
because ¢(0) = 0 # ¢ + 1. Thus we must have 1 <p <1 —1, and so (i,0, ¢)
is indeed an element of I; 242 2.

In case (b), the element (4,0, ¢) can only possibly be an element of the
second or third type of subset listed above, i.e. I‘”ncel_|r1 and I; 24 24+1 for
1< g <1l-1.Again p can not be 0, as ¢(0) = 0 # i. By definition of C'(I,m)
we must have cp41 +1 < ¢py2 — 1, so we have either cp41 +1 < cpp2 — 1 or
¢p+1+1 = cpy2 — 1. The element (4,0, €) is an element of I ZC%’;CSL 41 brecisely
in the first case and of I; 5p 2,41 precisely in the second case.

Finally, in the case (c), the element (i,0, ¢) can only possibly be an ele-
ment of the fourth or fifth type of subset listed above, i.e. If%gfﬂ 9g+2 and
Ii2g4+1,2g42 for 0 < ¢ <1 —1.If p > 0, then the argument is analogous to
the case (b), but it remains to show that if p = 0, then (i,0, €) is an element
of precisely one of If4%®! and I; ;5. It is an element of the first precisely if
c1 > 1 and of the second precisely if ¢y = 1. As ¢; > 1 by the definition of
C(l,m), this finishes the proof. O

Proposition 7.3.2.5. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, | > 1 and
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m > 0 integers, and y1, . .., Ym as in Construction 7.3.1.1. Then the following
holds for every 1 <i <2l —1.

Y Bly)=

cancel
velf

Proof. Let (i,0, ) be an element of If3"!. Then we claim that the tuple
(i,(i i +1) 00, €) is also an element of I¢2"¢!. For this we need to show that
(i i+ 1) oo is again an element of E;, and that for all 0 < p <[ —1 the
following holds.

{o (@ i+ 1) @), 0 ([ i+ 1) (i+1) } £ {2p,2p+1,2p+ 2}

This latter condition follows directly from (i, o, ¢) being an element of [¢anee!
given the following short calculation.

{o7"(({i+1)" ( ), 0 ((@ i+1)’1(i+1)) }
={o7i+1),07'() } ={o7 (i), 07 (i+1)}

We still have to show that (i i41)oo is an element of E;. Solet 0 < p <I—1.
Then there is a condition on the ordering of the three integers obtained by
applying (i i + 1) oo to 2p, 2p + 1, and 2p + 2. Applying o to those three
elements, the condition is satisfied as ¢ is in E;. As postcomposing with
(i 4 1) only swaps ¢ and ¢ + 1, the condition will thus also be satisfied for
(ii+1) o0 as long as at most one of ¢ and i+ 1 occurs as a value of 2p, 2p+1,
and 2p + 2 under o. But this is ensured by the condition that

{o7@), 07 i+ 1) } € {2p,2p+1,2p + 2}

that holds due to (i, 0, ©) being an element of [¢ancel,
Now let S be a subset of ¥5; containing exactly one representative of each
right coset of {id, (i ¢ + 1)}. We then obtain

Y. Bw)= Y (B((i,0,¥) + B((i.(ii+1)00,7))
1)6[;“‘051 (i,ﬂ,?)é],?ancel

such that
oceS

so that it suffices to show that if (i,0, ©) is an element of If22°°!| then the
following holds.

B((i,0,¢))+ B((4,(ii+1)00,¢)) =0
But as 0; multiplies together the i-th and 7 + 1-th tensor factor we have
(i i+ 1) (0 T(Wr.- -, 4m). ©)) = 0o - T((Y1. -, ym), ©))
which together with sgn((i 7+ 1)) = —1 finishes the proof. O
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Proposition 7.3.2.6. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, | > 1 and

m > 0 integers, and y1, . . ., Ym as in Construction 7.53.1.1. Then the following
holds.
>, B+ Y B)=0
Uelsanccl UEIQC?DCCI
@

Proof. We prove this by constructing a bijection
Q: I(():anccl N Iglanccl

such that for every element v of I$**°°! we have B(p(v)) = —B(v).
We define ¢ as follows.

v:(0,0,C)— (2l,019,00,7)
We also directly define the candidate inverse map as follows.
¢5 (QZa g, _6) = (07 021—1 00, _C>)

It is clear that ¢ and ¢ will be mutually inverse bijections as long as both
are well-defined.

Before showing well-definedness we begin with a small observation. Let
(0,0, ©) be an element of I§*°°!. Then the definition of I§"! rules out that
o~ 1(1) = 1, and we claim that the requirement that o is an element of Ej
also rules out 0=1(1) = 2. Indeed, if we had o(2) = 1, then, as o(0) = 0,
we would have 0(0) < ¢(2), which due to o € E; requires that o(1) is an
integer bigger than ¢(0) and smaller than ¢(2), which would be impossible.
In a completely analogous way one can see that if (21,0, ) is an element of
Iganeel then o~1(21) can be neither 1 nor 2.

Now we turn to showing that ¢ is well-defined. So let (0, o, ¢) be an element
of I§*"°°!. We have to show that (21,019 00, ©) is an element of I;lancel.

We first show that oy_.9; 0 0 is an element of E;. Solet 0 < p <[ — 1.
As 01_,9; preserves the ordering of the subset {2,...2[} it is immediate that
01-91 0 0 cyclically preserves the ordering of {2p,2p + 1,2p + 2} as long as
none of the three values o(2p), o(2p + 1), and o(2p + 2) is 1. So assume
that 0 < p <1 —1 is such that one of these three values is 1. Our previous
observation rules out that this can happen when p = 0, so we may assume
that 1 < p <1 —1, which implies that 2p, 2p+ 1, and 2p + 2 are all at least 1
and hence their images under o will also be at least 1, which implies that the
one that is 1 will be the minimum, and ¢ being in F; will then imply which
of the other two values must be bigger. We now consider the three possible
cases separately. So assume first that o(2p) = 1. We then obtain that

o(2p) <o(2p+1)<o(2p+2)
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which implies the following.
(0152100)(2p+1) < (01591 00)(2p+2) < (015210 0)(2p)
Next, assume that o(2p + 1) = 1. In this case we must have
o2p+1) <o(2p+2) <o(2p)
which implies the following.
(0152000)(2p+2) < (015210 0)(2p) < (0152100)(2p+ 1)
Finally, assume that o(2p 4+ 2) = 1. Then we must have
oc(2p+2) <o(2p) <o(2p+1)
which implies the following.
(0152100)(2p) < (0152100)(2p+ 1) < (015210 0)(2p + 2)

This shows that o1_,9;00 is an element of Ej. To show that ¢ is well-defined
we still need to show that

(G1mm00) 1 (20) =07 o7 (20) = 071 (1)

is not 2. But this has been shown in the observation we made above.

We have now shown that ¢ is well-defined. That ¢ is well-defined can be
shown in a completely analogous way.

It remains to show that B(p(v)) = —B(v) holds for every element v of
Igaveel So let (0,0, €) be an element of 152", Then we have the following
calculation.

B(p((0,0,7)))

= B((2l,0’1*>21 oa, E)))

= (—1)% -sgn(o19100) - Ou(o1s2 - (0 T((Y15- -+ Ym), ©)))

=sgn(oy1-91) - sgn(o) - (o - T((Y1,---,Ym), €))

= (=1)-sgn(o) - do(o - T((y1,---+Ym), )

= —B((0,0,7)) O
Proposition 7.3.2.7. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definition 7.8.2.5. Let X be a totally ordered set, | > 1 and

m > 0 integers, and y1,...,Ym as in Construction 7.3.1.1. Let 1 <p <[—1
be an integer. Then the following holds.

> B+ Y. B)=0

1<i<2i—1 1<i<2i—1
(1S VEIFNE 2pin
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Proof. We use the following notation.
J={(iv)e{l,....;21-1} x I ‘ v EI&%;?§L+1 !
J = { (i,v) e{1,...,2l =1} x I | = Iz?,%rzlyfllgp_fg

To prove this proposition it then suffices to construct maps
o —=J and Y J —J

that are mutually inverse bijections such that for every element (i,v) of J we
have B(w) = —B(v) if w is the second component of ¢((7,v)).

So let (4, (i,0,¢)) be an element of J. By definition of Iﬁ%ng;H we have
o0(2p) =i and o(2p+ 1) =i+ 1 so that o(2p) < o(2p + 1). The definition of
E; then implies that we are in one of the following two cases.

(a) o(2p) <o(2p+1) <o(2p+2)
(b) o(2p+2) <o(2p) <o(2p+1)

If we are in case (a) we let 7 = aiﬂﬁa(gpw),lls, and if we are instead in
case (b) we let T = 0,11, ,(2p+2)- In both cases we define ¢ as follows.

(i, (1,0, 7)) = (r(i + 1), ((i + 1), 700, T + &547))

We will show later that ¢ is actually well-defined, but will first define 1.
So let (i, (i,0, €)) be an element of .J'. By definition of I{3] , ., we have
c(2p+1) =iand o(2p+2) = i+ 1 so that o(2p + 1) < o(2p + 2). The

definition of E; then implies that we are in one of the following two cases.
(a) o(2p) <o(2p+1) <o(2p+2)
(b) o(2p+1) <0o(2p+2) < o(2p)

If we are in case (a) we let 7/ = 0;_,,(2p)41'” and if we are instead in case
(b) we let 7/ = 0;_,5(2p) - In both cases we define 1 as follows.

(i, (i,0,7))) = (7'(i) = 1,(7'(i) = 1,77 00, C — €p11))

We next show that ¢ is well-defined. So let (¢, (¢,0,¢)) be an element of
J. We first show that 1 < 7(i +1) < 2l — 1. That 1 < 7(i + 1) is clear. In
case (a) we have that 7(i 4+ 1) is by definition strictly smaller than o(2p + 2),
which can be at most 2, and in case (b) we can use that o(2p + 2) is strictly
smaller than o(2p) by virtue of us being in case (b), and o(2p) is at most 21.
This show that 7(i +1) < 20 — 1.

Next we need to show that 7 o ¢ is an element of E;. As 7 preserves the
ordering of the complement of {o(2p + 1)} it immediately follows from o

18Note that o(2p+1) < o(2p+2) implies o(2p+2)—1 > o(2p+1) > 1, so 7 is well-defined.
9Note that o(2p) < o(2p + 1) implies o(2p) + 1 < o(2p + 1) < 21, so 7' is well-defined.
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cyclically preserving the ordering of {2¢,2q + 1,2q + 2} that 7 o o does so as
well, as long as 0 < ¢ <1 — 1 with ¢ # p. But if we are in case (a) then we
have

(Too)(2p) <(r00)(2p+1) <(100)(2p+2)

and in case (b) we have
(roo)(2p+1) < (ro0)(2p+2) < (00)(2p)

so that 7 o o cyclically preserves the ordering of {2p,2p + 1,2p + 2} as well.

To finish showing that (7(i + 1),7 0 0, € + €,41) is an element of I we
need to show that ¢ = € + épt1 is an element of C(I,m). Most of the
(in)equalities that need to be satisfied for this are inherited from ¢, as ¢ has
all components except the p + 1-th component in common with ¢, so we are
left to show that ¢p +1 < (¢py1+1) —1 and (cpy1 +1)+1 < cppo — 1. The
former follows directly from ¢, +1 < ¢py1 — 1, and the latter follows from
cp+1 +1 < cpra — 1, which is part of the definition of IF3ncs!

4,2p,2p+1°
We have now shown that (7(i +1),700, ¢ +é,11) is an element of I, and
we need to show that it is even an element of J¢2n¢e! The condition

7(p+1),2p+1,2p+2°
on 7 o o holds as

T(e(2p+1))=7(GE+1)

and 7 is defined exactly so that 7(i + 1) + 1 = 7(c(2p + 2)). The condition
on ¢ + ept1 requires that

(cp) +1<(ept1+1)—1

which holds as ¢, + 1 < ¢p+1 — 1 due to € being in C(I, m).

This finishes the proof that ¢ is well-defined. That v is well-defined can
be shown completely analogously.

We next show that 1) o ¢ = id. So let (i, (i,0, ¢)) be an element of J and
7 as in the definition of ¢ so that the following holds.

o((i, (i,0,7))) = (r(i +1),(7(i + 1), 700, € + €py1))
Then let 7" be as in the definition of ¢ such that we have the following.

P(e((i; (6,0, €))))

=("(r(t+1) -1, (7 (7(i+1)) — 1,7 0700, C 4+ €pr1 — €pt1))

Inspecting this it is clear that it suffices to show that 7/ o 7 is the identity.
Note that 7 maps ¢ + 1 to some element but preserves the ordering of the
complement, whereas 7/ preserves the ordering of the complement of {7(i+1)}.
The composition thus also preserves the ordering of the complement of {i+1},
so that it suffices to show that 7/ o7 maps i+ 1 to 7 + 1.

For this we distinguish between the two cases. Let us first assume case
(a). Then 7 maps i + 1 to o(2p + 2) — 1. In showing that ¢ is well-defined
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we already saw that ¢((¢,(i,0, ¢))) will be as in case (a) for ¢. Thus 7’ is
defined by mapping 7(i + 1) to (100)(2p) + 1. As o(2p) is smaller than both
o(2p+ 1) and o(2p + 2), we have (7 0 0)(2p) = 0(2p) so that we obtain the

following calculation, where the second equality comes from the definition of
I,
(too)2p)+1=02p)+1=i+1

Let us now assume case (b). Then 7 maps i + 1 to o(2p + 2). In showing
that ¢ is well-defined we already saw that ¢((4, (¢,0, ¢))) will be as in case
(b) for ¥. Thus 7’ is defined by mapping 7(i + 1) to (7 0 0)(2p). As o(2p) is
smaller than o(2p+1) but bigger than o(2p+2), we have 7(c(2p)) = o(2p)+1
so that we obtain the following calculation, where the second equality comes

from the definition of I f%gcglp G-

(too)(2p)=0c(2p)+1=i+1

We have now shown that ¥ o ¢ = id. That ¢ 0¥ = id can be proven in an
analogous way.
It remains to show that for every element (i, (¢,0, ¢)) of J

B(w) = ~B((i,0, 7))

holds if w is the second component of ¢((i, (i,0,€))). Let 7 again be like in
the definition of ¢((i, (i, 0, ¢))), so that

o((i,(i,0, 7)) = (r(i+1),(7(i+1),700, € + €p17))
holds. We can then carry out the following calculation.

B((r(i+1),700, 7 +&17))
= (—1)7 (i+1) | sgn(roo) - -r(z+1)((7' 00) - T((y1s-- - Ym), € + @—1»))
= (—=1)7"*Y - sgn(r) - sgn(o)
(i) (T00) - T((Y1,- -+ Ym)s € + Ep11))
= (,1)T(l+1) . (71)T(z+1) (i4+1) - sgn(0)
“Or(iy)((Toa) - T((Y1s- - Ym), € +€ps1))
=—(=1)" - sgn(0) 041y ((T00)  T((Y1,- - Ym), € + €ps1))

It now remains to show that

a‘r(i+1)((7 © 0) ’ T(<y17 s ’ym)a ¢+ ep—Jrf)) = 0i(o - T((ylv s 7y77L)7 E>)) (*)

On the left hand side we start with T'((y1,...,%m), € + €p11), permute the
tensor factors with 7 oo, and then multiply the 7(i+1)-th and 7(i+1) + 1-th
tensor factor together. Note that (roo) '(7(i+1)) = o 1(i+1) = 2p + 1,
and in both cases we distinguished one can furthermore check that it holds
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as well that 771(7(i + 1) + 1) = o(2p + 2). As 7 preserves the ordering of
the complement of {7+ 1}, we can thus describe the process of obtaining the
left hand side of (%) from T((y1,.-.,Ym), € + €pt1) also as follows: First we
permute the tensor factors using o, then we remove the o(2p + 1) =i + 1-th
tensor factor and replace the o(2p + 2)-th tensor factor by its product with
the o(2p + 1)-th tensor factor.

The o(2p + 2)-th tensor factor is given by

Cpya—l
T((yla-~-7ym)7€+ep+1)2p+2 = H Yj
J=cp i tl

where we define ¢ =  + ep+1 for ease of notation, and the o(2p + 1)-th
tensor factor is given by

T((ylv s 7ym)a <+ ep+1)2p+1 = yc;+1

so that, using that c;, 41 = Cpt+1+1 and that the other components of ¢’ equal
those of ¢, we obtain that the product is

cpt2—1 cpt2—1
Yeppr+1 - H Yi | = H Yj
J=cp+1+2 Jj=cp1+1

which is exactly the 2p+2-th tensor factor of T'((y1, - . ., Ym ), € ). As the tensor
factors of T((yl, ce s Ym)s Z) and T'((y1,.-.,Ym), € ) are equal except the 2p-
th, 2p+ 1-th, and 2p+ 2-th, we can thus describe the process of obtaining the
left hand side of () from T((yll . yYm), €) as follows (note that the second

argument of 7' is now ¢, not ¢): First we permute the tensor factors using
o, then we remove the o(2p + 1)-th tensor factor and replace the o(2p)-th

tensor factor by the 2p-th tensor factor of T((yl, ey Ym)s E;)
We have

(epr1+1)—1

T((y17'~'aym)7cl) = H Yj
2p -
Jj=cp+1
cpt1—1
= H Yi | " Yepin
Jj=cp+1

= T((yh e 7ym)7 _C.)Qp . T((yla cee 7ym)7 _C>)2p+1

so that we can also describe the process of obtaining the left hand side of ()
from T((y1,-.-,Ym), ¢) as follows: First we permute the tensor factors using
o, then we remove the o(2p 4+ 1)-th tensor factor and replace the o(2p)-th
tensor factor by the product of the o(2p)-th tensor factor with the o(2p+ 1)-
th tensor factor. But this is exactly the definition of the right hand side, as
o(2p) =i. O
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Proposition 7.3.2.8. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, | > 1 and

m > 0 integers, and y1, . . ., Ym as in Construction 7.53.1.1. Then the following
holds.
> B+ Y. B)=0
Ue[;"‘é“i‘ﬂ 1<i<2]—-1
o velspse!
Q@

Proof. This proposition and proof is very similar to Proposition 7.3.2.7, but
a easier, as we are always in case (a).? We will thus refer to the proof
of Proposition 7.3.2.7 for more details of the proof. We use the following
notation.

Ji={(iv)e{l,....20 -1} x I |ve 3%}

To prove this proposition it then suffices to construct maps

o I505" = and ¢ J — IS
that are mutually inverse bijections such that for every element v of J the
identity B(w) = —B(v) holds if w is the second component of ¢(v).
We begin by defining ¢, which we do as follows.?!

©((0,0,7)) = (0(2) = 1,(0(2) = 1,0154(2-100, € +€1))

Now let (4, (i,0, €)) be an element of J. Then we define ¢ as follows.
¥((i, (i, 0, €))) = (0,051 00, ¢ —e1)
cancel

We next show that ¢ is well-defined. So let (0, o, €) be an element of I57'{*".
Then 1 < 0(2) =1 <2l —1 and 01_,5(2)—1 ©0 € E; can be shown exactly
as in the proof of Proposition 7.3.2.7. To see that ¢ + €7 is an element of
C(l,m) we need to show that (c; + 1) + 1 < ¢ — 1, which follows from the
condition ¢; + 1 < ¢z — 1 that is part of the definition of I§%'{". To see that
(0(2) = 1,01506(2)—1 00, € +¢1) is even an element of Iﬁi‘gel we need to show
a condition on the values of 1 and 2 under oy_,,(2)—1 © o, which can be done
exactly as in Proposition 7.3.2.7, and that 0 < (¢; + 1) — 1, which follows
from ¢; > 1.

The proof that v is well-defined is very similar. That ¢ and 1 are mutually
inverse can be shown just as in Proposition 7.3.2.7 (though the proof is easier,

as only one case needs to be considered). Finally, that B(w) = —B(v) for
every element v of J with w the second component of p(v) can also be shown
in exactly the same way as in the proof of Proposition 7.3.2.7. O

20The reason this is a separate proposition is the fact that the condition that ¢; needs to
satisfy for ¢ € C(l,m) is not precisely of the same form as for ¢; with ¢ > 1, which makes
the definitions a little different, and that o(2p) is always 0 if p = 0. Those differences
don’t add any complications to the proof and instead make it simpler however.

21As o(1) = 1 by definition of IS:"Orﬁel we must have o(2) > 2,s0 0(2) —1> 1.
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We sum up the progress made in this section with the following proposition.

Proposition 7.3.2.9. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.8.2.3. Let X be a totally ordered set, | > 1 and
m > 0 integers, and y1, ..., Ym as in Construction 7.8.1.1. Let 1 <p <l —1
be an integer. Then the following holds.

NRw wm)= X Bw+ Y Bw+ Y B

1<i<2i—1, 1<i<2l—1, 1<i<2i-1,
1<g<i-1, 1<g¢<i-1, 0<q<i-1,
vEl; 2442,29 vEl; 24,241 vEl; 2g41,2q42
+ E B(v) + E B(v)
v€lp,0,1 v€l2;,2,0

Q

Proof. This follows by combining the previous results as follows. We start by
applying Remark 7.3.2.2 and Definition 7.3.2.3.

3(63? (y1-- ~ym))

=Y B(v)

vel
Now we apply the decomposition of I from Proposition 7.3.2.4.

= > B[

1<i<2l—1,

Uejfancel

+ > Bw+ Y B@)
,Uelgancel ’UEI;?“CSI

+ Y > B+ > B

1<q<i—1| 1<i<2i-1, 1<i<2l-1,
ncel ancel
Vel S VEITS 2q12
+ E B(v) + E B(v)
<2l — cancel
LS Vel
veli 5"

+ E B(v) + E B(v) + E B(v)
1<i<2i—1, 1<i<2i—1, 1<i<2i—1,
1<g<i-1, 1<q<i-1, 0<q<i-1,

v€L; 29+2,2q v€IL; 2¢,2q+1 vE€IL; 2q+41,2q+2

+ E B(v) + E B(v)

v€lo,0,1 vElz 2.0

The first line is zero by Proposition 7.3.2.5, the second line by Proposi-
tion 7.3.2.6, the third line by Proposition 7.3.2.7, and the fourth line by
Proposition 7.3.2.8, which shows the claim. O
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7.3.3. Identification of summands of eglgl) od of a first
type

We now begin looking into the term 6(171)(d(y1 “+Ym)). We can write this
as a sum of terms of two types, and one one type can immediately be identified
with summands from 8(6&? (Y1 Ym))-

Remark 7.3.3.1. In this remark we use notation from Construction 7.3.1.1.
Let X be a totally ordered set, [ > 1 and m > 0 integers, and y1,..., Y as
in Construction 7.3.1.1.

We consider egl(_l)(d(yl -+ ym)). Unpacking the definition, we obtain the
following.

(A ym))

m
l—
:6& 1)(2:%...%1 'ys+1"'ym'dys>
s=1

= Zegéil)(yl"'ysfl 'ys+1"'ym) : (1®E)

s=1
= Z (Sgn(a)'U'T((y17"'7y5—1,y5+1a"'7ym))_c>))'(1®E)
1<s<m

oceE;_1
TeC(l—1,m—1)

We can distinguish two types of summands: Those in which ys_; and ys41
appear together in a tensor factor, and those in which they don’t. The former
happens precisely if there exists an integer 1 < p <[ —1 with ¢, < s—1 and
cp1 > s%2, or if 1 > s. Note that these possibilities exclude each other, i.e.
if we count ¢; > s as being the condition for p = 0, then if there exists a
0 < p <1 —1 satisfying the condition, then it is unique. &

We begin by identifying the summands of egl{l) (d(y1 -+ ym)) in which ys_q
and ys41 occur in the same tensor factor.

Proposition 7.3.3.2. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, [ > 1 and
m > 0 integers, and y1, . . ., Ym as in Construction 7.53.1.1. Then the following
holds.

>, 2. BW

1<i<20—1,vEL; 2pt2,2p
1<p<i-1

22Note that we “jump over” ys, so ys+1 has index s rather than s + 1.
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- Z (Sgn(o—)'0-'T((ylv'“ay5717y8+17"'7ym)’C)).(]'®ys)
1<s<m,
o€k 1,
ceC(l-1,m—-1),
1<p<i-1
such that
cp<s—1<s<cpt1

Q©

Proof. We first evaluate the product occurring in the summands on the right
hand side of the equation, which by Propositions 6.3.2.10 and 6.3.2.11 yields
the following for s, o, ¢, and p as in the sum in the statement.

(sgn(o) - o - T((Y1s-- s Ys—1,Yst1s-- -+ Ym), €)) - (1 @ Ts)

= Z sgn(oa—1-¢ 0 (o idge_1y))-
1<i<21-1

(O'Ql—l—)t © (U I id{2l—1})) ' (T((ylv s Ys—15Ys+1y - - 7ym)7 E>) ®E)

We now make the following definitions.

J::{(i,p,v)6{17...,21—1}><{1,...,1—1}><I|11€Iiygp+212p}

J = {(s,a”,g7p7t> ef{l,....m}xE_1 xC(l—-1,m-1)
x{1,..., 0l =1} x{1,...,21 -1}

/ /
‘cp<s—1<s<cp+1}

Furthermore, for (s,o”, g, p,7) an element of J' we will use the following
notation.

B/<(S7 O-Ha g;apa t)) = Sgn(02l71~>t © (U” Il id{2l71}>>
1" . _7 —_—
(o2—15¢ 0 (0" Midg_13)) - <T<(y17"'7y571,y5+13 oy Ym), € ) ®ys)
It thus suffices to construct a bijection of sets
&:J—J

such that for each element (i, p,v) of J it holds that B'(®((¢,p,v))) = B(v).

So let (i,p, (i,0,7¢)) be an element of J. Let s :==cpyq1. As1 <p<[l—1
we have 2 <p+1 <, so that cp1 is defined 1 < cpp1 < (m+1)—2<mis
satisfied. Next we define ¢’ as follows.

/
0 = 05(2p4+2)—21 © 0 ©02{—2p+2

Note that ¢'(2]) = 2l so that we can consider ¢’ as an element of ¥o;_;.
We let ¢t .= o/(2p + 1). Note that 1 < ¢ < 2] — 1 and that ¢ is o(2p + 1) if
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o(2p+1) < 0(2p+2) and o(2p+1) — 1 otherwise. We can now define another
permutation ¢’ to be the following composition.

"o !/
0 = 0t321-1°0 ©02]—-1-2p+1

= 0t—21—-1 0 0g(2p+2)—21 © 0 ©02[—2p+2 © 02]—1—2p+1

With this definition o’ is an element of Xo;_; that satisfies ¢”/(201—1) = 2] —1,
so that we can consider 0" as an element of ¥5;_1).

We claim that ¢” is an element of E;_1. So let 0 < a < [ — 2. We have
to show that ¢” cyclically preserves the ordering of {2a,2a + 1,2a + 2}.
We note first that as a < [ — 2 implies 2a + 2 < 2] — 2, so the image of
{2a,2a+1,2a+2} under 6009;_,2p42009—1-52p+1 Will have image in the com-
plement of {o(2p + 2), 0;(121)”)%21@)}7 so that 0 211 004(2pt+2)—2 is order-
preserving on this image. This means that it suffices to show 0 < a < [—2 that
0009 52p4+2002]_1—2p+1 Cyclically preserves the ordering of {2a, 2a+1, 2a+2}.

We first consider the case of @ < p. Then the claim follows as 02;—12p+1
and 099,12 are the identity on {2a, 2a+1, 2a+2}, and o cyclically preserves
the ordering of {2a,2a + 1,2a + 2}.

We next consider the case of a > p. In this case both o2;_1_,9,41 is given
by addition with 1 on {2a,2a+ 1,2a + 2}, and 09;_,2p+2 is given by addition
with 1 on {2a + 1,2a + 2,2a + 3}. The claim thus follows from o cyclically
preserving the ordering of {2(a +1),2(a+ 1) + 1,2(a + 1) + 2}.

It remains to consider the case a = p. In this case 2p, 2p + 1, and 2p + 2
are mapped by oo_19p+1 to 2p, 2p + 2, and 2p + 3, which are mapped
by oai2p+2 to 2p, 2p + 3, and 2p + 4, which are mapped by ¢ to o(2p),
o(2p + 3), and o(2p + 4), respectively. So we have to show that o cyclically
preserves the ordering of {2p,2p + 3,2p + 4}. But by assumption o is an
element of I; o542 2p, which implies that o(2p) = o(2p + 2) + 1. This means
that o cyclically preserves the ordering of {2p, 2p+ 3,2p + 4} if and only if o
cyclically preserves the ordering of {2p + 2,2p + 3,2p + 4}, which is the case,
as o is an element of Ej.

We define ¢’ € {1,...,m}! as follows.

forl<a<l

a

, Ca fora<p
c =
Ca41—1 fora>p

Note that as ¢, <m+1for 1 <a <1+ 1 we obtain ¢, <m for 1 <a <.
Furthermore, as p > 1, andi < ¢ < cg < ... < 41 we also obtain that
c, > Lfor 1 <a <I,so0that ¢ is indeed an element of {1,...,m}. We claim
that ¢’ is in fact an element of C'(I — 1, m — 1). For this we first note that as
p <1—1wehave ¢ =¢41 —1=m+1—1=m, which handles one of the
conditions. That ¢, +1 < ¢, ; —1 for 1 <a <[ —1 follows directly from the
corresponding property for ¢ as long as a # p. For a = p we have

GAl=c+1<cp1—1<c2-3=c ;1 —2<c,,, -1
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which finishes the proof that ¢ is an element of C(l—1,m—1).
We can now define ® as follows.

(6,0, (1,0, 7)) = (5,0", & p.t) = (ep41,0", .0 (2p + 1))

To show that ® is well-defined it remains to show that it holds in the above
situation that
/ /
e, <s—1<s<c,y

but unpacking the definitions, this become the following.
Cp < Cpt1 — 1< Cpt+1 < Cpt2 — 1

which holds as € is an element of C(I,m).

We next show that B'(®((4,p,v))) = B(v) holds for each element (7, p, v) of
J. We continue using the notation we introduced up to now for this. We first
check that the signs of the two terms agree. For this we have the following
calculation.

sgn(oa—1-¢ 0 (¢ Mid{z_1}))
= sgn(oa—15¢) - SgD(U”)

= (=121 sgn(oy2-1 00" 0 02_12p41)
(_1)2l—1—t . (_1)21—1—26 -sgn(o’) . (_1)2l—1—2p—1

= sgn(o’)

(
Sgn(00(2p+2 —21 000 U2l—)2p+2)
( 1)2 o(2p+2) | sgn() ( 1)2p+272l
(—1)7CP2) - sgn(o)
(—1)" - sgn(o)

To complete the proof of B'(®((i,p,v))) = B(v) it remains to show the
following.

(21150 0 (0 Midgz_1y)) - (T((y1, S Ys Yt Ym), g;) ®yfs)
= 6L(O' . T((y1, ce ,ym), E)))

We begin by considering T((y1, .- Ys—1,Yst+1y- - - Ym), 57), in the following
calculation, where we let y] = y1,...,¥h 1 = Ys—1,Us = Yst1s-- s Y1 = Ym-

T((y17 sy Ys—15Ys+1y - - ay’m)a C/)

ci—1 ch—1 cj—1
= H y] ®y ® H Y © y;;_l ® H
j=ci+1 j=c,_;+1
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c1—1 Cpp2—1—1 cp43—1—1
ZHy}®y{:1®-~-® H y§'®yép+2*1® H y;®yép+3*1®'“
j=1 j=cp+1 j=cpra—1+1
Using that s = cp11.
c1—1 cpt1—1 Cpta—l cp+3—1
=Mvewe o I v Il vweveee I we-
Jj=1 j:Cp+1 j:Cp+1+l j:Cp+2+1

Abbreviating T'((y1, ... ,Ym), €¢) as T =Ty ® ... Ty, we obtain the following.

(o21-15¢ 0 (0" idgg_13y)) - (T<(y1, s Ys—15 Ysh s> Ym), g) ®%)

= (021-15¢ 0 (0" Widg_1}))
(To® - @Top—1® (Top - Topt2) @ Topr3 Q-+ @ Ty @ Topyq)

= (0'21—1—>t 0 0t—2l—-1 © Og(2p+2)—21 © 0 © 021—2p+2 © an—l—)2p+1)|{1 211}

(To® - @ Top—1 @ (Top - Topt2) @ Topy3 @ -+ @ Ty @ Topi1)

= (00(2p+2)—)2l 00 002]—2p4+2 © 021—1—>2p+1) |{1 21-1}

(To® - @ Top—1 @ (Top - Topt2) @ Topy3 @ -+ @ Ty @ Topir)

= (0o(2p+2)521 © 0 0 O2152p42) l(1,...21-13

(To® - @Tap—1® (Top - Topt2) @ Topt1 @ Toprs @ Topya @ -+ @ Toy)

Recall that o(2p+2) = ¢ and 0(2p) = i+ 1. We now have to distinguish several
cases. We start with 1 < j < 2p—1 such that o(j) < i. Then the permutation
0’ = 0g(2p+2)—2100 0021 s2p12 MAPs j to 0(j), as both 04 (2p12)—2; as well as
0921-2p+2 act as the identity on the relevant elements. Thus the o(j)-th tensor
factor in the result is given by T}. If instead 2p + 2 < j < 2l and o(j) < ¢,
then o’/ maps j — 1 to o(j). As the j — 1-th tensor factor of the unpermuted
tensor product is given by T}, we can again conclude that the o(j)-th tensor
factor of the result is given by T}. If j = 2p or j = 2p + 2 then we can not
have o(j) < i. If o(2p+1) < i, then we get that o’'(2p+1) = 0(2p+ 1). The
upshot is that the 0-th to (¢ — 1)-th tensor factors of the result will be given
by Ty ® To.—l(l) R To.—l(,t'_l).
We have
0'(2p) = oisa(0(2p) = oisau(i+1) =i

so that we can furthermore conclude that the i-th tensor factor is given by
Top - Topro = Topyo - Thp.

Now let 1 < j < 2p—1 with o(j) > 4. Then o’(j) = o(j)—1, so the (o(j)—1)-
th tensor factor of the result is given by Tj. If instead 2p + 2 < j < 2/ and
o(j) > i, then o’(j — 1) = o(j) — 1, so that we can again conclude that the
(0(j) —1)-th tensor factor of the result is given by 7. Finally, if o(2p+1) > 1,
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then o/(2p+1) = o(2p+ 1) — 1 as well. As o({2p,2p +2}) = {4, + 1}, the
image of {1,...,2p —1,2p+ 3,...,2l} under o contains {i + 2,...,2l}. The
upshot is that the (i + 1)-th through 2! — 1-th tensor factors of the product
are given by Tafl(i+2) X ® T071(21).

Thus we obtain

(0—2l71~>t o (J” i id{?l—l})) : (T((yla ey Ys—15Ys+1y - - - 7ym)7 C/) ®y78)
=To®@To-101) @ To-1-1) @ To-105) - To-1(341) @ Ty—1(142) ® - - -
=0i(0-T((y1,---,Ym), €))

To finish the proof of this proposition it remains to show that & is a
bijection. For this we construct an inverse W. So let (s,o”,¢,p,t) be an
element of J'. Then we define

/. "
0 = 02]-15t°0 002p41-21—1

as an element of Xo;_1. We then define i := ¢’(2p) and define o as follows, as
an element of Yq;.
o:=09;00 0 O2p+2—21

Note that as ¢’ is an element of 39,1 we have that 1 < ¢ < 2] — 1.

We also claim that o is an element of E;. So let 0 < a <[ — 1. We have to
show that o cyclically preserves the ordering of {2a,2a + 1,2a + 2}. For this
we distinguish four cases. If a < p, then 2a, 2a + 1, and 2a + 2 are mapped
to 2a, 2a+ 1, and 2a + 2 by ogpt2-2; and oop41-9i—1. The permutation o
cyclically preserves the ordering of {2a,2a+1,2a+ 2}, and asa <p <1 -1,
the image under ¢’ lies in {1,..., 2l — 2}, so that o9;_; and o9,_1_,; preserve
the ordering.

Next we consider the case a = p. In this case we have the following.

0(2p) = (02—i 00" 0 gapra21)(2p)
= (0215;00")(2p) = o91i(1) =i+ 1
o(2p+2) = (02—i 00" 0 o2pt22)(2p + 2)
= (02155 00")(2l) = o9 i(2l) =i
Which shows that o cyclically preserves the ordering of {2p,2p + 1,2p + 2}

(it does not matter where 2p + 1 is mapped to).
We now consider the case a = p + 1.

0(2p+3) = (021-i 0 021—15¢ © 0" 0 Ogp1321-1 0 Topta21)(2p + 3)
= (021 © 021—15¢ 00" 0 Oopr1521-1)(2p + 2)
= (09i 00915t 00" )(2p+ 1)

o(2p+3) = (021i 0 02-15t 00" 0 T2p1521-1 © Tapro2)(2p + 4)
= (0215i 0 091—15: 00" 0 Topr121-1)(2p + 3)
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= (0215; 0 09—151 00" )(2p + 2)

What we thus need to show is that the three distinct integers

i, (0215i009-15100")2p+1), (ousiooa-15:00")(2p+2)

are cyclically ordered. We now note that

(02155 0 021—15:00")(2p) = (021i © 021—15¢ © 0" 0 O2p11521-1)(2p)
= (o21»i00")(2p)
= UQl—m‘(i)
=1+1

so as 2p+1 # 2p and 2p+ 2 # 2p, we can replace i by i + 1 and instead show
that og9;;009;_1:00” cyclically preserves the ordering of {2p, 2p+1, 2p+2}.
Note that @ < [ — 1 and we are looking at the case where a = p + 1, which
implies that p <1 — 2 (even though p in general can be [ — 1 as well), which
implies that the set {2p,2p + 1,2p + 2} is mapped by ¢” to the complement
of {21 —1, 21}, so that o9;_,; 0 0914 is order preserving on this image. That
01— © 0911t 0 0’ cyclically preserves the order of {2p,2p + 1,2p+ 2} thus
follows from ¢ doing so.

Finally, we consider the case p+1 < a < I — 1. Then 2a, 2a + 1, and
2a + 2 are mapped by 02p+1521-1 © O2pr221 to 2(a — 1), 2(a — 1) + 1, and
2(a—1)+2. Asa <1—1wehave a — 1 <1 — 2, so that ¢’ maps these
elements into the complement of {21 — 1,2{}, on which o9;_; 0 91 is
order preserving. The claim thus follows from ¢ cyclically preserving the
order of {2(a — 1),2(a — 1)+ 1,2(a — 1) + 2}.

To define ¥ we still need to define ¢, which we do as follows.

c forl<a<p

a

Cq=X8 fora=p+1 forl<a<l+1
c_1+1 forp+2<a<i+1

We first note that as 1 < s <m and 1 < ¢, <m for all 1 < a <, we have
that € is an element of {1,...,m + 1}!*1. We next need to show that ¢ is
an element of C(I,m). For this we first note that p+1 <1—1+1 =1, so
ci41 = ¢, +1 = m+ 1. Furthermore, that ¢, +1 < ¢cq41 —1for 1 <a <1
follows directly from J being in C(I—1,m—1) aslongasa <pora > p+2,
so that it only remains to consider the cases a = p and a = p+ 1. But we
have

/ /
Cp = Cps Cp+1 = S, Cpt2 = Cpp1 1

so that the required property follows from

/ /
e <s—1<s<c,,
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which holds as (s,o”, g,p, t) is an element of J'.

We have now defined 4, o, and ¢ and shown that (7,0, ¢) is an element of
I. In the course of doing so we also already showed that o(2p) =i + 1 and
o(2p +2) =i, so that (i,0, €) is even an element of I; 9,192 2,. We can thus
define ¥ as follows.

\Il((s, o, g,p, t)) = (i,p, (1,0, 7))

It remains to show that W o ® and ® o ¥ are the respective identity maps.

So let (i,p, (i,0, ¢)) be an element of J, and let s, ¢/, ¢”, ¢/, and t be as in
the definition of ®((i,p, (i,0, ¢))). Then recall that ¢’ and ¢” were defined
(in the definition of ®) as follows.

/
0 = 0721 00 0 022p+2

" /
0 =0¢t521-1°0 002]—1-2p+1
We first note that then
" o
02]-15t 00 O02p+1521—-1 =0

so that the ¢’ defined from ¢” in the definition of ¥((s,o”, g,p, t)) recovers
the ¢’ used in the definition of ®((4,p, (i,0, ¢))). Next we have

o' (2p) = (0isa1 00 0 091 s2p12)(2p)
= (04521 00)(2p)
= (

oisar)(i+1)

so that we in the definition of ¥((s,o”, g,p, t)) also recover the correct 4. It
then also follows immediately from the definition that the correct o is recov-
ered as well. Let € be what was called ¢ in the definition of ¥((s,c”, ¢/, p,t)).
Then we have for 1 < a < p that

= CI

a:Ca

S

while for p+2 <a <1+ 1 we have

w=C i tl=co1m1—1+1=c¢,

1o

and finally, we have the following.

Qp+1:5:0p+1

This shows that ¥ o @ is the identity.
Now let (s,0”,¢,p,t) be an element of J', and let ¢’, o, 4, and ¢ be as
in the definition of ¥((s,c”,c',p,t)). Let ®(i,p, (i,0,7¢)) = (s,0”,,p,1).
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Then we directly obtain s = ¢,y1 = s and p = p. It then follows from the
definition that the o’ constructed in the definition of ®(, p, (i, o, €)) recovers

the o’ constructed in the definition of ¥((s,o”, ¢, p,t)). We then obtain that

t=0'(2p+1)
= (o2i—15t 00" 0 o9pr1521-1)(2p+ 1)
=t

from which we can then also conclude that ¢’/ = ¢”. It remains to show that
¢ =c.If1<a<pthen we have

/o i
Cq=Ca=Cy

and if instead p < a <, then we have

/ / /
Cp=Cop1—1=C1 1 +1-1=¢,

which finishes the proof. O

The next proposition is exactly like Proposition 7.3.3.2, just for p = 0.

Proposition 7.3.3.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definition 7.3.2.3. Let X be a totally ordered set, | > 1 and
m > 0 integers, and y1, . .., Ym as in Construction 7.3.1.1. Then the following

holds.
>~ B

ve€lz;,2,0

= > (sen(0) 0T Ys1:Yst1s 5 Ym)s ©)) - (10 T5)
1<s<m,
oc€EE 1,
ceC(l-1,m—1)
such that
s<cy

Q

Proof. The proof is very similar to the proof of Proposition 7.3.3.2, but has
some differences that require some minor changes. For example there is only
I91,2,0 rather than I; 5 o for various values of 7, which is related to the relevant
permutations o being forced to map 0 to 0. We will point out how the main
steps differ in the case at hand to the case considered in Proposition 7.3.3.2,
but avoid details, for which Proposition 7.3.3.2 should be consulted.

The proof of Proposition 7.3.3.2 begins with an unpacking of the product
occurring on the right hand side, which applies in the same way in our case.
We then define

J = {(s,a”, g, t) €

{1,....m}x E_1 xC(—1,m—1)x{1,...,2l -1}

/
[s<d)
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and for an element (s, 0", d, t) of J" we define B'((s, 0", d, t)) in exactly the
same way as in the proof of Proposition 7.3.3.2 (note the definition of B’
there does not depend on p). It thus suffices to construct a bijection of sets

D 1217270 — J/

such that for each element v of Iy 2o it holds that B'(®(v)) = B(v).
For the construction of @, let (i,0, ¢) be an element of Iy 2. Then we

define s, o, g, and t in exactly the same way as in Proposition 7.3.3.2. The
verification of the required property of ¢’ differs slightly, we have to show that
s < ¢} which amounts to ¢; < ¢g — 1, which is satisfied as ¢ is an element of
C(l,m).

The proof of Proposition 7.3.3.2 continues with a verification of the iden-
tity B’(®(v)) = B(v), which can be done in essentially the same way, only
requiring very minor modification, and less cases.

The construction of ¥ requires some modifications from the way it was
done in Proposition 7.3.3.2. To start with we do not have p given as part
of the input, and instead set p = 0. The definition of ¢, which is defined
as 0’(2p) = 0 in Proposition 7.3.3.2, needs to be changed to ¢ := 2. The
definition of ¢/, o, and ¢, using these values for p and i, is then exactly as
in Proposition 7.3.3.2. The verification that ¢ is in F; needs to be modified
when checking the cases a = p and a = p+ 1. In the case a = p = 0
we have o(0) = 0 and o(2) = 2I, so o cyclically preserves the ordering of
{0,1,2} as 1 < o(2) < 2I. For the case @ = p+ 1 = 1 one arrives as in
the proof of Proposition 7.3.3.2 to showing that 2I, (o9;_1¢ 0 ¢”)(1), and
(021—15¢ 0 0”)(2) are cyclically ordered, which is the case if and only if 0,
(o21—15t00")(1), and (09,1 0 0”)(2) are cyclically ordered. One now uses
that (02—1—:00”)(0) = 0 and proceeds as in the proof of Proposition 7.3.3.2.
The remaining verification steps in the construction of ¥ are exactly as in
the proof of Proposition 7.3.3.2.

The verification of ¥ o ® = id is the same as in the proof of Proposi-
tion 7.3.3.2 except for the argument showing that ¢ is correctly recovered,
which instead in our case is a tautology. The situation for the verification for
® o ¥ = id is analogous. O

7.3.4. Reindexing of summands of egl(_l)

type

od of a second

We have now shown how the summands of egl(_l) (d(y1 - Ym)) in which ys_4
and ys41 occur together as factors of a single tensor factor match up with
summands of 8(62?(:[]1 “++Ym)). We now consider those summands in which
ys—1 and ysy1 do not occur together as factors of a single tensor factor. For
this it will be helpful to introduce some further notation, and while doing so
we will also immediately introduce relevant analogous definitions that will be
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7.3. De Rham forms as a strict model in Mixed

used in the next sections for d(egl{l) (y1 - Ym)) and the remaining summands
l
from 8(6&) (Y1 Ym))-

Definition 7.3.4.1. Let n > 1 be an integer and ¢ an element of %,,. Let us
for the moment denote by P(c) the following set.

P(o) = {p e{l,...,n—1} | o cyclically preserves the ordering
of {p - ]-apap+ 1}}
Then we make the following definitions

€even(0) =max({p€{l,...,n—1} |p¢ P(o) and 2 |p })
eodd(0) =min({pe{l,...,n—1} | p¢ P(o) and 2{p })
where we set €eyen(0) = —o0 if the set over which the maximum is taken is

empty, and eqqq(0) = oo if the set over which the minimum is taken is empty.
Now let n,m > 0 be integers. Then we define a set C™!!(n, m) as follows.

Cfll(n, m) = {(cl, o eng1) €41, m 1Y
’ €1 <cyg<...<cp<cpy1 and cpypq :m—f—l}
Now let X be a totally ordered set, n > 1 and m > 0 integers, y1,...,Ym as

in Construction 7.3.1.1, and ¢ an element of C™(n, m). Then we define an
element T ((y1,...,ym), €) in C,(k[X]) as follows.

Cc1— 1 Cco— 1 c3— 1 Cn+1_1
T (1, Ym), Hyg®Hyg®Hyg o ] v
j=c1 Jj=c2 Jj=cn

Finally, we also make the following definition for n,m > 0 and ¢ an element
of Cfl(n,m).

€even(C) ::max({pe{l,...,n}|cp—|—1<cp+1 and 2 | p}
U{pe{0}|t<a})
€odd(€) =min({pe{l,...,n} |, +1<cpy1and 2{p})

Again, if the set over which we take the maximum is empty then we set
€even(C€) = —oo and if the set over which we take the minimum we set
eodd(?) = OQ. <>

Definition 7.3.4.2. In this definition will we use notation from Construc-
tion 7.3.1.1 and continue on with similar definitions as in Definition 7.3.2.3.
Let X be a totally ordered set, [ > 1 and m > 0 integers, and 1, ..., Ym as
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in Construction 7.3.1.1. The following set I¢ will act as an indexing set for
the summands of egl(_l)(d(yl -+ ym)) that were not yet considered, while the

set I' will be used for d(eﬂ(,ﬁfl)(yl e Ym).
4= {(0, Top) € Sopy x O — 1 m) x {1,...,20 — 1}
’ Eoven(€) < P < €0dd(C) and eeyen(0) —2 < p < €ad(0) + 2
and o cycl. pres. the ord. of {p—2,p—1,p+1}if2|pand p <2l —2
and o cycl. pres. the ord. of {p—1,p+1,p+2}if 2¢pand p <2l — 3}

I = {(o, @) € Bg1 x CMN(20 —1,m)
’ eeven(0> = —o0 and eeven(E') = —OO}

One should think of 74 as something like E; x C(I,m), but where we have an
extra component p that we “jump over” in the properties that E; and C(I, m)
need to satisfy. We also define some new indexing sets that we will use to

reindex sums appearing in 8(65?)(% e Ym)-

I(?ven = {(07 _E) € E2l71 X Cfuu(Ql — 17m)
| eeVen(E) 7& —oc and eeven(o) S eeven(.é)

and €oad(T) > eoven(T) + 3 and eoqd(0) > €oven(T) + 1}

104 = {(07 ) € Xgq x CM(20 —1,m)
| €odd(€) # 00 and €oqd(0) > €odd(€)

and €oven(€) < €0ad(€) — 3 and ecyen(0) < €0ad(€) — 1}

We also define B” and B’ as follows for every element (o”, 27) of the set
Yor—1 x CMY(2] — 1,m) and element (o, €, p) of 19,
BH(<U’ E>)) = Sgn(a) t0 Tfull((yla R 7ym)a F)
B'((0,¢,p)) = (=)' - B"((0, ©)) %
Proposition 7.3.4.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.5.4.1 and 7.8.4.2. Let X be a totally ordered

set, I > 1 and m > 0 integers, and y1,...,Ym as in Construction 7.3.1.1.
Then the following holds.

SV wa) = Y. Y B+ Y B

1<i<2l—-1,v€El; 2p42,2p vElz 2,0
1<p<i-1

+ > B

veld
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v
Proof. Define a set J' as follows.
J = {(s,a, ae{l,....mxE_1xC(l—1m-1)
’thereisnolgpgl—lsuchthat cp < s—1<s<cpyrs
and ¢ ¥ s}

Then Remark 7.3.3.1 together with Propositions 7.3.3.2 and 7.3.3.3 imply

(- ym))

= > > B+ Y. B

1<e<2l—1,v€l; 2pt2,2p vEl2 2,0

1<p<i-1

+ Z (Sgn(a)'J'T((ylv'",ys—l,ys—‘rla"'aym),—g))'(1®y78)
(s,0,C)eJ’

so that it suffices to show the following.

3 B'(v)

veld

= Z (Sgn(o—)'O-'T((ylv'“?ysflay.s#*lv'"7ym)7€))'(1®E)
(s,0,C)EJ’

As in the proof of Proposition 7.3.3.2, we begin by evaluating the product
occurring in the summands on the right hand side of the equation, which by
Propositions 6.3.2.10 and 6.3.2.11 yields the following for (s, o, ¢) an element
of J'.

(sgn(a) *0 T((yla cees Ys—1 Ys+1y - - 7ym)a ?)) ’ (1 ®@)
= > sgn(ou1oi0 (0 Midgyy)):

1<t<2l—1

(U2l71—)t © (U I id{2l*1})) . (T((yla e Yi-1Yit1, - 7ym)7 F) ® E)
Defining a set J as follows
J = {(s,t,a,?) e{l,...omyx{l,....2 -1} x By x C(l — 1,m —1)
|thereisno1§q§l—1suchthath<s—1<s<cq+1,
and c; # s}
it then suffices to show that there exists a bijection

o J— 14
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such that the following holds for all elements (s,t, 0, ¢) of J.

B'(®((s,t,0,7)))
= sgn(og—1-¢ 0 (0 Midgy_1}))
(21500 (0 Midga—1y)) - (T((Y1, -, Yim1, Yit1s -+ -1 Ym), €) O Ts)

So to define @, let (s,t,0, ¢) be an element of J. As ¢; ¥ s we must have
c1 < s. Wealsohave s <m =¢;. Asc; < ¢ < --- < ¢; there must thus either
exists a 1 < ¢ < I with ¢; = s or with ¢; < s < ¢441. But as we ruled out
cg < 8—1< s < cgt, the latter implies ¢, = s — 1. The upshot is that there
isa 1 <q <[ with either ¢ = s or ¢g =5 — 1. If ¢; = s then set p :=2¢ — 1.
If instead ¢, = s — 1, then set p := 2q. We then define

I_
0 =091+t 00 00p 4211
as an element of Yo;_; and ¢’ as follows.

Caja+ 1 if2]a
=% Clat1)/2 ifa<pand2ta for 1 <a <2l

a

Cla—1)/2+2 ifa>pand2fa

We want to define ® by setting

d((s,t,0,7)) = (0', g,p)

and for this we need to check various things to ensure that this is well-defined.

To begin with, we have 1 < ¢ <[ and defined p as either 2q or 2¢ — 1. We
can thus conclude that 1 < p < 2I, and are left to exclude that p = 2[ can
occur. This could only occur if we had ¢; = s — 1, which can not happen, as
cg=mand s—1<m. Thus 1 <p <2 —1.

We next show that eeyen(0’) — 2 < p < €oda(0’) + 2. We begin with the
left inequality. To show that eeyen(c’) < p + 2 we need to show that if
p+2<a<2l—2and a is even, then ¢’ cyclically preserves the ordering
of {a — 1,a,a + 1}. Unpacking the definition of ¢’ this amounts to o cycli-
cally preserving the ordering of {a — 2,a — 1,a}, which it does as a — 1 is
odd, 1 < a—1 <2l —32%, and ¢ is an element of F;_;. Similarly, to show
that eqga(c’) > p — 2, we need to show that if 1 < a < p—2 and a is
odd, then ¢’ cyclically preserves {a — 1, a,a+ 1}, which unpacking the defini-
tion of o amounts to o cyclically preserving the ordering of {a — 1,a,a + 1},
which it does as it is an element of E;_;. Similarly we can show the extra
condition on ¢ around p, where this time the elements are “split up” by
opsai—1. If p < 21 — 2 is even, then ¢’ cyclically preserving the ordering
of {p — 2,p — 1,p + 1} amounts to o cyclically preserving the ordering of

231 < a —1 is implied by p+ 2 < a.
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{p—2,p—1,p}, which it does as 1 < p—1 < 2] — 3 is odd®* and o is an
element of F;_;. Similarly, if p < 2] — 3 is odd, then ¢’ cyclically preserving
the ordering of {p — 1,p + 1,p + 2} amounts to o cyclically preserving the
ordering of {p — 1,p,p + 1}, which it does as 1 < p < 2] — 3 is odd.

We now show that ¢’ is an element of C'(2] —1,m). For this we first need
to show that ¢/, is a well-defined element of {1,...,m + 1} for 1 < a < 2.
If 1 <a<2liseven, then1 <a/2 <, s01< Caj2 < m is well-defined,
implying that 1 < c;/2 <m+1lIfaisoddand 1 <a < p <2l —1, then
2<a+1<2,s01<(a+1)/2 <land 1< cy1)2 < m is well-defined.
If instead a is odd with 2 < p+1<a <2, then 1 <a-1<2l—1. As
a — 1 is even this implies that 1 < (a — 1)/2 < I — 1 so that c_1)/2 is
well-defined and 1 < ¢(,_1y/2 < m. As (a —1)/2 <1 —1 we furthermore have
that c_1)2 < g —2 =m — 2,50 that 1 < ¢(u_1)/2 +2 < m. So far we
showed that ¢ is an element of {1,...,m+1}? so we still need to verify the
(in)equalities the components need to satisfy. It follows immediately from the
definition that ¢}, = ¢; + 1 = m + 1. It remains to show that ¢} < --- < cb,.
So let 1 < a < 2l be even. Assume that 2 < a. Then we need to show that
¢,_1 < c,. Depending on whether a — 1 < p or not this amounts to either
Caj2 < Cqj2 + 1, which clearly true, or ¢(q/2)-1 +2 < ¢q/2 + 1, which is true
as ¢ is an element of C(I —1,m — 1). Now assume that a < 2] —2. Then we
have to show that ¢, < ¢/, ;. Again we have two cases and this amounts to
either cq o +1 < ¢(q/2)+1, Which is true as ¢ is an element of C'(I —1,m —1),
or to ¢u/o + 1 < ¢qy2 + 2, which is trivially true.

For ® being Well—d_efmed it remains to show that eeven(g) <p< eodd(g).
We begin with egyen(¢’) < p. Solet p < a < 2l be everl; Then we have to show
that ¢, +1 = ¢/, ,,. But unpacking the definition of ¢’ we have ¢, = ¢,/ + 1
and ¢, = ¢4/ + 2, so this holds. For p < eqqa(c ) let 1 < a < p be odd.

Then we have to show that ¢, + 1 = ¢, ;. This time we have by definition
Co = Clat1)/2; and ¢,y = C(qq1y/2 + 1. This finishes the proof that & is

well-defined. _
Now let (s,t,0,¢) be an element of J, and ®((s,t,0,¢)) = (¢/,,p). We
want to verify the identity for B'(®((s, ¢, 0, ¢))). We begin with the following

calculation.
B'(®((s,t,0,7)))

= (- 0o T (g ym), )

P - sgn(o
= (—1)P"! - sgn(o9_144 000 0pa1) - (U2l71%t 0000y s21-1)

(:1 1 ch—1 ch—1 CQL
Hy]®Hyj®Hyj " ® H Yj
Jj=c} J=cy_q

241 < p—1, as p = 1 conflicts with the assumption that p is even.
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= (_1)p+1 : (—1)p_(2l_1) Sgn(amfl%t S 0) : (02171»t o 0)-

e -1 i~ ch— Cpp1—
[Tve - H y; ® H Yi® o ® H y; © H Yj
J=1 —1 j=c, Jj=ch_4 j=c,

= sgn(og—15¢ © 0) : (0’21—1—>f, © U)'
¢h—1 o~ oy~ Cpt1~
[Tve e H Y ® H Y ®- - ® H y; ® H vj
J=1 J=¢p1 J=ch_4

Let y] = y1,.--»Ysq = Ys—1, and Y% = Ysy1, ..+, Yn_1 = Ym- 1t then suffices
to show the following.

-1 cy—1 Coy2~ €= o1~
Hy]®HyJ " ® H Y ® H Y Q- ® H Yj @ H Yj
j=c} J=cpiq J=ch_, J=cp

:T((ylv"'vym—l)’ C) ®Ys

For this we distinguish two cases according to the parity oi p. If p is odd,
then we obtain the following by unpacking the definition of ¢’ and p.

-1 Cpta~ <~ Cpp1 1

Hyj - ® Hyj® Hy] - ® H Y; & Hy]

J=1 1 j=cy, J=ch_y

c1—1 cq—1 cq+1 cy Cq
=ve--eo Il we Il oo Il wellw

Jj=1 Jj=cq-1+1 Jj=cq+1 Jj=ci—1+2 Jj=cq

c1—1 cq—1 c
=[Mweve-o [ werae-o [ wow,

= j=cq-1+1 j=ci—1+2

c1—1 qul c—1
=[[viev, oo [ vevw,o--e [ v

=1 j=cq—1+1 j=ci_1+1

=T((Whs - Y1), €) O T

If p is instead even, one obtains the following instead. There is only a slight
difference in the middle.

-1 cp—1 Cpta~ Cy— Cpt1~

H%®Hy] - ® Hy]® Hyj Y H Y @ Hy]
j=c} -1 J=c, J=ch_4

c1—1 Cqt1 ¢ cq

Hy]®Hy] ®Hyg® Il vie-eo I wellw
j=c1 Jj=cq Jj=cq+2 j=ci—1+2 J=¢q
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T Cat1 cy
=[[vewme eme [[ e [] wer,

j=1 j=cq+2 j=ci_14+2

a Cariml "
=]]vev, o eu o [] vie-o ] viewn
= J=eqtl j=cr-1+1

= T((yllavy;n—l)7?) ®%

To finish the proof of this proposition it remains to show that & is a
bijection, for which we construct an inverse ¥. So let (¢/, ¢/, p) be an element
of T4, Then we define s, t, o, and ¢ as follows.

5= c;
t:=0o'(p)

. !
0 = 0t52]-1°0 002]—-1-p
Ca = Chy — 1 forl1<a<l

We want to define ¥ as
\Il<(0/, Z’,p)) = (s,t,0,7)

for which we need to E}leck various things to ensure that this is well-defined.

We first note that ¢ is an element of C™!(2] —1,m) and 1 < p < 2l — 1,
SO c; is defined and satisfies 1 < ¢, < cgy =m+1, so 1 <s <m. Next, ¢’ is
an element of o; 1,50 1 <t < 2] —1 is also well-defined.

We next need to show that o is an element of F;_;. For this we first note
that it follows from the definition of ¢t and o that o is an element of Yo;_5.
So now let 1 < a < 2] — 3 be an odd integer. We have to show that o
cyclically preserves the ordering of {a — 1,a,a + 1}. As a < 2] — 3 we have
a+1 < 2l — 1, so this amounts to showing that ¢’ cyclically preserves the
ordering of {o91_15p(a — 1),091-15p(a), 021—15p(a + 1)}. For this we need
to distinguish four cases. First consider the case a < p — 1. Then we have to
show that o’ cyclically preserves the ordering of {a — 1,a,a + 1}, which it
does, as a is odd and a < p—2 < epqq(0”). Next consider the case a > p. Then
we have to show that ¢’ cyclically preserves the ordering of {a,a + 1,a + 2},
which it does, as a + 1 is even and eeyen(0’) < p 4+ 2 < a + 1. The cases
a =p—1and a = p remain. So assume a = p— 1. Then we have to show that
o’ cyclically preserves the ordering of {p —2,p —1,p+ 1}. Now a < 2/ — 3
being,; odd implies that p < 2] — 2 is even, so this is part of the condition for
(o', ¢, p) being an element of I4. Similarly, if we assume a = p, then we have
to show that o’ cyclically preserves the ordering of {p —1,p+1, p+ 2}, which
it does as p = a < 2] — 3 is even.

We now turn to showing that ¢ is an element of C(I — 1,m — 1). If
1 <a <1, then 2 < 2a < 2, so it follows that ¢}, is defined and satis-
fles 1 < ¢} <y, <m+1, so that ¢, is well-defined and satisfies 1 < ¢, < m.
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We also obtain ¢ :c’Ql—l =m+1—1=m.Sonowlet 1 <a<1[-1.
Then we have to show that ¢, +1 < cq41 — 1. This amounts to showing that
Chq < Chayo — 2. But this follows from ch, < ch, 1 < €y o

To finish the proof that ¥ is well-defined it remains to show that c¢; % s
and that there isno 1 < ¢ <1 —1 such that ¢; < s—1 < s < ¢g41. Applying
the definitions of s and ¢, this means we have to show that ¢, — 1 % ¢, and
that there is no 1 < ¢ <1 — 1 such that ¢5, —1 < ¢}, =1 < ¢, < ch o — 1.
Let us first tackle the first claim. Assume that ¢, < c5 — 1,50 ¢, + 1 < c}.
As ) <y < < --- this implies that p = 1. As p < eodd(g) and p =1
is odd, this means that ¢} + 1 = ¢, which contradicts ¢, + 1 < c5. Next,
assume 1 < ¢ <1 —1such that ¢, — 1 < ¢}, =1 < ¢, < chyp— 1. Again as
ch < cy < -+ we obtain that we must have 2¢ <p <2¢+2,s0p=q+1.
AS €even(€’) < p < €odd(c’) we can then conclude that ¢, +1 = ¢}, 1, which
contradicts the assumption that ¢, < ¢, o — 1. This finishes the proof that
U is well-defined.

It remains to show that ® o ¥ and W o ® are the respective identities.
So let (s,t,0,7) b& an element of J and ®((s,t,0,7)) = (¢/,c,p). Let
furthermore ¥ ((o’, ¢, p)) = (s,t, 0, €). It follows directly from the definitions
that ¢ = o/(p) = t, from which we can then conclude o = ¢ as well. It is also
immediate from the definitions that ¢ = ¢. To show that s = s, one needs to
distinguish by the parity of p, and then this also follows directly by unpacking
the definitions.__

Now let (¢, ¢ ,p) be an element of I4 and let ¥((o/, ¢ ,p)) = (s,t,0,7), as
well as ®((s,t,0,¢)) = (¢, Q, p). We again need to distinguish by the parity
of p. If p is odd, then p < eodd(g) implies that ¢}, ; — 1 = c;,. From this we
obtain ¢(,41)/2 = €1 — 1 = ¢}, = 5. Thus we obtain p = 2((p+1)/2) -1 =p
If instead p is even, then we directly obtain c,,5 = c; —1=s—1, so that
p=2(p/2) = p. As p = p it then follows from the definition that ¢’ = ¢’. For

¢ we obtain the following for 1 < a < 2.

ch if2|a
do=K¢ 1 —1 ifa<pand2ta
d_1+1 ifa>pand2ta
So let a < p be odd. Thena<eodd( ) sothat ¢/, =¢/,,; —1. Now let a > p

be odd Thena—1>p> ecvcn(c )iseven,soc,_;+1= c;. This shows that

= ¢ and thus finishes the proof that ® o ¥ = id and thus the proof of this
proposition. O

7.3.5. A first look at d o egl(_l)

(e

We now turn to d(e Y1+ Ym)) and write it as a sum over I'.
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Proposition 7.3.5.1. In this proposition we use notation from Construc-
tion 7.83.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, I > 1 and m > 0 integers, and yi,-..,Ym as in Construction 7.3.1.1.
Then the following holds.

d<€gi'_1)(y1 Ce ym)) p— Z B”('U)
vell
Q@
Proof. We begin by evaluating the left hand side using the definition of egl(_l)
from Construction 7.3.1.1 and of the differential on the normalized standard
Hochschild complex in Proposition 6.3.1.10.

d(egﬁ_l)(yl = 'ym))

=d Z sgn(o)-o-T((y1,---,Ym), €)
ocEE; 1,
cTeC(l-1,m)

= Z O'ctzyc,Ql—l [1® Z Sgn(g) t0 T((yla cee aym)7 E>)
0<t<2l—-2 cEE 1,
ceCc(l-1,m)

Note that sgn(oeye2—1) = (—1)& D=1 =1,

= > Y sen(olens o (id1y TIo))-

0<t<2l—-2 o€E_q,

ZeC(—1,m)
(J(ttyc,Qlfl o (id{l} HU)) . (1 ® T((yl, e 7ym)7 ?))
Finally, we note that if we had ¢; = 1, then the first tensor factor of

T((y1y---,Ym), ¢) would be 1, making 1 ® T((y1,--.,Ym), ¢) = 0. We can
thus remove those summands.

= Z Z Sgn(afzyc,Zlfl o (ld{l} HU))

0<t<2l-2 o€FE_1,
Tec(—1,m)
such that
c1>1
(J(t:yc,Zlfl © (ld{l} HU)) : (1 ® T((yh s 7ym)7 E>))
This leads us to defining a set J as follows.
J={(t,0,¢)€{0,...,20 -2} x E;_1 xC(l—=1,m) |c; > 1}

It then suffices to construct a bijection

& J oIt
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such that for every element (¢, 0, ¢) of J the following holds.

B"(®((t,0,7))) = sgn(0¢ye o1 © (idg1y o))
. (Jﬁycgl_l o (id{l} HU)) (1 T((y1,---,Ym), €))

So let (t,0, ¢) be an element of J. Then we make the following definitions.

o= azyc’mfl ) (id{l} HU)

1 ifa=1
= q Ca/2 if a is even forl1 <a<2]
Cla—1y2 +1 if 1 <aisodd

O((t,0,7)) = (0’, g)

o~

We need to show that (o”, 27) defined like this is a well-defined element of I'.
For this note first that as o is an element of Yo;_5 the permutation ¢’ is indeed
an element of ¥g;_1. We also need egyen(c’) = —00. So let 2 < a < 2] —2
be even. Then we have to show that o’ cyclically preserves the ordering
of {a — 1,a,a + 1}. This amounts to o cyclically preserving the ordering of
{a—2,a—1,a}, which it does as ¢ is an element of F;_; and 1 < a—1 < 2]-3is
odd. Next we need to show that ¢’ is a well-defined element of CMY(2] —1,m).
If 2 < a < 2l is even, then 1 < a/2 < [, so ¢, is well defined and satisfies
1<, <m+1.If3<a<2—1isodd, then1 < (a—1)/2<1-1s0
that c(,_1)/2 is defined and satisfies 1 < ¢(,_1)/2 < ¢ = m+ 1, which implies
that 1 < ¢, < m + 1. Thus c is an element of {1,...,m + 1}, We also
have ¢}, = ¢, = m + 1. It remains to show that ¢} < --- < ¢),. This amounts
tol <cp <e1+1<cy <+ < ¢, which holds as ¢; > 1 by assumption
on (t,0,¢),and as ¢, +1 < cqy1 —1for 1 <a <l —1as ¢ is an element

of C(I —1,m). To show that (¢’,¢’) is an element of I' it still remains to

show that egyen(c') = —00, which amounts to showing that ¢j = 1 and that
Cop1 = €, + 1 for 2 < a < 20— 2 even, both of which is the case directly from

the definition of ¢'.
We now verify the identity that needs to be satisfied for B”(®((¢t, 0, ©))).

B"(2((t,0,)))

s ((2.7)
= Sgn(gzyc,Ql—l o (id{l} HU))'
(szyc,Zlfl o (ld{l} HU)) ’ Tfull ((yla ) ym)v Cl)

Verification of the identity that is needed for B”(®((t, o, ¢))) is now com-
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pleted by the following calculation.

Tfull ((y17 (R 7ym)a El))

cl 1 ch—1 ch—1 ch—1 ct—1 ch—
:HyJ®HyJ®HyJ®HyJ®HyJ ®Hyj
j=c} Jj=ch Jj= C2171
c1— 1 chl c—1
:HyJ®HyJ®HyJ® H yJ®HyJ - ® H
j=c1 j=c1+1 Jj=c2 j=ci—1+1
QT Ce—1 Ca-1
=1@ [[yemme [[ vwerme o []
j=1 j=c1+1 j=ci—1+1

=1 ®T((y17aym)7€)

It remains to show that ® is a bijection. As usual we construct an inverse
V. So let (07, ¢’) be an element of I'. Then we define ¥((o”’, ¢’)) as follows.

t=0'(1)—1

— —t /
0 =T{2,.21-1} (Ucyc,Ql—l o )

Ca = Chy, for1 <a <l

\IJ((U’, g)) = (t,0,7)

Again we have to check some things to verify that this is well-defined. First,
as o’ is an element of Ys;_1, the value of ¢ satisfies indeed 0 < t < 2] — 2,
and the above definition of ¢ is an element of Yo;_1. We need to show that
o is even an element of E;_1. So let 1 < a < 2] — 3 be an odd integer. We
have to show that o cyclically preserves the ordering of {a — 1,a,a+ 1}. But
as UCyC o911 cyclically preserves the ordering of any set, the restriction means
that what we have to show amounts to showing that ¢’ cyclically preserves
the ordering of {a,a + 1,a 4+ 2}, which it does as 2 < a+1 < 2] — 2 is
even and €eyen(0) = —oo. We also need to show that ¢ is an element of
C(l — 1, m) satisfying ¢; > 1. For this we note that for 1 < a <[ we have
2<2a<2l. Thus 1 < ¢} < b, <m+1, from which it follows that ¢ is an
element of {1,...,m + 1}! with ¢; > 1. Directly from the definition we have
¢ = chy =m+1,and if a < I, then we have ¢, = ¢, < b,y < Chain = Catls
from which ¢, +1 < ¢q41 — 1 follows. This shows that ¥ is well-defined.

To finish the proof of this propositions we are left to show that ® o ¥ and
¥ o ® are the respective idfntity maps. S_(.) let (t,0,¢) be an element of J,
and set ®((t,0,7¢)) = (o/,¢') and ¥((¢/, ') = (¢, 0, ). Then the following
calculations show that W o @ is the identity.

t=0'(1)—1=0l,o (1)—1=1+t—-1=t
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— -t t .
g =T{2,.21-1} (Ucyc,2l—1 O 0cyc,21—1 © (ld{l} HU))

= 7"{27“_721_1} (ld{l} HO') =0

ga:céa:ca forl1<a<]

Now let (a’,g) be an element of I'. Let W((o’, g)) = (t,0,¢) and let
O((t,0,¢)) = (a’, ). We begin by the following calculation.

(05t 00) () = o0 (' (W) = o (1)~ (0(1) ~ 1) = 1

This implies the following calculation showing ¢’ = ¢”.

Q/ = J(t:yc,Qlfl o (id{l} HJ)

— 4t ; —t /
= Teye21-1° (1d{1} Ores, .. 21-13 (Ucyc,zm °o ))

— St —t !
- chc,2l71 o Ucyc,2l—1 °o

/
=0

It remains to show that g = E; Solet 1 < a < 2l. Then we have the following
calculation.

1 ifa=1
oy =4 Cas2 if a is even
Cla—1)/2 +1 ifl<aisodd
1 ifa=1
=<, if a is even
d_1+1 ifl<aisodd
As eeven(g) = —oo by definition of I' we have ¢} = 1. Furthermore, if
3<a<2l—1lisodd, then2<a—-1<2l—-2iseven,soc, ;.4 =¢, ;+1
for the same reason. This finishes the proof of ® o ¥ = id. O

7.3.6. Progress so far

We can sum up progress so far as in the following proposition. Our goal is
to show that the left hand side of the equation is zero.

Proposition 7.3.6.1. In this proposition we use notation from Construc-

tion 7.3.1.1 and Definitions 7.5.4.1 and 7.8.4.2. Let X be a totally ordered
set, I > 1 and m > 0 integers, and y1,...,Ym as in Construction 7.8.1.1.

410



7.3. De Rham forms as a strict model in Mixed
Then the following holds.

(L ym) — e g ym)) + A (X1 in))

> B+ >, B+ > B

1<i<2l—1, 1<i<2i—1, velo.o0n

1<g<i-1, 0<¢<i-1,

vEI; 2¢,2q41 vEL; 2¢g4+1,2q+2

- E B'(v) + E B" (v) Q
veld vell

Proof. By combining Proposition 7.3.2.9 (used for the first two lines, for
8(63? (y1--+Ym))), Proposition 7.3.4.3 (third line, for —e(lfl)(d(yl “Ym)))
Proposition 7.3.5.1 (used for the fourth line, for d(egl(_l) (Y1 ym))) we obtain
the following.

5(65?(3/1 T ym)) — ey V- ym)) + d(eg{l)(yl o ym))

> B+ > B+ Y. B

1<i<2l-1, 1<i<2l-1, 1<i<2l-1,
1<q<i-1, 1<q¢<l-1, 0<qg<l-1,
vEIL; 242,29 vEIL; 24,241 VEIL; 2q41,2q+2
+ E B(v) + E B(v)

v€lo,0,1 v€l2 2,0

- Y. B- Y, B-) B
1<i<2l—1, vEI2 2,0 veld

1<p<i-1,
vEL;i 2p+2,2p

+ Z BN(’U)

vell

Now some summands cancel and the result follows. O

7.3.7. Reindexing remaining summands from the
boundary

We want to show that the left hand side of the equation in Proposi-
tion 7.3.6.1 is zero, doing so via the right hand side. Of the terms there,
the last two terms are written as sums of summands that are obtained by
applying 7™ to an element of C™!(2] — 1,m) and then permuting and per-
haps adding a sign. The other terms are however given differently, so in this
section we reindex those sums to bring them into a similar form.

Proposition 7.3.7.1. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definitions 7.8.4.1 and 7.8.4.2. Let X be a totally ordered
set, I > 1 and m > 0 integers, and yi,...,Ym as in Construction 7.8.1.1.
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Then the following holds.

> B+ Y, B)= > B'@)

1<i<2i—1 v€lp 01 ver?
lgqglil” even
V€L 2q,2q+1

Proof. Define the subset .J of I as follows.?®

Ji=1Ipp1U U I 29,2q+1
1<i<21-1,
[<¢<i-1
It then suffices to produce a bijection

o:J— 10,
such that the following holds for every element v of J.
B"(®(v)) = B(v)
So let (i,0, €) be an element of .J. Then we make the following definitions.
¢=071(i)/2

I
0 = 04152100 002]-2¢+1

Cla+1)/2 if 24a and a < 2¢
w2+ 1 if 2 da<?
e = €a/2 1 | @ and a < 2¢ for 1 <a <2l
Clatnyz +1 if2faanda>2q+1
Ca/2+1 if2|aand a>2¢+1

o((i,0, 7)) = (a', Z)

There are various things that we need to check to verify that this is well-
defined. First, 0= 1(i +1) = 07 1(i) + 1 holds by assumption on elements of
J,s0as 0<i<2l—1implies 1 <o~ (i + 1) < 2l we can conclude that we
must have 0 < 071(i) < 2] — 1. Furthermore, the definition of J implies that
o~1(i) is even, so ¢ is a well-defined integer satisfying 0 < ¢ < [ — 1. This
makes o’ into a well-defined element of X5;. Furthermore, we have

o'(2l) = 0i4152(0(2¢ + 1)) = gir152: (a(a_l(i) +1))
= 0iy1-21 (U(U_l(i)) +1) =0oip15u(i+1)
=2

25The definition of Iy o1 is really the same one as for I; 24 24+1 if we set i = 0 and ¢ = 0,
so we mostly do not need to treat this as a separate case. The only difference is that
I; 0,1 is empty unless i = 0, as 0(0) = 0 for every element o of ¥y;.

412



7.3. De Rham forms as a strict model in Mixed

so that we can even consider ¢’ as an element of ¥o;_;.

We next show that ¢ is a well-defined element of Cf(2]—1,m). Using that
¢ is an element of C(I,m) one easily sees that in all four cases ¢/, is a well-
defined integer satisfying 1 < ¢/, < m +1%%. We also have c¢j; = ¢;11 = m+ 1.
It remains to show that ¢, < ¢, for1 <a <2l —1.1f a <2¢ —11is odd or
a > 2q+2 even then is immediate. If @ < 2¢g—2 is even, then ¢/, = Cqy2+1and
Cot1 = Caj2+1, 80 € < Cyyq follows from ¢, /0 +1 < ¢qjoq1 — 1. If @ > 2¢+11is
odd, then ¢, = c(441)2 + 1 and ¢, = c(a41)/241, 50 that ¢, < ¢, follows
analogously. It remains to consider a = 2¢. In this case c5, = ¢, + 1 and
Chgr1 = Cq+1+ 1,80 ¢y, < chyyq as ¢y < cgp1. This completes the proof that

c is a well-defined element of C™"'(2] — 1,m).

We now verify the conditions required for (¢, 27) to be an element of 12, .
Concretely we make the following claims.

€even (Q’) =2q
Ceven(0') < 2¢q
€odd (57) >2¢+3
€oda(0') > 2¢+1

To show that eeven(g) = 2q, we begin by first noting that c5, = ¢, + 1 and
Chg11 = Cq+1+1. As € is an element of C(/,m), we have ¢, +1 < cg41, which

implies that cp, +1 < 5,14, s0 eeven(g) >2q. Now let 2¢+2 <a <20—2

be even. Then ¢, + 1 = ¢,/241 + 1 = ¢}, 1, which shows that ecven(c’) = 2¢.
Next let 1 < a < 2¢ — 1 be odd. Then ¢, + 1 = c(441)/2 +1 = ¢4, 50

—

eodd(c") > 2q + 1. Furthermore, we have ¢y, 1 = cgy1 + 1 and ¢y, 5 = cgya.
By definition of J it holds that cq41 + 1 = cq+2 — 1, which then implies
Chg11 + 1 = 5,1 0. Thus we even get eoaa(c’) > 2¢ + 3. We next show that
€even(0') < 2¢. So let 2¢ + 2 < a < 2] — 2 be even. Then we have to show
that ¢’ cyclically preserves the ordering of {a — 1,a,a + 1}, which amounts
to o cyclically preserving the ordering of {a,a + 1,a + 2}, which is the case
as a+1 is odd and satisfies 1 < a+1 < 20— 1. To show that eqqq(c’) > 2¢+1
we let 1 < a < 2g — 1 be odd, and have to show that ¢’ cyclically preserves
the ordering of {a — 1,a,a + 1}, which it does as o does. This completes the
proof that ® is well-defined.

Keeping the notation used so far, we now show the following.

Bll(q>((iﬂ g, E>))) = B((lv g, E))

26T exclude that we get m + 2 in the two cases in which 1 is added to a component of €,
note that in those cases the index is at most [, and ¢; < ¢j41 =m + 1.
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We first consider the signs.

sgn(o’)
= SgN(0j41521 00 0 T2 42441)

— (_1>2l—(i+1) -sgn(o) - (_1>2q+1—2l
= (—1)" - sgn(o)

It thus remains to show the following.

—

axa.T«yh.“,ym%zﬂ):wﬂ.Tm“«yh.”,ymycj

For this let us write T'= T'((y1, - . - , Ym ), ¢ ) and T, for the a-th tensor factor
of T. Then we can carry out the following calculation for the a-th tensor

—

factor of TM((yy,...,ym), ), with 0 < a < 2] — 1.

—

Tfull ((yla s 7ym)a cl)
5y, ifa=0

Hca+171yj ifa>0

i=c,
H;;lyj ifa=0=¢q
H;;_llyj ifa=0<gq

TTCGat+n/z : .
Hj:C(a+1)/2 Y;i if0<a< 2qg—11is odd
= Hja:/czj/lgji-ll Yj if 0 <a<2g—1iseven
ey if0<a=2g

a -1 . .
H;(::(i)ﬁ;r/lﬁl y; ifa>2¢+1isodd

m if a > 2q +1is even

H;lﬂyj ifa=0=gq

H;!llyj ifa=0<gq

Yetarny 2 if0<a<2¢—1isodd
= m if0<a<2q—1iseven

m if0<a=2q

(o -1 . .
H;(:;r(?ﬁ;r/lﬁl y; ifa>2¢+1isodd

Yeayasr ifa > 2q + 1 is even
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Ty - T ifa=0=gq

T, ifa=0<gq

T, if0<a<2q¢—1isodd
=<K T, if0<a<2qg—1iseven

Tog - Tog+1 if0<a=2q

Tot1 ifa>2¢+1isodd

Tot1 ifa >2g+1is even

T, ifa<2¢g—1

= qu . T2q+1 ifa = 2q
Tot1 ifa>2¢g+1

Note that the inverse of ¢’ is given by

-1
0 7 =02q+152100 ~ 002 it1

so that we have the following values for 0 < a < 2l — 1 (note that the cases
below are exhaustive, as 2¢ + 1 can not occur due to a # 21).

o~ Y(a) if a <iand o7(a) < 2q
o (a) = o~ (a) -1 ifa<iand o~ !(a) >2¢+2
o Ha+1) ifa>i+1and o7 (a+1) < 2q
o a+1)—1 ifa>i+lando t(a+1)>2¢+2

—

The upshot is that the a-th tensor factor of o’ - T ((y1, ..., ym), ¢’) is given

by
Tfull((yh e Ym)s E/) e ifa<iand o~(a) < 2
Tfull((yl,...,ym),_7> ‘0 if a <iand o7(a) > 2¢+2
o~ 1(a)—-1
Tfull((yh,..,ym), g) Has1) ifa>i+1land o7 (a+1) <2g
o~ 1(a+1
(TN ifa>i+1
(1 Ym), © o=1(a+1)—1 ez
and o~ Ha+1) > 2¢+2
Ty-1(a) ifa<iand o7!(a) <2¢—1
Toq - Tog+1 if a <iand o7 1(a) = 2¢q
_ To-1(a)—1+1 if a <iand o7 !(a) > 2q+2
Ty-1(at1) ifa>i+1land o (a+1)<2¢—1
Toq - Tog41 ifa>i+1and o7 (a+1) =2q
Ty-1(at1)-141 fa>i+land o ' (a+1)>2¢+2
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Note that 0(2¢g) =7 and 0(2¢+ 1) =i+ 1.

T,-1(0) ifa<iand o7 !(a) <2¢—1
To-1iy To-13i41) ifa=i

= To-1(a) ifa<iand o '(a) >2¢+2
To—1(at1) ifa>i+1land o ta+1)<2¢—1
To-1(at1) ifa>i+1land o t(a+1)>2q¢+2
To-1(a) ifa<i

=\ To1@) To-rpry fa=i
Ty-1(at1) ifa>i+1
= ((92(0' . T((y1, ceey ym)7 E))))a

This finishes the proof that B”(®((i,0, ¢))) = B((i, 0, ¢)).
We still have to show that ® is a bijection. For this we construct an in-

verse U. So let (¢, g) be an element of I2 . Then we make the following

even-*
definitions.

q = €even (07) /2
i:=0'(2q)
0 = 0915i41 00" 0024121
Cho 1 ifa<gq
o =RCh, 1—1 ifg+l1<a<l for1<a<l+1
m+1 ifa=1+1

\p((a', Z’)) = (i,0,7)

As usual various checks are needed to show that this is indeed we]l-defined. To
begin with egyen (c’) # —o0 by definition of 12, 50 0 < €cyen (c') <20 -2,
implying that ¢ is a well-defined integer satisfying 0 < ¢ <[ — 1. This makes
i a well defined integer satisfying 0 < ¢ < 2] — 1. We note here that i = 0 if
and only if ¢ = 0.

We next show that o is an element of F;. So let 1 < a < 2] — 1 be odd.
We have to show that o cyclically preserves the ordering of {a — 1,a,a + 1}.
If a < 2¢ — 1, then this amounts to showing that a’_) cyclically preserves
{a — 1,a,a + 1}, which it does as €oqda(0’) > eeven(c’) +1 = 2¢ + 1. If
instead a > 2¢ + 3, then this amounts to showing that ¢’ cyclically preserves
{a —2,a—1,a}, W.}}ich it does as a — 1 is even, satisfies a — 1 > 2¢ + 2, and
€even(0') < €even(c’) = 2¢. The case a = 2¢g + 1 remains. For this we just
evaluate o at 2¢ and 2g + 1 as follows

o(2q) =1 0c(2¢+1)=i+1
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7.3. De Rham forms as a strict model in Mixed

which already shows the claim, no matter what o(2¢ 4+ 2) may be. It also
handles the condition on o required for (i, 0, €) to be an element of I; 24 24+1-

Now we show that ¢ is an element of C'(I,m). We have ¢;11 = m + 1 by
definition, and for 1 < a <[ we have 1 < 2a —1 < 2] — 1 so that ¢}, ; is
a well-defined integer. If furthermore a < ¢, then, as ¢ <[ — 1, we have the
following chain of inequalities.

1<chy 1 Sy 3<cy—3=m-—2

If instead ¢ + 1 < a as well as 2 < a, then we have the following chain of
inequalities.

1<ch<dy—1<ch, 1 —1<cy 1 —1<cy—2=m—1
Finally, if a = 1 and ¢ = 0, then eeven(g;) = 0, which implies that 1 < ¢} — 1,
while ¢4, ; —1 <m — 1 as in the previous case. We have thus shown so far
that ¢ =m+1whilel <c¢, <m-—-1forl<a<Il. Soletl<a<I-1
We still have to show that ¢, +1 < o401 — 1. If a <g—1o0ra > q+1 this
follows from ¢, | < ¢, < ch, 1. The case a = ¢ remains, where we have
cq = Chy_q and cgp1 = ch g — 1. But as eeven(c’) = 2¢, we obtain the last
inequality in the following chain c5, ; < 5, < ¢y, + 1 < ¢4, 1, which shows
the claim. Esing that cp, 1 = chyp0 — 1 = chyy3 — 2 due to eqaa(c’) > 2¢+3

and eeven(c’) = 2¢ we obtain the short calculation
Cgr1+t1l=coy —14+1=0chyyy =y —1=Chyig —2=cqp2— 1

which finishes the proof that ¥ is well-defined as a map to J.

It remains to show that ¥ is an inverse map to ®. So let (i,0,¢) be an
element of J, and set ®((i,0,¢)) = (O’l,g;) and ¢ = o 1(i)/2 as in the
definition of ®. Set furthermore ¥((o’, g)) = (i,0,C) and ¢ = eeven(g)/Q as

—

in the definition of . In the definition of ® it was shown that eqyen(c’) = 2¢,
so that ¢ = ¢, and unpacking the definition we then have i = ¢/(2¢) = i.
It then follows immediately that also ¢ = o, and the following calculation
shows that ¢ = ¢, where 1 < a <.

Chaq ifa<gq
“ Ny —1 ifg+1<a<li

C
Cq ifa<gqg
S Jea+1-1 ifg+1<a<l
:Ca

This shows that ¥ o & = id.

Now let (¢/,c’) be an element of 12, . Set ¥((o’, Z)) = (i,0,¢) and let

q = ecven(c')/2 be as in the definition of ¥. Let ®((i,0, ¢)) = (¢/, ) and
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g =0"'(i)/2 as in the definition of ®. Then we have
0(2q) = (021—i41 00" 0 Tag41521)(29) = 02—i+1(0'(29)) = o2—it1(i) =i

so that ¢ = ¢. It then follows that ¢’ = ¢’. It remains to show that cZ —d.
So let 1 < a < 2[. Then this is shown by the following calculation.

Cla+t1)/2 if2ta and a < 2¢
, Caj2 +1 if 2| aand a <2¢
Ca = Clat1)2 +1 if2taand a >2¢+1
Ca/241 if2]aand a>2¢+1
c, if 2ta and a < 2¢

d_1+1 if2|aanda<2q
=qc,—1+1 if2taanda>2¢+1
o1 —1  if2|laand 20 >a>2¢+1
m+1 ifa=2I

—

Using that e_o)dd(cl) > 2q+ 3 we obtain ¢,_; +1 = ¢, in the second case, and

using ecven(¢’) = 2¢ we obtain ¢, = ¢/, — 1 in the fourth case.

c, if 2ta and a < 2q
c, if 2] aand a <2q
=<{c, if2taand a >2q+1
c, if2]aand 20l >a>2¢+1

m+1 ifa=2]
=cl O
Proposition 7.3.7.2. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.5.4.1 and 7.8.4.2. Let X be a totally ordered

set, I > 1 and m > 0 integers, and y1,...,Ym as in Construction 7.3.1.1.
Then the following holds.

> B)=- )Y B'(v)

1<i<20-1, vel?
0<g<I-1, odd
vEIL; 2¢41,2¢42

Q

Proof. The proof is completely analogous to the proof of Proposition 7.3.7.1,
so we omit the details. The formulas used to define ® in this case are

q=(o71(i)—1)/2

/.
0 =02/ 00 002]2q¢+1
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7.3. De Rham forms as a strict model in Mixed

Cla+t1)/2 if2taand a <2¢+1
a1 if 2 da<2g+1
c = Cas2 T 1 | and a < 2q+ for 1 <a <2l
Clat1)/2 +1 if2faand a > 2q+2
Ca/2+1 if2|aand a>2q+2

o((i,0,7)) = (a', Z)

and in this case eodd(g) =2q+1.

The special assumption on ¢ from the definition of J has in this case, in
contrast to the proof of Proposition 7.3.7.1, a different form depending on
whether ¢ = 0 or not, as there is no ¢g. Where this property was used in the
proof of Proposition 7.3.7.1 was to show that e,qqa(c¢’) # 2¢ + 1. In our case
here this property is needed to show that eeven(g) # 2q, and the distinction
between the cases ¢ = 0 and ¢ # 0 corresponds to the analogous distinction
in the definition of eqyen.

That the definition of ¢’ involves ¢ instead of 7 + 1 introduces an extra
minus sign in sgn(o’), which explains the minus sign in the result.

The formulas used to define ¥ are as follows.

q= (eovcn(g) - 1)/2

i=0'(2¢+1)
o= U2lHiOUIOU2q+1%2l
Cho1 ifa<qg+1
Co =RCha1—1 ifg+2<a<l forl<a<i+1

m+1 ifa=1+1
\Il((al, Z/)) = (i,0,7)
Again the proof that this is well-defined is analogous to the proof of Propo-
sition 7.3.7.1 except the special treatment of ¢ = 0 as discussed above. O
We sum up our current progress.

Proposition 7.3.7.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered
set, | > 1 and m > 0 integers, and y1,...,Ym as in Construction 7.3.1.1.
Then the following holds.

8<€gl()(y1 e ym)> - egl(_l)(d(yl to ym)) + d(ﬁgé_l)(yl c ym))

= Y B'(v)- Y B'(v)+ Y B'(v)= ) B(v) v

veld, veld, vell veld

even

Proof. Combine Propositions 7.3.6.1, 7.3.7.1 and 7.3.7.2. O
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7.3.8. Subdivisions of the remaining indexing sets

To continue we need to subdivide 19, 12, . I9,,, and I' into a disjoint

unions of subsets, which we do in this section.

Definition 7.3.8.1. In this definition we will make use of notation from
Construction 7.3.1.1 and Definitions 7.3.4.1 and 7.3.4.2. Let { > 1 and m > 0
be integers. We define the following subsets of 79.

Ii’canml p— {(J, <,p) el | €even(0) > eodd(a)}

Ii = {(0, <,p) € 14 | even(0) < eodd(U)}
Ii’top = {(a7 C,p) € Ii ‘ if eoaa(0) # oo then p = egqa(0),
else p =21 — 1}
Iiﬁzgcel = {(0, <,p) € Ii,top | €even(0) # —00
and eqyen(€) < eeven(o)}

Ii,top,a = {(Ua c,p) € Ig,mp | €even(€C) # —00

and €cven ( 6) > €even (U) }

Ii’top’l = {(a, c,p) € Ig,top | €even(€) = —00 and eqyen(0) = —oo}

d,cancel
<,bottom *

—

Ig,bottom = {(Ua E>7p) € Ig | p= ecvcn(g)}
{(U, ¢,p) € Ig)bottom ’ if epqq(0) = 0o then eoqq(¢) = o0,
else epqq(0) < eodd(?)}

13 potsomo = {(0.T.0) € I otsom | €oaa(T) # 00 and eoqa(0) > eoaa () }

The following subset is to be defined for 1 < p < 2[ — 2.
Iiflﬁf;l = {(U, C,p) eIl | p =pand ecyen(o) <p < eodd(a)}
We also define the following subsets of Xg;_; x CT(2] — 1, m).

vaen,d = {(U, ) e vaen | if ecqa(0) = 0o then eqq(€) = oo,

else epqq(0) < eodd(E’)}

Taaa = {0, %) € g | coven() # —00 and €oven (@) < €oven(@) |
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7.3. De Rham forms as a strict model in Mixed

o
Iodd—evcn

= {(0,7) e Zay x M@ 1,m) |
oven(C) # —00 and e,qq(¢) # oo and
Ceven(0) < €oven(T) < €0dd(T) — 3 < €oda(0) — 3}

I, = {(07 T) € Tor1 x C™(20 = 1,m) | eoven(T) = —00 and

€0dd(C) # 00 and €eyen(0) = —00 and eyqq(¢) < eodd(a)}
I} = {(U7 el | if ecda(0) = 0o then eoqq(€) = o0,

else epqd(0) < eodd(_c’)} &

Proposition 7.3.8.2. In this definition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.8.4.1, 7.3.4.2 and 7.3.8.1. Let1 > 1 and m >0
be integers. Then the set 19 is the disjoint union of the following subsets.

d,cancel
o I

o IS0 for 1 <p<2l—2

d,cancel
I<,top

Id,cancel
<,bottom

d
¢ I<,top,0

o Id

<,top,1

d
° I<,bottom,8

Q

Proof. As eeyen(0) = €oad(0) is never possible for parity reasons, we must
always either have €qven(0) < €0dd () OF €even () > €oqd(c), showing that 14
is the disjoint union of 9™ and 14,

Now assume that (o, ¢, p) is an element of I¢. We will show that then

€even (U) S p S €odd (U)

d,cancel

which implies that Ii is the disjoint union of the subsets I < mid.q where ¢
ranges over for 1 < ¢ < 2] — 2, and the subsets Ig,top and Ii’bottom. By

definition of T4 we must have
eeven(a) -1 S p S eodd(U) +1

so that we only must rule out that p = ecyen(0) — 1 and p = eqga(0) + 1. For
this, note that by definition of ecyen (o) the permutation o does not cyclically
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preserve the ordering of {€eyen(0) — 1, €even(0), €even (o) + 1}, which means
that

€even (U) -1, €even (U) +1, €even (U)
will be cyclically ordered. As €eyen(0) < €oda(c) by definition of Ig, we also
know that

€even (U) - 27 €even (J) - 17 €even (U)

is cyclically ordered. Combining both we obtain that

€even (U) -2, eeven(a) -1, eeven(o') +1, eeven(O')

is cyclically ordered. But this means that

eeven(o') -2, eeven(U)a eeven(O') +1

is not cyclically ordered, which rules out p = €even(c) — 1. Analogously one
can rule out p = eqqq(0) + 1.
We have now shown that 19 is the disjoint union of the following subsets.

d,cancel
I>

. Iiﬁi?dcf;)l for1<p<2l—2

o Id

<,top

d
* I<,bott0m
It thus remains to show the following two claims. Firstly that Ii’top is a
disjoint union of the following subsets.

Id,cancel

® <,top

o Id

<,top,d

o Id

<,top,1
And secondly that I i bottom 15 @ disjoint union of the following subsets.

. Idg:ancel
<,bottom

o Id

<,bottom,d

For the first claim we begin by noting that clearly the three subsets are
pairwise disjoint. So now let (o, ¢, p) be an element of I¢ . First assume
that eeven(0) # —00. If €eyen(€) < €even(o) then (o, €, p) is an element of
I i’,iigcel. If instead €even(C) > €oven() then it follows from €eyen (o) # —00

that also eeyen(€¢) # —o0 and (o, €, p) is an element of Ii’top’a. Next assume

that egyen(0) = —o0. If also eqyen(€¢) = —o0, then (o, ¢, p) is an element of
Ig,top,lv and otherwise it will be an element of Ii,top,a‘
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7.3. De Rham forms as a strict model in Mixed

For the second claim we can again note immediately that the two subsets

are disjoint. So now let (o, €, p) be an element of I< bottom anid assume it is not

an element of Ii fg;izlm If epqq(0) = oo, then this means eyqq(¢) # oo, and

this implies that (o, €, p) is an element of I¢ < bottom,o- 1f instead eoda (o) # oo,
then this implies eoqq(0) > eodd( ), so in partlcular €odd(€) # 00, and thus
(0, €,p) is again an element of 14 < bottom,d" O
Proposition 7.3.8.3. In this definition we use notation from Construc-
tion 7.3.1.1 and Deﬁnitions 7.8.4.1, 7.83.4.2 and 7.3.8.1. Let 1 > 1 and m > 0
be integers. Then the set 19 oid s the disjoint union of the following subsets.

b}
i Iodd,d

® ‘odd—even

2
¢ Iodd,l
Furthermore the set 19, is the disjoint union of the following subsets.

o 9

even,d

Q

® ‘odd—even

Proof. While Iodd q was defined as a subset of IS 0 g and I,
of I2 ., the other two relevant sets have only be defined as a subset of
Yor_1 x CTU(2] — 1,m). However it follows easily from the definition that ¢
and o have the necessary properties for the required subset inclusions.

We first discuss I2,,. So let (o, ©) be an element of I, ,. If eeyen(T) = —00
as well as eqyen(0) = —00, then (0, 'C) could (out of the three subsets in ques-

tion) only possibly be an element of I c(?dd,l’ and indeed it is, as the other two re-

even qasa subset

quired properties are part of the definition of 12, ,. If instead eeven (<) = —00
and €eyen(0) > —o00, then (o, €) is an element of (only) Ifdd,d. If we have
eeven(") # —00, and €eyen(0) > €even(€), then (o, ¢) is also only element
of 1% caa,a- The last case is when Eeven(C) # —oo, and eqyen(0) < €oven(€),
in which case (o, ©) is an element of precisely 12 with the remaining
inequalities arising from the definition of Iodd

1%
We now discuss I,

odd—even?

It is easy to see that elements of vaen’d are not
elements of 19, _ = so the two subsets are disjoint. Now let (o, ) be

an element of 12 that is not in Ieven q- If €cda(0) = oo this means that

€odd(€) # 00, and then (o, ¢) is an element of 12, cvens With the other
inequalities being part of the definition of 12, . If instead eoqa(c) # oo,
then eqqq(0) > €oda(€), which implies eodd( ) # 00, and combined with the
properties arlslng from the definition of I, this again shows that (o, €) is
an element of 12 O

even

odd—even*
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Proposition 7.3.8.4. In this definition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.83.4.1, 7.83.4.2 and 7.83.8.1. Letl > 1 and m > 0
be integers. Then the set I' is the disjoint union of the following subsets.

o I}
° Ic(?dd,l ©

Proof. While I} was defined as a subset of I, this is not the case for Ifdd’l,
but that it is a subset is clear from the definition. It is also straightforward
that the two subsets are disjoint. Now let (o, ¢) be an element of I*. Assume
€odd(0) = 0o. Then either eyqq(¢) = oo, in which case (o, ¢) is an element
of I3, or €oqa(C) < €oaa(c), in which case (o, ©) is an element of I(?dd)l. Now
assume eqqq(0) # 0o. Then either eq,qq(€) > €oada(0), in which case (o, €) is
an element of I}, or €,44(C) < €oada(0), which implies eqqqa(€) # 00, so that
(0,7¢) is an element of Ifdd’l. O

7.3.9. Canceling of some summands of egl(_l) od

Several of the subsets we defined for I are such that the relevant sums
over them cancel (which we indicated by naming them I4c3! with some
subscript). This is what we show in this subsection.

Proposition 7.3.9.1. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definitions 7.8.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, I > 1 and m > 0 integers, and y1, . .., Ym as in Construction 7.3.1.1.
Then the following holds.

> B@)=0 ©
veli,cancel
Proof. Let (o, ¢,p) be an element of Ii’cancel. Then
€odd (U) S ecvcn(o—) -1 S p S eodd(a) + 1 S €even (0)

holds, where the middle inequality is from the definition of I¢ and the other

two are from the definition of 1" This implies that27

eodd(U) +1= eeven(o—)

and either p = eoqq(0) or p = epqq(o) + 1.
It thus suffices to show that the map

@:“mame@mw

P = €odd(0) }
— d,cancel
— { (0,¢,p) €IS

(0,¢,p)— (0,¢,p+1)

P = €odd(0) +1}

2T eoven(0) — 1 < €0qdq(0) + 1 < eeven(o) but for parity reasons eoqq(o) + 1 = €even (o) — 1
is not possible.
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7.3. De Rham forms as a strict model in Mixed

is a well-defined bijection and that for every element (o, €, p) of T i’camd with
P = €odd(o) it holds that B'((o, ¢,p+ 1)) = —B’((0, ¢, p)). This property
of B’ is obvious from the definition, so it only remains to show that ® is a
well-defined bijection.

So let (o, @, p) be an element of 13" with p = e,qq(c). Note that this
implies that p is odd with p < 2] — 3. Thus 1 < p+1 < 2l — 2. We have to
show that (o, €,p + 1) is again an element of I9. It follows from

eeven(g) < p < eodd(g)

that also
ecvcn(?) < p + 1< eodd(_é)

for parity reasons. The discussion at the start of this proof shows that
€even(0) =1 <p+1 < egaa(o) +1

holds as well. It thus remains to show that
o(eoad(0) =1),  0(€oad(0)),  o(€oaa(o) +2)

is cyclically ordered. But as (o, ¢,p) is an element of I we know that

o(€oaa(0) = 1),  o(ecaa(o) +1),  o(eodalo) +2)

is cyclically ordered, and the definition of egyen(0) = €odd (o) + 1 implies that

o(eoad(0)),  0(€odd(0) +2),  o(eoaa(o) +1)

is cyclically ordered. Rotating the first of these two we can phrase this as the
following two lines each being cyclically ordered

o(€oaa(0) +2),  o(ecaa(o) —1),  o(eodalo) +1)
o(eodaa(a)), o(eoad(o) + 2), o(eoaa(o) +1)
which combines to
o(€oad(0)),  o(eoada(0) +2),  o(eoda(o) —1),  o(ecaa(o)+1)

being cyclically ordered, from which the claim follows, so ® is well-defined.

To show that @ is a bijection, we let (o, ¢,p) be an element of Ig’camd
with p = eoga(0) + 1. We have to show that (o, ¢,p — 1) is again an element
of I9. The first two properties for this are shown completely analogously to
the argument above. It thus remains to show that

o(eoad(c) — 1), o(eodd(o) + 1), o(eodd(o) +2)

is cyclically ordered. Similarly to the argument above one finds that the
following two lines are each being cyclically ordered, the first arising from
(0, €, p) being an element of T4, the second from the definition of eyqq.

o(eoad(0) = 1),  o(eoaa(0)),  o(€oda(o) + 2)
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o(€oad(0) =1),  0(eoad(0) +1),  0(€oda(0))
which combines to
o(eoaalo) — 1), o(epaa(o) + 1), o(eoad(o)), o(eoad(o) + 2)
being cyclically ordered, from which the claim follows. O

Proposition 7.3.9.2. In this proposition we use notation from Construc-
tion 7.83.1.1 and Definitions 7.8.4.1, 7.8.4.2 and 7.3.8.1. Let X be a totally or-
dered set, 1 > 1 andm > 0 integers, and y1, . . ., Ym as in Construction 7.5.1.1.
Let 1 < p <2l —3 be odd. Then the following holds.

> B+ > B=0 v

d,cancel
v€I<,mid,p vel

d,cancel
<,mid,p+1

Proof. Let o be an element of Y51 and € an element of C™(2] — 1,m).

It suffices to show that (o, C,p) is an element of Iicrfl‘?(f‘;l if and only if

(0,C,p+ 1) is an element of Iifﬁﬁfi} 11, and that in this case it holds that
B'((o,¢,p+ 1)) = —=B'((0, ¢, p)). This latter property is clear from defini-
tion.

Purely for parity reasons we immediately have that
Ceven(C) < p < eoad(€)  and  eeven(0) <P < €0da(0)
if and only if
eeven(€) < p+1 < €0ada(7) and Eeven(0) <P+ 1 < eoaa(o)

It thus remains to show that o cyclically preserves the ordering of the set
{p — 1,p+ L,p+ 2} if and only if o cyclically preserves the ordering of
{p — 1,p,p + 2}. So assume first that o cyclically preserves the ordering
of {p—1L,p+1,p+2}. As p < epaa(o) is odd, we know that o cyclically pre-
serves the ordering of {p — 1,p,p + 1}, which combined with the assumption
yields the claim. For the other direction we combine the assumption with
p+ 1 > eoyen(o) being even, which means that o cyclically preserves the
ordering of {p,p + 1,p + 2}. O

Proposition 7.3.9.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, 1 > 1 andm > 0 integers, and y1, - . ., Ym as in Construction 7.5.1.1.
Then the following holds.

>, B+ Y, B@=0 0
verZi Vel otiom
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Proof. Tt suffices to show that

. rd,cancel d,cancel
D I<,t0p - I<,bottom

(0,¢,p) = (0, C, €even(0))

is a well-defined bijection that satisfies B'(®(v)) = —B’(v) for every element
v of Id,cancel.

<,top
So let (o, ¢, p) be an element of I i”iigcel. We first handle the property for
B’. We have

B'((0, T, eeven(0))) = (1)@ *1B"((0, 7)) = =B"((0, 7))
= —(-1)P"'B"((0, 7)) = —B'((0, C,p))

where we used that p is odd.

Next we need to show that (0, €, €even(c)) is an element of T i%ﬁiil First

we show that this is an element of 9. For this we first show the following
inequality.
eeven(g) < eeven(a) < eodd(E>)

The inequality on the left holds by definition of T i’ftigcel. By definition of 14
we have €eyen(0) < €oad(0), which together with eoqq(0) < €oqa(€) due to
what p is (and (o, €, p) being an element of I4) implies the inequality on the

right. Next we show the following inequality.
eeven(a) -2< eeven(a) < €odd (U> +2

The left inequality is clear, and the right inequality follows from the inequality
€even(0) < €odd(0), which holds by definition of Ig. To finish showing that
(0, T, €even(0)) is an element of I¢ it remains to show that

0 (€even(0) — 2), 0(€even(0) — 1), o (€oven(0) +1)

is cyclically ordered For this we use that the following two lines are cyclically
ordered, where the first one arises from the definition of eqyen(o), and the
second from eeyen(0) — 1 < €oqq(0) being odd.

U(eeven(U) - 1)7 J(eeven(o) + 1)7 U(eeven (U))
o(€even(0) = 2), o(€even(0) — 1), o(eeven(0))

Combining these two we obtain that
U(eeven (U) - 2)7 U(eeven (U) - 1)3 O(eeven(a) + 1)7 U(eeven (U))

is cyclically ordered, from which the claim follows. We have now shown that
(0, C, €oven(0)) is an element of 4. That (0, €, €even(0)) is then an element

of Id Id,cancel

<,bottom < bottom> W€ have

is clear. To show that it is even an element of
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to show that either e,qq(0) = €0dd(€) = 00 0r €5ad(0) < €oad(€). But this
follows from what p must be from the definition of I i’ftigcel together with the
inequalities p must satisfy in the definition of 9.

So far we have shown that @ is a well-defined map, and it is clearly an

injection, as o and ¢ already determine the value of p if (o, ¢, p) is an element

of Id,cancel

Ctop - It remains to show that @ is surjective. So let (o, ¢, €even(0))

Id,cancel

be an element of < bottom*

If epaa(o) = oo set p = 21 — 1, otherwise let

p = €oad(0). Then we have to show that (o, ¢,p) is an element of Ii’)ct‘?)gcel.
From (0, T, €even(0)) being an element of I¢ we can immediately conclude
that eeven(0) # —o00 and that eeyen(€) < €even(o). It thus only remains to
show that (o, €, p) is an element of I4. For this we first show the following
inequalities.

ecvcn(—g) < p < 6odd(_é)
That (0, T, €even(0)) is an element of 19 implies that eoven(€) < €even(7),
which together with eeven(0) < €odad(0) from the definition of Ig implies

the left inequality. The right inequality follows instead from the definition of

I i%aoréiihl We next show the following inequalities.

eeven(g) -2<p< eodd(a) + 2

Here the left inequality follows from eeyen(0) < €oqd(o) from the definition
of Ig, and the right inequality is clear. It remains to show that o cyclically
preserves the ordering of {p — 1,p + 1,p + 2}, as long as p < 2] — 3. So
assume that p < 2] — 3, which implies that we are in the case in which
D = €odd(0) # oo. Then we use that the following two lines are cyclically
ordered, where the first one arises from the definition of eyqq(c), and the
second from eqqq(0) + 1 > €oven(0) being odd.

o(€oaa(0) = 1),  o(eoaa(o) +1),  o(eoaa(0))
o(€oda(0)),  o(eoad(o) +1),  o(eoad(o) +2)
Combining these two we obtain that
o(€oaa(0)),  o(€oaa(c) = 1),  o(€oaa(o) +1),  o(eoaa(o) +2)

from which the claim follows. O]

7.3.10. Matching up of the remaining summands

In this section we show how the sums over various subsets of I9, I, vacn,
and [ (?dd match up.

Proposition 7.3.10.1. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definitions 7.8.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, | > 1 andm > 0 integers, and y1, - . . , Ym as in Construction 7.3.1.1.
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Then the following holds.

> B= > B V)

d a
veI<,top,8 ve]even,d

Proof. Let (o, ¢,p) be an element of Ig,top,a' Then p is odd, so
B'((0,¢,p)) = B"((0, €))
so that it suffices to show that

. 7d d
Q: I opo — 1L

even,d

®: (0, ¢,p) = (0, €)

is a well-defined bijection.
So let (o, ¢, p) be an element of 12, ;. We first show that (o, @) is an

9 on- For this we need that egyen (€) # 00 and eeyen(0) > €oven(€),
both properties that are part of the definition of I g,tog 5> and we need that

€odd(€) > €even(€) + 3, which follows from the condition

element of 12

eeven(g) <p< eodd(g)

from the definition of 19 together with the parities, and finally we need that
€odd(0) > €oven(€) + 1, which follows from left part of the inequalities just
used together with the definition of p in Iiwp. So now we have shown that

The properties that o needs to satisfy for (o, )
to even be an element of [ fven’d follow from what p is by the definition of
Iitop and that p < eoqq(T) by the definition of I9. This shows that ® is
well-defined. As p is uniquely determined by ¢ and ¢ in the definition of
Igytop, we can also conclude that @ is injective.

It remains to show that ® is surjective. So let (o, ¢) be an element of
vaen’d. If epaa(c) = oo set p = 21 — 1, otherwise let p = eoqa(c). Then we
have to show that (o, ¢,p) is an element of Ig,top,& We can first note that

27t0p, 5 also occur in the definition
of I?

9 ens SO that it suffices to show that (o, ,p) is an element of I¢. By the

definition of 12, we have

(0, €) is an element of I2

even*

the two inequalities in the definition of [

eeven(U) S eeven(.é) < eodd(a)

so that is only remains to show that (o, ¢, p) is an element of 4. For this we
note that

eeven(g) <p< eodd(g)
follows from the definition of 12, for the left inequality and from the def-

even
inition of Ig,en,d for the right inequality. Next we consider the following in-
equalities.

eeven(a) -2< p < €Odd(0') + 2
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The left inequality follows from eqyen(0) < €oad (o), which we already showed
above, and the right inequality is clear. Finally, we have to show that o
cyclically preserves the ordering of {p — 1,p+1,p+ 2} as long as p < 2l — 3,
which implies that p = eoqq(0) # co. The argument for this is identical to
the argument used at the end of the proof of Proposition 7.3.9.3. O

Proposition 7.3.10.2. In this proposition we use notation from Construc-
tion 7.8.1.1 and Definitions 7.8.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, | > 1 andm > 0 integers, and y1, - . ., Ym as in Construction 7.3.1.1.
Then the following holds.

> Bw=- Y B'( Q

VETL otiom,0 V€L 44 a
Proof. Let (o, ¢,p) be an element of Ii,bottom,@' Then p is even, so
B'((e,¢,p)) = —B"((0, 7))
so that it suffices to show that

d 0
P: I<,bottom,6 - Iodd,d
®: (0,¢,p) = (0,7)

is a well-defined bijection.

So let (o, ¢, p) be an element of Ii,bottom,(‘)' We first show that (o, €) is an
element of 19, ;. For this we need that eoqq(€) # 00 and eoda(0) > eoaa(©),
both properties that are part of the definition of I 27b0tt0m7 5- We also need
that eeven(€) < €0ada(€) — 3, which follows from the condition

ecvcn(—g) < p < eodd(_c))
from the definition of I together with parities. Finally, we need that

€even (U) < eodd(g) -1

which follows from p < eoq4(€) together with p = eeyen (o) from the definition
of Ii’bottom. This finishes the proof that (o, €) is an element of I9,,. The
properties that (o, ¢) needs to satisfy to also be an element of the subset
I C‘?dd_d follow from p = ecyen(0) and the definition of I9. This shows that ®
is well-defined. As p is uniquely determined by ¢ and € in the definition of

I i’bottom we can also conclude that ® is injective.

It remains to show that & is surjective. So let (o, €) be an element of Ioadd,d.
We have to show that (o, C,€even(0)) is an element of Ig,bottom,a' We first
note that the two inequalities in the definition of Ig,bottom,a also occur in

the definition of I9,,, so that it suffices to show that (o, T, €eyen(0)) is an
element of Ig. By the definition of Ié)dd we have

€even (U) < eodd(z) S €odd (U)
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7.3. De Rham forms as a strict model in Mixed

so that is only remains to show that (o, €, eeyen(c)) is an element of I4. For
this we note that

€even ( E>) < €even (U) < €odd ( E>)

follows from the definition of I(?dd,d for the left inequality and from the defi-
nition of I fdd for the right inequality. Next we consider the following inequal-
ities.

6even(o—) -2< 6even(o—) < €odd (U) +2

The left inequality is clear and the right inequality follows from the inequality
even(0) < €odd (o), which we already showed above. Finally, we have to show
that o cyclically preserves the ordering of the following set.

{eeven(a) - 27 €even (J) - ]-7 €even (J) + 1}

The argument for this is identical to the argument used at the middle of the
proof of Proposition 7.3.9.3, where it is shown that the map ® used there is
well-defined. O

Proposition 7.3.10.3. In this proposition we use notation from Construc-
tion 7.3.1.1 and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally or-
dered set, | > 1 andm > 0 integers, and y, . - ., Ym as in Construction 7.8.1.1.
Then the following holds.

> B@=> B'U) v

d 1
Ue[<,mp,1 vely

Proof. Let (o, ¢,p) be an element of Ig,top,l’ Then p is odd, so
B'((o,¢,p)) = B"((0, €))
so that it suffices to show that

.7d 1
Q:IC op1 — 14

®: (0, %,p) = (0, C)

is a well-defined bijection.

So let (0, €,p) be an element of IS, . That (o, ¢) is an element of
I' then follows directly from the definition of Ig
€odd(0) = oo. Then we must have p = 2] — 1 by the definition of Iitop,
which by the definition of I¢ implies that eyqq(€) > 21 — 1 so that we can
conclude that e,qq(¢) = oo as well. If instead eoqq(0) # oo Then we must
have p = eoqa(0) by the definition of [itop, which by the definition of I
implies that eoqq(0) < eodqda(€). This finishes the proof that ® is well-defined.
As p is uniquely determined by ¢ and ¢ in the definition of Ig,top we also
obtain that ® is injective.

top,1- Suppose now that
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It remains to show that ® is surjective. So let (o, ¢) be an element of
I}. Assume first that eoqq(0) = oo. Then the definition of I} implies that
€odd(€) = oo as well, and by the definition of I' we furthermore have that
€even(€) = 00 = €even(0). This directly implies all the properties needed for
(0, ,21—1) to be an element of I . Assume now that eoqa(c) # co. Then
the definition of I} implies that eoqq(0) < €oaa(€). This time all properties
needed for (0, €, €0qa(0)) to be an element of I¢ | are directly implies
except that o must cyclically preserve the ordering of

{€odd(0) = 1,e0da(0) + 1, €0dd(0) + 2}
which follows with the same argument used at the end of the proof of Propo-

sition 7.3.9.3. O

7.3.11. Conclusion
We can now put everything together to show that eg;) forms a strongly

homotopy linear morphism. As an intermediate step we first show that the
identity required for this holds on elements of degree 0.

Proposition 7.3.11.1. Let X be a totally ordered set and l > 1 an integer.
Then

3069{) = egl(_l) Od—doegl(_l)

holds on elements of Qg[x]/lw where e();) defined as in Construction 7.3.1.1.

Q

Proof. The equation we have to show is k-linear on both sides, so it suffices
to show it for a set of generators. So let m > 0 be an integer and y1, ..., Ym
be as in Construction 7.3.1.1. It suffices to show that

1 - -
8(69@1 . -ym)) — VA ym) +d(€g< Dy - --ym)> =0
This is done by combining various previous results as follows.

a<€gl() (yl T y’m)> - 6%71) (d(yl e y’m)) + d(Ggl(il)(yl o ynL))

Applying Proposition 7.3.7.3.

= Y B'(v)- Y B'(v)+ Y B'(v)- Y B'(v)

veld, vell vell veld
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7.3. De Rham forms as a strict model in Mixed

Applying Proposition 7.3.8.3 for 12, (first line) and I%,, (second line),
Proposition 7.3.8.4 for I' (third line), and Proposition 7.3.8.2 for I (rest).

= > B'v)+ > B’

vel? vel?

even,d odd—even
_ Z B”(v)f Z B”(U)f Z B”(U)
”eIoddd V€IS aven ”Eloddl
+ZB// ’U)—|— Z BN(’U)
verl} vEIZ 141
- ) Bw- ) B
4, cancel 1<p<L2]—
- verdies
- X B+ X} B
verty velir;z:m
S Y Bw- Y Be- Y B
LIS S CISY S VEIL | iiom,o

The terms involving I°

loda—even in the first and second line cancel. Similarly,

the terms involving 17 odd,1 in the second and third line cancel. Furthermore
the terms in the fourth and fifth line are zero by Propositions 7.3.9.1, 7.3.9.2
and 7.3.9.3.

— Z B”(U) _ Z B”(’U) + Z B”(U)

Uelevend vEIOddd vel}
- > Bo- ) Bw- Y, B
veld veld veld

<,top,d <,top,1 <,bottom,d

Applying Proposition 7.3.10.1 for the term involving I4 < top,d> applying Propo-
sition 7.3.10.3 for the term involving I4 < top,1» and finally applying Proposi-
tion 7.3.10.2 for the term involving I4

<,bottom,0"*
— Z B”(U) _ Z B”(’U) + Z B”(U)
V€IS ona LIS SN vely
S Y FO-TE0r Y 50
Ue]ovcn d vely ve[odd d
=0 O

Proposition 7.3.11.2. Let X be a totally ordered set. Then the quasiiso-
morphism of chain complexes
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from Construction 7.2.2.1 and Proposition 7.2.2.2 can be upgraded to a
strongly homotopy linear quasiisomorphism by equipping it with e();) as defined
in Construction 7.3.1.1. Q

Proof. By Definition 4.2.3.1 we have to show that
do e()l() = egl(_l) od—do e()l(_l)

holds for I > 0%®. As both sides of the above equation are k-linear it suffices
to show this on a set of generators of Q;[ X/k So let f be an element of k[X]
and y1, ..., Yy, elements of X. Then the following calculation shows that the
above identity is satisfied on the element f-dy; - dym.

(30 Eglc))(f ~dyr - dym)
= o(Rfdpr--dym)
Applying the definition of e()l() from Construction 7.3.1.1.
= 3(6%)00) ex(dyr-- 'dym))
Applying Proposition 7.2.2.2 (1).
=0(Q() - dyr - dym)

Applying the Leibniz rule for 9, and using that d(dz) = 0 in C(k[X]) for
every element x of X, which can be seen either by direct calculation or by
using that d(dz) = —d(9z) = 0 for degree reasons.

= 6(52?(]0)) ' dyl e dym
Applying Proposition 7.3.11.1.

_ (eglp)(d(f)) - d(egl;l)(f))) cdyy e dyy,

= egé_l)(d(f)) ~dyr - dym fd(egl(_l)(f)) cdyp - dym

Using Proposition 7.2.2.2 (1) for the first summand and Proposition 6.3.2.14
for the second summand.

= V@) - ex@yre-dym) = () - dyr--dyn)

Also using Proposition 7.2.2.2 (1) for the second summand.
= V() ex(dyr e dyn) — (X7 () - ex(dyr - dym))
Using the definition of egl(_l) from Construction 7.3.1.1.

= 6%71)((1(‘]6) : dyl o dy’m) - d(egéil)(f : dyl o 'dym)>

28The case | = 0 is equivalent to ex being a morphism of chain complexes, which we
already know.
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7.4. De Rham forms as a strict model in Alg(Mixed)

Using the Leibniz rule for d in Qv (and that dod =0).
= UVA(f g dym)) — d(egl{l)(f dy, - -dym))
= (egl(_l) od—do egé_l))(f ~dyr - dym)

This shows that ex can be upgraded to a strongly homotopy linear quasiiso-

morphism using eg;) constructed in Construction 7.3.1.1. O

As the end result of this section we can now use Proposition 7.3.11.2 to
obtain an equivalence between HHygixed (K[X]) and Ymixed (Q;[ X1/ ) in Mixed,
showing that Qz[x]//c is a strict mixed model for HHyyixed (k[ X]).
Construction 7.3.11.3. Let X be a totally ordered set. The strongly ho-

motopy linear quasiisomorphism ey from Proposition 7.3.11.2 induces by
Proposition 7.2.2.2 (4) and Construction 4.4.4.1 a morphism

YMixed (Q].C[X]/k) — YMixed (é(k[X]))

in Mixed, which is even an equivalence by Remark 4.4.4.2. Composing this
equivalence with the equivalences from Propositions 6.3.4.1 and 6.3.1.10
yields an equivalence

HHovtixed (F[X]) 2 Mixed (Qz[X]/k)

in the co-category Mixed. &

7.4. De Rham forms as a strict model in

Alg(Mixed)

In Sections 7.2 and 7.3 we showed that QZ[X]//« which is an object in

CAlg(Mixedeof), is a model for both HH(k[X]) considered as an object in
CAlg(D(k)), by forgetting the strict mixed structure, and of HHyyixed (k[ X])
as an object in Mixed, by forgetting the algebra structure. An improved
version of the latter result would be to show that QZ,[X] /K 18 also a model

for HHmixea (k[ X]) as an object in Alg(Mixed). While it seems reasonable to
expect this to hold, we will unfortunately not be able to show this in general,
so we first formulate this as the following conjecture.

Conjecture B. Let X be a set. Then there exists an equivalence
HHgicea (K[X]) 2 Alg(mied) (Qx11)
in Alg(Mixed).

We will often refer to the existence of such an equivalence for a specific set
X as “Conjecture B holds for X7, &
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While we will not be able to show Conjecture B in general, we will be able
to show that it holds for sets X with |X| < 2, and this is the goal of this
section.

Let us now give an overview of the strategy to prove Conjecture B for
| X | < 2. The very rough idea is to lift HHixea (k[ X]) to some cofibrant strict
model in Alg(Mixed), use the previous results to obtain two equivalences
from this model to Qz[x] /iy one respecting the strict mixed structure and
one respecting the algebra structure, and finally use this to construct an
equivalence between Q;[ X1/k and our generic lift that respects both.

To implement this plan we begin in Section 7.4.1 by lifting HHtixea (k[ X])
to a cofibrant object CH(X) of Alg(Mixed).

As the underlying differential graded algebra of GH(X ) is also cofibrant,
we could then already lift the equivalence from Corollary 7.2.2.3 to a multi-
plicative quasiisomorphism as follows.

Alg(eVm)(6 (X)) = Qixy/k

However, we can not carry out the same argument to obtain such a quasi-
isomorphism that is compatible with the strict mixed structure from the

equivalence from Construction 7.3.11.3, as the underlying strict mixed com-
~I

plex evM*ed(C (X)) of (~JH(X) need not be cofibrant. This problem is related

a
to the fact that the monoidal unit £ of Mixed is not cofibrant as a strict mixed

complex. To deal with this issue we will thus not actually use C (X), but
replace it along a quasiisomorphism

~ ~11

C(X)—C (X)

in Alg(Mixed) by C(X), which is also cofibrant and constructed so as to satisfy

some specific properties that we will need. In particular, ev¥>ed(C(X)) will

~1
be given by a coproduct k @ C (X), with the inclusion of the first summand
~1
given by the unit morphism, and such that C (X) is cofibrant as a strict mixed
complex. The construction of C(X) will be carried out in Section 7.4.2.
Now we can lift the equivalence from Corollary 7.2.2.3 to a quasiisomor-
phism

o Alg(evm)(a(X)> = Qix1/k

in Alg(Ch(k)), and the equivalence from Construction 7.3.11.3 to a quasiiso-
morphism

~/
Kl @ C(X) = Qpxyn

in Mixed, and we only need to verify that the restriction to k¢! factors over
k to obtain a quasiisomorphism

Ux: evg/“)“Ed (6()()) — Q;[X]/k
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in Mixed as desired. This will be done in Section 7.4.3. _
So now let us get back to what we actually want to show, that C(X) is

equivalent to Qp ;. in Alg(Mixed). As C(X) is cofibrant such an equivalence
could be realized by a quasiisomorphism

C(X) — Qrix)/k

in Alg(Mixed). However, we know little about the clements of C(X), apart
from those that must exist by virtue of the quasiisomorphisms discussed
above, so it would be easier to construct morphisms into rather than out of

C(X). As Qf y/; 1s not cofibrant as an object in Alg(Mixed), we can not
hope for there to be an actual strict morphism

Quxyye — C(X)

in Alg(Mixed), so instead we will attempt to construct a morphism Zy from
a cofibrant replacement of €} v, to (~3(X)

To be able to actually construct Zx will require good control over the (low-
degree) generators of said cofibrant replacement, so we construct a specific
cofibrant replacement Q;:[X]/k of Qz[x]/k in Section 7.4.5.

The set X will occur as free generators of Q;C'[ X1/k in degree 0, so the con-
struction of 2y will begin by defining =x (z) to be such that (®y0Ex)(x) = =
for elements z in X. As ®’; is a quasiisomorphism it suffices to check that
'y 0 Ex is a quasiisomorphism to conclude that Ex is one. The information
mentioned so far would suffice to show that Zx induces an isomorphism on
Hg, but to handle the other homology groups we also need control over where
', 0 Ex maps dx for z an element in X.

Thus we need to study how @’y interacts with d. In Section 7.4.4 we will
begin with the one variable case ® ;). We will not quite be able to show that
the CID’{t} is compatible with d, but we find that this holds up to sign. By
postcomposing with an automorphism that tweaks signs we can thus define
new morphisms ®x to replace the usage of @’ such that @4y is compatible
with d.

To deduce from this that ®x is also compatible with d on elements of
degree 0, as long as | X| < 2, we need a naturality statement for ®. We show
the required statement in Section 7.4.7, after we showed a similar naturality
statement for e in Section 7.4.6. The reason we only show this naturality
statement for € in Section 7.4.6 rather than earlier is that the proof uses the
cofibrant resolution of Q;[t] Jk that was constructed in Section 7.4.5. After
having handled the required naturality of ® we can then show that ®x is
compatible with d on degree 0 elements in Section 7.4.8.

Finally, in Section 7.4.9 we will put everything together and actually con-
struct the quasiisomorphism
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that is a morphism in Alg(Mixed), and thereby prove Conjecture B for | X| < 2.
To do so it will be very relevant to use the comparison morphisms ® x as well
as Uy; to begin with we need to prescribe the images of the generators X as
we mentioned before, which we do by lifting elements along ®x, and in later
steps there will be obstructions in the form of cycles that need to be bound-
aries, which we can verify by checking that the homology class represented
by the cycle maps to zero along one of the two comparison morphisms.

7.4.1. A first cofibrant model

In this section we lift HHyixea (k[ X]) to a first cofibrant model é/l(X ) in
Alg(Mixed). We actually need slightly more and lift not only HHaixea (K[ X]),
but the morphism HHpgixed (k) — HHatixeda (B[ X]) that is induced by the unit
morphism. We need this relative version in order to carry out the identifi-
cation of the restriction to k that is needed for the strict mixed comparison
morphism, as was explained in the introduction to Section 7.4.

Proposition 7.4.1.1. Let X be a set. Then there exists a morphism

~! ~1

7 C(0) - C (X)

in Alg(Mixed), such that 6//(@) and G/I(X) are cofibrant, together with a
commutative square

HHMixed(k) - Alg('}/Mixed) (6//(®)>

HHtixea (tr(x]) Alg(inea) (T) (7.5)

HHtixed (K[ X]) ———=—— Alg(Mixed) (éll(X ))

in Alg(Mixed), where the left morphism is induced by the unit morphism
tex): k — k[X] and the horizontal morphisms are equivalences. Q

Proof. By Propositions 4.4.1.7 and 4.4.2.3 the oco-category Alg(Mixed) is
the underlying oo-category of the combinatorial model category Alg(Mixed),
where Alg(Mixed) carries the model structure from Proposition 4.2.2.9. As
the 1-category [1] is small?’, we can apply [HA, 1.3.4.25] to lift functors
[1] — Alg(Mixed) to functors [1] — Alg(Mixed) that are cofibrant with re-
spect to the projective model structure.

Let us for the moment denote the functor [1] — Alg(Mixed) that is encoded
by the morphism HHojyixed (Lk[X]) by 0. Applying [HA, 1.3.4.25] to 6 we thus
obtain a functor

©: [1] — Alg(Mixed)

29By [1] we mean the l-category with two objects 0 and 1, and a unique non-identity
morphism 0 — 1.

438



7.4. De Rham forms as a strict model in Alg(Mixed)

that is cofibrant with respect to the projective model structure on the functor
category Fun([1], Alg(Mixed)), and that lifts # in the sense that there is a
commutative diagram as follows.

[1] —2—— Alg(Mixed)
P) Alg(Mixed)
Alg(Mixed)

The functor © corresponds to a morphism in Alg(Mixed) that we are going
to denote by

~1 ~1
7 C (D)= C(X)
so that the commutative triangle above corresponds exactly to the commuting
square (7.5).
~1 ~1
It remains to show that C () and C (X) are cofibrant objects. As © is
cofibrant with respect to the projective model structure, it is also cofibrant

with respect to the injective model structure by [HTT, A.2.8.5], which by
definition® means that it is pointwise cofibrant. O

We can directly improve Proposition 7.4.1.1 by showing that we can replace
~I

C (0) by k, which we do in the following proposition.

Proposition 7.4.1.2. Let X be a set. Then there exists a cofibrant object
~I

C (X) in Alg(Mixed) so that there is a commutative square

HHtixed (k) —————— Alg(Mixed) (k)

HH yticea (ta[x]) Alg(v"’”xed)(bé”(xo (7.6)
~11
HHMixed(k'[X]) T~ E— Alg('YMixed) (C (X)>

in Alg(Mixed), where the left morphism is induced by the unit morphism
teix): k — k[X], the right morphism is induced by the unit morphism

~11
La//(X)Z k—C (X)

and the horizontal morphisms are equivalences. Q

Proof. Let
~1 ~I

7 C(0) - C (X)

30See [HTT, A.2.8.1 and A.2.8.2].
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be as in Proposition 7.4.1.1. Then (~]N(X ) is cofibrant and the diagram

Alg(YMixed) (‘6”(0))

HHyixea (k) —=— Alg(uinea) (C(9)) Alg(iced) (k)

HHticea (tk(x]) Alg(mixea) (7)
Alg('YMixed) (Lé” (X))

HHtxea (FIX]) —=— Alg(ieed) (€7 (X))

~/!
in Alg(Mixed) commutes, where SROE k — C (0) is the unit morphism and
the square is the one supplied by Proposition 7.4.1.1. It thus suffices to show

~1!
that v g0k — C (@) is a quasiisomorphism.
As quasiisomorphisms are detected on underlying morphisms of chain com-

plexes, we can forget about the strict mixed structure and only consider the
~1

unit morphism of the differential graded algebra Alg(evy,)(C (0)). There is
a composite equivalence

Alg() (Alg(evm) (C7(0) ) ) = HEL(k) = Alg(y)(02;) = Alg(1)(k)

in Alg(D(k)), where the first equivalence is obtained by applying the forget-
ful functor Alg(evy) to the equivalence at the top left in the diagram above
combined with compatibility of Alg(evy) with Alg(Ymixed) from Construc-
tion 4.4.1.1, the second equivalence is the one from Corollary 7.2.2.3, and the
third equivalence arises from the isomorphism 27, = k.

As initial object k is cofibrant in Alg(Ch(k)), so as every object in the
model category Alg(Ch(k)) is fibrant, the above equivalence in Alg(D(k))
can be lifted to a quasiisomorphism

k — Alg(evy) (6//(9))

in Alg(Ch(k)). But as k is the initial object in this category, this morphism
must be exactly L& () which has thus been proven to be a quasiisomorphism.
O

7.4.2. An improved cofibrant model

6,/(X) as in Proposition 7.4.1.1 is a cofibrant model in Alg(Mixed) for
~1!
HHixea (k[ X]), but apart from that we know nothing about C (X). In this

section we will use (NJH(X ) to construct a new cofibrant model C(X) over
which we will have more control.

Before we state the result of this section we begin with some notation and
a remark on pushouts of certain free algebras in strict mixed complexes.
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Notation 7.4.2.1. In this section we are often going to use free associa-
tive algebras in strict mixed complexes that are generated by strict mixed
complexes that are themselves free. To simplify notation, we thus define

i Alg(Mixed i
FreeAle(Mixed) . FreeMiféd ed)  FreeMixed
Alg(Mixed i . .
where FreeMbg(éd bed) and FreeM”® are as in Notation 4.2.2.10. &

Remark 7.4.2.2. Let X be an object in Alg(Mixed), let FE be a Z-graded
set, and let ¢/: E — X be a map of Z-graded sets. Assume that the image
of i consists only of cycles in X. Define B’ to be the chain complex whose
underlying graded k-module is k- F (i. e. the free one on E'), equipped with the
zero boundary operator. We also define a Z-graded k-module B’ := B’ ® B'[1].
Then B’ has two generators corresponding to every element e of E; the one
in the left summand is in the same degree as e, and we will also denote this
generator by e, and the one in the right summand has degree one higher
than e, and we will denote this generator by e. We can upgrade B’ to a chain
complex by defining d(e) = e and Jd(e) = 0 for every element e of E. There
is an obvious morphism of chain complexes j’: B’ — B’ that maps e to e.

We will consider the pushout diagram

FreeAls(Mixed) (j’)

FreeAls(Mixed) (B,) Free?ls(Mixed) (ﬁ’)
X X

L £

in Alg(Mixed), where i is the morphism that is determined by the morphism
of chain complexes B’ — X that is given by mapping e to i'(e) for every
element e of F (this is a morphism of chain complexes by the assumption
that /(e) is a cycle).

Let Y be a chain complex. Then the underlying Z-graded k-algebra of
FreeAlg(Mixed)(Y) is given by the free graded k-algebra generated by the
graded k-module D®Y =Y @ Y[1]. This follows from Proposition 4.2.2.11
and the analogous statement proven with Proposition E.7.2.2 (2) in the same
manner by using that the forgetful functor from Ch(k) to the category of
Z-graded k-modules is symmetric monoidal and preserves colimits.

As the forgetful functor from Alg(Mixed) to Alg(Ch(k)) preserves colimits
by Proposition 4.2.2.12 and the forgetful functor from Alg(Ch(k)) to the
category of Z-graded k-algebras does so as well by Proposition E.7.3.1, we
then obtain that diagram (x) is on underlying graded k-algebras given by a
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pushout?!

Free(k-E®k-dFE) —— Free(k- E® k-dE) I Free(k- E® k-dE)

X X

L “

where Free is ad hoc notation for the free associative Z-graded k-algebra on a
Z-graded k-module3?, II refers to the coproduct in the category of Z-graded
k-algebras, i. e. the free product, and the top morphism is the inclusion of the
first summand. From this it follows that the underlying graded k-algebra of
X is given by the coproduct (in graded k-algebras) of X and the free graded
k-algebra on elements e and de for e € E. &

Proposition 7.4.2.3. Let Y be an object in Alg(Mixed) and Y’ a sub-Z-
graded-k-module of Hy(Y) such that H.(Y) is the direct sum of Y' with
a copy of k generated by the homology class [1] that is represented by the
multiplicative unit 1 of Y3%. Assume furthermore that the homology of Y is
concentrated in non-negative degrees.

Then there exists a quasiisomorphism
0: XY

in Alg(Mixed) such that X is cofibrant, concentrated in nonnegative degrees,
and satisfies the following additional property. There must exist a sub-strict-
mized-complex X' of ev'c\l/“XEd (X) that is cofibrant as an object of Mixed such
that the morphism of strict mized complezxes

k’@X’ N evg/lixed(X)

that is induced by the unit k — X and the inclusion X' — evM>ed(X) is an

a
isomorphism. Furthermore, the restriction of H.(©) to H.(X') must corestrict

to an isomorphism H,(X') = Y. @

Proof. We will inductively construct a diagram in Alg(Mixed) as indicated
below, satisfying properties (a), (b), (c), (d), (e), (f) and (g) that will be

31We denote by d E a Z-graded set that consists of an element that we denote by de of
degree one higher than e for each element e of E. We use a similar convention for E.

32We also use that Free preserves coproducts to rewrite the top right object as a coproduct.

33This element is a cycle and satisfies d(1) = 0 due to the Leibniz rule that is satisfied by
both 0 as well as d.
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explained below.

k
pP-1
Po
P1 D2
1 2
Xy — X, — X, e (3)
@1 @2
SN
@71 Y

Beyond the notation indicated in the diagram, we will denote the morphism
from X,, to X, for =1 <n < m by ™ =™ _, 0--- 0.1 All morphisms
u are going to be levelwise injective, so if x is an element of X,,, we will also
just write x for the element (*(x) of X,,. Finally, we define K,, = Ker(p,)
for n > —1. Note that as p, is a morphism of chain complexes K, will be
closed under 0.

Now we can formulate the properties that (7.4.2.3) needs to satisfy.

(a)
(b)
()

(d)

X 1=k
X, is concentrated in non-negative degrees for all n > —1.

H.(©,,) is an isomorphism for * < n if n > —1 and surjective for all x
if n >

)
n > 0.
H.(©,) maps H,(K,) into Y’ for all n > —1.

Let n > —1. Then there is a Z-graded set E,, and a morphism of Z-
graded sets i\, : E, — X, satisfying the following properties. Let e be
an element of E,. Then the image i/ (e) in X,, must be a cycle as
well as lie in K,,. We denote by B], := k- E,, the chain complex with
zero boundary operator whose underlying Z-graded k-module is freely
generated by E,,. We furthermore denote by B/, the Z-graded k-module
that is given by (k- E,) @ (k- E,)[1]. If e is an element of E,,, then we
will also use e to refer to e as en element of the left summand, and e to
refer to e as an element of the right summand. Note that e has degree 1
higher than e. We can then make B!, into a chain complex by defining
d(e) = e and d(e) = 0 for every element e of E,. There is a morphism
of chain complexes j/,: B!, — B!, that maps e to e. Now we can finally
formulate the property that F, needs to satisfy. We require that there
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is a pushout diagram

FreeAls(Mixed) (j;)

FrecAla(Mixed) (B!) Free?le(Mixed) (B’ )
Xn XnJrl

n+1
28

in Alg(Mixed), where 4, is the morphism that is determined by the
morphism of chain complexes B], — X,, that is given by mapping e to
il (e) for e an element of E,, (this is a morphism of chain complexes by
the assumption that every element of E,, be a cycle in X,,).

(f) 21 is a cofibration in Alg(Mixed) for n > —1.
(g) evMixed(;n+1) g a cofibration in Mixed for n > —1.

Before we construct diagram (x) with these properties, let us first explain
how to deduce the claim from it. We define

X = colim X,
n>—1

with the colimit taken in Alg(Mixed), and let p: X — k and ©: X — Y be
the morphisms induced by p,, and ©,,. We furthermore define

X' = Ker(evi™d(p))

which is a sub-strict-mixed-complex of evM>ed( X) as evM*ed(p) is a morphism
of strict mixed complexes. It remains to check the properties that X and ©
need to satisfy. Before we go through the individual claims, let us first note
that the forgetful functors from Alg(Mixed) to Alg(Ch(k)), Mixed, as well as
Ch(k) all detect filtered colimits by Proposition 4.2.2.12, so in particular every
element of X already occurs in X, for some n > —1. That X is concentrated
in nonnegative degrees then follows directly from (b).

We continue by showing that © is a quasiisomorphism. It follows immedi-
ately from (c) that H,,(©) is surjective for any integer m. Now assume that
m is an integer and z is a cycle of chain degree m in X such that ©(z) is a
boundary. There must be an n > —1 such that z is an element of X,,, and we
may assume that n > m. Then (c) implies that H,,(0,,) is an isomorphism, so
z must be a boundary in X,, and hence in X. Thus O is a quasiisomorphism.

Next we need to show that X is a cofibrant object in Alg(Mixed). This
means that the morphism from the initial object k must be a cofibration. By
(a) we can identify this morphism with the inclusion X_; — X, which is a
transfinite composition of

Lo,l Lo
X_1 XO Xl
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so that the claim follows from each ("*! being a cofibration in Alg(Mixed) by
(f), as cofibrations are closed under transfinite compositions.

We now turn towards the properties X’ needs to satisfy. As p is a morphism
in Alg(Mixed), it must be compatible with the respective unit morphisms, so
that the composition of the unit morphism & — X with p must be the
identity. The splitting lemma now implies that the morphism of strict mixed
complexes k & X’ — evM*ed(X) that is induced by the unit k¥ — X and the
inclusion X’ — X is an isomorphism. Let m be an integer. Using the just
mentioned isomorphism and the one from the statement of the proposition
we obtain a composition

O 1 ()~ Ho (k- {1} @Y

Hyp (k) @ Hy(X') —— Hp(X)
that we can write as a 2 x 2 matrix (thinking of the direct sums as col-
umn vectors), and showing that the restriction of H,(0) to H.(X') core-

stricts to an isomorphism H, (X’) =, Y’ means showing the the component
H,(X') = H,,(k - {[1]}) is zero and the component H,(X’) — Y is an iso-
morphism. (d) implies that the restriction of H,,(0) to H,,(X’) factors over
Y’, which handles the former. As © is a morphism in Alg(Mixed) we also
know that the composition of © with the unit morphism k¥ — X is given by
the unit morphism k£ — Y, which shows that matrix is of the form

o )

Combining this with the fact that H,,(0) is an isomorphism as we already
showed above we can conclude that the component H,,(X’) — Y’ (indicated
with a question mark above) must be an isomorphism as well.

It remains to show that X’ is a cofibrant strict mixed complex. Using that
the forgetful functor ev™e from Alg(Mixed) to Mixed preserves transfinite
compositions we can show, using the same argument as when we showed that
X was cofibrant in Alg(Mixed), only this time using (g) instead of (f), that
the unit morphism k — evM>ed(X) is a cofibration in Mixed. We can identify
this unit morphism with the inclusion of the first summand & — k@ X’. This
means that the top horizontal morphism in the pushout diagram

idg x0 k@X/

k————
l 01Tid ./ (3 * %)
0

— X’

in Mixed is a cofibration, and hence so is the bottom horizontal morphism,
i.e. X' is cofibrant as an object of Mixed.
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We have shown that constructing diagram (x) satisfying properties (a), (b),
(c), (d), (e), (f) and (g) will imply the statement of the proposition, so we now
turn towards actually constructing this diagram. This has two main parts. We
will inductively construct X,, together with ' 4, p, and ©,, satisfying (a),
(b), (¢), (d) and (e), and separately show that this implies that (f) and (g)
hold as well.

We first get this latter part out of the way. So assume that we are given
a diagram (*) satisfying properties (a), (b), (c), (d) and (e). Then the mor-
phisms j;, defined in (e) for n > —1 are cofibrations of chain complexes as
they are coproducts of generating cofibrations, see [Hov99, 2.3.3 and 2.3.11]34.
The functor Free*'#Md) ig 4 left Quillen functor by Theorem 4.2.2.1, so the
morphisms Free®8Mxed) (57 in Alg(Mixed) are cofibrations as well, and hence
so are the morphisms (! by the pushout diagram that is part of (e). This
proves (f).

Showing (g) requires a more detailed analysis of the underlying objects of
pushouts in associative algebras. Luckily, Schwede and Shipley already did
most of the work for us in the proof of [SS00, 6.2], and the following ar-
gument assumes that the reader has familiarized themselves with the proof
of [SS00, 6.2]. We prove (g) by induction, letting n > —1, assuming that
evhMixed(,0 ) . evMixed(;n Y are cofibrations in Mixed, and proving that
then also evMed(,n+1) ig a cofibration in Mixed. By (e) the morphism /21 is
given by a pushout in Alg(Mixed) that is the transpose of the diagram below.

Freeﬁlifégﬂ ixed) (FreeMixed (B;l)) in X,
Freeﬁ:iEjMiXEd) (FreeMixed (];L)> L:,+1
Alg(Mixed Mixed
FreeMiigd e )(Free e (ﬁ;)) T KXn+1
This is also the situation considered in the proof of [SS00, 6.2], with their
functor T being given by Freealiféz/l 'Xed), and the the transpose of the pushout

diagram above then corresponding to the pushout diagram

T(K) — T(L)

X——— P

that is considered at the start of the proof of [SS00, 6.2]. The proof then
shows (using their notation for the intermediate steps, but ours for the end

34The relevant generating cofibrations are denoted by S™~! — D™ in [Hov99, 2.3.3].
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Mixed

Mixed(;n+1) s a transfinite composition of a sequence

points) that ev

evg/““d (Xn) =P, P . P,

in Mixed. As cofibrations are closed under transfinite compositions, it thus
suffices to show that the morphism P,,_; — P,, is a cofibration for every
m > 1. This morphism is defined as a pushout

. . Xm X
Qe ———— (VX © Freed(5,)) " @ extives )

mel Pm
in Mixed, so that it suffices to show that the morphism
. . ®m .
Qm N (evll;/hxed (X'n,) ® FreeMlxed (E;L)) ® evlc\l/llxed (Xn)
is a cofibration in Mixed. This morphism is in turn isomorphic to a morphism
@m ® eVg/lixed (Xn)®(m+1) - FreeMixed (E/n)@m ® eVIC\I/Iixed (Xn)®(m+1)

that is given as a tensor product of a morphism @, — FreeM>* (ﬁ;)(@m

and the identity of evﬁ/”xed(Xn)(g(mH). Now @,, is the colimit of a punctured
hypercube built up from FreeM™®(j7). As j! is a cofibration of chain com-
plexes3® and FreeM™® is a left Quillen functor by Theorem 4.2.2.1, it follows
that FreeM™d(j7) is a cofibration in Mixed. Just like in the proof of [SS00,
6.2] one can now conclude by iterated application of the pushout-product

that the morphism Q,, — FreeMied B ®™ s a cofibration in Mixed.
Where we have to deviate from the proof of [SS00, 6.2] is in how we conclude
from this that the morphism

Qm ® eVg/lixed (Xn)®(m+1) N FreeMixed (ﬁgl)@m ® evlc\l/lixed (Xn)®(m+1)
is a cofibration as well. While evM>ed (X ) is assumed to be cofibrant in the
context of [SS00, 6.2], evM™ed(X, ) actually not cofibrant in our situation.
However, with arguments completely analogous to the proof that the state-
ment of the proposition follows from the existence of a diagram (x) satisfying
properties (a), (b), (c), (d), (e), (f) and (g), we can see that evM*ed(X, ) is
given by the direct sum of the sub-strict-mixed-complex K, and the image
of unit morphism £ — X,,. That unit morphism can furthermore be identi-

fied with the morphism evM™*ed(,” ) which is a cofibration in Mixed by the

35This was shown above when we proved (f).
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induction assumption. Using a pushout diagram analogous to (x * %) we can
then conclude that K, is cofibrant as an object of Mixed. Let us now return
to showing that

Q,, @ evMied (X, EMTL _y ppoMixed (ﬁ%)@’m & evMied (7, )@(m+)

is a cofibration. The tensor product evM*ed (X, )@(m+1) =~ (k@ [, )®(m+1) s
isomorphic to a direct sum of terms of the form K®' @ k®(m+1-i) =~ K& Ag

cofibrations are closed under coproducts, it thus suffices to show that
_ . . ® ,
Qm ® KSE)’L N FreeMlXed (E{n) m ® KSLM

is a cofibration in Mixed for any ¢ > 0. Here we need to distinguish two cases.
If i > 0, then K" is cofibrant in Mixed as K, is cofibrant as just shown,

and combining this with Q,, — FreeM>ed (E/n)(@m being a cofibration and
the pushout-product axiom we obtain that the morphism above is indeed a
cofibration. If instead i = 0, then K2* = k. This is not cofibrant as a strict
mixed complex, but as it is the monoidal unit, we obtain that the above
morphism in question is isomorphic to @,, — FreeM> (ﬁ%)@)m and hence
nevertheless a cofibration.

We have now shown that given a diagram (x) satisfying properties (a), (b),
(¢), (d) and (e) also properties (f) and (g) hold. So now it remains to actually
construct a diagram (x) satisfying properties (a), (b), (c), (d) and (e), which
we do inductively.

We begin by setting X_1 = k, p_1 = idg, and ©_1: k — Y the unit
morphism of Y. Then (a) is handled, and (b) clearly holds for n = —1. As Y
was assumed to have homology concentrated in non-negative degrees, and k
has the same property we also have (c) for n = —1. Finally, K_; =0, so (d)
is clear for n = —1.

Now let Z be the graded subset of Y that is given by cycles that represent
a non-zero homology class in Y'. We let E_; be Z[—1], i.e. the Z-graded set
in which the elements of Z are all given a degree that has been lowered by 1,
and define i/,: F_1 — X_; = k as the map that maps every element to 0. As
the element 0 in every degree of k is an element of K_; as well as a cycle we
can now define Xy via the pushout diagram (xx), so that (e) is satisfied for
n = —1. We also need to define pg and O, which we do using the universal
property of the pushout, which ultimately amounts to prescribing a cycle of
the appropriate degree in k and Y to the elements e of B’ ; for each element
e of E_1. For py we simply let e map to 0. For © we note that an element e
of E_; corresponds to a cycle z in Y, and the degrees of e and z agree. We
can thus define ©y by mapping e to the corresponding cycle z.

We now need to show that (b), (c¢) and (d) hold for n = 0. By assumption
Y has homology concentrated in non-negative degrees, so by construction of
E_ 4 every element e of E_; is of degree bigger or equal to —1, which means
that the corresponding elements e are all of non-negative degrees. Applying
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Remark 7.4.2.2 we can thus conclude that X is concentrated in non-negative
degrees, which shows (b) for n = 0. By construction of E_; and Oy it is clear
that Y is contained in the image of H,(®g). As 1 must also be in the image
by virtue of ©¢ being multiplicative, we can conclude from the assumption
that H,(Y) 2 k-{[1]}®Y" that H.(Oy) is surjective. As both Xy and Y have
homology that is concentrated in non-negative degrees it is also clear that
H.(6y) is an isomorphism for * < 0. Thus (c) follows for n = 0. Finally, it
is clear from the definitions and Remark 7.4.2.2 that a basis for Ky is given
by non-empty words in the multiplicative generators e and de of Xy for e
elements of F_1. As ©g maps every element of the form ¢ to a cycle that
represents a homology class in Y”, the same is true for elements of the form
de, as Y’ is closed under d for degree reasons6. Multiplicativity of ©¢ now
implies that H,(0g) maps H,(Kj) into Y, showing (d) for n = 0.

We now define the remainder of diagram (x) by induction. So we as-
sume that m > 0 such that X_q,...,X,,_1 as well as p_1,...,pm_1 and
O_1,...,0,,—1 have already been defined in such a way that (e) holds for
n=—1,...,m—2and (b), (c) and (d) hold for n = —1,...,m — 1. We then
define X,,,, pm, and O,, in such a way that (e) holds for n = m — 1 and (b),
(¢) and (d) hold for n = m.

Let L :== Ker(H,,—1(0,—1)). We want to define E,,_; as a Z-graded subset
of K,,_1 whose elements are cycles representing nonzero homology classes in
L, and which contains at least one such cycle for each nonzero homology class
in L. Note that FE,,_1 will then be concentrated in degree m — 1. We have
to show that this is in fact possible, i.e. that every homology class in L is
represented by a cycle that lies in K,,,_;. Note that, as we already mentioned
before, X,,_1 decomposes as a direct sum of k-{1} and K,,—1. If m > 1, then
this immediately implies the claim, as k - {1} is then concentrated in degree
0 < m — 1 so that every cycle of degree m — 1 in X,,,_; will be in K, 1. If
instead m = 1, then a cycle representing a homology class in L is given by a
sum a -1+, with a an element of k and [ a cycle in K of degree 0. That O
is an algebra morphism as well as (d) for n = m — 1 imply that

Ho(Oo)([a - 1] + [I]) = a - [1] + Ho(©0)([l])

with Ho(©9)([]]) an element of Y. The assumption that H,(Y") is the direct
sum of k-{[1]} and Y’ then implies that we must have a = 0. Thus a Z-graded
subset E,,_1 of K,,_1 of the form described above exists.

We let i/, _;: Epm—1 — Xm—1 be the inclusion map and define 7, and
X, via the pushout diagram (xx), so that (e) is satisfied for n = m — 1.
We next define p,, and ©,, using the universal property of the pushout. We
define p,, by extending p,,_1 by mapping e to 0 for every element e of E,,_1,
which is compatible as p,, _104,,_1 maps every element of F,,, 1 to 0 as E,,_1
is a subset of K,,_1.

36y’ is concentrated in nonnegative degrees, so the images of d applied to elements of Y’
lie in degrees greater or equal to 1, and in those degrees Y’ is equal to Hy(Y), as k is
concentrated in degree 0.
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We also define ©,, as follows. Let e be an element of F,, 1. By definition
il _1(e) is a cycle that represents a homology class that is in the kernel of
H,,—1(0m—1). There thus exists an element in degree m of Y whose boundary
is ©p—1(il,,_1(e)), and we can thus define ©,, as an extension of ©,,_;1 by
mapping e to one such element. It now remains to show that with these
definitions (b), (c) and (d) hold for n = m.

Combining that F,,_; is concentrated in degree m — 1 > 0 with Re-
mark 7.4.2.2 we obtain that the underlying Z-graded k-algebra of X, is
multiplicatively generated by X,,_; and elements of the form e of degree m
and d e of degree m+1 for e € E,,_;. Combining this with (b) forn =m—1
we obtain (b) for n = m.

This also implies that ¢;_; is an isomorphism in degrees less than or equal
to m—137, and thus an isomorphism in homology in degrees less than or equal
to m — 2. Combining this with (c) for n = m — 1 we obtain that H,(0,,) is
an isomorphism for * < m — 1. That H,(0,,) is surjective for all * follows
directly from H,(©,,_1) being surjective for all * by (c) for n = m — 1. To
show (c¢) for n = m it thus remains to show that H,,_1(0,,) is injective. As
we noted that ¢]_; is an isomorphism in degrees less than or equal to m — 1,
any homology class in the kernel of H,,_1(0,,) must already lie in the kernel
of H,;,—1(0,,—1) and hence in L. But the construction of X, then directly
implies that that homology class is zero in H,,_1(X,,). This shows (c) for
n=m.

Finally, ¢/»_; being an isomorphism in degrees less than or equal to m — 1
implies that the restriction and corestriction of ¢/, to a morphism of chain
complexes K,,_1 — K, is also an isomorphism in those degrees. Asm—1 > 0
this implies that the image of the restriction of Hy(0,,) to Ho(K,,) is con-
tained in the image of the restriction of Hy(0,,—1) to Ho(K,,—1), which
together with (d) for n = m — 1 shows that Ho(©,,) maps Ho(K,,) into Y.
As Y’ is equal to H,(Y) in degrees x # 0, this shows (d) for n = m. O

We can now apply Proposition 7.4.2.3 to improve the cofibrant model for
HH\ixed (k[ X]) from Proposition 7.4.1.2.

Proposition 7.4.2.4. Let X be a set. Then there exists a cofibrant object
C(X) in Alg(Mixed) that is concentrated in nonnegative degrees satisfying the
following properties.

37This is one reason why (b) is part of the properties that we need to require of diagram
() even if we did not need this property to conclude the statement of the proposition;
without assuming it in the induction each new multiplicative generator also causes new
elements of potentially arbitrary low degree.
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Firstly, there has to a be a commutative square
HHtixed (k) ——————— Alg(mixed) ()

HH\tixed (Lk[X]) Alg('YMixed)<Lé(X)) (7.7)

HHMixed(k[X]) —= Alg(’YMixed) <6(X))

in Alg(Mixed), where the left morphism is induced by the unit morphism
tepx): k — k[X], the right morphism is induced by the unit morphism

WEx) ko C(X)

and the horizontal morphisms are equivalences.

~/
Secondly, there must exists a sub-strict-mized-complex C (X) of the strict

mized complex ev¥**d(C(X)) that is cofibrant as an object of Mixed and such

that the morphism of strict mized complezes

ko al(X) — eyMixed (é(X))

that is induced by the unit morphism k — evM*d(C(X)) and the inclusion

a

(NJI(X) — evMixed(C(X)) is an isomorphism. Q@

~1
Proof. Let C (X) be as in Proposition 7.4.1.2. Then there is a composite
equivalence

Alg(y) (Alg(evm) (C"(2)) ) = HH(KLX]) = Alg(3) (30

in Alg(D(k)), where the first equivalence is obtained by applying the forget-
ful functor Alg(evy) to the equivalence at the bottom of diagram (7.6) sup-
plied by Proposition 7.4.1.2 combined with compatibility of Alg(evy,) with
Alg(YMixed) from Construction 4.4.1.1, and the second equivalence is the one
from Corollary 7.2.2.3. This implies that there is an isomorphism of Z-graded
k-algebras as follows.

H. (6//(X)> ~ H, (QE[X}/k-) = Qix/m

As Q;[ X1/k is concentrated in nonnegative degrees and can be written as a
direct sum of a copy of k generated by the multiplicative unit 1 and some com-

~1!
plement we can transfer this sum decomposition to the homology of C (X)
and use it to apply Proposition 7.4.2.3. This yields a quasiisomorphism

0: 0(X) - ¢ (X)
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in Alg(Mixed) such that G(X ) is cofibrant, concentrated in nonnegative de-

~/
grees, and such that there exists a cofibrant sub-strict-mixed-complex C (X)

of evMixed(C(X)) such that the morphism of strict mixed complexes

ko C (X) - ev™=d(C(X))

that is induced by the unit and inclusion is an isomorphism. This already

shows the second property that G(X ) needs to satisfy.
It remains to show the existence of a commutative square (7.7). This is
obtained as the transpose of the outer square of the commutative diagram

HHpixea (tr[x
HE e (K) Ce) b (B(X))

12
1

Alg(YMixed) (La// (X))

Alg (s (8) Alg(mes) (€ (X))

~ 1Al ixed) (©
Alg('YMixed)(Lé(X)> 2(Mixed ) (©)

Alg(YMixed) (6(X))

in Alg(Mixed), with the top commutative square being the transpose of the
one supplied by Proposition 7.4.1.2 and the bottom triangle commuting be-
cause k is initial in Alg(Mixed). O

As it will later be relevant to keep using the same equivalences as in diagram
(7.7) of Proposition 7.4.2.4, we now fix C once and for all.

Construction 7.4.2.5. Let X be set. Then we define Cz(X) to be a cofi-
brant object of Alg(Mixedz) satisfying the conditions of Proposition 7.4.2.4.

Together with Cz(X) we fix once and for all a commutative square

HHMixed(Z) _ Alg(’YMixed)(Z)
HHaxtixed (12 ) Alg(miea) (13,00 (7.8)
HHvtxea (Z[X]) ——=—— Alg(mieed) (C(X))

in Alg(Mixedz) and a cofibrant sub-strict-mixed-complex GIZ(X ) of the strict
mixed complex evM>ed(Cz (X)) as supplied by Proposition 7.4.2.4.
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For other commutative rings k we then define
Cr(X) =k ®z Cz(X)

which is a cofibrant object of Alg(Mixedy) by Proposition 4.2.2.13. It also
follows directly from (~]Z(X ) being concentrated in nonnegative degrees that
the same holds true for Cy,(X). Applying k®z— to the inclusion of (N]/Z(X ) into

Mixed(éz( X)) we obtain an injection into a strict mixed complex that we
can identify with evMixed (C (X)). We define 6;( X) to be the image of that
injection, as a sub-strict-mixed-complex of evM'Xed(Ck( )). It then follows

immediately from the analogous property for CZ that the morphism of strict
mixed complexes

k@ Cp(X) — evMied (Ck(X))

that is induced by the unit and inclusion is then an isomorphism. Further-
more, as the functor

k ®7 —: Mixedz — Mixedy,

preserves cofibrations by Proposition 4.2.2.3 we can also conclude that EL(X )
is cofibrant as an object of Mixed.
We also obtain the following diagram in Alg(Mixedy)

HHtixcea (th[x])

HHacicea(K) HHcixea (X))
ko H;Mixed () —Lothelo) g, HHM;ed<Z[X]>
ke Alg:(wixed) 7 R e0) 4 g (€200))

Alg(vaaxed)(k) s (o) Alg(vMaxed)N(ak (X ))

where the top square arises from compatibility of HHyixeq With extension of
scalars as in Remark 6.2.1.6 (plus using the obvious isomorphisms k®z7Z = k
and k®zZ[X] = k[X] that are given by including both tensor factors into the
codomain and then multiplying), the middle square is obtained by applying
k ®z — to the transpose of diagram (7.8), and the bottom square arises
from compatibility of Alg(Ymixed) With extension of scalars by Remark 4.4.1.3
(together again with the isomorphism k ® z Z = k). Transposing the outer
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commutative rectangle we obtain a commutative square

HHMixed(k) _ Alg('yMixed)(k)
HHJ\{ixed(Lk[X]) Alg(’YMTxed)(Lék(x)) (7,9)

HHtixed (k[ X]) ———— Alg('YMixed)(ak(X ))

which we fix once and for all. With the chosen diagram (7.9) and sub-strict-

mixed-complex (~];€ (X) of ev'c‘l’“xed(ék(X )) we have thus provided the data that

shows that Ci(X) as we defined it here satisfies the conclusion of Proposi-
tion 7.4.2.4.

If the base ring is clear from context we will as usual omit it from the
notation and just write e.g. C(X) instead of Cj(X).

Now let X and Y be two sets and F': k[X] — k[Y] a morphism of commu-
tative k-algebras. Then the composite morphism

Alg(icea) (C(X) ) = HHagicea ([X])

HHotixea (F) HHvtixed (K[Y])

=+ Alg(Mixed) (é(y))
in Alg(Mixed), where the first and third equivalences are the ones from (7.9),

can be lifted® to a morphism G(F) in Alg(Mixed), which we chose once and
for all. C(F') comes together with a commutative diagram

HHMixed(k[X]) —_ Alg(’}/Mixed) (G(X)>

HH\(ixea (F) Alg(yiea) (C(F)) (7.10)

HHaixea (k[Y]) ——=—— Alg(uieee) (C(Y))
in Alg(Mixed), where the horizontal equivalences are those from (7.9).

7.4.3. Comparing the algebra and mixed structure
separately

Construction 7.4.2.5 provides a reasonably nice strict model é(X ) for
HHixea (k[ X]) as an algebra in mixed complexes. In this section we will

38 A5 C(X) is cofibrant and C(Y') fibrant in Alg(Mixed).
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construct comparison morphisms frgm the underlying differential graded al-
gebra and strict mixed complex of C(X) to QF ) ;-

Construction 7.4.3.1. Let X be a set. We will construct a quasiisomor-
phism

¥ x: Alglevn) (Ch(X)) =

in Alg(Ch(k)). If the base ring is clear from context we will also write @'y,
and even @’ if the set X is clear as well.

As in Construction 7.4.2.5 we first construct ®7  and then extend scalars
for <I)§€, - There is a composite equivalence

Alg(7) (Alg(evm) (C2(X) ) ) = HH(Z[X]) = Alg(y) (2% 2)

in Alg(D(Z)), where the first equivalence is obtained by applying the forgetful
functor Alg(evy,) to the equivalence at the bottom of diagram (7.8) in Con-
struction 7.4.2.5 combined with compatibility of Alg(evy) with Alg(YMixed)
from Construction 4.4.1.1, and the second equivalence is the one from Corol-
lary 7.2.2.3. By Proposition 4.2.2.12 Alg(evy,) preserves cofibrant objects, so
Alg(evm)(az(X)) is cofibrant as an object in Alg(Ch(Z)). As €3y, ; is fi-
brant (like every object), we can thus lift the above equivalence in Alg(D(Z))
to a quasiisomorphism @7, v (see [Hov99, 1.2.10 (ii)] and Proposition A.1.0.1)
as claimed.
We now define

;C’X: Alg(evm)(Ck(X)) — Q;[X]/k
as the composition

Alg(evy) (ék(X)) = Alg(evy) (k’ Rz (sz(X))

Sk ®z Alg(evim) (62(‘)())

k®q7 P,
ﬂ k ®g Q%[X]/Z

— Qx)/k

in Alg(Ch(k)), where the first equality is by definition, the first isomorphism
is the one from compatibility of ev, with extension of scalars as in Re-
mark 4.2.1.3, and the isomorphism in the last line is given by applying the
unit in the first tensor factor and €27 (X]/k in the second, and then multiply-
ing. To see that @%7 y Is indeed a quasiisomorphism we only need to argue
that k ®z ®7 y is a quasiisomorphism. Note that the underlying morphism
of chain complexes can be identified with k ®z evq(®7 x), and the functor

k ®z —: Ch(Z) — Ch(k)
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is a left Quillen functor by Fact 4.1.5.1 and so preserves weak equivalences
between cofibrant objects. By Proposition 4.2.2.12 Cz(X) has cofibrant un-
derlying chain complex, and by the discussion surrounding Definition 7.1.0.1
QZ[ X1/ has cofibrant underlying chain complex as well, so as <I>’Z’  is a quasi-

isomorphism we obtain that ‘I);’  is one as well. &

Proposition 7.4.3.2. Let X be a set. Then there is a commutative triangle

Alg(7)(®} x)

Alg(v) (Alg(evm) (Gk(X))) Alg(v) (Q;.[X] /k)

\ /
HH(k[X))

in Alg(D(k)), where the left diagonal equivalence is obtained by applying the
forgetful functor evN'™ed to the equivalence at the bottom of diagram (7.9) in
Construction 7.4.2.5 combined with compatibility of eV with Alg(YMmixed)
from Construction 4.4.1.1, and the right diagonal equivalence is the one from

Corollary 7.2.2.3. Q

Proof. We drop the forgetful functor Alg(evy,) from the notation in this proof
to improve readability. Consider the following diagram in Alg(D(k)) that will
be explained below.

Alg() (Cu(x)) MeCATEx) Al (2x 1)
Alg(y) (:@Z GZ(X)) MONEEx) | g1 (k ®: Mix) /z)
k@, Alg(Nv) (C20)) b G LI NP Alg(v)N(%X] 2)

k®z ;H(Z[X]) = k ®z, Alg(v)k(i%m /z)

HH(k~®z 7[X]) Alg(7) ®; Uixy/z)

HH:(k;[X]) - Alg(v) (QN,:[X] /k)

The first square from the top is built from the composition <I>;§7 y is defined
as in Construction 7.4.3.1. The second square is the naturality square for the
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equivalence in Remark 4.4.1.3. The third square is obtained from the defini-
tion of @7, y by applying k ®z Alg(y)(—), the left equivalence is obtained by
applying the forgetful functor Alg(evy,) to the equivalence at the bottom of di-
agram (7.8) in Construction 7.4.2.5 combined with compatibility of Alg(evy,)
with Alg(vMmixed) from Construction 4.4.1.1 and at the end tensoring with &,
and the bottom equivalence is obtained by tensoring the equivalence from
Corollary 7.2.2.3 (for base ring Z) with k. Finally, the bottom rectangle is the
one from Proposition 7.2.2.4, so that in particular the bottom equivalence of
the full rectangle is the one from Corollary 7.2.2.3.

Now note that on the right the top two equivalences are the same as the
bottom two equivalences, so the composition of the right column is the iden-
tity. The bottom equivalence is exactly the one occurring as the right di-
agonal equivalence in the statement. Finally, the composition on the left is
exactly the definition of the equivalence at the bottom of diagram (7.9) in
Construction 7.4.2.5. O

Proposition 7.4.3.3. Let X be a totally ordered set. Then there exists a
quasiisomorphism
v eVgAixed (C(X)) — Q;[X]/k

in Mixed. Q

Proof. Some parts of this proof will be analogous to Construction 7.4.3.1, but
we need some additional arguments as evMixed (C(X )) is not a cofibrant object

of Mixed. Proposition 7.4.2.4 and Construction 7.4.2.5 isolate this problem
to the non-cofibrancy of the summand k. So let j: k°°f — k be a cofibrant
replacement of k£ in Mixed. It then follows from Construction 7.4.2.5 that

~1
k°f @ C (X) is a cofibrant strict mixed complex and that the composition

keof @ O (X) 229 ko &(x) —= evMixd (G(X)) (+)

is a quasiisomorphism, where the second morphism is induced by the unit
and inclusion. There is a composite equivalence

TMixed (kco{ ® (Nj/(X)) >~ YMixed (GVEMXEd (G(X)»
~ HHtixed (K[ X])

2 VMixed (QE[X]/k-) ()

in Mixed, where the first equivalences arises from the composite quasiiso-
morphism (x), the second equivalence is obtained by applying the forgetful
functor evM>ed o the equivalence at the bottom of diagram (7.9) in Construc-
tion 7.4.2.5 combined with compatibility of ev';/“xed with Alg(YMixed) from
Construction 4.4.1.1, and the third equivalence is the one from Construc-

tion 7.3.11.3.
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~1

Using that k@ C (X) is a cofibrant object of Mixed and that every object,
so in particular Q;[ X1k is fibrant, we can now lift the composite equivalence
from (*x) to a quasiisomorphism

ke C(X) = Qg

in Mixed.

In the following we will use the notation 47 and i5 for the inclusions of the
first and second summands of the sums k°°f @ 6/(X) and k& él(X), with the
context making clear which of the two sums we are including into. We now
claim the following.

Claim 1: There exist morphisms

U R sk and Uik = Qi

in Mixed such that ¥” is a quasiisomorphism and such that there exists a
commutative square

(i ~/
VMixed (k;COf) L"(l)) YMixed (kcof o C (X))
YMixed (L") YMixed (¥") (%)
YMixed (k) ’YMixed(\I//”) YMixed (QI.C[X]/k)

in Mixed.
Before showing the claim we discuss how the claim implies the statement
of the proposition. We define ¥ as the composition

I W 0iy)

oyMived (6(X)> ke C(X) ——— O

in Mixed, where the first morphism is the inverse isomorphism of the second
morphism in (x). It remains to show that the morphism

V(W 0dg): k@ C(X) = Qxy

is a quasiisomorphism. But as ¥” and hence ¥" @ id~/

T(x) 1S a quasllsomor-

phism, it suffices for this to show that
£ ~/
(U7 0 W) I (V' 0idp): k@ C(X) = Qpx/n
is a quasiisomorphism. We know that U = (¥’ 0 41) IT (¥’ 0 i3) is a quasi-

isomorphism, so it would suffice to show that (¥" o U”) IT (¥’ 0 i) is chain
homotopic to (¥’ 0 d1) II (¥ 0 43), for which it in turn suffices to show that
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(9" 0 ¥} is chain homotopic to (¥’ o0 41). But this follows from existence of
commutative diagram (* * *), using that the underlying chain complex of k<
is cofibrant by Proposition 4.2.2.12, while Q;[X]/k is a fibrant chain complex,
together with [Hov99, 1.2.10 (ii)] and Propositions A.1.0.1 and 4.1.4.2.

So to finish the proof it remains to show Claim 1, for which we need to
unpack and rewrite the composition Ymixed (¥’) © YMixed (¢1) that occurs in the
square (***) that we are to construct. Using the definition of ¥’ and (x)
and (#x) to unpack this composition we obtain that Ymixed (¥’) © YMixed (1) is
homotopic to the composition from the top left to the bottom right along the
top row and right column of the following diagram in Mixed, which will be
explained below.

Yiixed (£°F) (1) YMixed (kCOf ® al(X ))
Ywixed (5) ixed (§Did)
Mixed (k) et (1) TMixed (k ® GI(X))
id ~

TMixed (L(j(x))

IMixed (k) TMixed (evﬁmxed (G(X)))

HHtixeal t
HHotixea (k) e (tei) HHotixea (K[X])

TMixed (Q;[X]/k)

The top square is obtained by applying Ymixed t0 & commuting square in
Mixedcor. In the middle square we define the vertical morphism on the right
as the equivalence induced by the isomorphism occurring in (*). By definition
this isomorphism is given on k by the unit morphism, which implies that this
square also has a filler as it is given by Ymixed applied to a commuting square in
Mixed.of. The bottom square is given by applying the forgetful functor ev}ed
to diagram (7.9) in Construction 7.4.2.5. Finally, the vertical equivalence at
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the bottom right is the one from Construction 7.3.11.3, which also occurs in
(). Commutativity of the above diagram means that Ymixed (¥’) © YMixed (41)
is homotopic to the composition from the top left to the bottom right along
the left column.

We now consider the following commutative diagram in Mixed, which we
again explain below. The composition that we just showed is homotopic to
ixed (P’) © YMixed (1) Occurs as the composition from the top left to the
bottom right while staying on the top and right side.

—— IMixed (k)

Mixed (J) | =
YMixed (k)

HHtixcea (ta[x])

HHMixed (k) HHMixed (k[X]) )

w// ~ N -

ixed (Ctrx7))

’)/Mixed(c(k)) ’yMiXEd(C(k[X]))
tixed (C(erx7))

> YMixed (C(k)) YMixed (C(k[X]))

YMixed (6;)) =~

Mixed (Q;[X]/k> —

We start by just defining 1" as the composition of the equivalences in the
left column (which will be explained in a moment); this shorthand will be
useful to shorten notation later. The second morphism in the left column is
obtained by applying the forgetful functor ev>ed to the top horizontal equiv-
alence in diagram (7.9) in Construction 7.4.2.5. The top square arises from
naturality of the equivalence between HHyixeq and the standard Hochschild
complex in Proposition 6.3.4.1. The bottom square arises from naturality of
the quotient morphism from the standard Hochschild complex to the nor-
malized standard Hochschild complex, see Proposition 6.3.1.10. The lower
right vertical equivalence is the one induced by the strongly homotopy linear
quasiisomorphism eg;), see Proposition 7.3.11.2 and Construction 4.4.4.1. Fi-
nally, the long equivalence on the right is the one of Construction 7.3.11.3,
which also occurs in (%), and the right rectangle is obtained by unpacking
its definition.
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We have now shown that Ymixed(¥P’) © YMmixed (¢1) is homotopic to the com-
position from the top left to the bottom right in the diagram above while
staying to the left and bottom. Note that C(k) is isomorphic to k as a strict
mixed complex (as k = 0), with an isomorphism given by the unit (k) of
C(k). As C(ug[x)) is a morphism of differential graded algebras and equal-
ity of morphisms of strict mixed complex can be checked on the underlying
morphisms of chain complexes we can conclude that

C(Lk[X]) O lGk) = LCk[x))

holds. We should comment here on why Lok and VG (k[x]) BTe morphisms of

strict mixed complexes. As C(R) for a commutative k-algebra R is not in
general an algebra in strict mixed complexes, it is not a purely formal fact
that the unit morphism k& — C(R) of the differential graded algebra structure
is a morphism of strict mixed complexes rather than just a morphism of
chain complexes. However, this is indeed the case, as one can check using the
formula for d from Proposition 6.3.1.10.3°

The upshot of the discussion so far is that there is a commutative diagram
as follows in Mixed.

iixed (¥ ) 0V Mixed (21)

YMixed (£°°F)
ae
e @09) 22 o) ) (0t0)
ixed (Vosry ) | = Wixed (1T (k(x])) |
ixed (k) === mmmm oo |

As k°°f is a cofibrant object in Mixed we can lift the composition of the two
equivalences on the left to a quasiisomorphism ¥”: k°°f — k in Mixed, and
it remains to show that we can up to homotopy find a lift of the dashed
composition in Mixed to a strict morphism ¥"”: k — Q;[X]/k (that such a
lift exists is not automatic as k is not cofibrant in Mixed). We define ¥’ as
the unit morphism

g L

o B Qix

which can be seen to be a morphism of strict mixed complexes from the

39That this is not automatic is underlined by the fact that the analogous property does
not hold if we had used C(R) instead of C(R) — this is one of the reasons the normalized
standard Hochschild complex is more convenient to work with.
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definition of d on Q' X1k It then suffices to show that the triangle

YMixed (632))

Mixed (QZ[X]/k> ~ Mixed (é(k[X]))
WMix:‘m A(k[x]))
YMixed (k)

commutes in Mixed.

For this we first unpack the definition of the lower horizontal equivalence
'yMixed(Q;[X]/k) from Construction 4.4.4.1. As ad hoc notation, let us denote
the natural transformation coming with the functorial cofibrant replacement
on Mixed by q: —°f — idpied. We will also use the notation that was in use
in Construction 4.4.4.1. We need to show that there is a filler for the triangle
at the bottom of the following diagram, where the top is the commutative
rectangle from Construction 4.4.4.1. To make the diagram a bit cleaner we
abbreviate Ymixed by M, as well as Q;[X]/k and C(k[X]) by Q and C.

(e EDT) (@) 2T )

(g )‘/N N[’yM (qg)
(0))
(\ /

As all the morphism in the top rectangle are equivalences we can also partition
the diagram differently and instead show that there is a morphism from
ixed (k) to the object in the top middle such that the two shapes in the
diagram below have a filler.

- (( str:cc)cof)

ym (Q°) : " ( (@5}“) cof> .

i ’YM
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Next we use that ¢z : k°°f — k is a quasiisomorphism to reduce to showing
that there exists a dashed morphism as indicated in the diagram below such
that the top two triangles have a filler, with the two squares having a filler
by naturality of q.

) D (@) ) L @)

'YM(QQ) = 'YM('I/”ICOf) 1 = VM(%)
() (k<) m(C)
m(qr) | =
(27 e o (vs)
(k)

To show that the square formed by the two triangles has a filler in Mixed it
suffices to show that the square

o !rreof R cof
kot (Qk[X]/k>
Leof strict ) cof
C(k[X]) (ex7)
cof
-~ cof el shl
C(k[X)) ——— (Crxp™)
(Lak[xn

commutes in Mixed, for which it in turn suffices to show that the diagram

qllll °
k Qk‘[X]/k
LC(k[X]) Ec);gx'ict
C(HX]) —— kX)) ™
C(k[X])

commutes. This we can now check directly. As all morphisms are k-linear it
suffices to check the image of the element 1 of k£ along the two compositions.
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We first consider the composition along the bottom left. L (k[x]) Maps 1to1,

which is then mapped by %h(l/c[x]) to the tuple (1,0,0,...) of C(k[X])Shl, see

Definition 4.2.3.3. In the composition along the top right ¥ maps 1 to 1,
which is then mapped by €% to the tuple e52'°*(1) that is defined as follows
for ¢ > 0, see Proposition 4.2.3.7 and Definition 4.2.3.8.

A (W = (1)
€§riCt(1)2i+1 _ (a€g§+1) _ 6(}§+1)a> (1)

As 9(1) = 0 we can simplify the odd case to € (1)g;41 = a(e§§+1)(1)).
It thus suffices to show that e()?)(l) = 1 and e()?(l) = 0 for ¢ > 0. The
former is clear as eg?) is a morphism of differential graded algebras by Propo-

sition 7.2.2.2 (2). For the latter we check the definition of eg? in Construc-
tion 7.3.1.1. Using the notation there, the element 1 implies that m = 0, and
then C(i,m) is empty“®, implying the claim. This finishes the proof. O

Definition 7.4.3.4. Let X be a totally ordered set. Then we choose once
and for all a quasiisomorphism

\I/X : G‘Vg/“xed (6(}()) — Qz[X]/k:

in Mixed, as exists by Proposition 7.4.3.3. &

7.4.4. Compatibility of ® with d in the case of a single
variable
In Section 7.4.3 we constructed two comparison quasiisomorphisms be-
tween C(X) and Q% x)/k; one compatible with the strict mixed structure,
and one compatible with the multiplicative structure. In this section we show

that after possibly tweaking it slightly, the multiplicative morphism also pre-
serves d in the special case of X = {t}.

Proposition 7.4.4.1. There exists an element v of {+1,—1} such that the
morphism

D) 4y Alg(eVm)(ak({t})) = Qe

from Construction 7.4.3.1 satisfies
gy (dy) =v- (@) (7.11)
for every element y of ék({t}) v

40 Asi > 0 we have that 1 < 1 < 4. Thus any element € of C(i, m) must satisfy ¢c;+1 < ca—1
while 1 < ¢1,c2 <0+ 1 =1, which is not possible.
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Proof. By definition we can identify @;C’{t} with k®Z(I)/Z,{t}’ and as the isomor-
phism (actually equality) ék({t}) & k®ZGZ({t}) is compatible with the strict
mixed structure by definition and the isomorphism Q;[t] e = k®z Q%[t] Iz that
occurs in the definition of <I>;€1 () is compatible with the strict mixed struc-
ture by Remark 7.1.0.2, it suffices to prove that there exists an element v of
{+1, —1} such that (7.11) holds in the case of base ring Z.

We next note that as Qi[t] Jk is concentrated in degrees 0 and 1, equation
(7.11) is automatic no matter what we choose for v if y is an element of a
degree other than —1 or 0. As Cz({t}) is concentrated in nonnegative degrees
the equation also holds automatically for elements of degree —1, and every
clement of Cz({t}) of degree 0 is a cycle. We are thus left showing that there
exists an element v of {41, —1} such that (7.11) holds for cycles y of degree

0 of Cz({t})

As <I>’Z, () is a quasiisomorphism and Q%[t} /z has zero boundary operator,
P, (¢ must be surjective. We can thus lift the element t of Qi[t]/z to an

element 7 of Cz({t}) of degree 0 such that 7y (1) =t. As 7, is multi-
plicative we then also have @7, , t}(fn) = t" for n > 0, so that we can conclude
that the elements [f"] for n > 0 form a Z-basis for Hyo(Cz({t})). Let us as-
sume for the moment that we found an element v such that (7.11) holds for
the elements y = £ for n > 0. Then we claim (7.11) holds for all cycles y
in degree 0. Indeed, any cycle y of degree 0 of Cz({t}) must be of the form
y = ZO<n en -+ Oz for some element z of degree 1 and elements ¢, in Z
for n > 0, only finitely many of which are nonzero. But then we have the
following calculation, using that Qi[t] /z has zero boundary operator and thus

@’Z,{t} maps boundaries to zero.

0<n 0<n
Y v d(@’zv{t} (f”)) —ved| oy [ et
0<n 0<n
=v-d (I)/Z,{t} Z Cp -t 40z =v- d(fb’z,{t}(y))
0<n

It thus suffices to show that there exists an element v of {41, —1} such that
(7.11) holds for elements y =" for n > 0.

We now need some input on properties that d must satisfy on the homology
of Cz({t}). For this equip {t} with the unique total order and let ¥ be as in
Definition 7.4.3.4. Then ¥ being a quasiisomorphism as well as compatible
with d, and Qi[t] /z having zero boundary operator, implies that there is a
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commutative diagram

Ve —— (62({t}))

Q%[t]/z ——=Ho (62({75}))

of abelian groups where the two horizontal morphisms are isomorphisms*'.

A Z-basis of Q%[t]/z is given by " for n > 0, and a Z-basis of Q%[t]/z is given
by t" - dt for n > 0. Combining this with d(t") =n-t"~!.dt for n > 0 one
obtains the following two properties for d on Qi[t] Iz

(1) The morphism
Q@2 d: Qs Q12 = Q@2 Qg
is surjective.

(2) The morphism
d: Q172 = Q2

is only divisible by unmits, i.e. if d = ¢ - d’ for another morphism
d": /2 = Q2 and element ¢ in Z, then ¢ must be a unit (so
either +1 or —1).

Using the above commutative square we can conclude that the analogous
properties hold for the homology Cz({t}).

(1) The morphism

Q ez d: Qen Ho(Ca({t))) — Qe Hy (Ca({1)))
is surjective.

(2) The morphism
d: Ho(Ca({t))) — i (Ca({t})
is only divisible by units, i.e. if d = ¢- d’ for another morphism
d's Ho(Ca({1})) = Ha(Ca((1)))

and element c¢ in Z, then ¢ must be a unit (so either +1 or —1).

41Tnduced by ¥, but we do not actually care beyond them being isomorphisms.
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We now use property (1) to show that &7 ,,(d?) = v -dt for a nonzero
element v in Z. For this let a,, for 0 < m < s be elements of Z such that

0<m<s

holds in Q%M/Z. We already noted that the elements [£"] for n > 0 form a
Z-basis for Hy(Cz({t})). Combining this with (1) we obtain that the elements
[t"-d7] for n > 0 form a Q-generating set for Q ®z Hy(Cz({t})). As Py 4y 18
a multiplicative quasiisomorphism it follows that the elements

@/Zl,{t}(f".df):t”. Z A ™At | = Z am'tn+m'dt

0<m<s 0<m<s

for n > 0 form a Q-linear generating set for Q ®z Q%[t] /z In particular, there
must exist elements b, of Q for 0 < n < wu, such that

dt = Z by, - Z A - T d t

0<n<u 0<m<s

holds in Q ®7 Q%[t]/% Note that if all a,, are zero or all b,, are zero, then the
right hand side vanishes, which contradicts the equality, so we can without
loss of generality assume that 0 < u and 0 < s are such that b, # 0 and
as # 0. But then rewriting the right hand side in terms of the Q-basis ' - d ¢
for I > 0 of Q ®y Q%[t]/Z we will have a nonzero coefficient b, - ag for the
summand associated to t“7* - dt. This can only happen if u + s = 0, so in
particular s = 0 so that we must have

(p/Z,{t} (di) =agp - dt

in Qé[t] s for ag a nonzero element of Z.
Set v = ag. Then we obtain the following calculation for n > 0.

(I)/Z,{t} (d(fn)) = q)/Z,{t} (” A di) =n-t" L. (v-dt)
=y- (n gl dt) — . d(tn) — . d(q)/z,{t}@n))

We have thus shown that (7.11) holds for this choice of v for the elements
y=1" for n >0, but we still have to show that v is an element of {+1, —1}.
But note that as [t"] for n > 0 is a Z-basis for Ho(az({t})), the calculation
we just made implies that the composition

Hy (Ca (1)) — 1 (i) 00 (a2
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is v times the composition doHg(®7, {t})7 so the above composition is divisible
by v. As Hi(®/, {t}) is an isomorphism this implies that also the morphism

d: Ho(Cz({t})) — Hi (Ca({t)
is divisible by v. Finally, (2) implies that v must then be either +1 or —1. O

Definition 7.4.4.2. Let X be a set. We define a quasiisomorphism
Py x: Alg(evm)(ék(X)) = Qx|

in Alg(Ch(k)) by
Y pdesan(¥) | (I);c,X (y)

where <I>;€’X is as in Construction 7.4.3.1 and v as in Proposition 7.4.4.1. If k£
is clear from context we will also denote ®; x by @,. &

Proposition 7.4.4.3. The morphism

Pr, gy Alglevm) (Col{th)) =

from Definition 7.4.4.2 is compatible with d and can thus be lifted to a mor-
phism in Alg(Mixed). @

Proof. Follows directly from the definition and Proposition 7.4.4.1. O

7.4.5. A free resolution for de Rham forms

In this section we construct a cofibrant replacement of Q;[ X/k in the model
category Alg(Mixed) for totally ordered sets X with |X| < 2, and prove some
properties it satisfies. We know abstractly that a cofibrant replacement exists,
but it will be crucial for applications that we have good control over the low
degrees of the the cofibrant replacement that we use.

We will begin in Section 7.4.5.1 by giving a construction of a cofibrant
replacement*? that depends on the choice of certain sets Yp,Yi,. ... For our
application we will need to make a specific choice for Yy, Y7, and Y5, and we
will describe those choices and show that they have the necessary properties
in Section 7.4.5.2. Finally Section 7.4.5.3 will be concerned with proving that
the object constructed in Section 7.4.5.1 actually is a cofibrant replacement

of 28y -

42We will only construct the object and morphism to Q;[ but will not yet show that

X]/k>
it indeed is a cofibrant replacement.
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7.4.5.1. The general construction

In this section we give a general construction of a morphism

ryn = Lixym
in Alg(Mixed) that depends on the choice of certain sets Yp, Y7, . ...

Construction 7.4.5.1. Let X be a set. We will construct a commutative
diagram

% 4
AO Al A2 e
N O ©
Q% x1/k

in Alg(Mixed), where the first line is a Z>o-diagram and its colimit Q;:X]/k.
Beyond the notation indicated in the diagram, we will denote the morphism
from A, to Q;[X]/k by tn, and the morphism from A,, to A,, for m > n by
tt. The objects A,, are going to be built up using free associative algebras
in strict mixed complexes that are generated by strict mixed complexes that
are themselves free, so to simplify notation we will use Notation 7.4.2.1. All
morphisms ¢]* are going to be levelwise injective, so if y is an element of A,,
we will also just write y for the element ¢ (y) of A,,.

Q

%'[X] /k

We begin by defining
Ap = FreeMsMed) (1. x)

where by k- X we mean the chain complex that is free as a graded k-module
on the set X, where we give every element of X chain degree 0.

Using the universal property of Free®eMxed) and k. X , we can now define
Op as the unique morphism in Alg(Mixed) that maps an element x of X,
considered as a basis element of k- X, to the element x, considered as an
element of k[X] and thereby of Q.-

We next describe how to construct A, ; from A, for n > 0. This will
depend on the choice of a subset Y;, of (A, )y, i.e. elements of degree n in A,,.
We note that we will later show that we can make some particular choices
for some of these sets. The set Y,, has to satisfy the following conditions for
every n > 0.

(a) Every element y of Y, is a cycle in A,,.

(b) Every element y of Y;, is mapped to 0 by ©,,.
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(c) Let I be the graded ideal® in the graded k-algebra H,(A4,,) that is gen-
erated by the homology classes represented by elements of the following
subset.

Y,u{dylyeY,}

Then we must have I,, = Ker(H,,(0,,))**.

Note that it is always possible to find a set Y,, satisfying all three require-
ments above, by starting with a generating set of Ker(H,(0,,))*, and then
for each of those homology classes choosing a cycle representing it. Note that
as the boundary operator of Q;[ X1/k is zero, a cycle representing a homology
class in the kernel of H,(©) must already be mapped to 0 by ©, so (b) is
then satisfied, and (a) and (c) hold by construction.

The idea behind the above requirements is that we want to divide out
Ker(H,(0,)) from A, but want to do so in an efficient fashion that does not
create excessive new elements in homology. In particular, the assumption that
the elements of Y,, all have degree n is needed to ensure that the connectivity
of ©,, increases with n.

Now let B!, be the chain complex BJ, := k - Y,,, where we give elements of
Y,, the the same chain degree as in A,. If y is an element of Y,,, then we will
denote the corresponding basis element of B!, by y as well. Let B/, the chain
complex whose underlying graded k-module is given by (k- Y,) @ (k- Y,)[1],
where if y is an element of Y,, we will denote the corresponding basis element
from the first summand by y again and the corresponding shifted® basis
element of the second summand by ¥y, and where the boundary operator is
determined by 9(y) = y. There is an evident morphism of chain complexes
jn: Bl — B! that maps y to y.

We can now define A, 1 and 7" as in the following pushout diagram in
Alg(Mixed)

FreeAlg(Mixed) (jn)
- A

B, = FrecAls(Mixed) (B!) B, = Free?la(Mixed) (E;l)

(7.12)

An An+l

n+1
tn

where i, is the morphism in Alg(Mixed) that extends the morphism of chain
complexes B], — A, given by mapping y considered as an element of B}, to
y considered as an element of A,,, for every element y of Y,,. The latter is a
morphism of chain complexes due to (a).

43That is, a subset that is closed under k-linear combinations as well as multiplication
with any element of Hy(Ajy) on either side.

44Note that (b) already implies that I C Ker(H4(0y,)).

45For example the very inefficient choice of all elements of Ker(H,,(©,,)) works.

460One degree higher, see Definition 4.1.1.2.
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We can define a morphism ©,,: B,, — 3y, ;. in Alg(Mixed) as the one ad-
joint to the morphism of chain complexes 0: B!, — Q;[X] Jk that maps y and
y to 0 for every y in Y. If y is an element of Y;,, then by (b), ©,(in(y)) =0,
so that ©, 0i, = 0,, o FreeAlg(MiXEd)(jn), and hence, by the universal prop-
erty of the pushout diagram in Alg(Mixed) above, we obtain a morphism
Ont1: Any1 = QF yy, such that ©,44 0 1"t =0, and O, 014, =6,,.

Finally, Q;C'[ X1k 18 defined as the colimit of the Zx(-diagram

1 2 3

2 2 L
Ag —25 A —— Ay 2

in Alg(Mixed), and O: Q;:[X]/k — 0 )/, 18 defined using the universal prop-
erty of the colimit such that © o, = ©,, for every n > 0. O

Remark 7.4.5.2. This remark concerns the situation of Construction 7.4.5.1.
Let n > 0 be an integer. From Remark 7.4.2.2 it follows that the underlying
graded k-algebra of A, is given by the coproduct (in graded k-algebras) of
A, and the free graded k-algebra on elements y and dy for y € Y,,.

Inductively we can conclude that the underlying graded k-algebra of A,
is free on the elements z and dz for x € X, and y and dy for y € Y,
with m < n. As the forgetful functor from Alg(Mixed) to Alg Ch(k) preserves
filtered colimits by Proposition 4.2.2.12 we can also conclude that the colimit
Q;;[X] Jk has an underlying graded k-algebra that is free on the elements z
and dz for x € X and y and dy for y € Y,,, for m > 0.

Note that elements y of Y}, being of degree m implies that g is then of
degree m + 1, which is always positive. The only multiplicative generators
of degree 0 are thus those of the form x for x € X, and A,, is concentrated
in nonnegative degrees for every m > 0. The above also implies that the
morphisms LZI are isomorphisms in degrees smaller to or equal to n. &

7.4.5.2. Specific choices for Y, Y7, and Y5

In this section we discuss specific choices that we make for Yy, Y7, and
Y5 in Construction 7.4.5.1. We begin with a general remark explaining the
maneuvers that we will make in all the proofs.

Remark 7.4.5.3. This remark concerns the situation of Construction 7.4.5.1,
and we will use notation from there. In the proofs of Propositions 7.4.5.6,
7.4.5.7 and 7.4.5.8 we will for some n > 0 have defined sets Yy,...,Y,,_1 as
in Construction 7.4.5.1 and shown that they satisfy (a), (b) and (c), and
defined a set Y}, of elements of degree n in A,, for which we already showed
that (a) and (b) holds, but we still have to show that (c¢) holds, i.e. that
I, = Ker(H,(0,,)), for I the graded ideal in H,(A,) that is generated by
the homology classes represented by elements of Y,, U{dy |y € Y,, }. In this
remark we explain the general approach to proving this, in order to avoid
repetition. Before we continue let us define J as the graded ideal in the
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graded k-algebra of cycles of 4,%" that is generated by the elements y and
dy for y € Y,,*8.

Property (b) implies that I, C Ker(H,(0,)), so to show equality it only
remains to show that every element in Ker(H,(0,)) lies in I,,. Note that the
set of homology classes represented by elements of J is exactly I. As Q;[ X1/k
has zero boundary operator it also follows that a cycle in A,, represents a
homology class in Ker(H,(0,)) if and only if ©,, maps it to 0. These two
facts together imply that it suffices to show that every cycle in A,, of degree
n that lies in the kernel of ©,, is given as a sum of an element in J and a
boundary.

The strategy we will employ to prove this will be by reducing step by step
to the case of such cycles lying in increasingly restrictive submodules, by
eliminating basis elements, as we now make more precise.

By Remark 7.4.5.2 the underlying Z-graded k-algebra of A,, is free on the
generators x and dz for x € X, and y and dy for y € Y;,» with n’ < n. Let
G be the set of generators just described, as a Z-graded subset of A,,, and B
the set of all words of degree n in G. Then B is a k-basis of the underlying
Z-graded k-module of A,,. We will use a sequence of subsets

B=By>Bi1>DByD>---DB

up to some subset B; of B for [ > 0 an integer. Suppose that we can show
that one of the following two holds for every 0 < i < [.

(I) For every element w of B; \ B;;1 there is a boundary in A, or an
element of J that, written in the basis B, only has non-zero coefficients
corresponding to the basis elements in B, 1, except for the basis element
w, for which the coefficient is a unit in k. This implies that every element
z of A,, of degree n that lies in the k-submodule generated by B; is a sum
of an element of J, a boundary, and an element 2’ in the k-submodule
generated by B;; 1. Note that every element of J and every boundary
is a cycle, so z is a cycle if and only if 2z’ is. Furthermore every element
of J and every boundary is in the kernel of ©,,, so z is in the kernel of
©,, if and only if 2’ is.

very cycle z in A, of degree n that satisfies ©,,(z) = 0 and that lies

) E le z in A, of d h isfies © 0 and that li
in the k-submodule generated by B; already lies in the k-submodule
generated by B;i1.

In both cases this implies that if we can show that every cycle in A,, of degree
n that lies in the kernel of ©,, and also lies in the k-submodule generated by
Biy1 is a sum of an element of J and a boundary, then the same statement fol-
lows for such cycles that lie in the k-submodule generated by B;. Inductively

47Note that the Leibniz rule for @ implies that 1 is a cycle and that products of cycles are
again cycles, so cycles form a sub-k-algebra of A,,.
48By (a) these elements are cycles.
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it then thus suffices to show that cycles in A,, that lie in the k-submodule
generated by B; and lie in the kernel of ©, are a sum of an element in J
and a boundary. Usually B; will be of such a form that we can already show
that such a cycle must be zero, and we will explain how we usually show this
further below.

In the propositions below we will not usually define B; explicitly. Instead
we will step by step describe the difference B; \ B;y1 and explain how to
eliminate those basis elements using an element of J or boundary in A4, in
the manner described above.

Let us make one remark about the elements of B. It follows from Re-
mark 7.4.5.2 G consists only of elements of nonnegative degree, with the
only elements of degree 0 being the elements of X. A concrete implication of
this that we will often use is that the number of factors that are not in X
that can occur in a word in G of specified degree is bounded. For example
words in G of degree 1 need to consists of precisely one factor of the form d x
or y with y an element of Y, with the other factors all from X.

We will call products of elements of X, considered as elements of A,,, words
in X. If we are given a total order on the set X then we say that a word in
X is ordered if it is of the form x? . xéﬂ with a > 0 an integer, i1,...,7, > 1
integers, and z1 < z2 < --- < 1z, elements of X. Similarly we will call
products of elements of the form x and dz for x € X words in X and d X,
and call such a word ordered if it is of the form z}' .-zl - da} - - - d z} with
a,b > 0 an integers, 41,...,7, > 1 integers, and 1 < 22 < --- < x, and
zh < .-+ < 2} elements of X. We let Bx be the set of words in X and B¢
the set of ordered words in X. Analogously, we let Bx 4 x be the (Z-graded)
set of words in X and d X, and BYY, y the (Z-graded) set of ordered words
in X and d X. We will often refer to the number of factors in a word w as its
length, and denote it by len(w).

Now suppose that B; is a subset of ngi‘l - Then the restriction of ©,, to
the sub-k-module with basis B; is injective, so any element in the kernel of
that restriction is already 0. The upshot is that if we can find

B=By>Bi>ByD>---DB

such that (I) or (II) holds for every 0 < i < [ and such that B; is a subset of
BOXY%X, then this will complete the proof that I,, = Ker(H,,(©,,)). &

Remark 7.4.5.4. Let X be a totally ordered set that is either X = 0,
X ={x1}, or X = {21, 22} with x; < z5. For reference we provide here a
table with the multiplicative generators of Ag, A1, Ao, A3 with Yy, Y7,Ys as
defined in Propositions 7.4.5.6, 7.4.5.7 and 7.4.5.8 below. The generators are
given as for the case X = {x1, 22}, and to read off the case X = {x;} (the
case X = () one leaves out any element that involves x5 (that involves z; or
x9) The first column contains the chain degree of the elements, the second
lists their names, and the third column contains the first of Ag, A1, A, A3
that contains the element.
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Deg. Elements In
0 I A()
0 xT9 A()
1 d])l Ao
1 dﬂ?g AO
1 T1Xg — X221 Al
2 dl’lxg—xle Al
2 .’1?1-d.%'1—d$1~$1 A2
2 l‘g'd.%‘g—d.ﬁQ'J)Q A2
2 1‘1'd$2—d$2'$1 A2
2 x2~dx17dx1~z2 A2
3 d$1'd.’£1—d.’£1‘$1 A2
3 d:L‘Q-dLL'Q—dLL'QnTQ A2
3 dxl-dxg—dx2~a:1 A2
3 dxg-dxl—dx1~az2 A2
3 dl‘l'dl’l A3
3 d(EQ'dZL’Q Ag
3 dzy 29 —29- 21+ 21 -dao—dxg-21...

...—Z‘Q'dl‘l—dl‘l'l‘g Ag
3 dlZJQ'Il'CC2*I2'.Z‘1+.T1'1’271‘2'581‘(1172... A3
.—1'1'.’EQ'diCQ—dSCQ'$2+x2'd$2—d$2'l’2'$1...
oot To 1 -drs —dao -1 — 21 -dars —dao - T - X2
3 dzy -z 22 —29-21+21 -T2 — 22 21 -dzy ... As
.—1’1'.’£2'd£C1—dlL’l'$2+$2‘d$1—d$1'l’2'l‘1...
oot -2y -day —day -2y — 2y -day —dag -2y - 20
4 ddm1-dx1 A3
4 ddz2~dx2 A3
4 ddl’l'(L’g*LL‘Qm’E1+QE1'dl’g*dl’g'.’tl...
...—l‘g'dl‘l—dl‘l-l'g A3
4 ddzo w1 29 —To 21 +T1-To— 22 -1 -dao... As
.71’1'IQ‘dIEQ7d1’2'1‘24‘562'(11327(11‘2'1’2'581...
oot 2oy -drs —dzo -y — 21 -daxs —dazo - X1 - X2
4 ddzy - x1 o — 29 -1+ 21 T3 — X2 21 -dzy ... As

.7$1'IQ‘dIl7d1‘1'$2+I2'd1‘17d171'l’2'$1...

...-|—£C2'£L'1'dxl—dxl'xl—1’1'd$1—d$1‘l‘1'l’2

This table is intended to be used to determine what the k-basis for A, in
a specific degree is. &

Before we actually define Yy, Y7, and Y5, we first show a helper statement.

Proposition 7.4.5.5. This proposition concerns Construction 7.4.5.1, and
we use some notation from Remark 7.4.5.5.
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Let X = {x1,29}. Then the elements
7' xg? - (X122 — T21) - W

in Ag, with a;,as > 0 and w € Bx, are all pairwise distinct, and the set of
all such elements is k-linearly independent. @

Proof. Suppose that aj,as,a,ay > 0 and w,w’ € Bx such that
a a ay a; /
11 w5 (X129 — Tawy) - w = 27 X2 - (T1T2 — T2X1) - W

Then as Bx is k-linearly independent and the left hand side has two sum-
mands in the basis Bx that both begin with 2] 25?, but where the next factor
differs, the same must be true for the two summands of the right hands side,
and vice versa. This implies a] = a1 and a}, = ag, which in turn implies that
w' = w.

Now suppose that

0= Z bay,am,w - 11252 - (T122 — T2T1) - W

a1,a2>0,

weEBx
with bg, q,,w €lements of k, all but finitely many zero. We have to show that
all coefficients by, 4, are already zero. If this is already the case, then we
are done. So assume that there is a coefficient by, 4,.., that is nonzero. Then
let a; > 0 and a3 > 0 and w € Bx be such that bg, 5,5 # 0 while first
minimizing @; and then (for that already fixed @;) maximizing as.

Then it suffices to show that

xf%? (z122 — T2T1) - W
is k-linearly independent of the k-submodule spanned by elements
27t ws? - (X120 — Tawy) W

for aj,as > 0 and w € Bx such that (a1, a2, w) # (a1,a2,w) and a1 > ay,
and a9 S 52 if ayp = 51.
So assume that

d1 . ds ~ d1 . ds ~
c- (xl 297 - 1T - W — 27wy - Ty - w) (%)
— ay a2 ai a2
= E Carianw - (271252 - 2122 - w — 271 T5? - Tax1 - W)
a1,a2>0,
weBx,
012517

az<az if a1 =a1,
(a1,a2,w)#(@1,a2,w)

for ¢ a nonzero element of k and cg, 4, €lements of k, only finitely many of
which are nonzero. We consider for which (a1, a2, w) as in the indexing set
we can have that one of the following two equations holds.

ap,.az ~ _ .a1,.a2 ap a2 ~ __ .a1,.a2
P ws? zoxy-w = 21 aS? wreow  or  xPws?-memy-w = xab? woTiw
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We first note that the on left hand side of the equations the first a; factors of
x1 are always followed by at least one factor of xo. Thus it is not possible to
have a; > a;. As by assumption a; > a; we can thus conclude that a; = a;.
Thus we must have as < ay. The factor number a1 + a2 + 1 or a1 + as + 2
on the right hand side of the two equations is x1. As factors a1 + 1 up to
a1 + as + 1 on the left hand side are x5, we must thus have ay > as. As
factor number a; + a2 + 2 on the left hand side is z; on the other hand we
must have as < a9 + 1. We are thus left with the two options as = a» and
az = as + 1. The former would imply that w = w, which contradicts the
assumption (ag,as,w) # (a1, as,w). The latter contradicts the assumptions
that ag <@g if a1 = @;. This shows that if we write both sides of equation ()
in the basis By, then the left hand side has a nonzero coefficient for the basis
element z{'x5? - 921 - W while the right hand side always has coefficient zero.
This contradicts equation (x), which implies all coefficients by, 4., must have
been zero, thereby showing the k-linear independence claim in the statement.

O

Proposition 7.4.5.6. Let X be a totally ordered set. Then the subset Yy of
(Ao)o in Construction 7.4.5.1 can be chosen as follows.

Yo={z -2 —2' -z |z,2 € X such that v < 2" } @

Proof. Condition (a): That the elements are cycles is clear as Ay has zero
boundary operator.

Condition (b): holds as v, is commutative.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3
and also use notation from there. Elements of 15 are precisely words in X, and
we can use elements of J to iteratively reorder the factors until we are left
only with ordered words in X. O

Proposition 7.4.5.7. Let X be a subset of the totally ordered set {x1 < x2}.
This proposition concerns Construction 7.4.5.1, and we let Yy be as in Propo-
sition 7.4.5.6.

Then the subset Y1 of (A1)1 in Construction 7.4.5.1 can be chosen as
follows.

Vi ={z-da’ —da’ x|z’ € X} Q

Proof. Condition (a): All elements of Y7 lie in Ay, which has zero boundary
operator.

Condition (b): Holds as €}y, ;. is commutative.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3
and also use notation from there. The elements of B are words of one of the
following two types, with the second only occurring if | X| = 2.

(1) A word in G with precisely one factor d z with z € X and the remaining
factors in X.
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(2) A word in G with precisely one factor z;x3 — xox1 and the remaining
factors in X.

We first consider elements of type (1). We can first use elements of J to
move the factor d x to the very end of the product, so that we are left with
elements of the form w - dz with w a word in X. If |X| < 2 then w will
already be ordered, and if | X| = 2 we can then use the boundary of elements
of A; of the form

w - x1me — 29wy - W - dx

for w’ and w” words in X to reorder w, so that we can ultimately eliminate
all basis elements of type (1) except those of the form w - dz with w an
ordered word in X and x an element of X.

We are thus left with basis elements of the following two types, with the
second only occurring if | X| = 2.

(I’) An element of B%%X.

(2') A word in G with precisely one factor z1xs — xox1 and the remaining
factors in X.

If | X| < 2 we are thus done per Remark 7.4.5.3. So now assume that |X| = 2.

Then let w - x1x2 — xox1 - w' be an element of B of type (2’), with w and
w’ words in X. Assume that w is not ordered. It is then possible to order w
in a finite number of steps by swapping neighboring (nonequal) factors, and
there also is a minimum number of such steps required, which in this case
must be positive as we assumed that w is not already ordered. Then we can
write w as w = v-xo - x1 - v’ such that v and v’ are words in X, and such that
the minimum number of swappings to order v -z - x5 - v’ is smaller than the
minimum number of swappings to order w. Consider the following boundary.

3(1} SX1Ty — TaTy VU - T1Xe — Ty ~w')
=0 (2129 — X2w1) -V - 1Ty — Ty - W
— v X1y — Towy -V - (T3 — Tawq) - W
=021 X9V 1Ty — Toxy W —V-To -1V - Ty — Toxy - W

7’[1'1‘11271321‘1"Ul"’El'IQ"LU/ﬁ*’U'l‘lLEQ*IQIEl'U/'.’,EQ'.Z‘l'w/

Up to sign the second summand is the element we started with, the first
has a word of the same length before x1x5 — x2x1, but of smaller minimum
number of swappings to order it, and the last two summands have a word of
smaller length before the first factor 1z — zox;. By induction we can thus
eliminate those elements from (2’) where the word in X appearing before the
factor z1z9 — o921 is not ordered.

We are thus left with basis elements of the following two types.

(1) An element of ngiix-
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(27) A product z{* - 5 - Z123 — xa21 - w where w is a word in X.

To finish the proof it remains to eliminate the basis elements from (2”). We
do this using method (II) from Remark 7.4.5.3. So let 2’ be a cycle in A; that
is a k-linear combination of elements of type (1”7) and (2”). We have to show
that 2’ is then already a k-linear combination of elements of type (1”). For
this we write 2/ = 2/ 4+ z with 2" a k-linear combination of elements of type
(1”) and z a k-linear combination of elements of type (2”). As every element
of type (1”) is a cycle this implies that z is a cycle. It now suffices to show
that z = 0.
We can write z as

z = Z bay apw - 11T - T1Ty — ToT1 - W
al,aQZO
wEBx
with bg, 4,,w €lements of k, all but finitely many zero. The boundary of z is
then given as follows.

d(z) = Z bay apw - T11X2 - T1T2 - W — bay g w - L1 TG - Tox1 W
ai,a2>0,
weBx
Now Proposition 7.4.5.5 directly implies that all coefficients bg, 4, ., must be
zero, so z = 0.
We are thus now left with only basis elements of type (17), which finishes
the proof as explained in Remark 7.4.5.3. O

Proposition 7.4.5.8. Let X be a subset of the totally ordered set {x1 < x2}.
This proposition concerns Construction 7.4.5.1, and we let Yy be as in Propo-
sition 7.4.5.6 and Y1 as in Proposition 7.4.5.7.

Then the subset Ya of (As)g in Construction 7.4.5.1 can be chosen as
follows. If | X| = 0 we can let Yo =0, if | X| = 1 we can let Yo = {dx; -d a1},
and if |x| = 2 we can define Ya as follows.

Yy = {dxl ~dx1,dx2~dx2}

U{dm1~x2—x2-x1+m1-dxg—dx2~x1—xg-dxl—dx1~x2}

U{dx2~m1-xg—xg-x1+sc1~x2—x2-x1-darg

— 21 22 -daxo —dxg -9+ 29 -dres —dag - xo - 27

+$2'1‘1'd$2—d$2'$1—$1~d$2—d$2'$1'$2}

U{dx1~z1~x2—x2~x1+x1~x2—x2~x1~d:v1

7151'.’£2'd1’17d1’1'$2+£€2'd$17d£€1'l’g'.’ﬂl

+x2-x1~dx1—dxl-xl—xl-dxl—dxl-ml-xg} Q

Proof. To keep the proof shorter as it would otherwise be we mostly will
implicitly work as if we had |X| = 2; the proof for |X| < 2 can be ob-
tained by jumping over every element or argument that involves an element
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of {z1, 22} \ X. To shorten notation we also make the following definitions
for this proof.

D:=dzy 20 —22-21+x1-dzo—daxy -1 —29-dz1 —dx] - 29

Co:=daxy - 21 -To—20-T1+2X1-To— 22 21 -dxo

—1’1'$2'd(E2—d$2'$2+$2'd$2—d$2'1’2'$1

+I’Q'I1'd$27d1‘2'1’171‘1'(15827(1132'1’1'352

C3=dxy 21 -To—22-T1+2X1 -To— 22 -21-dxy

—x1-To-daxy —dzy 22+ 22 -dr; —dz -T2 - 21

+x2~x1-dx1—dx1-xl—m1~dx1—dx1-m1-xg

Condition (a): That the elements of Y3 are cycles can be checked by direct
calculation. For this, keep in mind the signs introduced by the Leibniz rule
and dod = —do 0.

Condition (b): ©y maps dx; - dzy and dzg - dze (if they are defined,
depending on what X is) to zero as dz; and dxy square to zero in QZ[X]/,C.
The elements D, Cy, and C3 are mapped to zero because every summand
has a factor of the form y or dy, with y an element of Y; or Y7, and those
elements are already mapped to zero.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3
and also use notation from there. The elements of B are words of one of the
following types, with types (3), (4) and (5) only occurring for |X| = 2.

(1) A word in G with precisely two factors dx and d 2’ with z,2’ € X (the
case z = ' is allowed) and the remaining factors in X.

(2) A word in G with precisely one factor z - 2’ — 2’ - x with x,2’ € X, and
the remaining factors in X.

(3) A word in G with precisely one factor 129 — a1, precisely one factor
dz for z € X, and the remaining factors in X.

(4) A word in G with precisely two factors x129 — 291, and the remaining
factors in X.

(5) A word in G with precisely one factor d z129 — x2x1, and the remaining
factors in X.

As a first step the basis elements of type (5) can be eliminated using
elements of J that involve a factor of D, so that we are only left with types
(1), (2), (3) and (4).

For elements of type (4) we use a similar procedure as we did for elements
of type (2’) in Proposition 7.4.5.7. So let w-x1x9 — oz -w' - T129 — 221 - W"
be an element of type (4), with w, w’, and w” elements of Bx. Assume that
w’ is not ordered. Then we can write w’ as w’ = v - x5 - 1 - v such that v
and v’ are elements of By and such that the minimum number of swappings
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to order v - x7 - w9 - v’ is smaller than the minimum number of swappings to
order w’. Consider the following boundary.

O(w - 2@y — Tomy - v - T1Tp — Taxy -V - T YT — Towy - W)

/
= 4+ W -T1T2 -V -T1Lg — T2L] *V - T1L2 — T2XT1 * W

7w'$21‘1'U'll?ll‘g71‘2.%1"[)"1‘15627.%21?1'U)

— WXLy — T9T] - V- T 1T -V - X1To — ToT] -

+ W L1y — TaXy - V- Ty -V - T1XTe — ToXq -

!
G+ W X1Ty — XTo2X1 -V T1Tx2 — ToL1 *V - T1T2 -

S < < <

/
— W 1T — T2Xx1 "V T1T2 — T2XL1 UV - T2X71 *

Up to sign the fourth summand is the element we started with, the third has
a word in X between the two factors x1x9 — xox; of same length as w’ but
with smaller minimum number of swappings to order it, and the remaining
four summands have a word in X of smaller length between the two factors of
2129 — Tax1. By induction we can thus eliminate elements of type (4) where
the word in X between the two factors of z1x9 — x92; are not ordered.

We are thus left with the following types of basis elements.

(1) A word in G with precisely two factors dz and d ' with x,2’ € X (the
case x = ' is allowed) and the remaining factors in X.

(2’) A word in G with precisely one factor z - 2’ — 2’ - x with z, 2’ € X, and
the remaining factors in X.

(3’) A word in G with precisely one factor z1z5 — xox;, precisely one factor
dz for € X, and the remaining factors in X.

(4) w123 — oy - 2T TG - T1T3 — oy - W with w,w’ € Bx.

We next show that we can also eliminate the remaining elements of type
(47) using method (II) from Remark 7.4.5.3. For this we first note that words
in G that can occur®” in the boundaries of elements of type (1°), (27), (3’)
and (4’) never have a factor x1ze — zoxy, but the boundary of elements of
type (4’) lies in the k-submodule spanned by words in G that have a factor
2129 — xaxy. To eliminate (47) it thus suffices to show that if z is a k-linear
combination of elements of type (4’), with 9(z) = 0, then already z = 0.

So let z be given by

z= E buw.ay.asw - W T1T2 — Toxq - T XS - 2129 — Towy - W'
w,w’ €Bx
ay,a2>0
with by a; 4,07 €lements of k, only finitely many of which are nonzero, and
assume that 9(z) = 0. If all coefficients by, 4, 4,07 are zero, then we already

49By this we mean that writing the respective element in terms of the k-basis given by
words in G the coefficient associated to that word is nonzero.
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have z = 0 and are done, so assume that this is not the case. Then we
can let w € B be such that there exist a1,a2 > 0 and w’ € B such that
b&.a1.a0,0' # 0 while minimizing len(w) with this property. The boundary
0(z) has the following form.

0=0(z)

— ajy a2 !
= E bw.ar,an,w - W (T122 — Tax1) - 71 X5 - T1Xg — ToTy - W
w,w’ €Bx
ai,a22>0
len(w)>len(w)
ay a2 /
- E buw.ay as,w * W T1T2 — ToT1 - 71252 - (L1202 — T2T1) - W
w,w’ €Bx

a1,a2>0
len(w)>len(w)

We now apply a k-linear morphism p to this equation. p is to be a morphism
from (As); to the k-submodule of (As); that is spanned by words in G of
degree 1 that begin with w - 129 — zox1. We define p on the basis given by
words in G of degree 1 by mapping words that begin with w - 125 — x221
to themselves, and all others to 0. Then the requirement len(w) > len(w)
implies that the summands

a a /
bw,ar,asw - W (X172 — Tox1) - ] X9? - T1T2 — TaZy - W
of the equation above are all mapped to 0 by p, and the summands
a a /
buwar,asw’ - W T1T2 — ToZ1 - 7 252 - (L1202 — T2Z1) - W
map to 0 unless w = w. The upshot is that we obtain the following equality®°.
~ a a /
0= E b .ar.asw - W T1T2 — To%1 - 1 252 - (T122 — T2X1) - W
w €Bx
ai,a2>0
This implies that we must also have
a a /
0= E b ,a1,02,0 * 7' T57 - (X122 — T271) - W
’w/EBx
ai,a2>0

which by Proposition 7.4.5.5 implies that bg g, a,,00 = 0 for all a;,a2 > 0
and w’ € Bx. This however contradicts the assumption on w, implying that
z must have been zero after all.

Thus we can eliminate elements of type (4’) and are left with basis elements
of the following types.

(1) A word in G with precisely two factors d x and d 2’ with z,2’ € X (the
case x = 2’ is allowed) and the remaining factors in X.

50We also multiplied with —1.
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(2’) A word in G with precisely one factor z - &’ — 2’ - & with 2,2’ € X, and
the remaining factors in X.

(3’) A word in G with precisely one factor x1z9 — xax1, precisely one factor
dx for x € X, and the remaining factors in X.

We now consider the basis elements of type (3’). We claim that we can
eliminate those elements of type (3’) that do not begin with the factor dx.
We can show this by induction on the number of factors before the factor d z.
There are two main cases, depending on what the preceding factor is. We
first discuss the case in which the preceding factor is an element of X, say
2'. Then we can write the element as either w-z129 — 2921 - w' -2’ -dz - w"
orw-z' -dz-w' w179 — T271 - W’ With w,w’, w” € Bx. We only discuss the
first form, the second is completely analogous. Then consider the following
boundary.

O(w- 1wy — wowy - w' -2’ -da —da -2’ w")

=w- 2120w -2 -dx—dz -2’ -w’
—w-z9xy-w -2’ - dr—dx-z - w!
—w-x1Te — Toxy - W -2’ - dx-w”
+w-r1x9 —Toxy - w -dz -2’ - w”
Up to sign the third summand is the element we started with, the fourth is of
type (3’), but with a smaller number of factors preceding d x, and the other
two are of type (2’).
The other case to consider is when the factor preceding d x is 122 — z2x1,
so that the element is of the form w - z175 — 2021 - dx - w’ for w,w’ € Bx.

We assume that x = x1, the case x = x5 is completely analogous by using Cy
instead of C'5. Then consider the following element in J.

w-Cs-w
/ !
=w-dxy -2y -T2 —Ta-T1 W +W-T1 To—To- 21 -dT] W

—w-x1-2y-dr; —dzy - xe-wW +w-xy-dry —dzy 20 -2 - W

+w-z9-x1-dry —dxy -2 w —w-xy-dxy —day -2y -2y w

Up to sign the second summand is the element we started with, the first is of
the (3”), but with a smaller number of factors preceding d 21, and the other
four are of type (2’).

We have now eliminated all elements of type (3’) except those that start
with dz as their first factor. Proceeding completely analogously to how we
did with elements of type (2’) in Proposition 7.4.5.7 we can now also eliminate
those in which the word in X between d x and the factor x122 — 221 is not
ordered. We are thus left with the following basis elements.

(17) A word in G with precisely two factors dz and d2’ with 2,2’ € X (the
case x = 2’ is allowed) and the remaining factors in X.
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(27) A word in G with precisely one factor z - 2’ — 2’ - & with z, 2’ € X, and
the remaining factors in X.

(3”) da - 27'x3? - x1x2 — Taxy - w for x € X, ay,a2 > 0, and w € Bx.

We now eliminate type (2”7) using method (II) from Remark 7.4.5.3. So
assume that z” = 2" + z + 2’ is a cycle where 2" is a k-linear combination
of basis elements of type (1”), z is a k-linear combination of basis elements
of type (2”) and 2’ is a k-linear combination of basis elements of type (3”).
We have to show that then z = 0. We first note that as every element of type
(17) is already a cycle we obtain that z + 2’ is a cycle. We write

/ ! /

z= g bwaaw -w-r-do' —da’ -x-w
w,w’ EBx,
z,x'€X

r_ ay,.az
z = E Croa1,a0,w " AT T 257 - T1To — Toy - W

reX,
a1,a22>0,
weBx
with by g0/ w and Cz g ,0,,w €lements of k, only finitely many of which are
nonzero. If all coefficients by, 5 ./ are zero, then we have z = 0 and are
done. So assume that this is not the case. Then let w,w’ € Bx and 7,7’ € X
be such that b - ~ -, # 0 and choose w to be of maximum length with this

property. From 9(z + 2’) = 0 we then obtain the following equality.

/ /
E bw,z w W - -dz’-w

w,w’ EBx,
z,2’' €X,
len(w)<len(w)
/ /
— g bw,zz w -w-dz' T -w
w,w’ €Bx,
z,2' €X,
len(w)<len(w)
_ ai .az
= E Cra1,a0,w AT - T 257 - 21T - W
rzeX,
a1,a2>0,
weEBx
ay a2
— E Cxya1,a0,w " AT - 271 X% - Toxy - W

rzeX,
ai,az>0,
weEBx

We now apply a k-linear morphism p’ to this equation. p’ is to be a mor-
phism from (As); to the k-submodule of (A3); that is spanned by the word
w-T-dZ -w in G of degree 1. We define p on the basis given by words in G
of degree 1 by mapping the just mentioned word to itself and all others to 0.

Then note that all words are mapped to zero where the length of the word
preceding a factor of the form dz is unequal to len(w) + 1. The condition
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len(w) < len(w) on the left hand side of the above equation then implies that
the second sum on the left hand side is mapped to zero. As all words in G
occurring on the right hand side begin with an element of the form d x they
are also all mapped to zero. We thus obtain that

~ o~~~y
__~ _cw-z-dx -w =0
w,T,x w!

which contradicts the assumption that b - ~ -, # 0. Thus we must have

z =0 and can thus eliminate basis elements of type (2”).
We are thus left with the following basis elements.

(1”) A word in G with precisely two factors dz and d 2’ with z, 2’ € X (the
case x = 2’ is allowed) and the remaining factors in X.

(3”) dx - 2{'x5? - xy@9 — 2921 - w for x € X, ay,a2 > 0, and w € Bx.

We can now eliminate type (3”) in a manner that is completely analogous
to the argument as we used to eliminate (2”) in Proposition 7.4.5.7. We are
thus left with only type (17”). For this we can first use boundaries of words
in G involving two factors do and dz’ as well as a factor x1x5 — 271 With
the other factors in X, as well as boundaries of words in G involving one
factor d 2’ and one factor z - da’ — da’ -  with the remaining factors in X,
to reorder the factors so that we are left with only elements of the form
z'xy? - da - da’ with a1,a2 > 0 and z,2” € X. As a second step we can
eliminate such elements with x = 2’ by using elements of .J that involve a
factor of do - d z.
We are thus left with elements of the following two types.

(1) x'xg? - day - dag for ag,az > 0.
(2*) x1rx5? - dxy - day for a,as > 0.
We can eliminate type (2*) using the following boundary.

8(1:;“ng -dzy-dazy —dza -xl) = —a725? day -dee — 27252 - day - day

We are thus left with only basis elements from (17), which form a subset of
ngfil » S0 we are done. O

Definition 7.4.5.9. Let X be a totally ordered set with |X| < 2. Then we
define
Ox: Ylxye = Wixye

to be the morphism in Alg(Mixed) constructed in Construction 7.4.5.1 where
we let Yy be as defined in Proposition 7.4.5.6, Y7 as defined in Proposi-
tion 7.4.5.7, Y5 as defined in Proposition 7.4.5.8, and where for n > 2 we
just choose some subset Y,, of (A,), that satisfies (a), (b) and (c) of Con-
struction 7.4.5.1 (we argued in Construction 7.4.5.1 that it is always possible
to find Y, satisfying this). &
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7.4.5.3. Proof that the construction is a cofibrant resolution

In this section we show that © x as defined in Definition 7.4.5.9 really is a
cofibrant replacement of Q;[ X1k

Proposition 7.4.5.10. This proposition concerns Construction 7.4.5.1. Let
X be a set and n > 0 an integer. Then

Hm(en): Hm(An) — Hy, (Q;[X]/k)
is an isomorphism for m < n and surjective for every m. Q

Proof. Q;[X] /k is generated as a graded k-algebra by the elements x and dx
for z € X, so as every element of X is in the image of the morphism ©
in Alg(Mixed), it follows that ©g is surjective. As both Ay and QF (x5 have
zero boundary operator, this implies that H,(0g) and hence also H,(©,,) is
surjective as well.

Now we show that H,,(©,,) is even an isomorphism if m < n. We prove
this by induction. The case n = 0 is clear, as both Ay and Q,‘C[ X]/k Are concen-
trated in nonnegative degrees, so in particular have homology concentrated
in nonnegative degrees.

So now assume that n > 0 and we already showed that H,,(0,_1) is an
isomorphism for m < n — 1. By Remark 7.4.5.2 . ,: A,_; — A, is an
isomorphism in degrees smaller than or equal to n» — 1. This implies that in
the commutative diagram

Hpm LZ,
Hm (An—l ) ( 1)

Hpn(©n-1) Hpn (On)

Ho, (Qi[ka)

the top morphism is an isomorphism for m < n—2, and as the left morphism
is an isomorphism in that range as well, it already follows that H,,(©,,) is an
isomorphism for m < n — 2. For m = n — 1 we still obtain that H,_1(¢?_;)
must be surjective®. In order to show that Ker(H,,_1(©,)) = 0 it thus suffices
to show that H,_1(:7_;) maps Ker(H,_1(0,_1)) to zero. But is precisely

what condition (c) ensures. O

51Given an element of H,,_1(A,) we can represent it by a cycle of degree n — 1 As o

is an isomorphism in degree n — 1, there is an element z in A,_; that is mapped to
that cycle by ¢'_ ;. It thus remains to show that z is also a cycle and hence represents
a homology class. But

tn—1(02) = 8(#71(2)) =0

which implies 0z = 0, as +]7_; is also an isomorphism in degree .
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Proposition 7.4.5.11. Let X be a totally ordered set with |X| < 2. This
proposition concerns ©x as defined in Definition 7.4.5.9.
The object

;;[X] /k
of Alg(Mixed) is cofibrant, and the morphism

Ox: Ulxyn = QRpx/e
is a quastisomorphism. V)

Proof. Free8Med) ig o left Quillen functor by Definition 4.2.2.2, Proposi-
tion 4.2.2.9, and Theorem 4.2.2.1. As k- X is a cofibrant chain complex, this
implies that A is cofibrant in Alg(Mixed). Furthermore, for every n > 0, the
morphism j, is a cofibration in Ch(k) (it is a coproduct of generating cofibra-
tions considered in [Hov99, 2.3.3 and 2.3.11]), so Free*sMxed) (5 ) and thus
also ("1 are cofibrations in Alg(Mixed). As cofibrations are closed under
(transfinite) compositions, this implies that )%, ;. is cofibrant.

We now turn to showing that ©x is a quasiisomorphism. Remark 7.4.5.2
implies that LZ, ¢ A, — A, is an isomorphism in degrees smaller to or equal
ton for all 0 < n < n’. Combining this with the fact that the forgetful functor
from Alg(Mixed) to Ch(k) preserves filtered colimits by Proposition 4.2.2.12
we obtain that ¢, : A, — Q) X]/k is an isomorphism in degrees smaller to or
equal to n as well. In particular, in the diagram

Hyo(tn)

Q;;[X 1/k

H.. (©n) H,.(Ox)

the top morphism is an isomorphisms for m < n. As the left morphism is as
isomorphism in that range as well by Proposition 7.4.5.10 we can conclude
that H,,(0Ox) is an isomorphism for m < n too. It follows that H,,(0x) is
an isomorphism for all integers m, so © is a quasiisomorphism. O

7.4.6. Naturality of ¢
We explained in Warning 7.2.2.6 that the morphisms

of differential graded k-algebras that were defined in Construction 7.2.2.1
and Proposition 7.2.2.2 only assemble to a natural transformation of func-
tors from Set to Alg(Ch(k)), but not to a natural transformation of functors
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from CAlg(LMody(Ab)) to Alg(Ch(k)). In this section we show that a weaker
statement is at least true in special cases: If X is a set with |X| <2 and F a
morphism of commutative algebras F': k[t] — k[X], then there is a filler for
the square

Alg( )(E{t})

Alg(y ( ' /k) Alg(~) (C(k[t]))

Alg()( F/k‘ Alg(v)(C(F))
Alg(y k[X]/k) W Alg(y)(@(k[X]))

in Alg(D(k)).

Proposition 7.4.6.1. Let X be a totally ordered set satisfying | X| < 2,
and [ an element of k[X]. Denote the morphism of commutative k-algebras
klt] — k[X] that maps t to f by F.

Then there is a filler for the square

Alg('Y)(E{t})

Alg() (U p) — % Alg(7)(C(IE])

Alg(7)(2% /5 ‘ Alg(y)(C(F))
Alg(y k[x]/k) W Alg(v)(@(k[X]))

in Alg(D(k)), where € is as defined in Construction 7.2.2.1 and Proposi-
tion 7.2.2.2. ©

Proof. Let the morphism
Oty Uk = Qg

in Alg(Mixed) be as in Definition 7.4.5.9. By Proposition 7.4.5.11 Q;C‘[t]/k is
a cofibrant object of Alg(Mixed), and thus has cofibrant underlying chain
complex by Proposition 4.2.2.12. Furthermore, © is a quasiisomorphism,
and thus induces an equivalence

Alg()(Og0y)+ Alg(y) (Utxysu) = Ale(n) (i)
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in Alg(D(k)). It thus suffices to show that there is a filler for the square

A]g(fy)(Q;;[t]/k) Alg(’Y)(e{t}o(%{t}) A]g(’y)(@(k‘[t]))

Alg() (2% /4°0(1)) Alg(v)(CT(F))

Alg() (W) — e — Al (CK(XD)

in Alg(D(k)).

By Proposition 4.2.2.12 the underlying differential graded algebra of cofi-
brant objects in Alg(Mixed) is cofibrant, so Q;C'[t]/k is cofibrant as an object in
Alg(Ch(k)). Like every object of Alg(Ch(k)) also C(k[X]) is fibrant. Combin-
ing this with Proposition A.1.0.1 and [Hov99, 1.2.10 (ii)] it suffices to show
that there exists a homotopy in the model-category-theoretic sense between
the two compositions in the following diagram in Alg(Ch(k)).

€r4100 7, —
Q;c.[t]/k {1°0(1} C(k[H])

Q;’/kog{t} C(F)

Qixye — e CR[X])

By Propositions 4.1.4.2 and 4.2.2.17 this means that we have to define a
morphism of Z-graded k-modules

of degree 1 that satisfies

O(h(2)) + h(0(2)) = (C(F) 0 ey 001y) () — (ex 0 Ui 0 011y ) (2)

for being a chain homotopy as well as the Leibniz rule for chain homotopies

W+ 2') = h(z) - (ex 0 Q4 0 Oy ) ()
+ (_1)degch(z) (G(F) o G{t} (e] @{t}) (Z) . h(z’)

for all elements z and 2’ of Q;C'M Ik

In the following we will use notation from Construction 7.4.5.1. By defi-
nition, and using that the forgetful functor from Alg(Mixed) to Alg(Ch(k))
preserves filtered colimits by Proposition 4.2.2.12, we can identify Q;C'm /K a8
the colimit of the diagram

1 2 3

L L L
AO 0 A1 1 AQ 2
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in Alg(Ch(k)). The forgetful functor to Z-graded k-modules also preserves fil-
tered colimits by Proposition 4.2.2.12, and together this implies that we can
define h as above by defining a compatible system of homotopies h,, of mor-
phisms of differential graded algebras from the restriction C(F)oe{t} 00 0tn
to ex o Q},/k o @{t} 0 tn. We will do this by induction.

We begin with some general remarks on how the induction step will work.
So assume that n > 0 and we already have constructed a homotopy h,, of mor-
phisms of differential graded algebras A,, — C(k[X]) from C(F)oe300 130ty
to ex o Q;/k 0O ot We wish to extend hy, to hy,41. For easier notation
we will use the following shorthands.

¢ =C(F)oegu 0Opy 0,

¢ = C(F)oe€gy 00Oy 0tns
W= ex 00 0Opy 0y

P i=¢€ex o Q}/k 004} Olnt1

By Remark 7.4.5.2 the underlying graded k-algebra of A, is free on the
elements ¢ and dt, and y and dy for y € Y,,, with m < n, while A,, is free
on the same generators except the elements of Y,, and dY,,. Let us denote by
G,+1 the generators for A, ;1 that were just mentioned, and by G,, those of
A,,. For compatibility with h,, we are forced to define h, 1 as follows on G,,.

hnt1(g) = hn(g) for g € G,

On elements g in G,,4+1 \ G,, we need to define h,, 41 in such a way that h,41
is a homotopy from ¢ to 1, so we must have the following.

Ihnt1(9)) = ¢(9) = ¥(9) — hnt1(8(9)) = —hn(8(g)) (%)

In the simplification we used that © 4 oty 11 is zero on g (and hence so are ¢
and ), and that 9(g) is an element of A,,. We claim that finding solutions to
these lifting problems is the only obstacle to extending h,, to h, 1 as required.
So assume that we can find values for h,1(g) for every g € G,,11 \ G, that
satisfy (x).

As we have already defined values of h,; on G,,+1, Proposition 4.2.2.18
implies that there is a unique way to extend this to a morphism h,; of
Z-graded k-modules from A, to C(k[X]) of that increases degree by 1 and
that satisfies the Leibniz rule for homotopies of differential graded algebras
from ¢ to ¥. As h,11 agrees with h,, on G,, and h,, also satisfies the analogous
Leibniz rule as a homotopy of differential graded algebras from ¢’ to ', and
© and 1) restrict to ¢’ and ', the uniqueness part of Proposition 4.2.2.18
then implies that h,y; extends h,. It remains to show that h, i satisfies
00hyi1+hpyp100 = p—1. Again by Proposition 4.2.2.18 it suffices to check
this on elements of G, 1. On elements of G,,11 \ G,, this holds by definition,
and on elements of GG,, this holds because it does for h,,.
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We have now shown that the only obstruction to extending h, to h,41
with all the necessary properties is finding solutions for h,1(g) for elements
g of G 11\ Gy, to the equation (x). We claim that such a solution can always
be found if n > 2. So assume that n > 2 and we have already defined h,,. Let
g be an element of G, 11\ Gy,. Then we first claim that the right hand side of
equation (x) is a cycle. For this we carry out the following calculation, using
that h, is a chain homotopy from ¢’ to '

(=hn(9(9)))
= h,(9(0(9))) — ¢'(0(g9)) +¢'(9(9))
= —¢'(0(9)) + ' (8(9))
=0

The last step needs a comment. The element ¢ is either of the form y or dy
for y € Y,,. Thus 0(g) is either y or —dy for a y € Y,,, and Oy, and thus
also ¢" and ¢’, maps every element of Y,, (and hence also dY,,) to 0.

As the right hand sides of equation (x) is a cycle, it represents a homology
class, and finding a solution to the equation is equivalent to the homology
class being zero. As the elements of Y,, are of degree n, the element g, and
hence the right hand side of (x), must be of degree n+ 1 or n+ 2.>? Thus the
obstructions to extending h,, to h,41 are homology classes in degree n + 1
and n+2. As ex is a quasiisomorphism by Proposition 7.2.2.2 (6) and Q;[X]/k
is concentrated in degrees less than or equal to 2 (this is where we use the
assumption | X| < 2), the homology of C(k[X]) is concentrated in degrees less
than or equal to 2. Thus the homology classes obstructing extension of h,, to
hn+1 are all trivially zero as we assumed n > 2, so that it is always possible
to extend h,, to h,y1.

By the above argument it thus suffices to construct hy. Concretely, we first
need to define ho(t) and ho(dt) satisfying the following.®?

(ho(t)) = (C(F) o €1y 0Oy 0 10) () — (ex 003 4 0Oy o L0>(t) (7.13)
3(h0(d t)) = (G(F) 9] e{t} o @{t} o Lo) (d t) - (€X 9] Q;;v/k o @{t} o LO) (d t)

For the set {t} the set Yj is empty by Proposition 7.4.5.6, so t{: Ag — Aj is
an isomorphism, and hence hy extends to h; for trivial reasons. Finally, to
extend hy to he we need to define ho(t-dt —dt-t) and ho(dt-dt —dit-t)
(see Proposition 7.4.5.7) satisfying the following.
O(ha(t-dt—dt-t)) = —ho((t-dt —dt- 1)) (7.14)
O(ho(dt-dt —dt-t)) = —he(d(dt-dt —dt-t))

52Recall that if y is an element of Y;,, then y is of degree n 4+ 1 and dy is then of degree
n 4 2. B B

53The argument that it suffices to define hg on t and dt satisfying the chain homotopy
identity is completely analogous to the argument we gave for extending hy to hn+1,
also using Proposition 4.2.2.18. This time the analogue of (x) has slightly different form
as Oy does not vanish on ¢ and d ¢, but ¢ and d¢ are cycles in Ag.
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However, the obstruction for the existence of a solution for ho(dt-dt —dt - t)
is a homology class in degree 3. By the same argument as the case of exten-
sions from A, to A,y1 for n > 2 we thus already know abstractly that a
solution can be found. To extend h; to ho it thus suffices to find a solution
for ho(t-dt —dt-t).

We begin by evaluating the right hand sides of (7.13), where we use the
definitions in particular from Construction 7.4.5.1 and Construction 7.2.2.1.
If | X| = 2 we denote the elements of X by x1 < x9, if | X| =1 we denote the
unique element by x;.

(G(F) o€ 0Oy 0 LO)(t) - <€X o Q}/k SYCTRRS L0> (t)
= (C(F) 0 e)(t) = (ex 0 Q%1 ) (1)
= C(F)(t) — ex(f)
=/ f
-0
= 0(0)

(C(F) o€y 0O 010)(dt) — (ex 0 Q% 0Oy 0 LQ) (dt)
(

C(F) 0 eq)(de) — (ex 0 25 ) (1)
=CF(L®F) —ex(df)
=1® f—ex(df)
=d(f) —ex(df)
=d(ex(f)) —ex(df)
We can now use that eg;) as defined in Construction 7.3.1.1 is a strongly
homotopy linear morphism, see Proposition 7.3.11.2.

= -0(&()

We can thus define ho(t) = 0 and ho(dt) = —egp(f).
Now we evaluate the right hand side of (7.14).

— ho(0(t-dt—dt-1))
= —ho(t-dt—dt-t)

= —ho(t) - (EX 0 Q3 00 0 LO) (dt)
— (C(F) o egy 0Oy 010)(t) - ho(dt)
+ ho(dt) - (eX 00 0Oy 0 LO)(t)
— (C(F) o eqy 0Oy 010)(dt) - ho(t)
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= —(G(F) O€qyy © @{t} o Lo)(t) -~ ho(dt)
+ ho(dt) - (eX 0 Q% 0Oy 0 Lo) (t)

=— (C(F) o €(1} 0Oy 010 —€x 0 Qg 0Oy 0 LO) (t) - ho(dt)
= —9d(ho(t)) - ho(dt)
=0
=0(0)
Thus we can define ho(t-dt —dt-t) =0. O
As a significantly easier variant we can also show a analogous result to
Proposition 7.4.6.1 where we consider morphisms into k.

Proposition 7.4.6.2. Let X be a set and F: k[X] — k a morphism of
commutative k-algebras.
Then there is a filler for the square

Alg(r) (Uxye) 2 Alg(y) (C(RX])

Alg()(2%1) Alg(v)(C(F))

Alg(7) (Qz/k> e Ale() (C(k))

in Alg(D(k)), where € is as defined in Construction 7.2.2.1 and Proposi-
tion 7.2.2.2. Q

Proof. 1t suffices to show that the diagram

Q% x1/k —=—— C(k[X])

Q% /e C(F)

Q.

k/k T e C(k)

commutes strictly. For this we note that as k = 0, the lower right chain
complex is concentrated in degree 0, so it suffices to check that the two
compositions agree on elements of degree 0. But on degree 0 we can identify
the diagram with

kX] — 2 gy
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which commutes. O

7.4.7. Naturality of ¢

In Definition 7.4.4.2 we defined a quasiisomorphisms
By: Alg(eva) (ék(X)) - Qe

in Alg(Ch(k)), for every set X. While the morphisms ®x for different sets
X do not assemble to a natural transformation from the category of com-
mutative k-algebras to Alg(Ch(k)), we show in this section that a weaker
naturality property holds with respect to some specific morphisms of commu-
tative k-algebras.

Proposition 7.4.7.1. Let X and Y be totally ordered sets satisfying one of
the following.

(1) |X]|=1and |Y] <2.
(2) [Y]=0.

Let F be a morphism of commutative k-algebras k[ X] — k[Y].
Then there is a filler for the square

= Alg(7)(®x) o
Alg() (Alg(evn) (Cu(X)) )~ Alg() (924,1)
Alg(7)(Alg(even)(Cr(F))) Alg(7) (2% 1)

Alg(v) (Alg(EVm) <6k(Y))) ey Alg(y) (QZ[YW)

in Alg(D(k)), where C is as in Construction 7.4.2.5 and ®x and ®y as in
Definition 7.4.4.2. v

Proof. In the following we will omit the forgetful functor Alg(evy,) from the
notation to make diagrams more compact.

By Definition 7.4.4.2 ®x is the composition of @’y with the quasiisomor-
phism mapping z to v9€a(*) . z (where v is as in Proposition 7.4.4.1), and
analogously for ®y. As the diagram

o pdescn (=) .
Qk[X]/k ~ Qk:[X]/k:

Q% /i Q%

Bk e vk
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commutes there is a filler for the right square in the following (non-commut-
ing) diagram in Alg(D(k)).

Alg(y)(®’ Alg(y) (vieBen (). —
) (®%) ) ( - )

Alg() (6k(X) Alg(7) (QZ[XW Alg(7) (QE[X]/k)

Alg(v)(Cr (F)) Alg(7)(2%/x) Alg(7)(Q%/1)

Alg(y) (vieEer ™))

Alg(y) (ak(y)) W Alg(7) (QZ[Y]/k) ——=— Alg(y) (QZ[Y]/k)

It thus suffices to find a filler for the left square.

We now unpack the definition of &', with ®}, of course being completely
analogous. By Proposition 7.4.3.2 Alg(y)(®’) is homotopic to the composi-
tion

Alg(7)(Cr(X) ) =~ HH(K[X]) ~ Als(7) (2x)1)

where the first equivalence is obtained by applying evﬁ’“xed to the equiva-
lence at the bottom of diagram (7.9) in Construction 7.4.2.5 combined with
compatibility of evM>*ed with Alg(Ymixed) from Construction 4.4.1.1, and the
second equivalence is the one from Corollary 7.2.2.3.

By definition that equivalence from Corollary 7.2.2.3 is given by the com-
position

HH(k[X]) = Alg(y)(C(k[X])) = Alg(y)(C(k[X]))

~

Alg(v)(ex)

Alg(v) (QZ[X]/;C)

where the first equivalence is the one from Proposition 6.3.4.3, the second one
is induced by the quotient morphism from Propositions 6.3.1.10 and 6.3.2.11,
and the last equivalence is induced from ex as constructed in Construc-
tion 7.2.2.1.

In the following diagram in Alg(D(k)), we let the two columns be given
by the composition the equivalences @’y and P4 are defined as, as we just
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reviewed.
Alg() (ux)) OO, N0 (€)
HHN(k[X]) ) HH(kIY])
Alg(v);C(k[X])) 2 Alg(wxczwm
Alg(v)zc(k’[X])) M) Algwch(k[Y]))
~ | Alg(v)(ex) Alg(v)(ey) |~

Alg(1) (%% )

Alg(7) (Q;[X] /k) Alg(v) (sz /k)

There is a filler for the first square from the top by definition of (~]k(F ),
see Construction 7.4.2.5. The second square has a filler by naturality of the
equivalence between HH and the standard Hochschild complex C in Propo-
sition 6.3.4.3. The third square has a filler by naturality of the quotient map
from the standard Hochschild complex to the normalized standard Hochschild
complex, see Propositions 6.3.1.10 and 6.3.2.11. Finally, the bottom square

has a filler by Proposition 7.4.6.1 (and Proposition 7.2.2.2 (3)) if we are in
case (1) and by Proposition 7.4.6.2 if we are in case (2). O

7.4.8. Compatibility of ® with d in degree 0

In Section 7.4.4 we showed that ® is compatible with d (see Proposi-
tion 7.4.4.3). In this section we use the naturality statement from the previ-
ous Section 7.4.7 to deduce compatibility of ® x with d on elements of degree
0 as long as | X| < 2. Note that the following proposition still has content for
|X| = 1. In this case it shows that the v obtained in Proposition 7.4.4.1 is
independent of the choices made along the way.

Proposition 7.4.8.1. Let X be a totally ordered set satisfying | X| < 2. Then
the quasiisomorphism

Dx: Alg(evm)(ak(X)) = Qix1/k
in Alg(Ch(k)) from Definition 7.4.4.2 satisfies
Dx(dz) =d(Px(z)) (7.15)
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for every element z of degree 0 of Ch (X). Q

Proof. Let z and 2’ be elements of ak(X) of degree 0, and y an element of
degree 1 such that d(y) = z — z’. Assume that

Px(dz) = d(Px(2))

holds. Then we claim that

x(dz2') = d(®x(2")

holds as well. Indeed, this follows from the following calculation.

Ox(d2) = x(d(z - 0(y))) = x(dz - d(9(y)))
= ®x(dz) + x(9(d(y))) = d(Px(2)) + A(Px(d(y)))
=d(®x(2)) = d(2x (2" + 0(y))) = d(®x(2') + 2x(0(y)))
= d(2x (&) +0(2x(y))) = d(Px(2"))

As ék(X ) is concentrated in nonnegative degrees by Construction 7.4.2.5
and Proposition 7.4.2.4, every element of degree 0 is a cycle. It thus suffices to
show that for each homology class in Ho(Cj, (X)) there is a cycle representing
it that satisfies (7.15).

As both sides of (7.15) are k-linear in z it even suffices to verify (7.15) on
one cycle for each in a set of homology classes that generate Ho(ék(X )) as a
k-module.

As ®x is a quasiisomorphism it is surjective, so that we can lift every
element x of X, considered as an element of Q;[ X1/k of degree 0, to a cycle
7 in Cp(X). Products® of elements of X form a k-basis for Q5 x)/x and
hence HO(Q;[X] /k). As ®x is a multiplicative quasiisomorphism this implies
that products of elements of the form Z for x € X are cycles representing
homology classes that together form a generating set for Ho(Cp(X)) as a
k-module. It thus suffices to show that (7.15) is satisfied for products (with
arbitrary many factors) of elements of the form z for x € X.

Now suppose that z and 2’ are elements of degree 0 in ék(X ) that both
satisfy (7.15). Then we claim that the product z - z’ satisfies (7.15) as well.
This can be shown with the following simple calculation that uses that ® x
is multiplicative and that d satisfies the Leibniz rule on both ék(X ) and
Qixiye

Ox(d(z-2")) =®x(d(z) 2"+ 2-d(2))
= q)X(dZ) . (I)X(Z/) + CI)X(Z) . CI)X(dz')
= d(@x(2) - () + Bx(2) - d(@x(2)

54With arbitrary (finite) number of factors, including zero factors.
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d(®x(2) - Px(2))
d(®x(z-2"))

Note that the element 1 satisfies (7.15) because d(1) = 0 by the Leibniz rule
in both ék(X) and QF v, and ®x (1) = 1. We are thus reduced to show
that (7.15) holds for the specific elements Z for z € X.

So let « be an element of X and F': k[t] — k[X] the morphism of com-

mutative k-algebras that maps ¢ to x. By Proposition 7.4.7.1% there is a
commutative diagram

Alg(7)(®4y)
_—

Alg() (Alg(eva) (Co({t})) ) Alg(7) (X1

Alg(7)(Alg(evm)(C(F))) Alg(v)(2% k)

Alg(v) (Alg(eVm) (ék(X))) T Alg(v) (QZ[X]//c)

in Alg(D(k)). As the underlying differential graded algebra of Cj({t}) is
cofibrant by Proposition 4.2.2.12 and every object is fibrant in Alg(Ch(k)),
we obtain from [Hov99, 1.2.10 (ii)] and Proposition A.1.0.1 that the following
diagram commutes up to chain homotopy of morphisms of differential graded
algebras in the sense of Propositions 4.1.4.2 and 4.2.2.17.

Algleva) (Ca({t})) ——2— 0z,

Alg(evm)(C(F)) %)

Alg(eVm)(ak(X)) — o Bk

So let h be such a homotopy of morphisms of differential graded algebras
from Q3. o @14y to Px o Alg(evn)(C(F)). Lift the element ¢ in degree 0 of

Q3 to a cycle { in ak({t}) Then we have the following.

Oy (%— 6(F)(E)> = By (7) - by (G(F)(%))
=a+0(h(t)) +h((F)) = U/ (P (7))
= 2+ 0+ h(0) — Q. (1)

=0

55This is the part of this proof that uses the assumption that |X| < 2.
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Thus = — G(F )(t) is a cycle that represents a homology class that maps
to 0 under Hy(®x). As ®x is a quasiisomorphism we must thus have that

T — (~](F )(t) is a boundary. By the argument we gave at the start of this
proof it thus suffices to show that (7.15) holds for the element C(F)(t). For
this we use the following calculation, using that ®;; is compatible with d by

Proposition 7.4.4.3, and that @X(G(F)(%V)) = ®x(Z) by the above calculation.

ox (A(CF)(D))) = @x (CF)(ai))
= 0% (2 (7)) — 9(n(d1)) — h(2(d1))
ZQ%/k(d(¢{t}(5)) —0+h(d(a(2)))
= Q% (dt) + h(d(0))
=dux

—d(ex(C(P)(D)) =

7.4.9. Proof of Conjecture B for sets of cardinality at
most 2

The goal of Section 7.4 is to show that Conjecture B holds for |X| < 2.
This is what we do in this subsection, by combining all the ingredients from
the previous subsections.

Construction 7.4.9.1. Let X be a totally ordered set with |X| < 2. We
will construct a morphism

in Alg(Mixed), where Qk'[X]/k is as defined in Definition 7.4.5.9 and Construc-

tion 7.4.5.1, and C(X) is as defined in Construction 7.4.2.5.

In this construction we will in particular use notation from Construc-
tion 7.4.5.1, and also make use of the multiplicative quasiisomorphism @ x
from Definition 7.4.4.2 and the strict mixed quasiisomorphism ¥ x from Def-
inition 7.4.3.4.

By the universal property of the colimit it suffices to construct morphisms

Zn: Ap — C(X)

in Alg(Mixed) for every n > 0 such that =, o (2!
property of pushouts and Free®8Mxed) this amounts to the following. To
define Zy we need to prescribe a cycle as the value Zg(x) for every element
x of X. If n > 0, then to lift =, to =,41 amounts to prescribing a value for

En+t1(y) for every element y of Y;,, under the constraint that

8(En+1 (y)) =EZu(y) (*)

= E,. By the universal
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must hold. We will require one additional property that =,1(y) should sat-
isfy, namely that

Ux (Ent1(y)) =0 (%)

where VU x is as in Definition 7.4.3.4.

Let n > 0, let y be an element of Y,,, and assume that =, has already
been defined. Note that =, (y) is a cycle, as y is a cycle by (a) in Construc-
tion 7.4.5.1. We claim that if the homology class represented by Z,,(y) is zero,
then a value for =, 11 (y) can be found that satisfies both (%) and (xx). So let

2 be an element of C(X) so that d(z) = Z,(y). Then ¥y (z) is a cycle (as
every element of Q;[X]/k is), so as Ux is a quasiisomorphism and Q;[X]/k has

zero boundary operator we can lift Ux(2) to a cycle 2’ in C(X) such that
Ux(2') = Ux(z). Now set Z,,11(y) == z — 2’. Then we immediately obtain

Uy (Em_l(g)) =U,.(2) - Ux(2')=0

and, using that 2’ is a cycle,

I(En+1(y)) =9(z = 2) = 9(2) = En(y)

so that this definition of =, 11 (y) satisfies both () and (xx).

We now define Zy and then =, for n > 0 by induction, in such a way that
Uy o2, maps y to 0 for all elements y € Y,, for n’ < n. By the argument
above it suffices for the induction step in which we extend Z,, to Zpyq for
n > 0 to show that the homology class represented by E,,(y) is zero for every
element y of Y,,. As ®x and Wy are quasiisomorphisms it in turn suffices for
this to show that each of those elements is mapped to zero by ®x o Zy or
\IIX o Eo.

We thus start with Zy. Let = be an element of X. We need to define a
cycle Zo(x). For this we use that as ®x is a quasiisomorphism and Q;[X]/k

has zero boundary operator, we can lift the element x of Qg[x] Jk to a cycle
Zo(x) in (~](X) This defines Z¢ in such a way that

(Px 0Ep)(z) == (7.16)

holds for every element x of X.

To extend =y to =; and then Z5 we use that ®x o =y maps the elements
of Yy and Y7 (note that Y7 lies already in Ag) to zero. This is the case
as all elements of Yy and Y; are given by commutators, so as ®x o = is
multiplicative those elements are mapped to zero as Q;[ X1/k is commutative.

We next extend =5 to ZEs. In the following we will denote the element(s)
of X by x1 <--- <xx|. Then by Proposition 7.4.5.8 the elements of Y5 are
given by the full list below for | X| = 2, consist of the first element of the list
for | X|=1,and Y1 =0 for | X| =0.

(1) diEl 'd.’l?l
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(2) d.%'g . d.’IJQ

(3) day 29— 2921 +x1-dag —dxs 21 —29-daxy —dxy - 29

(4) d$2'$€1~$271’2'()’]1+’l}1'%27%2‘1‘1'(11‘2

— 21 To-daxg —dzg 2o+ 2o -dars —dzo - 2221

+xo-x1-dreg —dag-x1 — 21 -dxe —dxo - 21 - To

(5) day 21 29— 29 T1+ 21 To—To-x1-day

—21-To-daxy —dzxy 22+ 22 -dry —dzy -T2 - X1

+$2-1’1'd$1—d$1°1’1—1’1'd.’E1—d.’E1‘(E1'ZL’2

Elements (4) and (5) can be handled using ®x in the same way as we did
with the elements of Yy and Y7, as they are sums of commutators. Elements
(1) and (2) can also be handled analogously with ®x, this time using that
odd degree elements square to zero in Q;[ Xk It remains to consider element
(3). For this element we can use that ¥x o =9 maps it to 0, which is the case
as by induction hypothesis ¥ x o Zs maps every element of the form y for y
an element of Yj or Y7 to zero, and ¥x o =y is also compatible with d.

Now let n > 3 and assume we have already constructed Z,,. To extend =,, to
Zn41 it suffices to show that ® x o=, maps the elements of Y,, to zero. However
the elements of Y,, are of degree n, and QZ[X]/k ~0as |X|]<2<3<mn,s0
this is automatically satisfied. &

Proposition 7.4.9.2. Let X be a totally ordered set with | X| < 2. Then the
morphism _

Zx: Q;:[X]/k — C(X)
in Alg(Mixed) that was constructed in Construction 7.4.9.1 is a quasiisomor-
phism. Q

Proof. Let us denote the element(s) of X by x; < --- < z|x|. The morphism
Ox: Ylxye = Ly

as defined in Definition 7.4.5.9 is a quasiisomorphism by Proposition 7.4.5.11.
By construction © x maps the cycle z{* xr)'ﬁ‘ ~d ---dzf)‘f“ of Yt x1/m
with a1,...,a)x) > 0and by,...,b x| € {0,1}, to the element of QE[X]/k with
the same name. As the homology classes of those cycles in Q;[ X1/k form a

k-basis for the homology, the same must be true for Q;:[X] Ik i.e. the set

a b
{ [Ill...x'il)ﬁ‘ .dxlil-~~d$|)‘?|‘} ’al,...,a‘x‘ 20, bl,...,b‘x‘ E{O,l}} (*)

forms a k-basis of the Z-graded k-module H*(Q;‘[X]/k).

To show that H.(Ex) is an isomorphism it suffices to show that the
morphism H,(®x o Zx) is an isomorphism, where ®x is the quasiisomor-
phism defined in Definition 7.4.4.2. For this it now suffices to show that
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the basis (%) of H. (Q;c'[X]/k) is mapped to a basis of H, ({2} /) under
H.(®x o Ex), and for this it is in turn enough to show that ®x o Zx maps
the element z{' - xr)';(" . dasll’1 -~-dxi}}‘?" of Q;:[X]/k for ai,...,a;x; > 0 and
bi,...,bx) € {0, 1} to the element OfQ;[X]/k with the same name. As ® x o= x
is multiplicative we only need to show that ®x o =x maps elements x to =
and dz to dx, for each element z in X. That ®x o Zx maps elements x of
X to z holds by construction of Zx, see (7.16). We can also deduce from this
that d x is mapped to d z, as Zx is compatible with d, and ®x is compatible
with d on elements of degree 0 by Proposition 7.4.8.1. O

We can now sum up Section 7.4 as follows.

Corollary 7.4.9.3. Let X be a totally ordered set with | X| < 2. Then there
is a composite equivalence

HHvtixed (ki[X]) = Alg(’YMixed) (G(X)>

= i /e
o Al (U i)

e Alg(YMixed) (O x ) |~

Alg(YMixed) (QE[X]/’C)

in Alg(Mixed), where the first equivalence is the one at the bottom of diagram
(7.9) in Construction 7.4.2.5, the second equivalence is induced by Zx as
constructed in Construction 7.4.9.1, and which is a quasiisomorphism by
Proposition 7.4.9.2, and the third equivalence is induced by ©x as defined in
Definition 7.4.5.9, which is a quasiisomorphism by Proposition 7.4.5.11.

In particular, Conjecture B holds for X . Q@

Remark 7.4.9.4. Usage of U x is not really necessary in Construction 7.4.9.1,
as we could also have arranged for

@X(Eg(ml 'd.’l?g —d$2 . (L‘l)) =0

and

@X(Ez(xg 'd!L‘l —dl‘l LUQ)) = (Px(El(d(iL'l Ty — X2 :Cl)))

instead of equation (xx) in Construction 7.4.9.1, and thereby also dealing
with the problematic element

dxy 29— 2921 +21-daxs —dxes 21 —29-dax; —dxy - 2o

that we used Uy to handle in Construction 7.4.9.1, by using ®x instead,
having the contribution from the third summand exactly cancel out the un-
controllable (under ®x) first summand.
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The reason Construction 7.4.9.1 was nevertheless written using Wy is that
it would not suffice to only use ®x anymore in the case |X| = 3, as in this
case we would have to consider also obstructions to extend to generators of
degree 4, and this would involve in particular an element like

diz-de—dz-z)+2-dz-dzx

in degree 3 that can not be handled with the same idea using ® x only unless
2 is invertible in k. However, it is likely that the technique actually used in
Construction 7.4.9.1 using ®x and ¥ x extends to the three-variable case, so
it would be an unnecessary assumption to assume that 2 is invertible in k.

The case | X| = 5 is expected to need different techniques for base rings

such as k = Z in which 3 is not invertible, as the cofibrant resolution Q;C'[ X1/k

will have a generator in degree 6 with boundary of the form®®

z-ddzx-dz—ddzx-dz-z
+dz-dx-der—dz-z+2-dzx-de—dx-de—dx-z+2-dx-dax-dz

+dz-dz-de+dz-z-de—dx-z—z-de—dx-xz-de—dz-dx-x
4+3-dz-dx-dex+dz-dx-dx

which involves interactions of the multiplicative and strict mixed structure
in a way that does not seem to be handleable using only ®x or Ux (unless
3 is invertible). &

7.5. De Rham forms as a strict model in
Alg(Mixed) and morphisms

In Section 7.4 we discussed Conjecture B, which asks for showing that
for polynomial k-algebras de Rham forms are a strict model for Hochschild
homology as an object in Alg(Mixed). The next upgrade of such an objectwise
equivalence would be showing that the morphism induced on de Rham forms
by a morphism of polynomial k-algebras represents the induced morphism on
Hochschild homology as well. We formulate this as the following conjecture.

Conjecture C. Let X and Y be sets and F: k[X] — k[Y] a morphism of

56The generators of Q;c.[X]/k’ in particular including this expected generator, were found
using computer calculations.
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commutative k-algebras. Then there exists a commutative square
HH e (K[X]) ——=—— Alg(mied) ()1
HHotixea (F) Alg(Yied) (81,)

HHotixea (K[Y]) Alg(YMixed) (Qi[y]ﬂc)

R

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative square for a
specific F' as “Conjecture C holds for F”. &

Later in this section we will show that Conjecture C holds
o if |X| =0and |Y| <2 by Proposition 7.5.1.1 in Section 7.5.1, and
o if |X|=1and |Y| <1 by Proposition 7.5.2.6 in Section 7.5.2, and

o if |X|=1and |Y]|=2and 2 is invertible in k& by Proposition 7.5.2.6 in
Section 7.5.2, and

o if |X| =2 and |Y| =0 by Proposition 7.5.4.1 in Section 7.5.4.

For applications we will need the following variant of Conjecture C, with
two squares at once, with the same equivalence in the middle (so this is
stronger than just two instances of Conjecture C).

Conjecture D. Let X be a set and f an element of k[X]. Denote by
F: k[t] — k[X] the morphism of commutative k-algebras that maps t to
f and by G: k[t] — k the morphism of commutative k-algebras that maps t
to 0. Then there exists a commutative diagram

HHgixea (k) = Alg(YMixed) (Q;/O
HH oyt iea (G) Alg(Tiea) (1)
HHpmea(blt) ——=—— Alg(ned) (2450
HHixed (F) Alg(Yiea) (/1)
HHoytixed (K[ X]) = Alg(Mixed) (QE[X]/’C)

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative diagram for a
specific f as “Conjecture D holds for f”. &
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In Proposition 7.5.3.1 in Section 7.5.3 we will show that Conjecture D holds
if | X| <1or|X|=2and 2 is invertible in k.

We will discuss Conjecture C for |X| = 0 in Section 7.5.1, for |X| =1 in
Section 7.5.2, and for | X| = 2 in Section 7.5.4. Conjecture D will be discussed
in Section 7.5.3.

7.5.1. Conjecture C for zero variables in the domain

In this short section we prove Conjecture C in the case that the domain
is a polynomial ring in zero variables, in which case Conjecture C is true for
formal reasons.

Proposition 7.5.1.1. Let X be totally ordered set satisfying | X| < 2. Then
there exists a filler for the square

HHvixea (k) ———— Alg(mnea) (1)
HHtixea (hx]) Alg('YMixed)(Q:k[X]/k) (7.17)

HH\tixed (K[ X])

1

Alg(Wixed) (Qi[x}/k)

in Alg(Mixed), where the horizontal equivalences are the ones from Corol-
lary 7.4.9.3 (for the top horizontal equivalence applied to the empty set).

In particular, Conjecture C holds for F' = vx) if | X] < 2. Q

Proof. QF Jk is isomorphic to k, the monoidal unit of Mixed, considered as
an object of Alg(Mixed). AS YMixed 1S Symmetric monoidal (see Construc-
tion 4.4.1.1), k is mapped by Alg(Ymixed) to an initial object of Alg(Mixed)
by [HA, 3.2.1.8]. That there is a filler for diagram (7.17) now follows purely
from the universal property of initial objects. O

7.5.2. Conjecture C for one variable in the domain

In this section we turn to the much more involved proof that Conjecture C
holds for morphisms F': k[t] — k[X] if | X| < 1 or |X| =2 and 2 is invertible
in k. Using that Q;;[t]/k is cofibrant in Alg(Mixed) it will be possible to obtain
a morphism

L)

F/k* Q;c.[t]/k - Q;:[X]/k
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in Alg(Mixed) so that there is a commutative diagram
HHMixed(k[t]) - = Alg(’YMixed) (Qg[t]/k)

HH\(ixea (F) Alg(ywiea) (272)1,) (7.18)

HHytixed (K[ X]) ———=—— Alg(WMixed) (Q;c.[X]/k)

in Alg(Mixed). If we could then show that the square

Qe O 0°
k[t]/k ~ k[t]/k

QFk Q%% (7.19)

Uik —ox  Thxyn
in Alg(Mixed) commutes (perhaps up to homotopy of algebras in strict mixed
complexes), then we would be finished. If | X| < 1, then it follows from Re-
mark 7.4.5.2 that we only need to check that the two compositions map ¢ to
the same element (as the other generators must map to zero for degree rea-
sons), and this is something that is actually true, both compositions mapping
t to F(t).

However, if X = {x1, 22} (which we give the total order z; < z3), then
we also need to check that the two compositions agree on t-dt —d¢-¢. Un-
fortunately, this will not be the case in general. Q/;[t} Ik is zero in degree 2, so
the composition along the top right will map ¢-d¢ —dt -t to zero, but this
is not necessarily the case for the composition along the bottom left. The
idea to deal with this is to replace ©x by a different quasiisomorphism of
algebras in strict mixed complexes A. For A to be a quasiisomorphism and
have the correct value on 2, () we will want to set A(z;) := x;. We have
a lot of choice in how we define A on the higher generators y for y € Y,
which we can choose nearly arbitrarily, the only real restriction being that
the following must hold.

d(/\(l‘l c Loy — X9 - 1‘1)) + /\(.’L‘l -dxyg —duxg - 1‘1) — /\(.%‘2 -dxy —dxq - 1‘2)
(7.20)
So how should we choose A(y) for y € Y;, for n > 0 in order to ensure that
we have )\(Q;/k(t -dt —dt-t)) = 0 so that the analogue of diagram (7.19)
commutes?
The main tool available to understand Q2 , is naturality of ® as we showed
it in Proposition 7.4.7.1, and we can use this to show that

(I)X(EX( ’;/k(t-dt—dt-t))):O (7.21)
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holds. As & x o =x is a quasiisomorphism and maps x; to x; we could thus set
A to ®x o Zx if only it were a morphism in Alg(Mixed)! But unfortunately,
®x is only multiplicative but is not in general compatible with the strict
mixed structure. What we could instead do is to try to define A in such a way
that ®x o Zx and A agree on Q’}:/k (t-dt —dt-t). As ®x is multiplicative
and preserves d on elements of degree 0 by Proposition 7.4.8.1, $x o =x and
A already agree on the Z-graded k-subalgebra generated by elements x; and
d x;. If we for example choose

/\(ZL‘l +Tg — T2 ',121) = ‘I’X(Ex(l‘l +T9g — T2 171))

then it would follow that the two morphisms would also agree on elements
like 1 -dxo -1 - T2 — T2 - X1

However if terms involving d(zy - 9 — 29 - 1) appeared in the element
Qg/k(t -dt —d¢-t), then we would not be able to deal with this, as we
have no way of accessing where ® x o Zx maps such an element. So as a first
simplification step we need to make a particular choice for Q2 Ik for which
Q;;/k(t -dt —dt-t)is given by a k-linear combination of products of 1, xa,
dzy1, dzg, as well as elements of the form y for y € Y,,, but without factors
of the form d(y). This can be arranged as

d(l‘l'$2—I2~$1)+1‘1'dl‘g—dxg-xl—l‘g'dl‘l—dl‘l'.132

is a boundary in Q;C‘[X]/k.
If we now just set A(y) = ®x(Ex(y)), then it would follow from (7.21)
that
A( ’;/k(t-dt—dt-t)) =0
holds as well, so that the analogue of diagram (7.19) commutes. However, the

next hurdle is that (7.20) needs to be satisfied. So say if A\(x1 - xo — @2 - 1)
had been defined in such a way as to be 0, then we must have

)\(1‘1 'dl‘g —d.’L‘2 '$1) = )\($2'dl‘1 —dxl '.’L‘g)

and can not choose the two values independently. This is where the assump-
tion that 2 is divisible in k£ comes in, because combining this assumption with
choosing Q’I;/k such that 1 -dxg —dzs - 21 and x5 - dxy — dz1 - 22 always

contribute to Q’I;/k (t-dt—dt-t)in a pairwise manner we will be able to av-
erage out Px (Ex(z1 -das —das-21)) and Px(Ex(ze -day —dxy - 239)) be-
tween )\(xl ~dxzg —dxs -ml) and )\(afg -dxy —dax -xg), and similarly deal
with any possible contributions from d(z - o — x2 - 7).

We will begin putting this proof strategy into practice by first unpack-
ing the data required to construct morphisms and homotopies with domain
Q;C'[t]/k in Section 7.5.2.1. We will then be able to show existence of an ap-

propriate morphism Q2 Jk in Section 7.5.2.2. Finally, we put everything to-

gether in Section 7.5.2.3 to prove that Conjecture C holds for morphisms
F: klt] = k[X] if |X| <1or |X]| =2 and 2 is invertible in k.
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7.5.2.1. Morphisms and homotopies out of Q;ﬂ'm/k

To put this proof strategy described in the introduction to Section 7.5.2
into practice we first need to construct a morphism Q2 /k with the required
properties. The next two propositions are helpful for that as they simplify
the amount of data we need to provide and the amount of properties we need
to check in order to construct morphisms out of Q;;[t] e and homotopies of
such morphisms.

Proposition 7.5.2.1. Let X be an object of Alg(Mixed) such that H,.(X) =0
for x > 2 and such that elements of Hy(X) square to zero. Let Q;c.[t]/k be as
in Definition 7.4.5.9.

Let F' be a map of Z-graded sets from the subset {t,t-dt—dt-t} of
Q;c.[t]/k to X, and assume that F'(t) is a cycle and that F’' satisfies the
following equality.

O(F'(t-dt—dt-t))=F'(t)-d(F'(t)) — d(F'(t)) - F'(t) (7.22)
Then F' can be extended to a morphism
in Alg(Mixed). Q

Proof. We are going to use notation from the construction of Q;C’[t] Jk in Con-
struction 7.4.5.1 in this proof.

By the universal property of Free and k- — we obtain a morphism
Fy: Ap — X in Alg(Mixed) that maps ¢t to F'(t), where we need to use
that F'(t) is a cycle. As Yy is empty the morphism ¢} is an isomorphism,
so we immediately obtain an extension of Fy to F;: A; — X. Again by
the universal property of Free®8M>ed) a5 well as pushouts in Alg(Mixed),
we can extend Fy to a morphism Fy: As — X in Alg(Mixed) satisfying
Fo(t-dt—dt-t)=F'(t-dt —d¢-¢) if and only if

Alg(Mixed)

OF'(t-dt—dt-t))=F(t-dt —dt-t)

holds. But this es precisely ensured by (7.22).

It now suffices to assume that n > 2 and Fj,: A, — X is a morphism
in Alg(Mixed), and then to show that F,, can be extended to a morphism
Fri1: Any1 — X. Again by the universal property, this requires finding a
value F,,1(y) for every y € Y,, such that

O(Fat1(y)) = Fuly)

holds. But y is a cycle of degree n in A, by Construction 7.4.5.1 (a), so
F,(y) is a cycle in degree n of X, and such a solution exists if and only if
the homology class represented by F,(y) is zero. If n > 2 then this must
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trivially be true as then H, (X) 2 0 by assumption. If instead n = 2, then
the only element of Y5 is dt-dt. As dt is already a cycle, the homology class
[F(dt-dt)] is equal to the square of [F},(dt)] and hence zero by assumption
that elements of H;(X) square to zero. O

Proposition 7.5.2.2. Let X be an object of Alg(Mixed) such that H.(X) =20
for x> 2. and let Q;c.[t]/k be as in Definition 7.4.5.9.
Let
F,G: Q;C.[t]/k‘ — X

be two morphisms Alg(Mixed), and assume that the elements

F(t)—G(t)  and  F(t-dt—dt-t)—G(t-dt —dt-t)

are boundaries in X.
Then there exists a homotopy of algebras of strict mixed complexes in the
sense of Proposition 4.2.2.20 from F to G. Q

Proof. We are going to use notation from the construction of Q;C‘[t] /k in Con-
struction 7.4.5.1 in this proof.

As the forgetful functor from Alg(Mixed) to Z-graded k-modules preserves
filtered colimits by Proposition 4.2.2.12 it suffices to construct compatible
homotopies of algebras of strict mixed complexes h,, from F o, to G o, for
every n > 0.

Let us begin by constructing the homotopy hg. By Construction 7.4.5.1
the underlying Z-graded k-algebra of Ay is free on { t,d ¢ }. Define hg on { ¢ }
by mapping ¢ to an element whose boundary is F(t) — G(t) (such an element
exists by assumption). As ¢ is a cycle Proposition 4.2.2.21 then immediately
furnishes us with an extension to a homotopy of algebras of strict mixed
complexes from F o 1y to G o 1.

We now assume that h, has already been defined for n > 0, and show that
h, can be extended to h,y;. By Proposition 4.2.2.21 and Remark 7.4.5.2
extending h,, to hy41 amounts to finding a value for h,,11(y) for every element
y in Y, such that a

O(hn+1(y)) = F(y) = Gly) = haly) (%)

holds. We now distinguish between the case n =0, n =1, and n > 2.

If n = 0, then Y,, is empty, so nothing needs to be done. If n = 1, then
we have that ¥;, = {¢-dt —dt¢ ¢}, so we only need to consider the element
t-dt—dt-t. By assumption F(t-dt —dt-t)—G(t-dt —dt-t)is a bound-
ary, so that it suffices to show that ho(t - dt — dt - t) is a boundary, which
the following calculation does.

ho(t-dt —dt-t)
= ho(t) - G(dt) + F(t) - ho(dt) — ho(dt) - G(t) + F(d¢t) - ho(t)
= ho(t) - A(G(t)) — F(t) - d(ho(t)) + d(ho(t)) - G(t) + d(F(t)) - ho(t)
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= ho(t) - A(G(t)) + d(F(t)) - ho(t) + d(ho(t)) - G(t) — F(t) - d(ho(t))
= ho(t) - d(G(t)) — ho(t) - A(F'(t)) + d(ho(t)) - G(t) — d(ho(t)) - F(2)
= —ho(t) - d(F(t) — G(t)) — d(ho(t)) - (F(t) — G(t))

= —ho(t) - d(0(ho(t))) — d(ho(t)) - d(ho(?))

= ho(t) - 0(d(ho(t))) — O(ho(1)) - d(Ro(t))

= —0(ho(t) - d(ho(2)))

It remains to consider the case n > 2. Note that the right hand side of
equation (x) is in degree n 4+ 1 > 2, so as H,(X) is concentrated in degrees
x < 2 it suffices to show that the right hand side of equation (x) is a cycle.
This is shown via the following calculation, with y € Y,,.

O(F(y) -Gy - ny))

= F(9(y) - G(9(y) —ah

= F(y) — G(y) — 0(hn(y))

= hn(9(y))

= hy,(0)

=0 O

7.5.2.2. Construction of Q’I;/k

In this section we show the existence of a morphism Q2 Jk of appropriate
form to put the proof strategy described in the introduction to Section 7.5.2
into practice. In order to be able to properly describe what kind of form
Q/I;/k (t-dt—dt-t) is supposed to have we need to simplify Q;;[X]/k by mak-
ing it commutative. We thus introduce appropriate notation in the following
definition.

Definition 7.5.2.3. Let X be a totally ordered set satisfying | X| < 2, and
let Q’ x)/% Pe as in Definition 7.4.5.9.

Then we define
Ex Yy — Uixy

to be the morphism of Z-graded k-algebras that is given by quotienting out
the commutator, i.e. {x is initial among morphisms of Z-graded k-algebras
with commutative codomain. We will usually not use special notation to
distinguish between elements of Ql’,;[ X1/k and their images under £x, but make
clear from context in which of the two they lie. It follows from Remark 7.4.5.2
that the Z-graded commutative k-algebra Qg[.x] Ik is freely generated (as a
commutative Z-graded k-algebra) by the elements z and dz for € X and y
and dy for y € Y,, for n > 0. o
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We wish to show that there exists a morphism 2 /k fitting into a square
(7.18) and such that Q’g/k(t -dt —dt-t) has a specific form®7. As Q% has

to be a morphism of algebras of strict mixed complexes we already know that
the boundary will have to be of the following form.

o ult-dt=de 1) = Q2 (t) - (1)) — () - A0 (0)

The strategy to obtain Q’I;/k where Q’b!/k(t -dt —dt-t)is of a specified form
will be to first show that every commutator as on the right hand side of the
equation is the boundary of an element E of degree 2 of Q;C‘[ Xk that is of
a certain form, and then show that, up to some small adjustments, we can
construct Q;C'[X]/k in such a way that Q’I;/k(t -dt —dt-t)is precisely given by
E. While the following proposition does not yet refer to Q2 Jk it is however
the crucial preparatory result in its construction, ensuring that such an F of
appropriate form exists.

Proposition 7.5.2.4. Let X be the set X = { x1,x2 } equipped with the total
order x1 < wma. In this proposition we are going to use Definitions 7.4.5.9
and 7.5.2.3.

Let J be the Z-graded subset of Qg[.x]/k that consists of elements of degree
1 of the form g -x1 - x2 — x9 - 1 with g an element of k[ X] and of elements
of degree 2 of the form

gdml'd$1'$1'$2*$2'$1+9dm2'd$2'$1'$2*$2'$1

+ Gboth ° (ivl ~day —dag - x +xp-dey —day '$2)

+gsame,ml * X1 'dxl 7dSC1 * X1 +gsame,m2 c X - de *dIQ * T2

With Gd 215 Ydwss Jboths Jsame,w1s ONA gsame,z, €lements in k[X]. Denote by I
the Z-graded subset of Q;c.[x]/k that is the preimage of J under x .
Then the following holds.

(1) Every element of the form w-w' —w' - w for w and w' elements of
degree 0 in Q;:[X]/k is the boundary of an element in I.

(2) Every element of the form w-d(w') —d(w') - w+w'-d(w) —d(w) - w’ for
w and w' elements of degree 0 in Q;c'[X]/k is the boundary of an element

of 1.

(3) Every element of the form w-d(w)—d(w)-w for w an element of degree
0 in Q;;[X]/k is the boundary of an element of I. Q

Proof. In this proof we will make use of notation from Construction 7.4.5.1
as well as repeatedly use Remark 7.4.5.2 without further comment.

57For example not involving d(a:1 -x9 — To - xl).
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Before proving the claims let us note that I is closed under k-linear com-
binations as well as multiplying from either side with an element of X. Fur-
thermore, the product of an element of I of degree 1 with dx; or dzs is an
element of I again.

If w and w' are as in (1), then we will say that E is a lift associated to w and
w’ as in (1) to mean that F is an element of I such that 9(F) = w-w' —w’-w.
We use the analogous convention for (2) and (3).

We now begin by proving (1). For this we note that as Q;C'[X] /i 1 concen-
trated in nonnegative degrees, the element w - w’ — w’ - w of degree 0 is a
cycle. As Qp ) ) Is commutative, the commutator w - w’ — w’ - w must be
mapped to 0 by ©¢. Ho(01) is an isomorphism by Proposition 7.4.5.10, so
this implies that there is an element E’ in degree 1 of A; whose boundary is
w-w —w -w. By Remark 7.4.5.2 E’ can be written as £’ = E” + E where
E” is an element of Ay and E is in the k-submodule generated by words in
X with one extra factor x1 - x5 — x5 - 1, so that F is an element of I. As
A(E") = 0 we already have 9(F) = w - w’ — w’ - w, which finishes the proof
of (1).

Now we show claim (2), which we will do by reducing to more and more
specific w and w’, and using claim (1). First assume that w;, we, w} and w)
are elements of degree 0 of 23y, ; such that (2) holds for the pair (w1, w})
with associated lift Fy;, for (wq,w)) with associated lift Fio, for (wa,w})
with associated lift Eo;, and for (wsy,w)) with associated lift Fas. Let ay
and as be elements of k. Then we claim that (2) also holds for the pair
(a1 - w1 + ag - wa,ay - wi + ag - wh), with the following associated lift.

E=a-a1-Fii+a-ax-Fia+ay-ay-Fa+az-az- Fap

That FE is again an element of I follows from the argument at the start of this
proof, and that the boundary is what it should be is verified by the following
calculation.

(a1 - w1 + ag - wa) - d(ay - wy + ag - wh)
—d(ay - wy + ag - wh) - (ar - wy + ag - wa)
+ (a1 - w) + ag - wh) - d(ay - wy + ag - wa)
—d(ay - wy +ag - wsa) - (ag - Wy + ag - wh)
=ay-aj-wy-d(w)) +ag - ag - wy - d(wh)
+ag - ay - we - d(w)) + ag - az - we - d(wh)
—ay-ap - d(w]) - w; —ay - ag - d(wy) - ws
—ag - ay - d(wh) - wy — ag - az - d(wh) - we
+ay - ar-wy - d(wy) + ag - ag - w - d(wy)
+ag - ay - wh - d(wy) + ag - az - wh - d(wy)
—ay-ap - d(wy) - w) —ay - as - d(wy) - wh

—ag - ay - d(ws) - wy — ag - az - d(ws) - wh
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+ay-ay-wy - d(wy) —ay - ay - d(wy) - w)
+ay - as-wy - d(wh) —ay - as - d(wh) - wy
+ay -az-wy - d(wy) —ay - az - d(wy) - wh
+ay - az - we - d(w)) —ay - az - d(w)) - we
+ay - ag - wi-d(w2) —ay - ag - d(ws) - wy
+az - as - we - d(wh) — as - ag - d(wh) - wo
+ag - az - wy - d(ws) — ag - az - d(wy) - wh

=0(a1-a1-Fi+ai-ay- Eia+a1-az- Bz +ag-az - Ea)
By the above argument it not suffices to show claim (2) for pairs (w,w’)

of elements of degree 0 of Q;:[X]/k that are in a k-basis. By Remark 7.4.5.2 it
thus suffices to consider the case in which w and w’ are words in X. If w is a
word of length 0 (i.e. w = 1), then w-d(w’) —d(w’) - w+w"-d(w) —d(w)-w" = 0,
so that we can use 0 as an associated lift. Now assume that we have shown
(2) for pairs (w,w’) where the length of w is smaller or equal to n, for n > 1,
and that w is a word of length n and x an element of X. Then we claim that
(2) also holds for (z - w,w’). Indeed, let E,, . be a lift associated to the pair
(w,w'") and E, - a lift associated to the pair (z,w’) as in (2), and let E,y 4
be a lift of w' - w —w-w" and E,y 4 be a lift of w’-x —z - w’ as in (1). Then
E=2-Eyuw+Epw - w~+d(@) By w+ Eyw - d(w) is again in I and the
following calculation then shows that this F is a lift associated to to the pair
(z-w,w') as in (2).
z-w-dw)—dw) -z w+w - -dz w)—dz w)- w
=z-w-dw)—dw) -z w
+w -d(x) w+w -r-dw) —dz) w-w —z-dw) - w
=z (w-dw)—dw) w+w - dw)—dw)- w)
+z-dw) w—z-w-dw)—dw) z -w
+w -d(x) - w+w -z dw) —d(z)  w-w’
=z (w-dw) —d@w) w+w - dw)—dw) - w)
+ (z-d(w') —d(w') -z +w -d(z) —d(z) - w') - w
+d(z) w w—x-w-dw)+w -z dw) —d(z) w-w
=z (w-dw) —d@w) w+w - dw)—dw) - w)
+ (z-d(w') —dw') -z +w - d(z) —d(z) - w')  -w
+d(z)- (W w—w-w)+ (W —z-w) - d(w)
=0z Eyw + Epw - w+d(z) - Ey w+ By p - d(w))
=0(E)

/

It now remains to show (2) for pairs (z,w’) where x is an element of X
and w’ is a word in X. With a completely analogous argument as the one we
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just carried out, this time for w’ instead of w, we can even reduce to the case
of pairs (z,2’) with « and 2’ elements of X. But for such pairs

E=z-d@@')—-d@) -z+2" - d(z) —d(z) 2’

works as an associated lift.
We now turn to showing claim (3), which we do using a similar strategy
as (2). First assume that w and w’ are elements of degree 0 of Q x5 Such

that (3) holds for w with associated lift F,,, and for w’ with assomated lift
E, . Let a and @' be elements of k and let E,, . be a lift associated to the
pair (w,w’) as in (2). Then we claim that (3) also holds for a-w+a’ - w’ with
associated lift E =a-a-Ey, +d -a -Ey +a-d - E,, . That E is again
an element of I is covered by the argument at the start of the proof, and the
following calculation checks that the boundary is correct as well.

(a-w+ad - -w)-dlaw+d -w)—dla-w+a -w) (a-w+a -w)
=a-a-w-dw)+a-d -w-dw)+ad - -a-w -dw)+ad-d w-dw)

—a-a-dw)-w—a-da-dw)-w —d-a-dw) w—-a-ad -dw') w
=a-a-w-dw)—a-a-dw) - w+a-d w-dw)—ad-ad- dw) w

+a-d - w-dw)—a-d-dw) - w+a-d w- dw)—a-d-dw)- w
=0a-a-Ey+ad-d- -Ey+a-a-Eyu)

It now suffices to show (3) for words in X. Assume that we have al-
ready shown (3) for words in X of length smaller or equal to n, and that
n > 1. Let x be an element of X and w a word in X of length n. Let
Ew. be a lift for the pair (z - w,z) as in (2), E, a lift for  as in (3),
E,, a lift for w as in (3), and E,, ; a lift for the pair (w, ) as in (1). Then
E=FEups w—Ey - w-w+x-z-Ey,+2-Ey,,-dw)is again in I and the
following calculation shows that F is a lift for « - w as in (3).

z-ow-dlz -w)—dz-w) z-w
=z-w-dlz) wt+z-w-z-dw)—dz) w-r-w—z - d(w) z-w
=z -w-dlz)—d@) - z-wt+z-dlz-w)—dz-w) z) w
+d(z) z-w-w—z-dz -w) - w+dz-w) z-w
+zow-z-dw)—dz) w-zr-w—z- -dw) x w
=(x-w-dlz)—d=) -z wt+z-dz w)—dz -w) z) w
+d(z) z-w-w—z-da) w-w—2 -z -dw) w
+d(z) w-z-w+z-dw) z-w
t+zow-z-dw)—dz) w-z-w—z -dw) x w
=(z-w-dlz)—d=) -z -wt+z-dz -w)—dz -w) z) w
+d(z) z-w-w—z-dz)ww—2z -z - dw) wtz w- z- d(w)
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=@z -w-dlz)—d@) -z wt+z-dlz w)—dz -w) z) w
—(z-d(z)—d(z) -z) w-wt+z- -z (w-dw)—dw)- w)
—z-z-w-dw)+z-w- -z d(w)

=z -w-dz)—d@) - z-wt+z-dlz-w)—dz-w) z) w
—(z-d(z) —d(z) -z) w-wt+z -z (w--dw)—dw) - w)
+z-(w-x—2z- w)- dw)

=0(Egwz W—Eyg - w-w+z-2-Ey+x- Eyy-dw))

It thus only remains to show (3) for the elements 1, 21, and x5. For 1 we

obtain 1-d(1) —d(1) -1 = 0, so that we can use 0 as a lift. For « either z; or
2o we can use z - d(x) — d(z) - x as a lift. O

With the preparation of Proposition 7.5.2.4 we can now construct a mor-

phism Q2 Jk with the required properties in the following proposition.

Proposition 7.5.2.5. Let X be a totally ordered set satisfying | X| < 2, and
denote the elements of X by x1 < --- < x|x|. Let f be an element of k[X],
and denote by F: k[t] — k[X] the morphism of commutative k-algebras that
maps t to f.

Then there exists a morphism

/I:/k: Z[t]/k - Q;:[X]/k

in Alg(Mixed) such that there exists a commutative diagram

Alg(YMixed) (QZ'[t]/k) M Alg(YMixed) (6({75}))

Alg(iea) (2521, Alg(ied) (C(F))

Alg(’YMixed) (Q;:[X]/k) m Alg(’yl\/lixed) (C(X))

in Alg(Mixed) where Z¢y and Ex are as in Construction 7.4.9.1, and such
that £x o Q’I;/k maps t to f (see Definition 7.5.2.3 for a definition of {x ).
If | X| =2, then Q};/k can furthermore be chosen such that there addition-

Cl,”y exist elements 9dz1; 9d x5 5 Yboth; Jsame,x1 s Jsame,zs s and Yobs m k[X] such
that

gx( ;/k(t~dt—dt-t)) (7.23)
= 9d x; ~dxy -3 “To — X2 - T1+ Gda, cdxy -2 -T2 — 22 -1
+ Gboth - (»Tl cday —dag -2+ -dey —day '$2)

+ Gsame,z; - T1 - dT1 —dT1 - T1 + Gsame,zs - T2 - d T2 —d T - X9

+gobs 'dxl 'dl‘z
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holds in Qg[.X]/k' Q

Proof. As Q;‘[t] Ik is cofibrant as an object of the model category Alg(Mixed)
by Proposition 7.4.5.11, we can lift the composition

Alg(Tined) (Ex) " 0 Alg(Mixed) (G(F)> o Alg(ymixed) (Eqt})

to a morphism
G Yk =~ Wxy/e

that thus comes with a commutative diagram

Alg(YMixed) (Q;g.[t]/k) w Alg(YMixed) (6({t}))

Alg(ymied) (G) Alg(mie) (C(F))  (7:24)

Alg(miea) (Uxye) —im Alg(ines) (C(X) )

Mixed) (Ex )
in Alg(Mixed). It now suffices by [Hov99, 1.2.10 (ii)] and Propositions A.1.0.1
and 4.2.2.20 to show that there is a homotopy of algebras of strict mixed
complexes from G to a morphism 2 Ik that takes the required form on the
elements t and ¢t -dt —dt-¢t.

We begin by showing that G already maps t to an acceptable value. For
this we consider the commutative diagram

Alg(y) (Alg(evm) (Q;s.[t]/k)) A Alg(y) (Alg(evm) (Q;c.[X]/k> )
~ | Alg(7)(Alg(evm)(Eqsy)) Alg(7)(Alg(evam)(Ex)) |~
Alg(y) (Mle(evn) (€(11D) ) DD, A1) (Alg(evn) (€
~ | Alg(7)(Pgey) Alg(y)(®x) |~
Alg(7) (2% k)

Alg(7) (Q;[t] ; k) Alg(v) (Qz[x] /k)

in Alg(D(k)), where the top square is obtained from the transpose of diagram
(7.24) by applying the forgetful functor Alg(evy,) and using compatibility
with YMixed (see Construction 4.4.1.1), and the bottom square is the one from
Proposition 7.4.7.1. The underlying differential graded k-algebra of Q;C‘[t] Jk is

cofibrant by Propositions 7.4.5.11 and 4.2.2.12, so we can conclude by [Hov99,
1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there exists a homotopy
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of differential graded k-algebras h from &x o Zx o G to Q}/k odry 0 Ey
(we omit forgetful functors in the notation here) in the sense of Proposi-
tion 4.2.2.17. We can then carry out the following calculation, where we use
that (®yyy 0 Egyy)(t) = t by definition of Zyy, see around equation (7.16) of
Construction 7.4.9.1.

(@x 0Zx 0 G)(t) = (i 0 @y 02y ) (1) + A(R(1)) + h(O(2))
= Q% ((Pey © Eqy) (1) + 0 + 1 (0)
= Q% /(1)
=/

By the universal property of £x there exists a commutative diagram

(] E ~ é L ]
Uixye ——— C(X) —— Qx 1

of Z-graded k-algebras, and as ® x o Zx maps elements z; of X to x; by Con-
struction 7.4.9.1, it follows from Remark 7.4.5.2 that the dashed morphism
is an isomorphism in degree 0, mapping x; to ;. That (Px 0o Ex)(G(t)) = f
thus implies that {x (G(t)) = f.

If [X] < 2 we can now define Q2 , = G and are finished. So from now
on we will assume that X = { 1,22 }. Unfortunately the value of G at
t-dt—dt-tisnot automatically of the right form, so we will need to replace
G by a homotopic morphism that takes a different value at ¢t - d¢ — d - ¢, but
the same one at t.

By Proposition 7.5.2.4 (3) we can let E be an element of degree 2 in Q;;[X}/k
satisfying the following two properties.

(2) There exist elements gau,, Jdzss Gboth, Jsame,wrs A Gsame,w, i k[X]
such that

Ex(E)
=0gde, - dT1-T1 -T2 — T2 T1+ Gda, dT2-T1 - To — T2 - Ty

+ gboth - ($1 cdze —dag -1 +a2-day —day '1’2)

+gsame,11 s Ty 'dxl _dxl gl +gsame7w2 c I - de — dx? ]

holds.
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We first note that
(Gt -dt—dt-t)— FE)=G()-d(G(t)) —d(G(t))-G(t) —I(F) =0

so that G(t-dt —dt-t)— F is a cycle. As © (see the construction of Q;:[X]/k
in Construction 7.4.5.1) is surjective on homology by Proposition 7.4.5.10, we
can find a cycle z in Ay such that the homology classes represented by z and
G(t-dt —dt-t) — E map to the same homology class in sz/k under Ox.
As ©x is a quasiisomorphism by Proposition 7.4.5.11 this implies that

Gt-dt—dt-t)—E—z (%x)

must be a boundary.
We now want to apply Proposition 7.5.2.1 to obtain a morphism

/F./k: Q;c.[t]/k - Q;:[X]/k

in Alg(Mixed) with Q7 , (¢) = G(t) and Q) (t-dt—dt-t) = E+ 2 We
first note that as H.(®x o Ex) is a multiplicative isomorphism by Defini-
tion 7.4.4.2 and Proposition 7.4.9.2 it holds that H*(Q;c.[X]/k) is zero above
degree 2 and that odd degree elements square to zero. That G(t) is a cycle is
clear as G is a morphism of chain complexes and t is a cycle in Q;C‘[ 0k Finally,
(7.22) holds in this context, as this follows from (1) above combined with z
being a cycle. Thus we can apply Proposition 7.5.2.1 to obtain a morphism
A /k with the prescribed values.

We next show that Q2 /k is indeed homotopic to G. For this we use Propo-
sition 7.5.2.2, so that we have to show that

G(t) — (1) and G(t-dt—dt-t) - Qp,(t-dt —dt-t)

are boundaries. The first term is 0 by definition, and that the second is a
boundary was ensured around (#x) (we chose z specifically so that this would
hold). Thus Proposition 7.5.2.1 applies to show that there indeed exists a
homotopy of algebras in strict mixed complexes from G to Q2 Ik

It remains to show that the two values of £x o Q’I; /i Are as required. For ¢

this is clear as
&x () = Ex(G) = f

holds, as we discussed at the start of this proof. For ¢t-dt — dt -t we note
that the image of £x 0Oy is generated by the multiplicative generators x1, o,
dx1, and d zo. Thus the element z of degree 2 in Ag must map to an element
of the form gops - d 21 - d 22 with gops an element of k[x1, x2]. Then we obtain
the following by combining the definition just made with (2).

gX( ’},!/k(t-dtfdt-t))
= &x(B) +€x(2)
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=0gde, dT1T1 T2 —To - T1+ Gda, dT2- Ty - To — T - Ty

+ ghoth - (#1 - dwe —dagy -2y + 22 - day —day - x2)

+gsame,zl c I 'dxl _dxl ~ I +gsame,m2 PN dx2 _dx2 ]
+ gobs - d w1 - dwo O

7.5.2.3. Conclusion

Having constructed Q2 Jk in the preceding Section 7.5.2.2 we can now use it
to show Conjecture C in certain cases using the strategy sketched in the intro-
duction to Section 7.5.2. Note that what we show is actually slightly stronger
than Conjecture C, as we show that there is a specific top horizontal equiva-
lence in diagram (7.25) that is independent of X and f. This is what allows
us to even deduce Conjecture D from this, as we do in Proposition 7.5.3.1 in
Section 7.5.3.

Proposition 7.5.2.6. Let X be a set, let f be an element of k[ X], and denote
by F': k[t] — k[X] the morphism of commutative k-algebras that maps t to f.
Assume that one of the following holds.

(1) [X]<1.
(2) |X| =2 and 2 is invertible in k.

Then there exists a commutative square

HHMixed(k[t]) —_— Alg('VMixed) (Q;[t]/k)
HHjtixea (F) Alg(’YMixed)(Q;/k) (7.25)
HHovtixed ([ X]) = Alg(YMixed) (Q;[X]/k)

in Alg(Mixed) such that the top horizontal equivalence is the one from Corol-
lary 7.4.9.8 and the bottom horizontal morphism is an equivalence®S. In par-
ticular, Conjecture C holds for F. Q

Proof. We begin by equipping X with a total order, and will denote the
elements of X by x; < --- < x|x|. Consider the following (non-commuting)

58We do not claim that there exists a filler for such a square where also the bottom
horizontal equivalence is given by the one from Corollary 7.4.9.3.
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diagram in Alg(Mixed), that will be explained below.

HHxtixea (F)

HHMixed(k[t]) HHMiXEd(k[X])

Alg(WMixed) (6({t})) Al (OL0) Alg(Wixed) (6(X))
Alg(vmied) (Eey ) | ~ | Alg(YMixed) (Ex )
Algnnea) (V) ) Aty ) (U,

Alg(minea) (O ) | 21
Alg(i) (%MJ Alg(rmieed) (2% /1) Alg(wixed;(ﬂ;[x]/k)

(%)
The top square has a filler given by the (transpose of) commutative diagram
(7.10) from the definition of G(F) in Construction 7.4.2.5, Zy4y, Ex, and
Oy are as in Construction 7.4.9.1 and Definition 7.4.5.9, and Q};/k is as in
Proposition 7.5.2.5 so that the middle square has a filler as well.

By Corollary 7.4.9.3 the vertical composition on the left is the top horizon-
tal equivalence in diagram (7.25) from the statement. As the top and middle
square have fillers it thus suffices to construct a quasiisomorphism of algebras
in strict mixed complexes

A i = Rix)

such that the diagram

Qe Oy 0°

ke = Lk

S % (%)
Doy 5 Bpam

in Alg(Mixed) commutes strictly.

Suppose for the moment that we have defined a A. Using notation from
Construction 7.4.5.1, it follows from Remark 7.4.5.2 that for checking strict
commutativity of (xx) it suffices to check that the diagram commutes on the
element ¢ as well as elements of the form y for y an element of one of the
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sets Y,, for m > 0 used in the definition of Q;ﬂ'[t] Ik But elements of Y;,, have
degree m so that y is of degree m + 1. As we assume |X| < 2, we have that
Q;[X] Jk is concentrated in degrees at most 2, so diagram () will commute
on elements y for y an element of Y, for m > 2 automatically, and if even
|X| < 1 then it will commute automatically on such elements for m > 1. As
Yp is empty by Definition 7.4.5.9 and Proposition 7.4.5.6 and Y7 has only one
element t-dt—dt-t by Definition 7.4.5.9 and Proposition 7.4.5.7, this means
that it suffices to check that the following two equations hold if | X| = 2, and
only that the first one holds if | X| < 1.

)‘< /F./k(t)) = Q% (O (1))
A( /};/k(M)) = 0% (O (t-dt — dt - 1))

We can evaluate the right hand sides. By definition O} maps ¢ to ¢ and
t-dt —dt-tto0. Thus we need to define X such that it is a quasiisomorphism
and show that both of the following equations hold if |X| = 2, and that the
first one holds if | X| < 1.

A u®) = 1 )
/\< ’;/k(t-dt—dt-t)) =0

We can now already show the statement under the assumption that | X| < 1.
In that case, we let A\ be the quasiisomorphism of algebras in strict mixed
complexes ©x from Definition 7.4.5.9. We only need to verify that the first
equation of (x*x) holds for this choice of \. As the underlying Z-graded
k-algebra of QZ[ X1/k is commutative, the underlying morphism of A factors
as in the following diagram of Z-graded k-algebras.

[ ] A °
D/ i/
§x -
Q)

As X and £x map the elements z; of X to x; (considered as elements of the
respective Z-graded k-algebras), the same holds for \”, so that in particular

N'(f) = f. By Proposition 7.5.2.5 we know that {x (Q’I;/k(t)) = f, so it
follows that

A0 (0) = ¥ (ex (2 0)) = (1) = 1

holds.
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We now consider the case |X| = 2, and thus assume that 2 is invertible
in k. In this case setting A to ©x will unfortunately not work in general.
We will in the following use notation from the construction of Q;:[X] Jk in
Construction 7.4.5.1, as well as the concrete choices for Yy, Y7 and Y5 in Def-
inition 7.4.5.9. We will define A\ using the universal property of the definition
of Q;;[ X]/k 88 A colimit by constructing a compatible system of morphisms
A A, — Q;[X]/k in Alg(Mixed) for every n > 0.

We will begin by defining A¢ using the universal property of Freeg(Mixed)

by prescribing Ag(z;) = x;. We first note that the argument that we used
above in the case | X| < 1 to show that the first equation of (x * *) holds did
not use that A = O x, but only that A maps z; to x;, and hence this argument
is still applicable. Thus it only remains to show that Ag can be extended to
a morphism A: 8 v, ) — QF v, in Alg(Mixed) that is a quasiisomorphism
and that is such that the second equation of (* * ) holds.

We claim that any extension of A\g to A is automatically a quasiisomorphism.
For this we note that the Z-graded subset

{ [.13(111 '.23(212 -d(xl)bl . d($2)b2] ’ ai, as Z 0, bl,bg (S {0, 1} }

of H.(x/,) forms a k-basis of H.(Qx/,), as Hi(Ox) is an isomor-
phism and maps this set to the set with the same description (see Construc-
tion 7.4.5.1 and Proposition 7.4.5.11). As this subset is also mapped by H, ()
to the same subset of H, (Q;[ X /k) it follows that A is a quasiisomorphism as
well.

It thus suffices to show that there is some extension of Ag to A such that the
second equation of (x * ) holds. We will now inductively assume that \,, has
already been defined for n > 0 and then extend A, to A,41. By construction
such an extension amounts to defining a value for A\, ;+1(y) for every element
y of Y,,, and showing that B

8()‘n+1 (Q)) =\ (y)

holds in Q;[X]/k. As Q;[X]/k has zero boundary operator the left hand side is
always zero and in particular does not depend on what we chose for A,41(y).
So for an extension to A,41 to exist A, must map all elements of Y, to zero,
and then we are free to prescribe any value for A, 11(y) for elements y of Y;,.
Note that A, (y) lies in €y /1., s0 as we assumed | X| = 2 this is automatically
zero if n > 3, and hence we can already conclude that an extension of A3 to
A exists.

To extend A\g to A\; we need to check that
)\()(xl cXog — X 1’1) =0

which is clear as Q;[ XI/k is commutative, and can then set the following value.

/\1(x1 - Ty — Ty - ml) = @X(Ex(xl - Ty — X9 xl))
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Next, to extend A1 to Ay we need to check

Al(atl-dxl—dxl-xl) 0
Ar( )=0
/\1(132 'dl’l 7dl’1 'Iz) =0

( )=0

/\1 xg'dxg—dl‘g'.ﬁg

(El'dl'g—dl'g'(ﬂl

all of which are clear as Q;[ X1/k is commutative, and can then prescribe the
following values.

)\2(1‘1 'dIl 7d£l?1 '1’1) = (I)X(Ex<$1 'd(l)l 7d$1 1’1))

)\2(1’1 'd(EQ —dSUQ '1’1) =

1
5(@){(5){(%1 ~dag —dzo $1)> +<I)X(Ex(l‘2 -dx; —da 332)))
1
— 5d(¢x(£x(l‘1 +Tog — To Il)))
)\2(.1'2 'dl‘l — da?l '.’172) =
1

5(@x(5x($1 ‘diCQ —d(EQ 1'1)) +<I)X(Ex(l'2 ~d:c1 — d.’El QCQ)))

+%d(¢>x(5x(w)))

)\Q(ZEQ 'diL’Q —d.TQ '1‘2) = @X(Ex(xg 'dl’g —ddfg 1‘2))

Finally, we need to extend \s to A3. For this we need to check the following.

Ag(dxl ~dx1> =0

Ao d -dxg) -0

A2

Az(dxl'13271‘2'1‘1+l’1'dIQ*deQ‘Il7I2'd$17d$1'$2):O
(d$2~$1'l‘g—l‘g'xl—f—.rl'J)Q—IQ'.%‘l-d.Z‘Q

—1'1'.’EQ‘d(EQ—d(EQ'CEQ-‘rl’Q'd.’EQ—de'ZEQ'iﬂl

+l‘2'$1'dd72—d$2'5€1—CCl'dLEQ—d.TQ'l‘l'LEQ):0

)\2(d$1'$1'.1‘2—.%‘2'.Z'1+J}1'$2—l‘2'$1-d$1

fxl-x2~dx17dm1~x2+x2~dx17dx1ox2~x1

+x2-x1-da:1—da:1-xl—xl-dml—dx1~x1-x2)=0

The first two equations are satisfied as odd degree elements in Q;[ X]/k Square
to zero and the last two as Q;[X] Jk is commutative. It remains to show that

middle equation, which is shown by the following calculation. The values for
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7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

Ao(zy -dag —dzg - x1) and Aa(ze - dxy — day - x2) were chosen precisely so
as to make this work out, and this is why we needed that 2 is invertible in k.

)\Q(dl‘l s Lo — T2 T1+ X1 -dl‘g—dLL’Q'Q?l —,Tg-d.rl —dl‘l -LL’2>
= d(q)x(Ex(CL‘l s Lo — T 331)))

1
+ 5(@){(5){(%1 'dl’g —dxg xl)) +¢)X(Ex(.’ﬂ2 'd,fL'l —dl’l (Ez)))

1
— §d(<bx(Ex($1 s Ty — X9 (El)))
1
— 7(@){(5){(1‘1 -dCL'Q —d.’EQ $1)) +(1)X(EX($2 'd!L‘l —dl‘l LCQ)))
2
1
— 5d(@x(5x($1 Ty — X9 1‘1)))

=0

Thus we can extend Ay to A3 by mapping y to 0 for y an element of Y5.

As already mentioned A3 can be further be extended to . It now only
remains to show that the second equation of (x*x) holds. Again as the
underlying Z-graded k-algebra of Q;[X] Jk is commutative, the underlying
morphism of A factors as in the following diagram of Z-graded k-algebras.

[ ] )\ [ ]
Q;c[X]/k Qk[X]/k

Ex s

Yt

as we already had above. Similarly we can factor ®x o Zx as follows.

° P x 0= °
Q;C[X]/}C —= Qk[X]/k
1
Ex ////
Qg[.X]/k

We now begin with the following calculation, where we let gq z,, 9d 25, Gboth,
Jsame.zy > Ysame,zs, ANA gobs be elements in k[X] as in Proposition 7.5.2.5 so
that (7.23) holds. Note that as A maps z; to x; and hence also dx; to dz;,
the same is true for \”.

A( ;/k(t-dt—dﬁt))

= )\”<§X< ;;/k(t-dt—dt-t)))
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"
=A (gdzl'dI1'$1'$2*$2'$1+9d12'd$2'$1'552*%2'%1

+ gboth - (331 cdze —dxg -1+ 29 -dag —da -x2)

+gsame,:1:1 c Iy dxl _ dml c T +gsame,a:2 ) 'd$2 _dx2 * T2

+gobs 'dxl de)
=gda, ~dxy- )\($1 “ T2 —352'301)
+ Gday - dao - A1 - 22 — 29 - 21)

+ ghoth - A(@1 - day —dxg - 1)

+ Gboth - AM(w2 - d oy —daxg - 29)

+ Gsame,z; A(xl ~dzy —day - xl)

+ Jsame,zo * )\(152 : d$2 — de N ZL'Q)
+ gobs - dx1 - dwy

= gda, -da1 - Px (Ex (z1- 20 — 29 - 21))

+ Gday - dwg - Ox (Ex (z1- 22 — 29 - 21))
1

+ gboth 5(‘I>X (Ex(z1-dag —dzy - 21)))
1
+ Gboth - §(+(I)X (Ex(zz-dzy —day - 29)))

1
~ Yootn " 5 d(Px (Ex (z1- 20 — 25 - 31)))

1

+ both - i(q)x (Ex (21 -das —dag-21)))
1

+ gboth - §(¢X(EX($2 ~dzy —day - z,)))

1
+ Gootn - 5 d(Px (Ex (z1- 22 — 29 - 1))

)
+ gsame,z; ° dx (EX (371 -dxy —dxy - Il))
+ Jsame,zo * éX (EX (1'2 . de _ de . x2))

+ Gobs - dxy - dxa

= gda, -da1 - Px (Ex (z1- 20 — 29 - 21))
+ Gday - dwg - Ox (Ex (v 2 — 29 - 21))
+ gboth * (Px (Ex (z1 - dag — d g - 21)))
+ gboth * (+Px (Ex (22 - dzy — day - 22)))
+ Gsame,ey - Px (Ex (21 -dzy —day - 21))
+ same,z; * ‘I’X( X )
+ gobs - dxy - d g

—
—
—_
=
]

(Z‘Q'd$2—dl‘2'£2 )
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7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

Now we use that P o Ex = D% o {x.

= gdz, -day '(I)/I(EX(wl'xZ_xQ'xl))
+ Gd o, - dxg - O (Ex (21 - w2 — 20 - 21))
+ gootn  (Px (Ex (71 - dwy —d - 21)))
+ gooth  (+@% (Ex (22 - dag —day - z3)))
1)
)

+ Gsame,z; q)l)/( (§X (Z'l -dxy —dz -2 )
+ Jsame,zo * (I)/),( (SX (172 : d.sz dx2 T2 )
+ gobs - d w1 - d o

We now use that @’ is multiplicative and maps z; to x; and dx; to dz;.
The latter two properties follow from ® x o Zx mapping x; to x; by construc-
tion of Zx (see Construction 7.4.9.1), and then also mapping d z; to dx; by
Proposition 7.4.8.1. Furthermore we can evaluate £x.

= O (gaw, -y -z wy = wp 1) + PR (ga, - Ay 1y wy — - 1y)
+(I)/>/<(9b0th (z1-dag—day -2 + 2 -day —day 362))
+ % (gsame,acl cx1-dry —day -xl)
+ % (gsame,xz g -dag —dwy - x9)
+ % (gobs - d 1 - d o)

1
Zq’x<9dz1'd$1'$1'5€2—$2'$1+9d12'd$2'$1'x2—$2'$1

+ Gboth - (Il cdag —dao @1+ 22 -dey —day 'Iz)

+ Gsame,z, - T1 - d®1 —dT1 - 1 + Geame,z, - T2 - d X2 —d o - X9

+gobs'd$1'd$2)
:cD;’((gX( };/k(todt—dt-t)))
= (Ex (Ut -dt —dt 1))

It thus only remains to show that

(I)X(EX( ’;/k(t-dt—dt-t))) =0
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holds. Note that we have a commutative diagram
. Alg(v) (21 .
Alg(v) (Alg(evm) (Qk[t]/k)> — Alg(v) (Alg(evm) (Q;C[X]/k))

~ | Alg()(Alglevm)(E¢sy)) Alg(y)(Alg(evm)(Ex)) | =

Alg(y)(C(F))

Alg(y) (Alg(evn) (C({1) ) ) Alg() (Alg(evm) (C()) )

~ Alg(’y)(q){t}) Alg("f)(q:'x) =

Alg() (2% /x)

Alg(7) (Q;[t] /k) Alg(v) (QE[X] /k>

in Alg(D(k)), where the top square is obtained from the transpose of the
diagram from Proposition 7.5.2.5 by applying the forgetful functor Alg(evy,)
and using compatibility with ymixed (see Construction 4.4.1.1), and the bot-
tom square is from Proposition 7.4.7.1. The underlying differential graded k-

algebra of ) Ktk 18 cofibrant by Propositions 7.4.5.11 and 4.2.2.12, so we can
conclude by [Hov99, 1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there
exists a homotopy of differential graded k-algebras h from ®x o Zx o Q2 Ik
to Q) 0 Py 0 Egy (we omit forgetful functors in the notation here) in
the sense of Proposition 4.2.2.17. We can thus conclude the proof with the
following calculation.

@X(EX<Q’1;/k(t~dtfdt~t)))

= Q% (P (Bqy (t-dt —dt-1)))
+h(A(t-dt —dt-t)) + d(h(t-dt —dt-t))
t-dt —dt-tis an element of degree 2, while Qi[t]/k = 0. Thus purely for de-

gree reasons we have @) (Eqy(t-dt —dt-t)) = 0 so that the first summand
is zero.

=0+4h(t-dt—dt-t)+0
= h(t) - (Q; ooy o E{t}) ) + (@X 0Zx o8 /k)(t) - h(dt)
— h(dt) - (QF/koq){t} ou{t}) (@ o Ex oQF/k)(dt) h(t)
= h(t) - (Q;w 0By, oa{t})( t) — h(t) (@X 0 Ex oQF/k>(dt)
+h(dt) - (<I>X 0y o Q;:/k) (t) - —h(dt) - (Q;% 0By o E{t}) (t)
= h(t) - ((Q;/k 0 ®yy 0 a{t}) (dt) — (@X 0Ex o Q’F‘/k>(dt))

+h(at) - ((Dx 0Zx 00, ) (1) = (240 ®py 0Zqy ) (1))
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= h(t) - (=0(h(d1)) — h((d1)))
+ h(d?) - (9(h(1)) + h(D(t)))
= h(t) - (—0—h(0)) + h(dt) - (04 h(0))
=0 O

7.5.3. Conjecture D

In this short section we deduce Conjecture D in certain cases from Propo-
sition 7.5.2.6.

Proposition 7.5.3.1. Let X be a set and f an element of k[X]. Assume
that one of the following holds.

(1) |X]<1.
(2) |X| =2 and 2 is invertible in k.
Then Conjecture D holds for f. Q@

Proof. Apply Proposition 7.5.2.6 for f as well as for the element 0 of k (as
the polynomial ring generated by an empty set of variables) and combine
the commutative squares. Note that it is crucial here that Proposition 7.5.2.6
constructs the commutative square (7.25) with the top horizontal equivalence
not depending on X or f, which is what allows us to glue the two squares
together. O

7.5.4. Conjecture C for two variables in the domain

In this section we show Conjecture C for morphisms out of polynomial k-
algebras in two variables into k using some of the same arguments that also
went into Proposition 7.5.2.6.

Proposition 7.5.4.1. Let X be a totally ordered set satisfying |X| < 2 and
F: k[X] — k a morphism of commutative k-algebras.
Then there exists a commutative square

HHnea((X]) —=—— Algunee) (%)
HHtixed (F) Alg(Tiea) (/1) (7.26)

HHotixed (k) ———=—— Alg(YMixed) (Q;/k)

in Alg(Mixed) such that the horizontal equivalences are the ones from Corol-
lary 7.4.9.8. In particular, Conjecture C holds for F. Y
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Proof. The cases |X| = 0 and |X| = 1 are already contained in Proposi-
tion 7.5.1.1 and Proposition 7.5.2.6, respectively. For the case |X| = 1 this
requires a small argument for why the lower horizontal equivalence we obtain
from Proposition 7.5.2.6 is homotopic to the one from Corollary 7.4.9.3, but
as HHyyixea (k) is an initial object of Alg(Mixed) (see the proof of Proposi-
tion 7.5.1.1) this is automatic.

So now assume that |X| = 2 and denote the elements of X by x1 < x5. As
in Proposition 7.5.2.6, we begin by considering the following (non-commuting)
diagram in Alg(Mixed), that will be explained below.

HH o ixed (F)

HHovtixea (K[X]) HHotixea (k)
Alg(ominen) (€)) — ) ) (CO))
Alg(Mived) (Ex) | = ~| Alg(ymied) (Z0) (%)
Alg(ined) (D) === » Alg(iea) ()
Alg(Mixea) (Ox) | = =~ | Alg(ixed) (©p)

Alg(irea) (% /1)

Alg(YMixed) (Q;[X]/k) Alg(YMixed) (QZ/k)

The top square has a filler given by the (transpose of) commutative diagram
(7.10) from the definition of (~J(F) in Construction 7.4.2.5, and = and O are
as in Construction 7.4.9.1 and Definition 7.4.5.9. By Corollary 7.4.9.3 the
vertical compositions are the horizontal equivalences in diagram (7.26) from
the statement, so that it suffices to find a filler for the lower rectangle in the
above diagram.

As Q;:[X]/k is cofibrant as an object of Alg(Mixed) by Proposition 7.4.5.11,
we can lift the composition

AAlg('}/Mixed)(E(Z))_1 o Alg(’YMixed) (6(F)> o Alg(’YMixed)(EX)
to a morphism
/F./k: Q;:[X]/k - Q;c./k

so that if we let the dashed morphism in the above diagram be the morphism
Alg(YMixed) (2 /k) there will be a filler for the middle square of diagram ().
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It thus suffices to show that

/e Q/1‘:/’< /e
Qk[X]/k ’ Qk/k
Ox @@

— " U

R o,

commutes strictly. Note that as 2}, /i 18 concentrated in degree 0, it suffices

to check that the two compositions agree on elements of degree 0, and as

both compositions are multiplicative it even suffices to check the values on

elements  in X. The composition over the bottom left maps x to F(x), so

this boils down to showing that Q;ﬁ'[X]/k(x) = F(z) for every element z in X.
For this we consider the commutative diagram

Alg(V)(QL,.[X]/k)
—

Alg(7) (Alg(evm) (%'[ x] /k)) Alg(7) (Alg(evm) (Q;c./k))

~| Alg(v)(Alg(evm)(Ex)) Alg(y)(Alg(evm)(Ep)) |~

A1) (A(eva) (€6 ) ) — ), A1) (Algevan) (E0))

~ | Alg(y)(®x) Alg(y)(®g) |~

Alg(1) (2% /)

Alg() (2 1) Atg() (21,)
in Alg(D(k)), where the top square is obtained from the middle square of dia-
gram (x) by applying the forgetful functor Alg(evy,) and using compatibility
with Ymixed (see Construction 4.4.1.1), and the bottom square is (the transpose
of) the one from Proposition 7.4.7.1. The underlying differential graded k-
algebra of Q;C‘[t]/k is cofibrant by Propositions 7.4.5.11 and 4.2.2.12, so we can
conclude by [Hov99, 1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there
exists a homotopy of differential graded k-algebras h from ®y o Eg o Q;C'[ X]/k
to Q% /K © ®x o Ex (we omit forgetful functors in the notation here) in the
sense of Proposition 4.2.2.17.

We can then carry out the following calculation for x an element of X,
where we use that ®x o Zx by definition in Construction 7.4.9.1 maps x to
x.

(@0 0 Z0) (Vi (®)) = D (@ 0 Zx) (@) + h(D(a)) + D(h(a)
= Q% (z) + h(0) +0
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= F(x)

Note that Q;;/k is by Remark 7.4.5.2 given by k - {1} in degree 0, so that
also using the analogous identification for degree 0 of Q} /K We obtain that
®y o Ep is given by the identity in degree 0. Hence we can conclude that
Q;c'[X]/k(m) = F(z) holds for every element x in X. O
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Chapter 8.

Hochschild homology of certain
quotients of commutative
algebras

The goal of this chapter can be roughly summarized as giving a concrete
formula for a strict model for HHygixed (R/ (21, - . ., Z5)) as an object of Mixed,
where R is a commutative k-algebra and x1,...,x, elements of R satisfying
some conditions, given a strict model for HHyyixed (R)-

More specifically, we require Conjecture C to hold for the morphism of
k-algebras k[ti,...,t,] — k mapping t; to 0'. Furthermore we need as input
an object M in RMOdQZ[tl,...,tn]/k (Mixedcof) that represents HHaixeda (R) as an

object in the co-category RModum .. (kft1,....t,]) (Mixed), where the action
is induced by the action of k[t1,...,t,] on R, where t; acts by multiplication
by x;. Assuming Conjecture C as above and given such an object M, Propo-
sition 8.3.0.1 can be roughly summarized as saying that (under some further
conditions on R and x1,...,x,), HHytixea (R/ (21, ..., x,)) is represented by
a strict mixed complex that can be described as

M®A(s1,...,8,) @(dsy,...,dsy)

with s; of degree 1, d s; of degree 2, and 9 and d described by formulas given
in Proposition 8.3.0.1. In particular, if m is a cycle in My representing the
unit 1 of R, then d(m® s;) = (m-t;) ® 1 and 8(m®ds£1]) =—(m-dt;)®1,
so we can think of s; and d sgl]
Zero.

To obtain such a formula, we proceed as follows. In Section 8.1 we start
by showing that — under some assumptions — we can write the quotient
R/(x1,...,7,) as a derived tensor product R ®pyp,, ..+ k, with t; acting
by multiplication with x; on the left and by multiplication with 0 on the
right. Using that HHyixeq 1S compatible with relative tensor products we
then obtain an equivalence

as adding the relations that make x; and d x;

HHavtixed (R/ (21, -+, 70)) =~ HHvtixed () @HH e k[t stn]) HHNixed (K)

IThis is the case for n < 2 by Proposition 7.5.4.1.
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Chapter 8. Hochschild homology of certain quotients of commutative algebras

so that the task becomes to find strict models for HHygixea (K[t1, - - -, tn]) (as
an algebra in Mixed) as well as for HHygixea (R) and HHygixed (k) (the latter
two as modules over the strict model for HHygixed (K[t1,- - -, tn])), and then
calculating the derived relative tensor product. Assuming Conjecture B for
{t1,...,tn} we can use the algebra in strict mixed complexes Q;[th___7tn}/k asa
strict model for HHygixea (K[t1, - - -, tn]), and assuming that even Conjecture C
holds for the morphism of commutative k-algebras k[ti,...,t,] — k that
maps t; to 0 we can also use Q;/k as a module over Q;[tl,..‘,tn}/k as a model
for HHyyixed (k). In order to be able to calculate the derived tensor product
as an ordinary, underived tensor product, it will then be useful to replace
954 Ik with a weakly equivalent module over Q;[th. Jk that is sufficiently
cofibrant. Constructing such a module will be the goal of Section 8.2, and we
will put everything together in Section 8.3.

—ln

8.1. Hochschild homology of certain quotients
as relative tensor products

In Section 8.1.1 we will show that if R is a commutative k-algebra and
Z1,...,%, are elements of R satisfying some conditions?, then the object
Y(R/(x1,...,2y)) in CAlg(D(k)) is equivalent to a relative tensor product
Y(R) @+y(k[ty.,....t,)) k- Using compatibility of HHatixea With relative tensor
products, we can thus write HHyixeda (Y(R/ (21, . .., 2,))) as a relative tensor
product as well, as we will make explicit in Section 8.1.2.

8.1.1. Certain quotients as relative tensor products

Proposition 8.1.1.1. Let R be a commutative algebra in Ch(k) and let

Z1,..., T, be elements of Ryg. We obtain a morphism of commutative algebras
in Ch(k)

k’[tl,...,tn]%R, t; — x;
that determines a k[t1, ..., t,]-module structure on the commutative differen-

tial graded algebra R (see Construction E.8.0.4). Assume that R is cofibrant
as an object of RModyy, . ...+,.1(Ch(k)) with respect to the model structure of
Theorem 4.2.2.1.

Consider the commutative diagram

t; i
Elty, ... tn)] -t R
HJ [ (8.1)
k— 5 Rf(a1,...,20)
2Roughly, z1,...,x, need to act sufficiently nicely on R by multiplication.
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8.1. Hochschild homology of certain quotients as relative tensor products
in CAlg(Ch(k)), where the right vertical morphism is the canonical quotient
morphism. Then the following hold.

(1) Diagram (8.1) is a pushout diagram in CAlg(Ch(k)).

(2) All four objects in diagram (8.1) have cofibrant underlying chain com-
plex.

(8) The functor
CAlg(y): CAlg(Ch(k)*") — CAlg(D(k))
maps diagram (8.1) to a pushout diagram in CAlg(D(k)).
(4) There is an equivalence

CAlg(7)(R/(z1,...,2,)) = CAlg(y)(R) @calg(y)(k[tr,...tn]) *

in CAlg(D(k)), where the module structures that are used for the relative

tensor product arise from the two morphisms klt1,...,t,] — R and
Elti,...,tn] = k in (8.1) by applying CAlg(y), Construction E.8.0.4,
and identifying CAlg(y)(k) with k. v

Proof. Proof of claim (1): This is well-known and can be shown by repeatedly
applying the n = 1 case®, which can be shown using Proposition E.8.0.5%.

3For this one decomposes the (transposed) square (8.1) as

0 =1
tir>

t; i>1
k[tl»"wtn} — k[t27atn]

o] e ]

R— > R/(xz1) — -+ —— R/(z1,...,zn)

so that it suffices to show that for each 1 < 7 < n the square

k[t]‘,. .. ,tn] —_— k[tj+1,. ..,tn]

! !

R/(z1,...,zj—1) — R/(21,..., %)

is a pushout square. The transpose of this square is the right square in the following
commutative diagram.

k[t]} I k[tj,...,tn} E— R/(Il,...7x]’,1)
k —— k[tj+1v~~~7tn] —_— R/(Il,...,mj)

It thus suffices to show that the outer rectangle and the left square are pushouts, but as
kltj,...,tn]/(t;) 2 kltjt1,...,tn] and (R/(z1,...,2j-1))/(z;) = R/(x1,...,x;), this
follows from the n =1 case.

4Using Proposition E.8.0.5, it suffices to show that the morphism

R—R Ok[ty] k
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Chapter 8. Hochschild homology of certain quotients of commutative algebras

Proof of claim (2): k[t1,...,t,] and k are free as k-modules and hence cofi-
brant as chain complexes [Hov99, 2.3.6]. We assumed that R is cofibrant as
an object of RMody, ... +,1(Ch(k)), and as the underlying chain complex of
klt1,...,t,] is cofibrant as just mentioned, Theorem 4.2.2.1 (8) implies that
the underlying chain complex of R is cofibrant as well. By (1) and Propo-
sition E.8.0.5 the underlying chain complex of R/(x1,...,x,) is isomorphic
to the relative tensor product R ®y[, .. .1 k, which is cofibrant as a chain
complex by Proposition 6.3.3.3.

Proof of claim (3) and (4): Combining (1) and (2) with Proposition E.8.0.5
(applied to both Ch(k)f as well as D(k)) we only need to show that CAlg(y)
preserves the relative tensor product R®y, ...+, k. As the forgetful functors
CAlg(Ch(k)°f) — Ch(k)°f and CAlg(D(k)) — D(k) are conservative and
preserve relative tensor products by Proposition E.8.0.1 and [HA, 3.2.3.1
(4)], it suffices to show that ~: Ch(k)f — D(k) preserves this relative tensor
product, which follows from Proposition 6.3.3.3°. O

,,,,,

8.1.2. Application to Hochschild homology

Combining Proposition 8.1.1.1 with HHygixeq preserving relative tensor
products by Proposition 6.2.3.1 we obtain the following result.

Proposition 8.1.2.1. Let R and z1,...,z, be as in Proposition 8.1.1.1.
Then we can consider R as an object in RModk[thm,tn](Ch(k)COf), with t;
acting by multiplication with x;, and k as an object in LMody, ... +.] (Ch(k)eof),
with t; acting by multiplication with 0.

As HHytixea 48 a monoidal functor, HHygixea(R) obtains the structure of
an object in RMody, .. (k[t1,....t.]) (Mixed) and similarly HHytixea (k) obtains
the structure of an object in LModym ., (k[t1,....t,]) (Mixed).

Let P, be an object of Alg(Mixed o) coming with an equivalence

Alg('YMixed)(Pn) ~ HHMixed (k}[tl, . ,tn]) (82)

exhibits R®y[,1k as the quotient R/(z1). As the forgetful functor CAlg(Ch(k)) — Ch(k)
is conservative and preserves relative tensor products (see Proposition E.8.0.1), we can
take the relative tensor product in Ch(k).

There is a short exact sequence

0 K[t1] 225 k] 125 & 0

of left-k[t1]-modules in Ch(k), so as R ®p¢,] — is right exact [Wei94, 2.6.2], we obtain
an exact sequence

R ®pty) klt1] —— R ®ppe,) klt1] — R @,  k —— 0
that can be identified with
R-5 R —— R@gy kb — 0

which shows the claim.
5Tt is here were we really use the assumption that R is cofibrant as a k[t1, . . ., t,]-module.

934



8.1. Hochschild homology of certain quotients as relative tensor products

in Alg(Mixed). Let furthermore M be a right-P,-module and A,, a left-P,-
module in Mixed.or such that there are equivalences

RMOd(’YMixed)(M) ~ HHMixed(R) (83)

and
LMOd(’YMixEd)(An) ~ HHMixed(k) (84)

in RMod(Mixed) and LMod(Mixed) such that the underlying equivalences of
algebras are given by equivalence (8.2). Assume that A, is cofibrant as an
object in®. LModp, (Ch(k)).

Then the underlying chain complex of the relative tensor product M ®@p, A,
(taken in Mixed) is cofibrant. Furthermore, there is an equivalence

HHMixcd(R/(xla e wrn)) =~ YMixed (M ®Pn An)
in Mixed. V)

Proof. By Proposition E.8.0.1 the forgetful functor evy,: Mixed — Ch(k) pre-
serves relative tensor products, so cofibrancy of the underlying chain complex
of M ®p, A, follows from Proposition 6.3.3.3.

By Proposition 8.1.1.1 (4) there is an equivalence

CAlg(y)(R/(w1,...,75)) = CAlg(7)(R) @cAlgy) (kltr,....tn]) ¥

in CAlg(D(k)). As HHyqixea preserves relative tensor products by Proposi-
tion 6.2.3.1 we obtain an equivalence

HHavtixed (R/ (71, -+, 70)) = HHtixed (R) @HH e (K[t oo t]) HHixed (K)

in Mixed, and the equivalences (8.2), (8.3), and (8.4) induce an equivalence
in Mixed as follows.

HHavtixed () @HH pcsen (k1,0 tn]) HHMixed (B) 2 YMixed (M) @1ppq (Pr) Mixed (Ar)
There is a comparison morphism
WWixed (M) @10 (Pn) Mixed (An) = Yixed (M @p, Ay)

in Mixed just like in Remark 6.3.3.2, and it suffices to show that this is
an equivalence. As the forgetful functors evy: Mixed — D(k) as well as
evy : Mixed — Ch(k) are conservative and preserve relative tensor products
by Proposition E.8.0.1, it suffices to show that the comparison morphism

V(M) @+ p,) V(An) = Y(M @p, Ay)

in D(k) from Remark 6.3.3.2 is an equivalence. But this is precisely what
we obtain from Proposition 6.3.3.3, as A,, was assumed to be cofibrant as a
left- P,,-module. O

6We are using here that the forgetful functor evy, : Mixed — Ch(k) is monoidal.
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8.2. A sufficiently cofibrant strict model of &

Proposition 7.5.4.1 implies that the morphism

Q;[tl,...,tn]/k - Q;/k

in Alg(Mixedcof) that is induced by the morphism of commutative algebras
klt1,...,t,] — k that sends ¢; to 0, represents the morphism

HHtixed (K[t1, - - -, tn]) = HHvtixed (K)

in Alg(Mixed) induced by the same morphism, as long as n < 2. For n > 2
we have encapsulated this statement as Conjecture C for this morphism, and
we will assume that Conjecture C holds for the results of this chapter.

Unfortunately, we can not directly use Q5 ,, as the left-module P, over
A, = Q;[tl,...,tn]/k as in Proposition 8.1.2.1, as this would require Q;/k to
be cofibrant as a module over Q;[th
necessarily the case.

The goal of this section is thus to construct a commutative diagram

/

Q;[th...,tn]/k

T

Q0w

]/ D chain complexes, which is not

An

in Alg(Mixedcor) such that the lower morphism is the one discussed above,

the vertical morphism on the right is a quasiisomorphism, and such that A,

is cofibrant when considered as an object in LModge (Ch(k)). We will
JRRERS] n

construct A, and morphisms as in the diagram above in Section 8.2.1, show
that Ay has the required cofibrancy property in Section 8.2.2, and show that
the right vertical morphism is a quasiisomorphism in Section 8.2.3.

8.2.1. Construction of the strict model

Before we construct A,, we need a small result on the Leibniz rule and
compositions.

Proposition 8.2.1.1. Let R be a commutative differential graded algebra,
and let f and g be two operators of odd degree on R that both satisfy the
Leibniz rule. Then fof as well as fg+gf satisfy the Leibniz rule as well”.

Proof. Let x and y be two elements in R. Then we can calculate as follows.

Fg(@-y) = f(g(@y + (1) ag(y))

"Note that f o f and fg + gf will be of even degree, so there will be no sign.

536



8.2. A sufficiently cofibrant strict model of k

Flg@)y + (~1)%5 @+ () (y) + (~1)%5 ) f(2)g(y)
(1)t o ) g (g )

Fo@)y + 21 (9(0))

— (~1)te5g(2) () + (-1 f2)g(y)

Applying this to g = f we immediately obtain the claim for fo f. For fg+gf
there is the following calculation.
(fg+9f)(@-y) = flg9(x))y +zf(9(y))

— (—1)%Ea@g(z) f(y) + (—1)"E ) f(z)g(y)
+9(f(2)y +xg(f(y))
— (=1)%5 @) f(2)g(y) + (—1)%E g () f(y)
=(fg+9f)(@)y+z(fg+9f)(y) O

Construction 8.2.1.2. We define P; and A; to be the strict commutative
graded k-modules given by®
Py = Ek[t] @ A(dt) and A =kt @ A(dt) @ A(s) @ T'(d s)
degey(t) =0, degg(dt) =1, deggy(s) =1, deggy(ds™) =2m

and let g1: P — A; be the inclusion. Note that there is a commutative
triangle of commutative graded k-modules

where ¢g; and p; map ¢, d¢, s, and d sl to 0.
We will now upgrade diagram (8.5) to a commutative diagram in the cat-
egory CAlg(Mixed). For this we define 0 and d on P; and A; by

at)y=0, odt)=0, I(s)=t, a(ds[ml):_dtds[m—u
d(t) =dt, d(dt)=0,  d(s)=dsl, d(ds[m])zo

and extending by k-linearity and the Leibniz rule. It is clear that if this
equips A; with the structure of a commutative algebra in strict mixed com-
plexes, then this structure restricts to P; and makes g; into a morphism in
CAlg(Mixed). What we need to show is that this definition of d(d sl™) and

8For now d t and d s are just names, but we will in a moment define a strict mixed complex
structure that will justify this notation.
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Chapter 8. Hochschild homology of certain quotients of commutative algebras

d(d sl™) is well-defined? and that d and 9 satisfy o0 d = 0, dod = 0, and
do+90d =0 on Ay, see Remark 4.2.1.4 and Remark 4.2.1.12.

But first, let us state the formulas for d and 9 for a k-linear basis of A;
(obtained by applying k-linearity and the Leibniz rule), so we may refer to
them later'®

1 d e gm d slmil . g2 g ge2 gm2 g glmel

— (_1)771'62 (ml + m2> tritne g peitez gmitnz ds[m1+m2]
my

d (t” dt<s"d s[m]) (8.6)
—p -l gpetign dS[m] + (_1)6 - (1 + m) S d e d3[1+m]
O(t" dtes” ds[m]) = (=1) -y t"Frdeed s — g d et d sim

For well-definedness, nothing needs to be done for d. For 0, evaluating on

Qs . qglmel — (M T M2 4 it
m1

using the left hand side and the Leibniz rule we obtain
(—dedstm=) dstmel 4 astml (—atastm-1)

_ —dt((ml +mo — 1) d glmitma—1] | <m1 + mo — 1) ds[m1+m2—1])

my — 1 my
and using the right hand side we obtain
() Qg slmatme-)
mi

which are equal by the binomial identity (m1+"i21 1) + (m1+m2 1) = (m1+m2).

We now check 0o d =0, dod =0, and dd + dd = 0. Note that Prop051—
tion 8.2.1.1 implies that we only need to check this on multiplicative genera-
tors. That d o d = 0 on multiplicative generators is clear from the definition,
and for 0 o 9 = 0 the only case to consider is

8(8<ds[m])) - a(—dtds[m—”) —dtdtdsm2
which is 0 as (d¢)? = 0. Finally, we verify that dd + dd = 0.

(d0 +ad)(t) = 0+ d(dt) =0

91.e. compatible with the relation d s[™1] . d slm2] = (mlntl"m) d slmit+mal
10In the formulas, some summands may contain factors that are undefined, such as d sl=
Those summands are to be interpreted as 0.

1].
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(A0 + ad)(dt) =0+ 0
(d9 + 8d)(s) = d(t) +8(dsm> —dt—dt=0
(d0 + ad) (ds[ml) - d(—dtds[m—”)
= —d(dt)dstm Y ¢ dtd(ds[m—”) =040=0

It is clear that the two morphisms to k in diagram (8.5) are compatible
with d and 9, so (8.5) is a commutative diagram in CAlg(Mixed).
For n a positive integer we denote by

Ay = AP = kty, ..., to]@A(dty, ..., dt,)@A(s1, ..., 8,) R0 (d 51, ..., dsy,)
the n-fold tensor product of A; in CAlg(Mixed). We will also let
P, = PF" = k[ty, ..., t,) @ A(dty,...,dt,)

be the n-fold tensor product of P;. The n-fold tensor product of diagram
(8.5) then yields a commutative diagram

ne |

in CAlg(Mixed). &

Ap
Pn
k

8.2.2. Cofibrancy

Proposition 8.2.2.1. Let n be a positive integer. Then A,, from Construc-
tion 8.2.1.2 is cofibrant (with respect to the model structure from Theo-
rem 4.2.2.1) as an object in LModp, (Ch(k)), where the module structure
is the one arising from the morphism of differential graded algebras g, from
Construction 8.2.1.2. Q@

Proof. Considered first as just a graded module over the graded algebra P,,
it is clear that A, is a free P,-module and that

B ::{s?dsm ‘ Tezy, €c {0,1}"}

forms a basis.
Let < be the lexicographic!! well-order on (Z>o U {oo})™ x {0,1}". For an
element (j,7) in (Z>o U {o0})™ x {0,1}" we define

Bﬁﬁzz{s?ds[ 1\76@07 e {0,1)", (T’,?)j(;,ﬁ)}

7,1

Hn Z>o U {oo} we let co be greater than any integer. The lexicographic order is then
defined such that (7,¢) < (§,7) if and only if there is an index 1 < I < n with
1 = J1,...,91—1 = J;—1 and 4; < j;, or i = j and there is an index 1 <[ < n with
€1 =m,...,6-1=m-1 and ¢ <.
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and let X+ 7 be the sub-P,-module (still as just a graded module over a
graded algebra) generated by B~ e It is clear from the definition of the
differential on A, that X7 5 15 actually a subcomplex of A,, and that
An = X(oo,....00),(1,...,1)

Considering (Z>oU{oo})" x {O 1}" as a category with a unique morphism
(7,€)— (7,7) if and only if (7 ,€) < (7, 7), we obtain a functor

(Z>o U {oo})™ x {0,1}" — LModp, (Ch(k)) (*)

that sends (?, 7) to X 7.7 and the morphisms to the respective inclusions.
One can see that this functor is colimit-preserving, which boils down to the
fact that

for every j in (Zso U {o0})™ such that there is an 1 < [ < n with j, = oo
and jy = 0 for I’ > [*2. Thus the functor (*) exhibits A, as a transfinite
composition, and so to show that A, is cofibrant in LModp, (Ch(k)) it suffices
to show that Xg g is cofibrant, and that for each (i,€¢) and (j,7) in
(Z>op U {oo})™ x {0,1}", such that (7,7) is the successor of (i,¢€), the
inclusion X5 = — X - is a cofibration.

As X5 5 is 1som0rphlc to P,, and hence free on the cofibrant chain complex
k[0] as a P,-module in Ch(k), it is cofibrant. Furthermore, with (7,€) and
(J, 1) as above, the difference B+ -\ B3 - consists of precisely the element
s7 d sl7]. The diagram

LModp,, _ _
Free <S2d6gCh(j )+d6gCh(7l)*1> X3 )€

l |

LModp,, _ _
Free (Dz degey (7 >+degCh<ﬁ>) — X377

is a pushout, where we use use the notation from [Hov99, 2.3.3]137 with the
morphism on the left being induced by the usual inclusmn . The morphism
on the top sends the generator 1 in degree 2degc,(7) + dege,(7) — 1 to

8(5’7 dsli ]), and the morphism at the bottom sends the new generator in

degree 2degcy(j 7) + dege, (77) to s7 dsl7 =71 It is crucial here that even
though s7 d sl71 is not an element of X7 &, its boundary is. O

12] ¢, we consider those (§ , 7) that are not successors or (0, 0).

13S0 S; is the complex with k concentrated in degree I and Dj is the acyclic complex with
k in degree l and [ — 1, with boundary operator the identity.

M\Which is the identity in degree 2 degcy,(7) + degey, (77)-
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8.2.3. Quasiisomorphism
Proposition 8.2.3.1. Let n be a positive integer. Then the morphism
Pn: Ap — k
from Construction 8.2.1.2 is a quasiisomorphism. Q

Proof. By Proposition 8.2.2.1 and Theorem 4.2.2.1 (8)*®, A,, is cofibrant as a
chain complex for every positive integer m. By the pushout-product property
for Ch(k) (see Fact 4.1.3.1) and Ken Brown’s lemma [Hov99, 1.1.12], the
tensor product of a cofibrant chain complex with a quasiisomorphism between
cofibrant chain complexes is again a quasiisomorphism. Writing p,,: A, — k
as the composition

P1®id 4 n—1 idy ®p1®id jn—2
ARATT — L k@A QAT ———— L S k@k® A}T?
— - k"2
it suffices to show that p;: A; — k is a quasiisomorphism.

As a morphism of chain complexes p; has a section ¢ that maps 1 to 1, so it
suffices to give an homotopy ¢ between the id4, and top;. As a graded abelian
group, A; is free with basis { tm dtes d sm | n,m € Zxo, €,n € {0,1} }7 and
we will define ¥ on this basis. Define

(—D)ntdeesmtt dstm ifp >0
(™ dtes" dstmly = { — q glm+1] ifn=0,n=0,and e =1

0 otherwise

We now check that 99 + 99 = tp; on basis elements t" d t¢s” d s} by distin-
guishing a couple of cases.
Casen > 0,n=0:

(90 + 09)(t" d t< d s™))
= 19((—1) (=Dt deet! ds[’”‘”) + 6((—1)%"—1 dt¢sd SW)
=(-1)- (1) (1))t s d st

+ (=) - (=1t d e d st™]

+ (=1 (1) - (D)t d e sd sim
=" dtcd s

Casen >0,n=1:
(00 4 09)(t" dt¢s d s™))
—o((=D e st - detsa st 4 o(0)

15This is applicable because Py, has cofibrant underlying chain complex by [Hov99, 2.3.6],
as Py, is concentrated in nonnegative degrees and free as a graded k-module.
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= (=1 (=1)t"dtsds™ —0+0
=t"dtsds™
Casen=0,n=0,e=1:
(98 + 89)(d td sy = 9(0) + a(f ds[erI])
=dtds™
Casen=0,n=0,¢=0:
(99 + 09)(d sI™)) = w(_ dtds[m—u) +0(0)
B {ds[m] if m>0

0 otherwise

Note that the case n = m = 1 = ¢ = 0 is special, as 1 is the only basis
element on which ¢p is acts as the identity, rather than zero, so this is the
expected result.
Casen =0,n=1:
(90 +0v)(d s d sty = o (=)t d e dsi) — detTsd st 1) 4 9(0)
= (=1)°- (=1)¢dtsds™ +0
=dtsdsM™ O

8.3. A formula for Hochschild homology of
certain quotients

In this section we combine Sections 8.1 and 8.2 to obtain a somewhat more
concrete formula for a strict model for HHyixeq Of certain quotients than in
Proposition 8.1.2.1.

Proposition 8.3.0.1. Let n > 1 be an integer and assume’® that Conjec-
ture C holds for the morphism of commutative k-algebras T': klt1, ..., t,] = k
that maps t; to 0, and fix a commutative square

HHMixcd(k[tla s atnD —_— Alg(’YMixed) (QZ[tl,...,tn]/k>

HH\(ixea (T) Alg(me) (25,,)  (8:8)

HHatixed (k) ~ Alg('YMixed) (Qz/k)

161f 5 < 2 this holds by Proposition 7.5.4.1, making this result unconditional.
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in Alg(Mixed) such that the horizontal morphisms are equivalences.

Let R be a commutative algebra in Ch(k) and let xy,..., 2z, be elements
of Ro. Assume that R is cofibrant as an object of RModyy, ... +.1(Ch(k)) with
respect to the model structure of Theorem 4.2.2.1, where t; acts by multipli-
cation with x;. Note that as HHogixea is monoidal, HHytixed (R) obtains an
induced structure of a right module over HHygixea (K[t1, - - -, tn]) n Mixed.

Let P, = klt1,...,t,] @ A(dty,...,dt,) be as in Construction 8.2.1.2 and
M a right-P,,-module in Mixed.os such that there is an equivalence

RMod (')/Mixed) (M) = HHMixed (R)

in RMod(Mixed) such that the underlying equivalence of algebras is the com-
position

Alg('YMlxed)( ) Alg('YMlxed) (Qk[tl, Lt "]/k) = HHMixed(k[tla ce 7tn])

(8.9)
in Alg(Mixed), where the first equivalence is induced by the identification

Q;[tl,.“,tn]/k = k[tl’ e 7tTL] ® A(dt17 o ,dtn)

from the start of Section 7.1 and the second equivalence is the one from (8.8).
Then there is an equivalence

HHMixed(R/<xla ) xn)) = ’YMixed(M/)

in Mixed, where M’ is the strict mized complex defined as follows. As a graded
k-module, M’ is given by

M' =M@ A(s1,...,8,) @(dsq,...,dsy)

with s1,...,8, of degree 1 and ds1,...,ds, of degree 2. The boundary op-
erator 0 and differential d are given by k-linearly extending the following
formulas form € M, € € {0,1}", and i € ZY,

8(m® s?ds[_ﬂ> = <3M(m) ®s?ds[_ﬂ)

n

+ (—1)degen(m) Z(_l)EZ;f e (m t, @S ds“])

1)degen(m) Z 1)Z85 @ (i, + 1)(m®s?—e7ds[7+57])

In the above formulas, summands in which a vector occurs with a component
that is megative are to be interpreted as zero. @
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Proof. We first apply Proposition 8.1.2.1, where we are using the specific
model A,, that was constructed in Section 8.2 for HHytixed (k) as a module
over HHytixed (K[t1, .- ., tn]). To do so, we only need to check that A, has
the properties required of it in Proposition 8.1.2.1. Concretely, we need an
equivalence

LMOd(’yMixed)(An) =~ HHMixcd(k)

in LMod(Mixed) such that the underlying equivalence of algebras is (8.9),
and we need that A, is cofibrant as an object of LModp, (Ch(k)). The lat-
ter is precisely Proposition 8.2.2.1, and for the former we use the following
composite equivalence.

LMod(uved) (4n) = LMod(iea) (k) = LMod(wiea) (211
~ HHMixed (k)

The first morphism is induced by the morphism of P,-algebras p,: A4, = k
as defined in Construction 8.2.1.2, and lies over the identity morphism of
Alg(YMixed) (Pr) in Alg(Mixed). The second equivalences uses naturality of the
isomorphism from Section 7.1, which ensures that the underlying equivalence
of algebras is the first equivalence in (8.9). Finally, the third equivalence
arises from the commutative square (8.8), and the underlying equivalence of
algebras is the second one in (8.9).
By Proposition 8.1.2.1 we now obtain an equivalence

HHMiXCd(R/(xl, sy xn)) ad "YMixed(M ®Pn An)

in Mixed. It thus remains to evaluate the relative tensor product M ®p, A,
in Mixed.

As the forgetful functor from strict mixed complexes to graded k-modules
is conservative, symmetric monoidal, and preserves colimits, we obtain an
isomorphism of underlying graded k-modules!”

M ®Pn An =M ®k:[t1,...,tn](X)A(dt1,...,dtn) (k[tly s atn} ®A(dt1a ce 7dtn)
®A(sl,...,sn)®F(d51,...,dsn))
2 MQA(S1,...,8,) T(d s1,...,dsp)

where the isomorphism maps an element of the form m ® t7dt€s7 dl] to
m-(t*dt®)®s7Td7]. We can lift this isomorphism to an isomorphism of

17The point is that in graded k-modules,
klt1,...,ta] @ A(dt1,...,dtn) @ A(s1,...,8n) ®T(d s1,...,dsn)

really is the tensor product of k[t1,...,tn] ® A(dt1,...,dtn) and
A(s1,...,8n) ®@T(ds1,...,dsn), whereas this is not the case as chain complexes.
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strict mixed complex, and it then remains to determine d and 9, for which
we use the morphism of strict mixed complexes

M®A, > Mep, Ay 2 M QA(s1,...,8,) @T(ds1,...,dsy,)

where the first morphism is the canonical one and the isomorphism the one
just described. One can then read off the formulas claimed in the statement
using Definition 4.1.2.1, Remark 4.2.1.10, and Construction 8.2.1.2 O
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Chapter 9.

Hochschild homology of certain
quotients of polynomial algebras

In Chapter 8 we obtained a general result that helps to produce strict
mixed complexes that represent HHy(ixeq Of Some quotients of commutative
algebras. In this chapter we specialize to quotients of polynomial algebras by
a single monic polynomial f of positive degree. The crucial input that we will
need for this is that Conjecture D holds for f. After verifying the necessary
requirements to apply the result, we will in Section 9.2 be able to specialize
Proposition 8.3.0.1 to the case k[z1,...,x,]/f for n a positive integer and f
a monic polynomial of positive degree satisfying Conjecture D, obtaining a
strict mixed complex X that is a model for HHygixed (k[21, ..., 2]/ f) as an
object of Mixed. The underlying graded k-module of X is of the form

Xp=k[z,...,zp] @ A(dy,...,dz,) @ A(s) ® T'(d s)

where x;, dx;, s, and d s are of degree 0, 1, 1, and 2, respectively.

In our goal to obtain a strict mixed complex that represents the object
HHtixed (k[21, .- ., 5]/ f) in Mixed and that is as small as possible, this
is already a significant improvement on the standard Hochschild complex
C(klx1,...,2,]/f) that we discussed in Section 6.3.1. To underline this, note
that X; can be given the structure of a graded k[z1,...,z,]-module, with
klz1,...,2z,] acting through the leftmost tensor factor. Xy is then degree-
wise free as a k[xy,...,x,]-module, so we can consider the rank!. We find
that ranky,, . ..]((Xf):) (where i is an integer) is finite, and furthermore
bounded, i.e. there is an integer r such that

ranki(z, . o, ((Xf)L) <r

holds for all integers 7. This is very far from the situation for the standard
Hochschild complex C(k[x1, ..., 2,]/f). While k[z1, ..., z,] doesn’t act freely
on the leftmost tensor factor, k[z1,...,z,]/f does, and

ranky(e, a,)/r (Clk[z1, .. 20]/f);)

L1f we wanted to make the following discussion regarding ranks precise, we would define
bases for the various modules and discuss their cardinalities (the modules we consider
all have a relatively obvious basis to use for this). We omit such a detour, as this
discussion is only for purpose of motivation.
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= rankk[a,h,,_,xn]/f ((/‘5[551, . 793n]/f)®(i+1))
= ranky, ((k‘[xl, ce. 7xn]/f)®(i))
= ranky, ((k[z1,. .., z0]/f))’

for i > 0. For n > 1, ranky((k[x1,...,2,]/f)) will already be infinite, and
additionally it would also be reasonable to consider the rank to grow expo-
nentially in the degree i.

So X, is an improvement over the standard Hochschild complex. It is
though certainly not optimal for specific polynomials. For example, for f =
the quotient k[z1]/f is isomorphic to k, so we can by Corollary 7.4.9.3 use
Q;/k = k as a strict model for HHytixeda (k[x1]/f), and k is significantly smaller
than Xy = k[z1] @ A(dz1) ® A(s) @ '(d s).

The main goal of this chapter will thus be to improve on the size of X while
relaxing what the result covers. This can be done in two directions: Firstly,
we can reduce the amount of structure we consider, which we do by asking
only for a sub-chain-complex of X that represents HH(k[z1,...,2,]/f) as
an object of D(k), rather than as a mixed complex, which we will do in Sec-
tion 9.3. Secondly, we can insist on a sub-strict-mixed-complex representing
HHoixea (k[x1, - .., 25]/f) as an object of Mixed, while reducing the set of
polynomials f that we consider. This will be done in Section 9.5.

The results of this chapter should themselves also only be considered as
stepping stones, just like Proposition 8.3.0.1 and X ; was a stepping stone for
the results of this chapter. So for actual calculations that need a strict mixed
complex representing HHygixed (K[Z1, - .., x,]/f) for specific polynomials f,
one would begin with the strict mixed complex obtained in Section 9.5 (if
the relevant result is applicable) and then simplify it further, making use of
the specific form of f. In Chapter 10 we will discuss the concrete example of
f = 2% — xox3 in details along those lines?.

Let us now say some more on the individual sections of this chapter.

As we stated at the beginning of this introduction, we will consider monic
multivariable polynomials f to divide out of a polynomial algebra. For poly-
nomials in a single variable there is precisely one standard definition of what
it means to be monic, but this is not the case for multivariable polynomi-
als, where there are multiple sensible definitions. What we will mean by
monic is monic with respect to a chosen monomial order, and this notion
will be introduced in Section 9.1. It will also be very important in this chap-
ter to have a good handle of moving back and forth between k[z1,...,x,]
and k[z1,...,2,]/f, for example by producing canonical representatives in
klx1,...,xz,] of elements in the quotient k[z1,...,z,]/f. For this we will also
discuss division with remainder for multivariable polynomials in Section 9.1.

In Section 9.2 we will then combine previous results to obtain Xy as a

2This polynomial has however so far not been proven to satisfy Conjecture D. The strict
mixed complex Xy can nevertheless be constructed.
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strict model for HHyyixea (K[Z1, . .., 2,]/f) as an object of Mixed, assuming
that Conjecture D holds for f. Heavily using constructions discussed in Sec-
tion 9.1 that are built on top of the division with remainder for multivariable
polynomials, we will also describe a new basis for X; as well as calculate
some formulas for the boundary operator and differential in terms of that
new basis.

In Section 9.3 we will discuss HH(k[x1,...,2,]/f) as only an object of
D(k). A chain complex representing it has already been obtained in the pre-
vious work of the Buenos Aires Cyclic Homology Group in [BACH]. For k a
commutative ring and f an element of k[z1, ..., x,] satisfying relatively mild
conditions, they give a quite small differential graded algebra together with
a multiplicative inclusion into the normalized standard Hochschild complex
for C(k[z1,...,2,]/f), as well as a homotopy inverse to this inclusion, as
a morphism of chain complexes. Using the basis for X; and the formulas
for the boundary operator in this basis obtained in Section 9.2, it will be
relatively straightforward in Section 9.3 to define a subcomplex X§, of Xy
such that the inclusion into Xy is a quasiisomorphism, thereby obtaining a
smaller chain complex than X representing HH(k[z1,...,2,]/f) as an ob-
ject of D(k). We will also show that X, is isomorphic to the chain complex
described in [BACH]. Assuming that Conjecture D holds for f, the rest of
the assumptions we need to make for f are the same as in [BACH], so this
amounts to giving a new proof for one of the main results of [BACH], using
a quite different approach, for the range in which Conjecture D has been
proven, so n < 2 as long as 2 is invertible in k by Proposition 7.5.3.1.

Unfortunately the definition of the comparison morphisms used in [BACH]
between the smaller chain complex and the normalized standard Hochschild
complex are quite complicated, making them difficult to unwrap for transfer-
ring additional structure. Trying to transfer the strict mixed complex struc-
ture to the smaller chain complex from the normalized standard Hochschild
complex additionally runs into the problem that one does not obtain a strict
mixed complex structure; the necessary identities will only be satisfied up
to homotopy for general f, and it is not possible to upgrade either of the
two quasiisomorphisms between the small chain complex and the normalized
standard Hochschild complex to a morphism of strict mixed complexes, as
we show in Section 9.6.

However, for some polynomials f, the strict mixed structure on X restricts
to Xfo, so that XJ? o even represents HHygixeda (K[21, ..., 2s]/f) as an object
of Mixed. To properly formulate a condition for when the strict mixed struc-
ture restricts we introduce the notions of logarithm and the log dimension
for multivariable polynomials in Section 9.4. In particular, we will prove a
criterion that can be easily checked for multivariable polynomials f and that
implies that logdim;(d f) < 1.

In Section 9.5 we will then show that if f satisfies logdim ,(d f) < 1, then
the strict mixed structure of X restricts to X$ o, making the inclusion of X 0
into Xy into a morphism of strict mixed complexes that is a weak equivalence.
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Under some stronger assumptions on f a strict mixed complex isomorphic
to X%, was already constructed by Larsen in [Lar95]. In the two-variable case
Larsen furthermore constructs a strongly homotopy linear quasiisomorphism?
from this strict mixed complex into the normalized standard Hochschild com-
plex. The result in Section 9.5 can thus be seen as a generalization of one of
the main results of [Lar95].* A number of constructions relating to polynomi-
als that we use in order to simplify X are inspired by their use in [Lar95].

In Section 9.7 we discuss the relationship between our results and the main
result of [Lar95], as well as how, assuming Conjecture D, our results provide
an affirmative answer to a question posed by Larsen in [Lar95].

9.1. Prerequisites on polynomials and dividing
with remainder

Given the non-zero polynomial f in n variables by which we want to divide
the polynomial algebra k[zi,...,z,], it will be important for us to define
uniquely determined remainders of dividing an arbitrary polynomial P by
f, i.e. we would like to have a procedure obtain a unique decomposition of
P as P = Q- f+ R for other polynomials ¢ and R. In the one-variable
case with f an element of k[x] it is relatively straightforward to come up
with an idea of how this decomposition should look like: We would like P to
uniquely decompose as P = @ - f + R where R has smaller degree than f. It
is not difficult to see that if the leading coefficient of f is not a zero-divisor,
then this determines ) and R uniquely as long as such a decomposition
exists. However, such a decomposition may not exist for all f and P — as
a counterexample consider f = 2 and P = 3 for k = Z. However it turns
out that such a decomposition does exist if the polynomial f is monic, that
is the leading coefficient is 1. In that case, one can perform the Euclidean
algorithm, iteratively eliminating the highest power of x remaining with the
leading term of f, i.e. if we have given f = z™ + f/ with f’ of degree less
than n, and P =" a;z’ with m > n, then the first step will be to write

P = (amz™ ™) f+ ((Z aimi> — (amz™™ ™) - fl>
=0

and in this decomposition the term in brackets is of degree less than m, so
iterating this process will eventually come to a stop.

If we wish to generalize this procedure to the multi-variable case, we are
confronted with an obvious question: Which term of P should we start elim-
inating? What is the leading term of f that we should use to do so? There is

3See Definition 4.2.3.1 for a definition. By Remark 4.4.4.2 a strongly homotopy linear
quasiisomorphism induces an equivalence in Mixed.
4However introducing the new assumption that 2 is invertible in k.
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no obviously correct choice for a definition of leading terms of multivariable
polynomials but multiple equally good competing ones. Thus we will have
to codify what we require of such a definition to be nice enough to allow us
to define the kind of decompositions described, and then require that f be
monic with respect to that choice. The results will then also depend on that
choice.

We will start in Section 9.1.1 by discussing monomial orders, which provide
a consistent way of determining which of two monomials is to be considered
the larger one. This will allow us to define a notion of degree of a multivariable
polynomial in Section 9.1.2. Finally, we will discuss division with remainder
for multivariable polynomials in Section 9.1.3.

9.1.1. Monomial orders

In this section we introduce the concept of monomial orders and discuss
some easy consequences of the definition. We start in Section 9.1.1.1 by recall-
ing the notions of partial, total, and well-orders. The important example of
the pointwise partial order on Z%, will be discussed in Section 9.1.1.2, before
we define monomial orders in Section 9.1.1.3. We end this section by proving
some easy properties of monomial orders in Section 9.1.1.4.

9.1.1.1. Partial, total, and well-orders

We recall the following notions.

Definition 9.1.1.1. Let X be a set and < a binary relation on X. Recall
the following properties that < may have.

Antisymmetry For any a,b € X, if a <band b < a, then a = b.
Transitivity For any a,b,c € X, if a < band b < ¢, then a < c.
Reflexivity For any a € X it holds that a < a.

Connectivity For any a,b € X, it holds that a < b or b < a.

Well-foundedness If X’ is nonempty subset of X, then X’ has a least
element, that is an element x € X’ such that for all y € X’ it holds
that z < y.

Note that connectivity implies reflexivity.
The relation < is called a

partial order if it is antisymmetric, transitive, and reflexive.
total order if it is antisymmetric, transitive, and connected.

well-order if it is antisymmetric, transitive, connected, and well-founded.
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A set equipped with a partial order (total order, well-order) on it will be
called a partially ordered set (totally ordered set, well-ordered set). &

Notation 9.1.1.2. Let X be a set and < a binary relation on X. If x and
y are elements of X such that x < y and = # y, then we will say that x is
smaller than y and y is bigger than x.

We will use the notation z > y to mean y < z. Furthermore, we will use
z>yand y <z tomean y Xz and x # y. &

Remark 9.1.1.3. The important consequence of well-foundedness is that we
can prove statements about every element of X by transfinite induction: If we
prove that any element of X has some property if every smaller element has
that property, then it follows that every element of X has that property®. <

9.1.1.2. The standard partial order on Z%,

We now define an important example of a partial order on Z%,,.

Definition 9.1.1.4. Let n be a positive integer. We define a relation < on

—

ZY by letting a < bifand only if a; < b; forall 1 <i < n. &

Remark 9.1.1.5. The relation < as defined in Definition 9.1.1.4 is a partial
order. ~ ~
Note that a monomial z * divides 7 for i, j € Z2 if and only if

This is the reason why the partial order < is of relevance for us.

i

<7.
&

Proposition 9.1.1.6. Let n be a positive integer. For the partial order <
defined on Z%, as in Definition 9.1.1.4 and @, b, ¢ € Z%, if @ < b, then
G+7T<b+¢. v

Proof. Follows directly from the definition. O

9.1.1.3. Definition of monomial orders

The partial order < encodes intuition on how some monomials definitely
should compare: Certainly the monomial 27 should be “bigger” than z ¢ if
z? divides x| or equivalently if 7 < 7 But what if neither 7 < 7 nor
? < ¢ 7?7 In order to be able to define notions such as degrees and leading
terms for all elements of k[x1, ..., z,], we are thus led to ask for a total order
= on Z%, that extends <.

A finite subset of a totally ordered set has a maximum element. If we have

a total order < on Z%, given, then we can now provisionally define what the

5Proof: Let X’ C X be the subset of X of elements that do not have the property in
question. By well-foundedness, if X’ were non-empty, it would need to have a least
element . But this would mean that every element smaller than x has the property, so
z must have had it as well, so X’ must have been empty.
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leading term of a polynomial f € k[z1,...,x,] should be: If f is given by

f=> fra®

Tezy,

then we can declare fyxj to be the leading term of f if 7 is the maximal
element of { = VA ‘ f7#0

However this is not quite enough to obtain the kind of decomposition we
described in the introduction to Section 9.1. Firstly, in the one-variable case
the procedure to iteratively eliminate the highest degree has to eventually
terminate because there is no infinite strictly decreasing sequence of nonneg-
ative integers. For the multivariable case we should thus require that < is
a well-order. Secondly, in the one-variable case we need to argue that if f’
has degree smaller than m, then 2!~™ - f’ has degree smaller than I, and we
need an analogue of this in the multivariable case as well. This leads us to
the following definition, which is also used in [BACH, 2.2].

Definition 9.1.1.7. Let n be a positive integer. A monomial order (for n
variables) is a well-order < on Z”O satisfying the following property For every
ab CGZOsuchthata-<b1talsoholdsthata+c-<b+c &

That a monomial order indeed extends < will follow from this, and is shown
below in Proposition 9.1.1.8.

9.1.1.4. Properties of monomial orders

Proposition 9.1.1.8. Let n be a positive integer and =< a monomial order
for n variables. Then the following hold.
(1) Let @, 7;, Ce 7% such that @ + T =< b + €. Then it also holds that
T=b.

(2) 0 is minimal in Z%, with respect to =, 1. e. for every @ € ZZ% it holds
that 0 < @.

(8) = extends <, i.e. if @, bc Z’ZLO such that @ < ‘b: then @ < b. Q

Proaf Proof of claim (1): If it is not true that = b then we must have
a = b by connectivity, and so @ + ¢ = b+ 7T _as = is a monomial order.
But by antlgymmetry this implies that @ + ¢ = =b+7Tandso @ = b from
which @ < b follows by reflexivity.

Proof of claim (2): Let m be an element of ZZ,. We need to show that
0 < m, but t by connectivity and rcﬂex1v1ty it sufﬁccs to show that if 0 = m,
then 71 = 0. So assume that 0 = 7. By adding [ - m to this inequality we
obtain [ - m > (I 4+ 1) - m, so that we obtain an infinite descending chain

O =mm=2-m=-
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in Z%,. Well-foundedness of < implies that this chain must eventually sta-
bilize, so there must be an [ > 0 with (I + 1) - 7 = [ - m, which implies
m=0.

Proof of (3):
we obtain 0 =< and adding @ to this inequality we conclude that
a=b. O

a
b

<b implies that b — @ still lies in Z~,. Applying (2)
a,

Remark 9.1.1.9. If < is a monomial order for 1 variable, then Proposi-
tion 9.1.1.8 (3) implies that < is equal to <. &

Remark 9.1.1.10. Let n be a positive integer. The assumptions made on
the binary relation <7 on ZZ, considered in [BACH, 2.2] are that <7 is a
monomial order in the sense of Definition 9.1.1.7, and that <7 extends <.
Proposition 9.1.1.8 (3) shows that the latter assumption is unnecessary. <

Construction 9.1.1.11. Let n be a positive integer and < a monomial order
for n variables. Let m < n be another positive integer and

e:{l,....m}—{1,...,n}

an injection. Then we can define an additive injection ZZ; — ZZ, as follows.

aj if(j) =1
0 if 7 is not in the image of

VT ST, (T = {

For example if ¢ is the inclusion of {1} into {1, 2}, then ¢ maps (a) to (a,0).

—

We can then define a binary relation < on ZZ as follows. For @, b € ZZ,

we let @ < b if and only if ¥(@) =< w(—l;) It follows immediately from )
being additive and injective that this defines a monomial order for m variables,
which we will call the restricted monomial order.

Let {i1,...,%n—m} be the elements of {1,...,n} that are not in the image
of . Define k£’ to be the commutative k-algebra k' = k[x;,,...,x;,_, ]. Then
there is an isomorphism of k-algebras

k/[yla"~7ym] i) k[l'],...,.’ljn]

that maps z;; to x;; and y; to x,(;). Note that this morphism then maps

y? to 2%(7). We will make use of this isomorphism on some occasions when
inducting on the number of variables. &

9.1.2. Degrees for multivariable polynomials

In this section we define a notation of degree of multivariable polynomials,
dependent on a monomial order.
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Definition 9.1.2.1. Let n be a positive integer, < a monomial order for n
variables, and f € k[z1,...,2,] a polynomial. We define

max{’{ezgo fﬁeo} if 40
—00 iff=0

degj (f)=

where the maximum is taken with respect to the order <. We call deg(f) the
degree of f (with respect to the monomial order <). We call fdeg<(f)xdegﬁ(f)
the leading term and fqeg_ (y) the leading coefficient of f (with respect to the

monomial order <).
If f,g € k[z1,...,2,], then we write f < g if deg-(f) = deg<(g)- &

Remark 9.1.2.2. It follows from Remark 9.1.1.9 and the definition that the
degree as defined in Definition 9.1.2.1 recovers the usual notion in the case

n=1. &

The degree of multivariable polynomials as defined above satisfies the usual
properties with respect to addition and multiplication of polynomials, as we
record below.

Proposition 9.1.2.3. Let n be a positive integer, = a monomial order for
n variables, and f,g € k[x1,...,x,]. Then the following hold.

(1) deg<(f +g) < max {degj(f)vdegj(g)}'
(2) If deg<(f) = deg<(g), then deg<(f + g) = deg<(f).
(8) deg<(f -g) =< deg<(f) + deg<(9)-

(4) If at least one of f or g is zero, or it holds that both are nonzero and
fdegj(f) . gdegj(g) 7é 0, then degj (f : g) = degj (f) + degj (g)

With respect to max we interpret —oo as smaller than all elements of ZZ,,
and we interpret the sum of —oo with —oo or an integer to be —oco again.

Proof. Proof of claim (1): By definition
degj(fJ"g) + gngﬁ (f+9) = (f + g)ngj(Jq‘g) 7& 0

holds, so one of fqeg  (f+4) and gaeg_ (f+¢) Must be non-zero, which directly

implies that deg_((f) > deg(f +g) ot deg(g) = deg_(/ + ).

Proof of claim (2): In this case max{deg_(f),deg~(g9)} = deg(f), so
using (1) it suffices to show that deg_(f + g) = deg(f). The assumption
deg(f) > deg<(g) also implies gges () = 0 and thus

(f—’_g)degj(f) = fdegj(f) +gdegj(f) = fdegj(f) 7& 0

from which deg.(f + g) = deg<(f) follows.
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Proof of claim (3) and (4): We can write

f= Z f;»x? and g= Z g;xy

T Xdeg (f) 7 =deg(9)

and thus obtain the following description of the product fg.

As < is not just a well-order, but even a monomial order, it follows from
i < deg(f) and j = deg.(g) that i + j =< deg<(f) + deg(g), and if
one (or both) of the former two inequalities is strict, then so is the latter
inequality. This implies both claims. O

Proposition 9.1.2.4. Assume that we are in the situation of Construc-
tion 9.1.1.11. Let f be an element of k[x1,...,xy], and assume that deg(f)
is in the image of 1. Let f' be the element of K'[y1, ..., ym| corresponding to
f under the isomorphism from Construction 9.1.1.11. Then

deg(f) = 1 (deg<(f"))

where on the right hand side = refers to the restricted monomial order as
defined in Construction 9.1.1.11. Furthermore, féegg(}”) is an element of k

and the leading coefficients of f and f' agree, 1. e. fc’le&(f/) = faeg(p)- @

Proof. Let 7 € ZZ, be such that w(j) = deg<(f). Then fw@') # 0 implies
that f’;» # 0 and hence deg(f’) = 7, from which we can conclude that
Y(deg<(f')) = deg<(f). On the other hand, f(’ie&(f,) # 0, so there must be

some i € Z%, with ¢y = 0 for [ in the image of ¢ such that

fw(degﬁ(f/)%? = (féegj(.f,))T 7& 0

from which

deg<(f) = ¥(deg<(f)) + @ = (deg<(f")) (%)

follows. Antisymmetry now implies that deg<(f) = v (deg<(f")).
Furthermore, this implies that if i€ Z%y with ¢ = 0 for [ in the image
of ¢ such that <f(lieg_<(f’))7 # 0, then i must actually be 0, as otherwise

the inequality () would by strict by Proposition 9.1.1.8 ((2)). It follows that
féeg<(f') is in k and that fée&(f,) = fdeg_(f) as elements of k. O
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9.1.3. Dividing multivariable polynomials with
remainder

In this section we discuss a generalization of division with remainder of
polynomials from the one-variable case as discussed in the introduction to
Section 9.1 to the multivariable case. If we want to have a chance of dividing
polynomials P with remainder by some polynomial f, then we should require
that f is monic, and we discuss the multivariable notion of monic polynomials
that we will use in Section 9.1.3.1. If f is a monic polynomial, then division
with remainder will yield a decomposition of P as P = Qf + R, where R is
in some sense “small” with respect to f. In the one-variable case, R will have
smaller degree than f. In the multivariable case, R will be f-reduced, and
we discuss what this means in Section 9.1.3.2. We will then be able to tackle
division with remainder for multivariable polynomials in Section 9.1.3.3, and
discuss decomposing P as P = ), r;}(P)fi with r}(P) being f-reduced
polynomials in Section 9.1.3.4.

9.1.3.1. Monic polynomials

After the discussions in Sections 9.1.1 and 9.1.2, we can now give a def-
inition of monic polynomials that generalizes the usual definition for the
univariable case.

Definition 9.1.3.1. Let n be a positive integer, < a monomial order for n
variables, and f € k[z1,...,2,] a polynomial. Then f is monic with respect
to 2 if faeg_ () = 1. In particular a monic polynomial is nonzero. &

Convention 9.1.3.2. From here on we will introduce a monomial order < in
statements which depend on one, but will drop reference to < when this will
not cause confusion. For example we will write “Let f be a monic polynomial.”
rather than “Let f be a monic polynomial with respect to <.” when there is
only one polynomial degree order in context. O

Remark 9.1.3.3. If n = 1, then f is monic as defined in Definition 9.1.3.1 if
and only if it is monic in the usual sense. See Remarks 9.1.1.9 and 9.1.2.2. <

Proposition 9.1.3.4. Let n be a positive integer, < a monomial order for

n variables, and f,g € klx1,...,x,] monic polynomials. Then f - g is also
monic. Q@
Proof. Follows immediately from Proposition 9.1.2.3 (4). O

Proposition 9.1.3.5. Assume that we are in the situation of Construc-
tion 9.1.1.11, and that f and f' are as in Proposition 9.1.2.4. Then [ is
monic with respect to the monomial order on Z%, if and only if f' is monic
with respect to the restricted monomial order on Z'7,,. @

Proof. Follows immediately from Proposition 9.1.2.4. O
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We end this section with a useful statement we will use later.

Proposition 9.1.3.6. Let n be a positive integer, < a monomial order for
n variables, f € k[xy,...,x,] a monic polynomial, and g € k[x1,...,x,] any
polynomial. Then g = 0 if and only if fg = 0. V)

Proof. 1t is clear that g = 0 implies fg = 0, so it remains to show that g £ 0
implies fg # 0. But if g # 0, then we can apply Proposition 9.1.2.3 (4)%, to
conclude that

deg<(fg) = deg<(f) + deg<(9)

where the right hand side, and thus also the left hand side, is a nonnegative
integer. Thus fg must be nonzero. O

9.1.3.2. Reduced polynomials

Let f be a monic polynomial in a single variable, i.e. an element of k[z].
Then we can write any polynomial P € k[z] as P = Q- f + R for Q, R € k[z]
such that the degree of R is smaller than the degree of f. If we want to
generalize this to the multivariable case we should find an analogous condition
for R. A first guess might be to use the condition that degL(R) < deg~(f),
but this turns out not to work. Consider for example the case of two variables
and the lexicographic order, so where (a1,a2) < (b1, b2) if a1 < by orifa; = by
and ag < by. If we then consider f = x129 and P = 2%, then it is impossible
to find a decomposition P = @ - f + R such that deg_(R) < deg~(f). So this
condition is too strong. The reason is that we can only eliminate the lead
term of P if deg<(f) < deg<(P). We should thus ask R to be f-reduced in
the following sense. B

Definition 9.1.3.7. Let n be a positive integer, < a monomial order for n

variables, j € Z%,,and P € k[zq,...,x,] a polynomial. P is called j—reduced
ifP?:OforaH?Z?.

If f € k[xy,...,2,] is a nonzero polynomial, then P is called f-reduced if
and only if P is deg_ (f)-reduced. O

Remark 9.1.3.8. If f # 0 and P are elements of k[z], then P is f-reduced
in the sense of Definition 9.1.3.7 if and only if the degree of P is smaller than
the degree of f. O

Remark 9.1.3.9. Assume we are in the situation of Construction 9.1.1.11.
Let f and P be elements of k[x1, ..., 2,] and assume that deg_(f) is in the
image of ¥. Let f' and P’ be the elements of k'[y1,. .., Y] corresponding to
f and P under the isomorphism from Construction 9.1.1.11.

Then P is f-reduced if and only if P’ is f’-reduced. This can be seen by
combining Proposition 9.1.2.4 with arguments very similar to those used in
the proof of Proposition 9.1.2.4. &

6Both f and g are mnonzero, and as f is monic we also have
faeg<(#)  9deg () = Ydeg<(9) # O-
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9.1.3.3. Division with remainder

We are now ready to discuss division with remainders for multivariable
polynomials.

Proposition 9.1.3.10. Let n be a positive integer, < a monomial order forn

variables, and f € k[z1,...,z,] a monic polynomial. Let P € klxy,...,x,] be
another polynomial. Then there exist unique polynomials Q, R € k[z1,...,xy]
such that P=Q - f + R and R is f-reduced. Q

Proof. We first prove uniqueness. Assume that
P=@Q1-f+R and P=Qy f+ Ry
are two such decompositions. Then the equation
(Q1—Q2) - f=Rs— Ry (%)

holds. We have to show that Q1 = @2 and Ry = R,, but applying Proposi-
tion 9.1.3.6 to (x) it suffices to show that Ry = Ra.

We show Ry = Ry by contradiction and assume that Ry # Ry. Without loss
of generality we can additionally assume that Ry < Rs. By Proposition 9.1.3.6
Q1 — Q2 # 0, so we can apply Proposition 9.1.2.3 (4) to (x) and obtain the
following formula relating the degrees.

deg< (R — Ry) = deg<(Q1 — Q2) + deg<(f)
As we assumed R; < Rs, we can also apply Proposition 9.1.2.3 (2) to obtain
deg<(R2 — Ry) = deg<(R2)
which implies that

deg(R2) = deg<(Q1 — Q2) + degj(f)

and thus in particular deg_(Rs) > deg.(f), contradicting the assumption
that Ry is f-reduced. a a

It remains to show existence of the claimed decomposition. So for every
polynomial P € k[z1,...,x,] we have to prove the following claim.

Claim There exist Q,R € k[xy,...,x,] such that R is f-reduced and
P=Qf+R.

To do so, we first define the map
O: k[zy,..., 5] = Z%y U {~00}

PHmax{?EZgO‘P;»#Oand—i»zdegj(f)}
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where the maximum is to be interpreted as —oc if the set is empty, and the
set the maximum is taken over is always finite’, so the maximum exists if
the set is nonempty. Note that R € k[xy,...,x,] is f-reduced if and only if
O(R) = —oo. We can extend the well-order < on ZZ, to Z%, U {—oco} by
letting —co be the minimal element, and will prove the claim stated above
for every element P of k[x1,...,z,] by transfinite induction on ©(P).

So we let P be an element of k[z1, ..., z,] and assume that the claim holds
for any P’ € k[z1,...,x,] with O(P’) <X ©(P). We have to show that then P
also satisfies the claim.

If ©(P) = —oo, then P itself is reduced and so we can take Q@ =0, R = P
and are done.

So assume now that O(P) # —oo. Note that the definition of O(P) and
the assumption that ©(P) # —oo together imply that O(P) > deg(f), so
that in particular ©(P) — deg(f) is an element of ZZ . We can thus define
a new polynomial P’ as follows. -

P'= P — Popy - a® 0= (%)

We claim that ©(P’) < ©(P). Let us for the moment assume this and explain
how the claim for P follows. As ©(P’) < ©(P) we can use the induction
hypothesis and obtain @', R’ € k[x1,...,x,] such that R is f-reduced and
P’ = Q' f + R'. Combining this with (s*) we obtain

P= (Q/ + pe(Pﬂ@(P)*degﬁ(f)) -f+R

so that setting Q = Q' + P@(p)xG(P)_degi(f) and R = R’ shows the claim for
P.

__We are left to show that ©(P’) < ©(P). Note that (xx) implies that for
i € L%, we have

P/T =P — P@(P) ) f?—‘—detj(f)—@(P) (%)

where f7 et (f)—o(p) IS t0 be interpreted as 0 if i+ det<(f) —©(P) is not
in Z%,. Plugging in i = O(P) we obtain
P4 py = Po(p) — Po(p) - faet~(s) = Po(p) — Po(p) =0

so if ©(P') = ©(P) then we actually must have ©(F') = O(P). So now
assume that ¢ is an element of ZZ, such that the following holds.

(1) P > degj(f)

(2) i - O(P)

7As polynomials only have finitely many nonzero components.
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What we have to show is that then Pii» = 0. The two assumptions imply that
P+ =0, soif 7—|—detj(f) —©O(P) is not in ZY,, then equation (* * *) implies
PZ = 0. So assume that i +det<(f) — O(P) is in Z%,. (2) implies that

i + deg<(f) = O(P) + deg(f)
which — using that i + det<(f) — ©O(P) is in Z~%, — implies that

i+ deg<(f) — O(P) = deg<(f)
from which we can deduce that f_i.+deg<(f)—®(P) = 0. It again follows from
equation (x * *) that P~ = 0. - O

Remark 9.1.3.11. Assume we are in the situation of Construction 9.1.1.11.
Let f and P be elements of k[x1,...,z,] and assume that deg_(f) is in the
image of 1. Let f’ and P’ be the elements of k’[y1,...,¥m] corresponding
to f and P under the isomorphism from Construction 9.1.1.11. Then the
decompositions of P and P’ with respect to f and f’ correspond to each
other under the isomorphism from Construction 9.1.1.11. Concretely, if @, R
are elements of k[zy,...,x,] such that P = Qf + R and R is f-reduced,
and @ and R’ are the elements of k¥'[y1,...,ym] corresponding to @ and R
under the isomorphism from Construction 9.1.1.11, then P’ = Q'f + R as
the isomorphism is an isomorphism of R-algebras, and R’ is f’-reduced by
Remark 9.1.3.9. &

9.1.3.4. Full sum decomposition

If f is a monic polynomial and P any polynomial, we saw in Proposi-
tion 9.1.3.10 that we can divide P by f with remainder to obtain a decom-
position P = Qf + Ry for polynomials ) and Ry such that Ry is f-reduced.
We can then also divide @ by f with remainder and obtain a decomposition
of Qas Q = Q'f + Ry, so that we can write P as P = Q' f?> + R, f + Ry. We
would like this process to eventually stop (i. e. eventually arrive at an R; that
is already f-reduced), to obtain a decomposition of P as P =} .. R; - i
such that each R; is f-reduced and all but finitely many are zero. For this
we however need one extra assumption: If f = 1, then the decomposition
from Proposition 9.1.3.10 will be P = P -1+ 0, so iterating this process will
never yield an f-reduced R; unless P = 0. We thus arrive at the following
proposition.

Proposition 9.1.3.12. Let n be a positive integer, < a monomial order for
n wvariables, and f € klz1,...,x,] a monic polynomial with deg_(f) > 0
(equivalently, f # 1). Let P € k[zy,...,x,] be another polynomial. Then
there exist unique R; € klz1,...,x,] for i € Z>o of which all but finitely
many are zero such that

P=>"R;-f

i>0

561



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

and all R; are f-reduced. Q

Proof. We first show uniqueness. So assume we are given two such decompo-
sitions as follows.

P=>"Ri-f* and P=) R -f

i>0 i>0
We can rewrite this as
Y Ri-fTV) f+Ro= Y R fTH| - f R
i>1 i>1
and hence by Proposition 9.1.3.10 we can conclude that Ry = R{, and
D R fTh =) RS
i>1 i>1

as well. Tterating this argument now yields Ry = R}, Ry = R}, and so on.

We prove existence by transfinite induction on deg(P) and assume that
the statement has already been proven for all polynomials P’ that satisfy
deg(P’) < deg<(P). By Proposition 9.1.3.10 there are polynomials @) and
Ry such that P = Qf + Ry and Ry is f-reduced. If Q = 0 we are al-
ready done, so assume that @@ # 0. As Ry is f-reduced we must have
(Ro)deg_ (Q)+deg (f) = 0 and hence, using Proposition 9.1.2.3 (4),

Pacg_ (Q)+deg< (1) = (Qf )acg (Q)+deg~ () # 0

so that we can conclude that deg(P) = deg(Q) +deg<(f). As we assumed
0 < deg(f) this implies the following inequality.

deg<(Q) < deg<(Q) + deg<(f) =< deg<(P)

By the induction hypothesis we can thus find f-reduced polynomials R; for
i > 1, all but finitely many zero, such that

Q=) Rif"™

i>1

which implies that

P=Q f+Ro= > Rf™"| - f+Ro=Y Rif

i>1 i>0

and thus proves the claim. O
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The assumptions made in Proposition 9.1.3.12 will be used a lot in the rest
of this chapter. To improve readability and reduce unnecessary repetitions,
we thus package them together.

Assumption MonOrdMonicPoly. Wherever we invoke this assumption,
we let n be a positive integer, X a monomial order for n wvariables, and
f € k[zy1,...,2n] a monic polynomial with deg(f) > 0. &

We next introduce some notation to help us refer to the polynomials R;
occurring in the decomposition from Proposition 9.1.3.12.

Definition 9.1.3.14. Assume MonOrdMonicPoly. We define maps

r;,r%jmfj,q}‘: klz1,...,zn] = k[z1,...,20]

for each integer j in the following way.
For P € k[x1,...,x,], let

P=> Rf
i>0

be the decomposition from Proposition 9.1.3.12, i.e. R; is an f-reduced ele-
ment of k[z1,..., ] for each i > 0. We then define 1%, r?ﬂ, r]f], and g} for
7 > 0 as follows.

r;(P) =R, r?j(P) = Zr;(P)fi r;j (P) = Z r}(P)fl
i=0 i=0
GP) = 3 r(P) - o

If j < 0, then we define r}', rfgj, and ijj to map P to 0, and define
qp(P) =P f7.
9.1.3.5. Properties of remainders

In the following proposition we collect a number of useful properties of the
maps from Definition 9.1.3.14.

Proposition 9.1.3.15. Assume MonOrdMonicPoly. Then the following hold
for eachi,j >0 and P,Q € k[z1,...,z,)].

(1) rjc(P) is f-reduced.
(2) P=g(P)- f +157(P).
(3) rjc, r?j, rjfj, and qi} are k-linear.

(4) TH(P f) = v} (P) and Gy(P - f) = ;7 (P).
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(5) T3P+ Q) = Tappeny 3 (14(P) - 75(Q)).

(6) ai(4}(P) = a7 (P). ©

Proof. Proof of claims (1), (2), and (4): Clear by definition.

Proof of claim (3): Follows immediately from uniqueness of the decompo-
sition in Proposition 9.1.3.12, as k-linear combinations of f-reduced polyno-
mials are again f-reduced.

Proof of claim (5): First note that both sides are k-linear in both P and Q.
It hence suffices to consider the case P = R- f¢, Q = R’ - fe/ with f-reduced
polynomials R and R’ and nonnegative integers e and ¢’. In this case we can
read off

R ifb=e R ifc=¢
r?(P) :{ ) and r$(Q) :{ )

0 otherwise 0 otherwise

a+b+c=j

which is equal to (P - Q) = r}(RR'f*+') by (4).
Proof of claim (6): This follows from the previous claims, as in the following
calculation.

= qf (qﬁé(P)> +0 O

As rjc, r?j, rfj, and qu are k-linear by Proposition 9.1.3.15 (3), we can
extend their definitions as follows.

Convention 9.1.3.16. Assume MonOrdMonicPoly. Let M be a (graded) k-
module. Then for any integer j we obtain a morphism of (graded) k-modules

rh @k idar: K[z, ... 2n) @) M — k2, ... 20] @) M (9.1)

which we will also call rf Similarly for rf ,rf , and qf &

A strict model for HHjyq of medium size
In this section we will give a description of a strict mixed complex that rep-

resents HHyixed (K[Z1, ..., 2,]/f) as an object of Mixed under assumptions
MonOrdMonicPoly and Conjecture D for f.
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We will start in Section 9.2.1 by showing that k[z1,...,z,] satisfies the
necessary conditions as a module over k[t] in order to apply the more general
result Proposition 8.3.0.1 on a strict mixed complex representing HHygixed
of quotients. In Section 9.2.2 we will then spell out Proposition 8.3.0.1 spe-
cialized to HHogixea (k[21, - .., zn]/f). While there is an obvious basis of the
resulting strict mixed complex, that basis is not well adapted to further sim-
plification steps that we will want to do in later sections. We thus describe a
new, more useful, basis in Section 9.2.3.

9.2.1. k[zy,...,z,] as a module over klt]

In this short section we show that multiplication with f acts on the com-
mutative k-algebra k[zq,...,z,] in a way that satisfies the requirements to
apply Proposition 8.3.0.1.

Proposition 9.2.1.1. Assume MonOrdMonicPoly. Then the subset

{o7| T ento 7 #degah) } (9.2)
of k[x1,...,x,] is a basis of k[x1,...,x,] as a right-k[t]-module, where t acts
by multiplication with f. In particular, klx1,...,x,] is free as a right-k[t]-
module. v

Proof. The sub-k-module of k[z1,...,z,] spanned by z* for 7 # deg<(f)
is a basis of the sub-k-module of f-reduced polynomials, so it follows from
Proposition 9.1.3.12 that (9.2) generates k[z1, ..., z,] as a right-k[t]-module.

For linear independence, assume that p+ are elements of k[t| for each
i e Z%, such that 7 # deg~(f), with all but finitely many p zero. We can
write p7 as p7 = ijo a77jtj, with a7 ; elements of k, all but finitely many

(for fixed 7) zero. Furthermore, assume that the following holds.

i, Y
Z z Zam‘f =0
TEZZOv j=0

?zdegj (f)

Then the uniqueness part of Proposition 9.1.3.12 implies

E a7 ;% 0
i €LY,

'T}_Ldegj (f)

for every j > 0, but as the z are k-linearly independent, this implies that
all a7 ; are zero. O

Proposition 9.2.1.2. Assume MonOrdMonicPoly. Then k[xi,...,x,] is
cofibrant as an object in RMody)(Ch(k)), where t acts by multiplication with
I Q
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Proof. As klx1,...,zy] is free as a right-k[t]-module by Proposition 9.2.1.1,
this follows from Theorem 4.2.2.1 (5) and [Hov99, 2.3.6]. O

9.2.2. A strict model for HHyiyeq

We can now specialize Proposition 8.3.0.1 to obtain a first strict mixed
complex Xy that represents HHntixea (k[z1,. .., 5]/ f). While the result is
conditional on Conjecture D holding for f, we can construct Xy in greater
generality.

Construction 9.2.2.1. Assume MonOrdMonicPoly. We will construct a
strict mixed complex X;. As a Z-graded k-module®, X is given by

Xy =klz1,...,zn) @ A(dzy,...,dz,) @ A(s) @ T'(d s)

with z1, ..., 2, of degree 0, dx1,...,d x, and s of degree 1 and d s of degree 2.
The boundary operator 0 and differential d are given by k-linearly extending
the following formulas for i € Z%,, € € {0,1}", and m > 0.

8(33de?sds[m]> = (—l)l?lefdx?ds[m]
—(-)l€lz Tdz® df-sdsm1

8(3@ dz°© ds[m]> —(-1)€lg Tda® dfdstm=1

d(m dz* sds[m]) d(x )dx sdsim

+(-Dl< I(m—i—l)x?dx?ds[m“]
d(a:de?ds[m]) = d(a:i)dz?ds[m]

In the formulas above, d applied to elements of

klzy,...,zn] @ A(dz,...,day,)

is defined as in Qf, ,xn]/kg, and d sl is to be interpreted as zero.

To see that 0 and d as defined really upgrade Xy to a strict mixed complex
we need to check that 9 and d square to 0, and that dod+dod = 0 holds. We
check all of these on basis elements. Using that d f - d f = 0 in the Z-graded
k-algebra underlying X; we obtain the following calculations for = 7%,
€ €{0,1}™, and m > 0. -

8(8 (xT dz%sd s[m}))

= 8((71)|?‘x7fdx?ds[m] - (fl)l?‘x‘[dx?df . sds[m*”)

8We will use the structure of a commutative Z-graded k-algebra on Xy to write down
elements, but X itself is only considered as a strict mixed complex.
980 extending from d(z;) := d z; using k-linearity and the Leibniz rule.

566



9.2. A strict model for HHytixeq of medium size
_<_ )I?I(_ )‘?‘fodx?dfds[m_l]
( T+, 7 fdzdfdsm 1])
( D+ T qgTdf.df-sdsme 11)

=z fdatdfdsm V42 fdadfdsm -0
=0

o}

Using that d squares to 0 in Q;[xl

(a7 ax7easm)

- ( (”“" dz* Sds[m]+(—1)‘?‘(m+1)x7dx?ds[’"+ﬂ)

,,,,,

d(d (gf dz%d s[ml))
d(d(ﬁ) dx?ds["ﬂ)

d(d(ﬁ)) Az d s
0

Finally, using that d satisfies the Leibniz rule on Q;[zl zn]yk W can carry
out the following calculations showing that dod +dod = 0.

(“)(d(dex?sds[m])) +d(a<m?dx?sds[m]))
= a(d(xT) dz€sdsl™ + (fl)l?l(m + l)x‘[dx?ds[m“])

+ d((—l)‘?lefdx?ds[m] - (—1)‘?|x7dx?df . sds[mfl])
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= (=1l d(xT)fdx?ds[m] — (=€t d(x7> dz€df sdsm U
Fl =) F i+ )27 da® dfds
“la(a” ) daTast
d(x?dx?df) ~sds[’”_1])
(—D)/FH oy, m‘{dx?dfds[m]>
S—— d(a:T)fdx?ds[m] +(=1)/F d(a;?) dz€df-sdsmU
—(m+ 1Dz dz®dfdsm
+ (=) a(eT) - fdaTdst 4+ (-1l a(f)da” st
- (—1)l?ld(x7) da®df-sds™ V4 ma’ da®dfdsm
= —(m+ 1Dz’ da®dfdst™ + (=1)/Flz7 . d(f)da® dsm
tmzt de®dfds™

= —(m—l—l)a:?dx?dfds[m] —&—x?dx?dfds[m] +mdex?dfds[m]
=0

8(d(x?dx?ds[m]>> -I-d(@(x?dx?ds[m]))
= 3(d(x7) dm?ds[m]> _ (_1)\?\ d(:U?dx?dfds[m—l])
= —(=1)let d(ﬁ) dz€dfdstm=1_ (*1)‘?|d(:p7) dz%d fdsmy

=0

Note that as X is free as a Z-graded k-module, it follows from [Hov99,
2.3.6] that the underlying chain complex of X is cofibrant. &

Proposition 9.2.2.2. Assume MonOrdMonicPoly and that Conjecture D*?
holds for f. Then there is an equivalence

HHtixed (K[21, -, Zn] /(f)) = Mixed (X )
in Mixed, where Xy is as in Construction 9.2.2.1. Q

Proof. This is a specialization of Proposition 8.3.0.1 for R = k[z1,...,2,],
the z; from Proposition 8.3.0.1 being f and the n from Proposition 8.3.0.1
being 1. The requirement on R was verified with Proposition 9.2.1.2. That

10Note that Conjecture D holds if n = 1 or n = 2 with 2 invertible in k by Proposi-
tion 7.5.3.1.
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Conjecture D holds for f yields a commutative diagram

HHixea (k) ——————— Alg(’YMixed)<Q;/;€>
HHorgixed (G) Alg(wied) (281, )
HH e (k[E]) ——=—— Alg(iees) (24 (*)
HH tixced (F) Alg(ywicea) (2 1)
HHgicea (K[X]) ——=—— Alg(mied) (11

in Alg(Mixed) such that the horizontal morphisms are equivalences. We can
use the top square as the one witnessing Conjecture C for Proposition 8.3.0.1.

Naturality of the identification at the start of Section 7.1 yields a commu-
tative diagram

k] @ A(dt) —— k[z1,..., 2, @ A(dxy,...dx,)

o o

Q

Rtk a1l

in Alg(Mixedcof) with the vertical morphisms the isomorphisms from Sec-
tion 7.1 and the horizontal morphisms induced by ¢ + f. Combining this
with the bottom square in diagram (*), we obtain a commutative diagram as
follows in Alg(Mixed)

Alg(yMixed) (k[t] @ A(dt)) — Alg(YMixed) (K[T1, .- 2n] @ A(d 2y, ..., dxy))

~ ~

Alg(YMixed) (Q;M/k> ——————— Alg(Mixed) (Qﬁ[xl,...,xn]/k)

~ ~

HHMixed(k[t]) HHMixed(k[3717 e ,l’n])

where the left column is precisely (8.9), and the horizontal morphisms are all
induced by t — f. Letting M be k[z1,...,2,] ® A(dzq,...dx,), as a right-
klt] ® A(dt)-module in Mixedeof, with the module action arising from the
above morphism of algebras, M thus satisfies the requirements for applying
Proposition 8.3.0.1. O
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9.2.3. A basis for the strict model
In this section we describe a new basis for
kElz1,...,xn] @ A(dxy,...,dz,) @ A(s) @ T(d s)
in which the formulas for 9 and d will take a form that will make it easier to
construct smaller strict models in later sections.
9.2.3.1. Interaction of q} with d and multiplication

We will need two small results on the interaction of q} and qj% with products
and the differentiation.

Proposition 9.2.3.1. Assume MonOrdMonicPoly. Then the following hold
for P and Q elements of the strict mixed complex

klzy, ..., zn] @ A(dzy,...,dx,)
(see Section 7.1).
(1) If P is f-reduced, then d P is f-reduced as well.

(2) ~q}(df-dP)=gH(d [ qh(d [ P)) +d(gh@d [ - P))
() 3(PQ) = g} (P-a}(Q) + ¢ (P-19(Q) ©

Proof. Proof of claim (1): Tt sufﬁceb to consider the case P = ¢ for i € Z>o

In this case, dP =" i;2" =% and the claim follows from i - €; < Q.
Proof of claim (2): By deﬁnltlon we have

df-P=f-qpdf-P)+rydf-P)
so that applying d yields the following.
—df~dP:df-q]lc(df-P)+fd(q}(df-P)) —i—d(r(}(df~P))
We can now apply qjlf, to obtain the following.
—qp(df-dP)=qp(df-qp(df-P)) +qp(fd(gp(d f-P)))
+a(d(rF(d - P)))

r9(d f - P) is f-reduced, so the third summand is zero by (1). We use Propo-
sition 9.1.3.15 (4) for the second summand.

=qp(df-qp(df-P))+d(gp(df-P))

Proof of claim (3): By definition of q]lc and r?c, the following holds.

Q=q;(Q) f+75(Q)
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9.2. A strict model for HHytixeq of medium size

We can now multiply with P on the left.

PQ=P-q;(Q) f+P-15(Q)

Applying q]% and using Proposition 9.1.3.15 (4) on the first summand on the
right hand side we obtain the following.

i} (PQ) = q;(P-45(Q) + a3 (P - r}(Q)) m

9.2.3.2. The basis

Definition 9.2.3.2. Assume MonOrdMonicPoly and let m be an integer.
We define two k-linear maps

cltml. Elxt, ..., 20 @ A(dxy,...,dxy,)
= k[z1, ..., 2, @ A(dxy,...,dz,) @ A(s) @ T(d s)
and
EM: klzy, ..z @ Aday,... day)
= klz1, ..., 2, @ A(dxy,...,dz,) @ A(s) @ T(d s)

as follows. If m < 0, then we let Cl"™ and E[™ be constant with value 0. If
m > 0, then we define them as follows.

Cclml(g) == sgd s
EM(g) = gds™ + sqj(d - g)d st = gd st 4+ " (gj(d £ - g))

In the formulas above, we interpret d sl=! as zero.
Let J be the defined as

3 = { (7,[, ?, m) S ZTZLO X ZZO X {O,].}n X ZZO

P 7 deg- (f) }
and for (7,1, €,m) € g, define 71 zmand ey = as follows.

= O] (achl dx?) = sfol dz € dsi™

€T em
€T 1 Tm = Em (x7fl dx?>
=o' flazT sty o (gh(af 2T aeT)) 0
Proposition 9.2.3.3. Assume MonOrdMonicPoly. Then
{ CTLEm ‘ (7,1, €, m) € } U { €T 1 zm ‘ (T,Z, €, m) € 3}
s a k-basis for the Z-graded k-module
kElzy,..., 2] @ A(dz,...,da,) @ A(s) @ T'(d s)
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Proof. The set
{ds[m] ‘mEZZO}U{sds[m] ‘mEZZO}
is a k-basis for A(s) ® I'(d s), so there is a sum decomposition as follows.

klzy, ..., zp) @ A(dxy,...,dz,) @ A(s) @ T'(d s)

o~ @ Im(C[m]) ® @ Im(E[m])

m>0 m>0

As Cl™ and El™ are clearly injective for m > 0, it thus suffices to show that

{ 27 flda® | T €220, T # deg<(f),1 € Zzo, € € {0,1}" }
is a k-basis of k[x1,...,2,] ® A(day,...,dz,), which follows from Proposi-
tion 9.2.1.1. O

9.2.3.3. Description of boundary and differential

Proposition 9.2.3.4. Asssze MonOrdMonicPoly, recall the notation from
Definition 9.2.8.2, and let (i ,l,€,m) € J. Then the following formulas hold
in the strict mized complex Xy from Construction 9.2.2.1.

a(c?,z,?,m) =Tt em
) _[-pim (rg(df.ﬂdz?)) ifl=0
0 if1>0
d(QT,l,?,m> — glml (d(fol) da® & mq} (df ) fol) dz?)
+m =10 (g (af-rg(df 2t fdaT))) @

i,l,€,m

Proof. We start with 0(0* ) and obtain the following by reordering the

factors and applying the formula from Construction 9.2.2.1.
8(07,17?,7,1) = 8(51‘?]” dz € ds["”])
= 8((71)|?‘x7fldx?sds[m])
= (-1)/7! ((_1)\?‘x7fl+1 da® dsim]
- (—1)‘?‘33Tfl dz€df- sds[m_l])
= foH'l dz€dsl™ — x?fl dz€df- sdsm—1l
= x?fH'l dz € ds™ + sdfx?fl dz€dsm1
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9.2. A strict model for HHytixeq of medium size
If follows from Proposition 9.1.3.15 (4) that
qjlc(dffoHr1 dx?) = q?c(dfx7fl dx?) = dfx7fl dz €
C?,z,?,m))~
= arTflJr1 dz€ds™ + sq} (d ffolH da:?) d st

so that we obtain the following (continuing for J(

e_i.,l-‘rl,?,m

We next consider 8(67’l,?ym)_

o(e71m)

8( fldx ds[m]-l-sq <df x fldx )ds[m_l})
—(=1)! 6‘xzfldau‘s dfdsmu

+ (- 1)1+‘?‘8(q}(df~x7fldm?)sds[m_l]>

—(= 1) 6‘x;’fldas?dfds[m_l]

+ (=)D (q} (af-27raa®) astm

—q}(df-x?fldx?>df~s-ds[m_2]>
= (~as-a"faz” v qp(af a7 da?)f) astn

+ sdqulc (df : x‘{fl dx?) dstm=2

Before we continue with d(e7 ; = ,,), we carry out the following small calcu-
lation. l

q}<df- <fdf~foldx?+q}<df~x7fldx?)f>)
Using that d f squares to 0.

—qj(as-aqp(as a7 aa)y)
Applying Proposition 9.1.3.15 (4) to the outer gj.
:df~q}(df~x7fldx?)

Note that by definition we also have the following equality.

—df-zl fldz® +qf(df 27 fldz® )f——rf(df 2 fldz® )
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Continuing with d(e7 ; = ,,), we can plug in the above two calculations to
obtain the following.

3(€T,l,?,m)
——rp(af-aTftaaT)asm N —sqp(af e (ase T et ) astn
= —plm=1 (r?c (df . a:?fldx?))

It follows from Proposition 9.1.3.15 (4) that this is zero for [ > 0.
‘We now turn towards the mixed structure.

a(e71em)
—d(a7 flaa” sl 4 sqf(af a7 flaa)as)
—a(z7flaz"as)
+ (0" a(gp(af et faa)sdsino)
Applying the definition in Construction 9.2.2.1.
- d(fol) Az dsm
+ (0 a(gp(af et aaT) )sastn
+mg (df : fold:ﬁ) d slm]
- (d(:ﬁfl) da® +mg} (df : fol) dx?) d sm]
— sd(q}(df : ;ﬁfldx?)) d slm=11

Replacing the first summand by EI™ — Clm—1] (q} (df-—)) and the second

mfl].

summand by C!

— glm) (d(gﬁfl) dz® +mg} (df : x?fl) dx?)
_¢lm-1 (q}(df.d(ﬁfl) dx?+mdf.q}(df.x7fl) dx?))
o (afas-17r027)

— glml (d(gﬁfl) da® +mg} (df : x?fl) dw?)
— ¢lm-1] (q} (df : d(;ﬁfl dx?)))
—O[m’”(q}(mdf~q}(df~z7fl dx?))
~ctm(a(gp(af-a7frda?)))

N———
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We now apply Proposition 9.2.3.1 (2) for P = x?fl dz€ to the second sum-
mand.

=g (a(e" ) aa” +map(af 2t ) da”)
+Cll(gh(dfgp(af-aTfMda?)))
+ctm(a(gp(af-a’aa”)))
(5 (mds-ap(af a7 1) daT))
~ctmi(a(gp(as-aTr da”)))
=g (a(e" ) aa® s map(af-at ) da)
—(m-1ct (g (af-gf(as-a7 s da7)))

We apply Proposition 9.2.3.1 (3) to the second summand for P = d f and
Q=z"fda*

_ glml (d(fol) da? +mgk (df : aﬁfl) dx?)
— (m — 1)1 (q;(df df- x7fldx‘f’))
+ (m — 1)Ctm1] (q}(df : r‘;(df : ;ﬁfldx?)))
Finally, we use that d f squares to 0.
— glm) (d(:ﬁfl) dz® +mg} (df : fol) dx?)
+ (m — 1)Ctm1] (qfc(df : r?c(df : gﬁfldx?))) 0

9.3. A smaller strict model for the underlying
complex

Assume MonOrdMonicPoly and that Conjecture D holds for the poly-
nomial f. Then Proposition 9.2.2.2 shows that the strict mixed complex
X constructed in Construction 9.2.2.1 represents the Hochschild homology
HHtixed (k[21, . - -, 2]/ f). This strict mixed model is significantly “smaller”
than the standard Hochschild complex that we discussed in Section 6.3.1, but
we would nevertheless like to obtain an even smaller model.

There are two ways in which we can relax the problem in the hope of being
able to make progress on this. We could impose stronger conditions on f (so
make the result less general), or we could consider less structure. It is the
latter that we do in this section. Instead of asking for a strict mixed complex
representing HHytixea (k[21, . - ., 2n]/f) as an object in Mixed, we merely ask
for a chain complex representing HH(k[z1, ..., x,]/f) as an object in D(k).

975



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Such a chain complex was already given in [BACH], obtained by identifying
a decomposition of the normalized standard Hochschild complex!'! as a sum
of a small chain complex with a very large acyclic chain complex.

We will instead start from the chain complex Xy from Construction 9.2.2.1
and Propositions 9.2.2.2 and 9.2.3.4, and similarly show that a chain complex
isomorphic to the one obtained in [BACH] is a subcomplex and that the
inclusion is a quasiisomorphism. This gives a new, different proof of the result
in [BACH] (albeit requiring the additional assumption of Conjecture D, which
we only showed for n = 1 and n = 2, additionally assuming that 2 is invertible
in k, in Proposition 7.5.3.1).

We will describe the smaller model as a subcomplex of the complex X ; from
Construction 9.2.2.1 in Section 9.3.1, and then show that this subcomplex is
isomorphic to the one described in [BACH] in Section 9.3.2.

9.3.1. The smaller strict model as a subcomplex

In this section we define a subcomplex of Xy from Construction 9.2.2.1
and show that the inclusion of this subcomplex is a quasiisomorphism.

Definition 9.3.1.1. Assume MonOrdMonicPoly. Let
Xr=kl[z1,...,2n) @ A(dzy,...,dz,) @ A(s) @T(d 8)

be the strict mixed complex from Construction 9.2.2.1.

We then define the following sub-graded-k-modules of X, for every inte-
ger | > 0, where ¢+, -, and e7, -, are the basis elements defined in
Definition 9.2.3.2. S

Xji= @ kerpen Xa=@X Xia=@OXi

m

(7.0, %m)ed >l <l
I'=l
e ._ . e — e e ._ e
Xpi= @ kerpen Xinu=@Xi Xja=PXi
(70, €m)ed 11 r<i

&

Proposition 9.3.1.2. Assume MonOrdMonicPoly and let | > 0. Then the
following hold for the sub-graded-k-modules of the strict mized complexr Xy
from Construction 9.2.2.1 that were defined in Definition 9.3.1.1.

0(X51) € Xfuia

9(Xf0) € Xfo

(X5,) <0 ifl>0

1 See Section 6.3.1.5.
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In particular, X5, as well as the sum
Xi21® X7

are closed under the boundary operator and hence subcomplexes of Xy. Both
of these chain complexes are cofibrant, and X5 5, ® X5 5,4 is acyclic. Q@

Proof. The statement about the images of the differential follow immediately
from the description of 9 in Proposition 9.2.3.4.

That X5, and X§ ., ® X%, , are cofibrant as chain complexes follows
from [Hov99, 2.3.6], as they are concentrated in nonnegative degree and by
definition free as graded k-modules.

Finally, that X5 5, & X% 5, is acyclic also immediately follows from the
description of 0 in Proposition 9.2.3.4;

i i,'—1,¢€,m

€T Em 7 CT for (7,1’,?,771) €d, I'>1+1

i,

T v emt 0 for (?, U, €, m) €g,U'>1

defines a contracting homotopy, see Definition 9.2.3.2 and Propositions 9.2.3.3
and 9.2.3.4. O

Proposition 9.3.1.3. Assume MonOrdMonicPoly and that Conjecture D'?
holds for f. Then there is an equivalence

HH (k[a1, ..., 2]/ f) = 7(X$,)

in D(k), where X5 o is the cofibrant chain complex defined in Definition 9.3.1.1
and Proposition 9.3.1.2. v

Proof. It follows from Proposition 9.2.3.3 that, as a graded k-module, X
decomposes as the direct sum of X§ ; and X§ 5@ X§ ;. As both summands
are subcomplexes of X by Proposition 9.3. 1 2 with the latter chain complex
acyclic, it follows that the inclusion

X;,O — Xf
is a quasiisomorphism. We hence obtain equivalences
v(XFo) = v(Xy) ~ HH(k[z1, ... 24/ f)

in D(k), where the first equivalence is induced by the just mentioned quasiiso-
morphism, and the second equivalence is the one from Proposition 9.2.2.2. O

12Note that Conjecture D holds if n = 1 or n = 2 with 2 invertible in k by Proposi-
tion 7.5.3.1.
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9.3.2. A different description of the smaller model

In Proposition 9.3.1.3 we showed that the chain complex X7§ ; defined in
Definition 9.3.1.1 is a model for HH(k[z1,...,z,]/f) as an object in D(k),
assuming some conditions on f. As X¢ 0 Was deﬁned as a subcomplex of X
generated by some basis elements, it is shghtly unexplicit, and in this section
we give a somewhat more direct description of this complex. In particular,
our description will be nearly the same as the one in [BACH, 2.3 and 3.2]'3.

Construction 9.3.2.1. Assume MonOrdMonicPoly.
We let
p:k[zy, ...,z = Elxy, .. 2]/ f

be the canonical quotient map. Note that p is a morphism of k-algebras. If
M is a graded k-module, then we will also denote the morphism of graded
k-modules

pRidar: k[z1,...,20] @ M = klzy,...,25]/f QM

by p again.
Consider the commutative graded k-algebra

Elxy,...,zn]/f @ Alday,...,dz,) @ T(t)

with z; of degree 0, d z; of degree 1 and ¢t of degree 2. We define an operator
0 decreasing degree by 1 by extending the following formulas by k-linearity
and the Leibniz rule, where P € k[z1,...,2,]/f, 1 <i<n,and m > 0.

o(P) =0, d(dz;) =0, 8(t[m]) = —p(d f)t[m—l]

To show that 0 is well-defined we need to verify that the formula for 9(t")
is compatible with the Leibniz rule, so as for m, m’ > 0 we have

t[nL] . t[m/] _ (m + m/) t[’m—‘rm/]

m

we have to show that the following equality holds.

m— m’ m m’ — m+ml mam —
—p(d et gm) gl ”—( " )p(df)t[ ()

The left hand side is given by

—p(d f)t[m—l] gm'] _ 4lm] p(d f)t[mlfl]

3The complex constructed here differs from the one in [BACH] in the very minor detail
that our external generators are the the additive inverses of the external generators they
consider. We do this because we will in Section 9.5 also define a mixed structure on this
complex, and prefer the exterior generators to be given by d z; rather than —d z;.
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—p(d f) (t[m 1 4lm'] 4 4lm] .t[m’fl])

—p(d f)((m +m' — 1)t[m+m/—1] n (m +m' — 1>t[m+m’—l])
m—1 m

s0 (x) follows from (™™ =1) 4 (mFm=l) = (mAm)

Asd f-d f =0, the operator 0 squares to zero, and thus makes
klx1,...,zn]/f @ A(dz,...,dx,) @ T(t)

into a commutative differential graded k-algebra. It is isomorphic to the
one considered in [BACH, 2.3 and 3.2]'*, where it is shown that this com-
plex is quasiisomorphic to the normalized standard Hochschild complex for

Kz, . .. 3] /f.
Now let

o: X0 = klz1,. . zn]/f @ Adzy, .. day,) @ T(2)

be the morphism of graded k-modules defined on basis elements as follows.
‘P<67,0,E’,m) = p(;z:‘[) dz € ¢l for (7, 0,%€, m) ¥ &

Proposition 9.3.2.2. Assume MonOrdMonicPoly. Then the morphism of
graded k-modules ¢ from Construction 9.3.2.1 is an isomorphism of chain
complexes. Q

Proof. We first check that ¢ is compatible with the boundary operator. So
let the tuple (4,0, €, m) be an element of J.

w(a (67,0,z,m))
We first use Proposition 9.2.3.4.

= @(—E[mfu (7‘? (df . dex?)>) = —p(r?c (df . xT)) da¢m-1l

We can now use that p sends the ideal generated by f to 0 and hence satisfies
po r?c = p, and furthermore that p is multiplicative.

Ca{01 7)) ()

(o) 470) (o)

It now remains to show that ¢ is an isomorphism of graded k-modules. For
this it is enough to show that the restriction of the quotient map

p:klxy, ... xn] = k. zn]/f

14 As noted before, our description deviates in the signs of the external generators, but
this does not change the fact that the differential graded k-algebras themselves are
isomorphic, via an isomorphism from our complex to the one in [BACH, 2.3 and 3.2]
mapping ; to X;, dz; to —e;, and t[™ to t(™). .
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to the sub-graded-k-module of f-reduced polynomials is an isomorphism.
But this follows immediately from Proposition 9.1.3.10, which shows that
every element of k[z1,...,z,]/f has a unique f-reduced representative in
klxy,...,zp]. O

The following corollary alternatively follows easily from the main result of
[BACH], without requiring the assumption that Conjecture D holds for f.
Our approach gives a different, independent, proof for those cases in which
Conjecture D holds for f.

Corollary 9.3.2.3. Assume MonOrdMonicPoly and that Conjecture D?°
holds for f. Then there is an equivalence

HH(k[x1,. .., 20]/f) = v(klx1,...,20]/f @ A(dz, ..., da,) @ T(t))
in D(k), where
Elxi,...,z0]/f @ A(dxy,...,dz,) @T(t)
is the cofibrant chain complex defined in Construction 9.3.2.1. V)
Proof. Combine Proposition 9.3.1.3 with Proposition 9.3.2.2. O

9.4. Logarithmic dimension of polynomials

Assume MonOrdMonicPoly and that Conjecture D holds for f. In Sec-
tion 9.3.1 we constructed a subcomplex X%, of the strict mixed complex
Xy from Construction 9.2.2.1 such that the 1nclu51on is a quasiisomorphism,
which implied that X7 ; represents the Hochschild homology

HH(k[Z‘l, . 7$n]/f)

as an object of D(k).
We would like to show that the strict mixed structure on X restricts to
X% o, which would allow us to conclude that X% ; even represents

HHMixed(k[xla e ,Jﬁn]/f)

as an object of Mixed.

Unfortunately the formula for d we obtained in Proposition 9.2.3.4 is some-
what more complicated than those we obtained for 0 and it is not obvious
that X%, is closed under d. In particular, there is a term of the form

clm=1 (qfc (df . r?c (df zt dx?)>> (9.3)

that we would need to vanish, and there is no reason to assume this is always
the case. Indeed, the following example shows that this term can be nonzero.

15Note that Conjecture D holds if n = 1 or n = 2 and 2 is invertible in k by Proposi-
tion 7.5.3.1.

580



9.4. Logarithmic dimension of polynomials

Example 9.4.0.1. Let kK = Z, n = 2, and consider the following polynomial.
f=x120 — 23

If we let < be the lexicographic monomial order'®, then f is monic and of
degree (1,1).
We claim that

a7 (df-rp(df-at))
is nonzero, even though 2% is f-reduced. Let us calculate this step by step.
r? (df . x%) = r?c (33%372 dx; + x‘;’ daxy — Qﬁxg dasg)

To calculate for example 7“53- (x319) we start by writing 23wy = 21 f + 2123 and
then continue with z123 = 2o f + 3.

=ahda + 25 day — 225 d oy
We next need to multiply by d f, and obtain the following.

Applying ¢7 amounts to applying ¢} twice by Proposition 9.1.3.15 (6), so we
obtain the following.

G(df-r9(df-a?))
= g} (g} (e3ws — 223 — w10} + 223)) d 1 da
— (@4 orr ) ~2-(0)  (aF) +2- () dy
= qf (2} + 2122) day d wy
0+ 1) dzyday=dazydzs #0 o

The goal of this section is to describe a criterion for f that is easy to check
and that implies that terms of the form (9.3) that need to be zero for X§ ; to

be closed under d are indeed zero. For this we will generalize r?c(d frxtdz®)
to an arbitrary f-reduced polynomial R and ask what the largest integer i is
such that ¢ (d f - R) can be nonzero for an f-reduced polynomial R (with f
fixed). We will call this number the log dimension of d f to basis f and will
give an easy to check criterion that implies that this number is at most 1 in
Proposition 9.4.2.5 and Corollary 9.4.2.6.

We will start this section with Section 9.4.1, where we discuss the logarithm
for polynomials, before we turn towards the log dimension in Section 9.4.2.

1630 (i1,42) = (j1,42) if i1 < j1 or i1 = j1 and 42 < ja.
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9.4.1. Logarithm for polynomials

In this section we introduce a notion of logarithm for multivariable poly-
nomials and point out some basic properties and consistency results.

Definition 9.4.1.1. Assume MonOrdMonicPoly. We define a map
log;: k[z1,...,2n] = Z>0
as follows. For P an element of k[xy,...,z,], we let
logy (P) == maax({ i € Zsa | r5(P) £0})

and call log;(P) the logarithm to base f of P (with respect to the monomial
order < ). Note that the set over which we take the maximum is finite, as all
but finitely many summands in the decomposition from Proposition 9.1.3.12
are zero, so attains a maximum in Zx. &

Remark 9.4.1.2. Assume MonOrdMonicPoly and let P be an element of
k[z1,...,2,]. Then P is f-reduced if and only if log,(P) = 0. &

Remark 9.4.1.3. Assume MonOrdMonicPoly and that we are in the situa-
tion of Construction 9.1.1.11 and that deg_(f) is in the image of ¥. Let P be

an element of k[z1, ..., z,] and let f/ and P’ be the elements of &'[y1, - . . , Y]
corresponding to f and P under the isomorphism of Construction 9.1.1.11.
It then follows from Remark 9.1.3.11 that log (P') = log;(P). &

Proposition 9.4.1.4. Assume MonOrdMonicPoly and let P and Q be ele-
ments of k[x1,...,x,]. Then the following holds.

log (P + Q) < max({ log;(P),log,(Q) }) %
Proof. By Proposition 9.1.3.15 (3), Tj} is additive for every ¢ > 0, so if
(P + Q) # 0 for some i > 0, then at least one of 7%(P) and r%(Q) must be
nonzero as well. O
9.4.2. Logarithmic dimension for polynomials

Let f be an element of R, i.e. a real number bigger than 1, and let us
for a moment consider the logarithm function

logy: Ry = R

for the real numbers. This function satisfies a compatibility relation with
multiplication; if P and @ are positive real numbers, then

log;(P - Q) = log;(P) +log;(Q)

holds. In Section 9.4.1 we defined a logarithm for (multivariable) polynomials,
and we would like to better understand how the logarithm of products relates
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to the individual logarithms as well. The logarithm for polynomials does not
take real values, so to improve the analogy we should first replace log, with
the function

log,(x if log.(x) >0
log’f: Ryg — Z>o, T L s )J gr(®)
’ - 0 otherwise

so we round down the logarithm, but set it to 0 should it be negative. The
rounding destroys the precise property of the logarithm of a product be-
ing the sum of the logarithms, but as for any real number x it holds that
x —1 < |z] <z, we still obtain an inequality

logls (P) +logy(Q) < logy(P - Q) <logy(P) +log(Q) +1  (94)

for every P and @ in R.g.

If we now let f be an element of k[x1] that is a monic polynomial of positive
degree, and P and @ any elements of k[z1], then the analogue of (9.4) holds,
at least as long k is an integral domain. Indeed, for one-variable polynomials,
it is actually not difficult to see that

deg(P)J

tog; () = {deg(f)

from which the inequality

log;(P) +log;(Q) <log;(P - Q) <logs(P) +log,(Q) + 1

follows as long as k is an integral domain. The inequality

log;(P - Q) <log;(P) +log;(Q) + 1

holds for any commutative ring k. We can restate this as saying that the
expression

logf(P Q) — Ing(P) - Ing(Q) (9.5)

is bounded above by 1 as we let f, P, and @ vary.

Let us now consider multivariable polynomials and assume MonOrdMon-
icPoly. The first question we can then ask is whether (9.5) is still bounded
above while letting f, P, and @ range over k[x1,...,x,] with f satisfying the
assumptions in MonOrdMonicPoly.

Unfortunately, this is not the case as soon as n > 2. Consider the ex-
ample f = x1x9, with P = 27" and @ = 25, where m > 1. In this case,
log;(P) = log;(Q) = 0, but log;(P - Q) = m, so the value of (9.5) is un-
bounded if we let f, P, and @ vary.

However, if we fix f, then it is not difficult to find examples where the
value of (9.5) is bounded while letting P and @ range over k[z1,...,2,]. For
example consider f = x1. In this case the value of logf(P) is given by the
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highest exponent of x; appearing in the monomials of P, and the value of
(9.5) is bounded above by 0.

So we can instead ask, given fixed f, whether the value of (9.5), as P and
Q range over the elements of k[x1, ..., z,], is bounded above, and if so, what
the maximum value is. In this section we go one step further, and fix both f
as well as P, and consider the supremum of (9.5) when varying @, calling it
the log dimension to base f of P. In particular, we will establish a condition
that ensures that the log dimension of a polynomial is at most 1.

Definition 9.4.2.1. Assume MonOrdMonicPoly. For P an element of the
polynomial k-algebra k[z1,...,z,] we let logdim ;(P) be the element of the
set Z>o U {oo} that is defined as

logdim ¢ (P) := sup({ log;(P - Q) —log;(P) —log;(Q) | Q € k[z1,...,z,] })
and call logdim ;(P) the log dimension to base f of P. &

Remark 9.4.2.2. Assume MonOrdMonicPoly, that we are in the situa-
tion of Construction 9.1.1.11, and that deg~(f) is in the image of ¢. Let
P be an element of k[ry,...,z,] and let f’ and P’ be the elements of
k' [y1,...,ym] corresponding to f and P under the isomorphism of Construc-
tion 9.1.1.11. It then follows from Remark 9.4.1.3 and Remark 9.1.3.9 that
logdim , (P’) = logdim ,(P). &

Proposition 9.4.2.3. Assume MonOrdMonicPoly and let P € k[x1,...,xy]
be a polynomial. Then it suffices to consider f-reduced polynomials @Q in the
definition of logdim(P), i. e. there is an equality as follows.
logdim (P)
=sup({ log;(P- R) —log;(P) | R € k[z1,...,2,], R is f-reduced }) ©

Proof. For the moment let us denote the right hand side of the equality in
the statement by logdim;ed(P). The inequality 1ogdim}ed(P) < logdim ;(P)
is clear, so it suffices to show that logdim ;(P) < logdim}Ed(P) also holds.

So let @ be any element of k[xy,...,x,]. It suffices to find an f-reduced
polynomial R such that

log,;(P - Q) —log,(P) —log;(Q) <log;(P - R) —log,(P)
holds, which is equivalent to the following inequality.
logs (P - Q) —log;(Q) <log;(P- R)
For this, let us write @ as

Ing(Q)

Q= Y 1Qf

=0
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so that we obtain the following chain of inequalities.

Ing(P Q) — Ing(Q)
log;(Q)

= log; Z P- rf f —10gf(Q)

Using Proposition 9.4.1.4.

< max({ log (P - Tj(Q) fylo<i< log;(Q) }) —log;(Q)
Using Proposition 9.1.3.15 (4).
Q

< max ({ logf(P rf( ) + ‘ <i<lo gf(Q) 1) - log;(Q)
< max({ logf( -l (Q)) | <i <log,(Q) }) +log;(Q) — log;(Q)
= max({ log; (P - r} (Q)) |0<i<log,(Q)})

We can thus take R to be the f-reduced polynomial r} (Q), where the integer
0 <i <log;(Q) is chosen to maximize log; (P . r} (Q)) O

Proposition 9.4.2.4. Assume MonOrdMonicPoly, and assume furthermore
that the degree of f satisfies deg(f) > (1,...,1) and that f7 = 0 for any

i€ 7% such that 7 £ deg< (f), i. e. every variable divides the leading mono-
mial off and every monomial appearing in f divides the leading monomial.
Let P € Elx1,...,Tn] be an f-reduced polynomial such that Py = 0 for

every FR= VAS such that 7 % deg (f), i. e. every monomial in P divides the
lead monomwl of f.
Then logdim ;(P) < 1. Q

Proof. By Proposition 9.4.2.3, it suffices to show that for any f-reduced poly-
nomial () the inequality log, (P Q@) <1 holds. Usmg Proposition 9.4.1.4 we

can furthermore reduce to the case P = 27 with ] < deg.(f) and Q = xt
with 7 # deg-(f).
By Proposition 9.1.3.12 we can write the product P-Q =z7 %7 as

27tT = Ryf> + Rif + Ry (+)

such that R; and Ry are f-reduced polynomials, and Ry is any polynomial.
What we have to show is then that Rs = 0. We prove this by contradiction
and assume that Ry # 0. It then follows from Proposition 9.1.2.3 (4) that

2
(RQf )deg< (R2)+2deg<(f) 7& 0

so that it suffices to show that
J+i = (R
( )dcgj(Rg)—i-Z dcgj(f) ( 1f)degj(R2)+2degj ()

= (R0) deg_ (Ra) 42 des () = 0
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in contradiction to (x).
We start with (x7*° )dcg<(32)+2dcg<(f), which could only be nonzero if
the following equation would hold. h

7+ 1 =deg(Re) +2deg<(f)

However, as j < deg(f) we would then obtain

which would contradict 7 # deg(f). Thus (x7+7)deg<(R2)+2deg<(f) =0
must hold. N N
Next, if (R1f)geg  (Ry)+2deg_ (f) Were nonzero, then there would exist two

tuples @, b € 7% such that (Ri)g # 0 and f3 # 0 and such that the
equation B .
@+ b = degL(Ra) +2deg<(f)

holds. Using that, by assumption on f, the inequality b < deg< (f) must
hold, we obtain completely like in the previous case, with b taking the place
of j, that
a > deg<(f)
which contradicts the assumption that Rs is f-reduced.
Finally, that
(Ro)dcgj (R2)+2 dcgj f) =0

follows directly from Ry being f-reduced. O

Proposition 9.4.2.5. Assume MonOrdMonicPoly, and let P € k[z1,...,xy]
be an f-reduced polynomial. Assume that for every i€ 72 such that f7 #0
or Pz # 0 the following property holds: If 1 < j <n and deg-(f); # 0, then
7j < deg<(f);. In other words, we require that every monomial appearing
in f or P divides the leading monomial of f after setting those variables that

do not appear in the leading monomial of f to 1.
Then logdim;(P) < 1. Q@

Proof. Let {i{,...,i.} be the subset of {1,...,n} of elements for which
degj(f)i; =0, let {41,...,4;} be the complement, and let

o: {i1,...,ut —{1,...,n}

be the inclusion. Note that degj( f) is then in the image of ¥ from Construc-
tion 9.1.1.11. Denote by f" and P’ the elements of (k[z;; , ...,z ])[Tiy, ..., 74 ]
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corresponding to f and P under the isomorphism of Construction 9.1.1.11.
Note that by Proposition 9.1.3.5, f’ is monic and deg<(f) = ¢ (deg<(f"))
by Proposition 9.1.2.4. Then the assumptions on f and P then translate to
f" and P’ satisfying the assumptions required in Proposition 9.4.2.4. We can
thus conclude that logdim (P') < 1. As by Remark 9.4.2.2 we also have
logdim ;(P) = logdim, (P'), we are done. O

Corollary 9.4.2.6. Assume MonOrdMonicPoly, and assume that f satisfies
the property required in Proposition 9.4.2.5.
Then for every 1 < i < n the partial derivative %f satisfies the property

required of P in Proposition 9.4.2.5, and so logdlmf( of ) < 1. In particular,
qf(df P) =0 for every f-reduced polynomial P. v

Proof. Every monomial in % divides a monomial in f. O
J

Notation 9.4.2.7. Assume MonOrdMonicPoly. Then we define logdim ¢(d f)
as follows.

logdim,(d f) == max({ logdim (88;8) ‘ 1<i<n })

In particular, using this convention the conclusion of Corollary 9.4.2.6 can be
phrased as logdim;(d f) < 1, and logdim,(d f) < 1 implies q?(df -P)=0
for every f-reduced polynomial P. O

9.5. A smaller strict model for the mixed
complex

Assume MonOrdMonicPoly and that Conjecture D holds for f. As was
already discussed in the introduction of Section 9.4, we would like to show
that the strict mixed structure on Xy from Construction 9.2.2.1 restricts
to the subcomplex X%, that we constructed in Section 9.3.1, which would
allow us to conclude that X§ , even represents HHotixed (k[21, - .., 20]/f) as
an object of Mixed.

The work of Section 9.4 now allows us to concisely state a condition on
f that implies that the strict mixed structure restricts like that, namely the
condition logdim (d f) < 1. We show that this indeed implies that the strict
mixed structure of X restricts to X% %o in the short section Section 9.5.1.

In continuation to Section 9.3.2, in Wthh we gave a different (independent
from X) description of the chaln complex X%, by constructing an isomor-
phism between X?,o and a chain complex with underlying graded k-module

klz1,...,zn]/f @ A(dz,...,dz,) @T(t) (9.6)

we will upgrade that isomorphism to an isomorphism of strict mixed com-
plexes in Section 9.5.2.
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9.5.1. Restricting the strict mixed structure

Proposition 9.5.1.1. Assume MonOrdMonicPoly and logdim,(d f) < 1.
Then the strict mized structure of Xy from Construction 9.2.2.1 restricts to

the subcomplex!” X5o- Thus the inclusion Xio—>Xpisa quasiisomorphism

of strict mized complezes. Q@

Proof. That the inclusion X¢ f0 — Xy is a quasiisomorphism was already
shown in Proposition 9.3.1.3, so it suffices to show that X¢ 0 Is closed under
d. Unpacking the definition of X§ , and using the formula for d obtained in

Proposition 9.2.3.4 this means that we need to show that for 7 * degj(f),
€ € {0,1}™ and m > 0 the element

d(ezoz,m) = g™ (d(rﬁ) dz € +mg} (df : x7) dx?)
+ (m — 1)ctm1 <Q?<df~r?(df'z7dz?))>

Is again in X7 ;. For this it suffices to show the following.

(1) d(:rT) is f-reduced.

(2) 4} (df . z7> is f-reduced.
(3) ¢f(df-R)=0if Ris f-reduced.

Claim (1) follows immediately from Proposition 9.2.3.1 (1), claim (2) follows
from logdim(d f) < 1 with Proposition 9.1.3.15 (6), and claim (3) follows
from logdim(d f) < 1. O

9.5.2. An alternative description of the smaller strict
mixed model

We can now transfer the strict mixed structure on X§ ; via the isomorphism
of chain complexes ¢ from Construction 9.3.2.1 and Proposition 9.3.2.2. We
first describe the resulting d, and then show that ¢ is compatible with it.

Construction 9.5.2.1. Assume MonOrdMonicPoly and logdim(d f) <1
Recall the commutative differential graded k-algebra

klz1,..., 2]/ f @ A(dwy,...,de,) @ T(t) (9.7)

as well as the morphisms p defined in Construction 9.3.2.1.

17See Definition 9.3.1.1 for the definition and Proposition 9.3.1.2 for being a subcomplex.
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We will define a k-linear operator'® d that increases degree by 1 on (9.7)
by

d(p(P)da“t") = (p(a(r§(P))) +mp(gp(d £ -15(P)))) da "t (9.8)

for P € k[z1,...,2,], € € {0,1}", and m > 0. Note that 7‘53 is zero on the
ideal generated by f, so d as defined above is well-defined. &

Proposition 9.5.2.2. Assume MonOrdMonicPoly and logdim(d f) < 1
Then the isomorphism

o X0 = klz1,. . zn]/f @ Adzy, .. day,) @ T(2)

of chain complezes from Construction 9.53.2.1 and Proposition 9.3.2.2 is com-
patible with the operators d defined on either side. In particular, d as defined
in Construction 9.5.2.1 on the codomain defines a strict mixed complex struc-
ture on

klx1,...,z0]/f @ A(dz1,...,dx,) @T(F)
and this strict mized complex is isomorphic as a mized complex to X5 o- Q

Proof. Using the description for d on X7, obtained in the proof of Proposi-
tion 9.5.1.1, we obtain for # deg.(f), € € {0,1}" and m > 0 the following

go(d(e;:o)?’m)) (E (d(x7)dx?—i-mq}(df-x_{)dx?))
() ol o)) i
(a(5(=7))) + me(ar(a 173 (a7))) ) a7
(p(=7) ax7e")

=d(¢(c70m)) .

We can now put everything together to obtain the main result.

(v
(v

Proposition 9.5.2.3. Assume MonOrdMonicPoly and logdim (d f) < 177,
Furthermore assume that Conjecture D?° holds for f.

18We will later show that under the isomorphism ¢ this operator agrees with the d that is
part of the strict mixed complex structure on Xf o» S0 that the operator d defined here
defines a strict mixed complex structure will then be automatic.

9Recall from Corollary 9.4.2.6 and Proposition 9.4.2.5 that this holds in particular if for
every S VAQ %0 such that f- # 0 the following property holds: If 1 < j < n and

deg<(f); # 0, then zJ < deg<(f);-
20Note that Conjecture D holds if n = 1 or n = 2 and 2 is invertible in k& by Proposi-
tion 7.5.3.1.
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Then there is an equivalence

HHMixed(k'[xlv ey J)n}/f)
~ P)’Mixed(k:[xla e 7.Tn]/f®A(d$1, .. ,dxn) ®P(t))

in Mixed, where
klxy,...,xn]/f @ Aldxy,...,dz,) @ T(¢)

is the mized complex described in Construction 9.3.2.1, Construction 9.5.2.1,
and Proposition 9.5.2.2. Y%

Proof. Combine Proposition 9.2.2.2 with Proposition 9.5.1.1 and Proposi-
tion 9.5.2.2. O

Proposition 9.5.2.3 is the last missing piece to prove Theorem A that was
stated in the introduction.

Proof of Theorem A. Combine Proposition 9.5.2.3 with Proposition 7.5.3.1
and Corollary 9.4.2.6. O

9.6. On the quasiisomorphisms constructed by
the Buenos Aires Cyclic Homology Group

Assume MonOrdMonicPoly and let A := k[z1,...,2,]/f. In [BACH], an
A ® A-free resolution Rs(A) of A is constructed, together with morphisms of
A ® A-chain complexes

h: Ry(A) = C U (4)  and  g: C ' (A) — Ry(A)

where GBM(A) refers to the normalized bar construction that relates to the
bar construction defined in Construction 6.3.2.1 as the normalized standard
Hochschild complex relates to the standard Hochschild complex; in chain
degree n > 0 the complex GBM(A) is given by A®(A/k-{1})®*"®A. It it shown
in [BACH, 2.5.11] that g and h are mutual homotopy inverses. Tensoring over
A ® A from the left with A one then obtains quasiisomorphisms?!

h: Ry(A) — C(A) and  g: C(A) = R,(A)
so that v(R,(A)) ~ ~(C(A)) in D(k). By Propositions 6.3.1.10 and 6.3.4.1 the
chain complex R;(A) is thus a strict model for HH(A) as an object of D(k).
As was remarked in Section 9.3.2, the chain complex R (A) is isomorphic
to the chain complex k[z1,...,2,])/f ® A(dxy,...,dz,) ® ['(¢) described in

21 Compare with Proposition 6.3.2.4 for the identification C(A) 2 A ® a4 GBM(A).
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Construction 9.3.2.1. Corollary 9.3.2.3 could thus also be deduced directly
from the results of [BACH].

The question now arises whether one could similarly give an alternative
proof of Proposition 9.5.2.3 and Theorem A, perhaps even without requiring
the assumption that Conjecture D holds for f and that logdim (df) <1, by
showing that § or h can be lifted to a morphism of strict mixed complexes,
and using that the normalized standard Hochschild complex C(A) represents
HH\tixed (A) even as an object in Mixed by Propositions 6.3.1.10 and 6.3.4.1.

The following two propositions show that this is in general not possible;
there is in general no strict mixed complex structure on R,(A) that makes g
or h into a morphism of strict mixed complexes. The counterexamples we use
are f = zyxoxs for g and f = x1x4 for h. Note that both of these polynomials
satisfy logdim(d f) <1 by Corollary 9.4.2.6.

This leaves open the question of whether it is possible to prove that g or
h can be upgraded to a strongly homotopy linear morphism of strict mixed
complexes (see Section 4.2.3). This is what the author tried originally for
f = zizoxs, but without succeeding. The amount of data required for the
higher homotopies combined with the complicated definitions of g and h may
make this infeasible as n gets large.

In the rest of this section we will assume that the reader is familiar with
the definitions and notation from [BACH]. We will however deviate from the
notation from [BACH] when we have already established notation for the
same thing. In particular, if P is an element of k[xy,...,x,], then we will
write ¢f(P) rather than P used in [BACH, 2.2.1], and we denote by P the
residue class of P in A/k - {1}, as in Proposition 6.3.1.10. We will denote by
@ the morphism A ® 44 ¢, with ¢ as in [BACH, 2.5.1].

Proposition 9.6.0.1. Let f = z12923 and A = klx1,xo, 23]/ f. Then there
is mo strict mized structure on Rg(A) such that G is a morphism of strict
mized complexes. Q

Proof. If § were a morphism of strict mixed complexes, then the following
equation would need to hold.

d(g(zors @ T1 ©T2)) = g(d(2273 © T1 © T2))

However, we will show that this is not possible no matter what the strict
mixed complex structure on R4(A) is, as g(zoxrs @ T @ T3) is already zero,
making the left hand side zero, while the right hand side is nonzero.
We begin by showing that g(zexs ® Tr ® T3) = 0. We begin with the defi-
nition of ¢ from [BACH, 2.5.4].
(2223 @ TT ® T3)
= 22237, (1 @ T1 ® T3)

= za3 <q}(x1wz)go(1) Wit (1)) By, ®~Tl®f€2)€m2>

11 <12
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q} (z122) = 0, so the first summand vanishes. We plug in the definition of @
from [BACH, 2.5.1].

= w13 - (— > (@,,10TTeT) + 7, (19T ® x2))ei1h>

i1 <12

({91'1 81'2 —1 P —_—
= Tox3 - ( ; (axiz . e + Piyi, (1 @TT @ 7T2) ) €44,
11 <12

The first summand can only be nonzero if both i = 1 and i; = 2, but this
does not actually occur as i1 < is.

= XT3 <— > (@ ®xl®x2))ei1i2>

i1 <ig
dq} (w122)
(2 (225 ).
11 <12 2

This is zero as qj(z122) = 0.
It remains to show that g(d(zex3 ® T1 ® T3)) is not zero. We begin by
evaluating d(zex3 ® Ty ® T3) using Proposition 6.3.1.10.
93(d(z223 ® T1 ® T3))
=0(10TT3 T @ T + 1 QT1 @ Ty @ ToZs + 1 @ Ty ® Talz @ T1)
=— (qjlf(xl-’fﬂs)%(l ®T3) + qf(2122)7, (1 ® T273)
+ qjlc (z325)7,(1® :1371)) [}
+ (301 (1 ® T3T3 @ T @ T3) + Papy (1 © Tt ® T3 @ TaT3)
+ P321(1 ® T3 ® T2T3 ® 71)) - €123
We have three elements to which P39, = Pag; + Pae; is applied. The $9y;

component is zero for all three terms; for the first one because gif =0, for

Oxs __
8$3 -

Omy _

the second one because e

=-05,(1®7z) Bt
+¢éQl(1 & TaT3 ®«T71®$72) * €123

0, and for the last one because

+ Pl (1 © TT ® T3 ® T2T3) - €123

+ P31 (1 @ T3 ® T2T3 @ T1) - €123
The definition of $3,; has a factor that is a partial derivative of qjlc of the
product of two neighboring tensor factors. q} of such a product can only pos-
sibly be nonzero if we multiply the first two tensor factors in 1@T22307%T1 QTo
or the last two in 1 ® T3 ® Tax3 ® T1. In both cases the product is 12223,

so that the value of q} will be 1. Forming any partial derivative then yields
zero.

=-5,(1®z) Mt
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=(P1(1®T2) e1+P(1®T2) e2 +P3(1®T2)  e3) Mt
Oz Oz Oz

= (== =2 22 e ) Wt
(ax1 Ut s 2 Bz

= e2t D

Proposition 9.6.0.2. Let f = z123 and A = klx1,z2)/f. Then there is no
strict mized structure on Rgs(A) such that h is a morphism of strict mized
complexes. Q

Proof. If h were a morphism of strict mixed complexes, then the following
equation would need to hold.

R(d(z1t)) = d(R(:t))

However, we will show that this is not possible no matter what the strict
mixed complex structure on Ry(A) is, as d(h(z1t)) does not lie in the image
of h.

We begin by calculating h(t), for which we have the following by [BACH,
After 2.4.5, 2.2.4 (g), and 1.1].

Ty(z122)

=€ (Tl(zle) (lez1el) - T(z2)

Tl (1®x2®1)>
=e(-1®22)107101) — (110 1)(1T2®1))
=e(-(19TT@x2) — (11 ®T2 @ 1))

191TI®r) - (17T ®T3® 1)

=-(107107:2® 1)

\
a

We can thus conclude the following for h(t).
ht) =107 QT
We can now evaluate d(ﬁ(xlt)) as follows, using Proposition 6.3.1.10.
d(f(e1t))

= —d(21 ® T ®T3)
=l RTRE - 10T BT — 1O QT @ TT

Note that C3(A) is a free k-module that has a basis that is given by elements
of the following form.

' @xi @ xi2 @ a3 for 1,71, 72,53 € Z2>0

such that 7, j1, jas j3 # (1,1) and J1.da.ds £ 0
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Chapter 9. Hochschild homology of certain quotients of polynomial algebras

We can define a submodule J spanned by the basis elements of the above
form such that there exist 1 < a < b < 3 such that j, = (1,0) and j, = (0,1).
In other words, J is spanned elements in which two of the last three tensor
factors are z; and xo, and appearing in that order. Note that d(h(z1t)) is a
linear combination of three basis elements of C3(A), and while the first two
lie in J, this is not the case for 1 ® T3 ® T1 ® T1. This implies that d(h(z1t))
does not lie in J, so it suffices to show that the image of hs is a submodule
of J. _ _

Rs(A)s is generated by elements of the form x%e;t with i € Z2, and
j € {1,2}. The image of h3 is thus generated by elements of the following

form, using Propositions 6.3.2.10 and 6.3.2.11.

Eg((ﬂ?ejt)
=z (-107) (1T ®7T3)
=z QT TR~z QT QT QT +1' QT QT ®T;

This shows that the image of hs is contained in .J. O

9.7. On a question of Larsen

Let n be a positive integer and f an element of k[z1, ..., z,] that is monic
and of positive degree when considered as a polynomial in the single variable
x1 with coefficients in k[zg, ..., 2,]. Then Larsen constructs in [Lar95, 2.11]
a strict mixed complex and asks the question whether it gives the cyclic
homology of k[z1,...,z,]/f, having answered this question in the affirmative
for n = 2 in [Lar95, 2.10].

In the n = 2 case, what Larsen actually shows is that there is a strongly
homotopy linear?? quasiisomorphism from the strict mixed complex Larsen
constructs to the normalized standard Hochschild complex. As the normal-
ized standard Hochschild complex as well as the strict mixed complex Larsen
constructs are bounded below, it follows from [Kas87, 2.3] using the argument
of the proof of [Kas87, 2.6] that this strongly homotopy linear quasiisomor-
phism induces an isomorphism of cyclic homology groups.

By Remark 4.4.4.2, the strongly homotopy linear quasiisomorphism con-
structed by Larsen induces an equivalence in Mixed, and as the normalized
standard Hochschild complex represents Hochschild homology as a mixed
complex by Propositions 6.3.4.1 and 6.3.1.10, this implies that Larsen’s strict
mixed complex represents the Hochschild homology HHtixea (k[21, 2]/ f) as
an object of Mixed. Applying [Hoyl18, 2.1, 2.2, and 2.3] this in turn also
implies the statement regarding cyclic homology groups, without invoking
[Kas87, 2.3].

22See Definition 4.2.3.1 for a definition. The definition stated in [Lar95, 1.4.1] differs slightly,
likely due to a mistake, see a discussion in Remark 9.7.0.1.
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Using Corollary 9.4.2.6 it is easy to see that the conditions stated at the
start of this section for f imply that logdim(d f) < 1. If we assume that
Conjecture D holds for f, then Proposition 9.5.2.3 will thus provide a strict
mixed complex representing HHyixed (k[Z1, - - ., Tn]/f) as an object of Mixed.

We claim that the strict mixed complex

klzy, ..., zn]/f @ A(dxy,...,dx,) @T(t)

used in Proposition 9.5.2.3 and described in Construction 9.3.2.1, Construc-
tion 9.5.2.1, and Proposition 9.5.2.2 is in fact isomorphic as a strict mixed
complex to the strict mixed complex constructed by Larsen in [Lar95, 2.11],
so that proving Conjecture D will result in an affirmative answer to Larsen’s
question. This is essentially clear if one understands both definitions, but due
to the very different notations used, we say some words about this.

That the underlying commutative graded k-algebras are isomorphic via
an isomorphism that maps our z;, dz;, and t" to Larsen’s ;, dx;, and
(—1)mz[™l is clear by looking at [Lar95, 2.11]. Comparing the formulas for
the boundary operator (denoted by b in [Lar95]) given in Construction 9.3.2.1
and [Lar95, 2.11], it is also clear that this isomorphism is compatible with
the boundary operators.

The differential d is denoted by B in [Lar95], and defined in [Lar95, 2.11]
by the following formula.

B(a) =da + [df, zgﬂ (9.9)

Let a = p(P)dz 2" for P € k[zy,...,2,], € € {0,1}", and m > 0. The
summand d « is then notation for p(d(r?C (P)))dz € 2I™ | so corresponds to the
first summand in the formula (9.8) in Construction 9.5.2.1.
The term z%‘z’ is given by??
s Op(P)dz € 2™

o =z p(P)dz 2" = m . p(P)da © 2

so that we are left to consider the term [df,m - p(P)da:?z[m]].
The notation [—, —] is defined in [Lar95, 2.1.1], and in our notation

[df, m -p(P)dx?z[m]]
corresponds to2*
q}' (d f- r?c(m . P)dx?z[m])

so that the second summand in (9.9) corresponds to the second summand in
(9.8) in Construction 9.5.2.1.

23Recall that z[™] is %zm.
24We use that d f is f-reduced.
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Remark 9.7.0.1. A definition of what we call strongly homotopy linear
morphisms of strict mixed complexes is given around [Lar95, 1.4.1], which
however differs in signs from the one we gave in Definition 4.2.3.1, with a
plus sign on the left hand side. It is noted just after [Lar95, 1.4.1] that the sign
conventions differ from those of [Kas87]. However, this changed sign does not
seem to be a matter of convention but rather a mistake, with the definition
of [Lar95] leading to a different notion, making the results of [Kas87] inappli-
cable. Luckily the inductive method to construct i***+2) in [Lar95, Display
between (1.4.1) and (1.4.2)] works with the correct definition (4.15), while
the first step of the induction actually fails when using [Lar95, 1.4.1]. Thus
the results of [Lar95] should hold with the corrected definition.

In the following we construct a morphism of chain complexes f: X — Y
between strict mixed complexes that can be extended to a strongly homotopy
linear morphism using the definition we gave in Definition 4.2.3.1 and that is
also used in [Kas87, 2.2] and [Lod98, 2.5.14], but that can not be extended
using the definition of [Lar95, 1.4.1], thereby showing that the sign difference
is not just a matter of conventions.

Let X be the strict mixed complex whose underlying Z-graded k-module is
free with generator z in degree 0 and y in degree 1, with d = 0 and 9(y) = «.
As the underlying chain complex is cofibrant and acyclic, we should expect
that every chain morphism out of it can be extended to a strongly homotopy
linear morphism. Indeed, this is the case with the definition we give here.
Let f: X — Y be a morphism of chain complexes to any other strict mixed
complex Y. Then setting

forn>1

and extending k-linearly defines the necessary data to extend f to a strongly
homotopy linear morphism, as it is easy to check that (4.15) is satisfied.

Let us now consider the strict mixed complex Y whose underlying Z-graded
k-module is free on a in degree 0, on ¢ and e in degree 1, and on ¢ in degree 2,
with d and 0 defined by extending k-linearly from the following definitions.

d(a) =0 d(c) =a d(e) =0 d(g) = —e
d(a) ==¢ d(c) =g d(e) =0 d(g) =0

The following diagram depicts the strict mixed complex Y using the conven-
tions from Convention 4.2.1.7.

C?ﬂgie
A
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9.7. On a question of Larsen

Now define a morphism of chain complexes f: X — Y by k-linearly extend-
ing f(x) :=a and f(y) = c. Assume that f(!) were a morphism of Z-graded
k-modules from X to Y increasing degree by 2 and satisfying the following
equation.

fMod+dofM=fod—dof

Then we obtain
o(rM@)) = s(a@) - d(f(@) = FPO() = £(0) — d(a) = FD(0) = ~e
which implies that f(!)(z) = g. We then need

(1 W) = 1(Ay) - A/ ) ~ SV (O)

= f(0) = d(¢) - fV(x)
=—9g—9g=-2g

to hold. However, if 2 # 0 in k, then this is impossible, as 2g is then not
a boundary in Y. This shows that the notion defined by [Lar95, 1.4.1] is
genuinely different to the notion of strongly homotopy linear morphisms as
defined in (4.15) as well as [Kas87, 2.2] and [Lod98, 2.5.14]. &

Remark 9.7.0.2. In [HN20, Theorem 1], a description is given of an object
of D(Z)BT related to HHytixed (k[z1,22]/f) for f = x¢ — 28 for a,b > 2
relatively prime integers. It is stated that this description follows from the
results of [Lar95], but as so far there was no proof in the literature that
strongly homotopy linear quasiisomorphisms induce equivalences in Mixed,
this constituted a gap in [HN20], which is filled by Sections 4.2.3 and 4.4.4
and in particular Remark 4.4.4.2.2°

If 2 is in invertible in k£ then one can now also use Proposition 9.5.2.3
in combination with Proposition 7.5.3.1, which gives a new proof of the
statement that the strict mixed complex constructed by Larsen represents
HHtixed (k[21, 2]/ f) in Mixed. However to use this for [HN20, Theorem 1]
slightly more work would be needed to also identify the decomposition — see
Section 1.6 (3). &

25However the construction of the higher homotopies of the strongly homotopy linear map
constructed in [Lar95] ultimately depends on the choice of a contracting homotopy K*
in [Lar95, Lemma 1.3]. It is unclear to the author which choice should be used as the
canonical one to obtain a canonical equivalence in [HN20, Theorem 1] as claimed.
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Chapter 10.
Example: 77 — 1073

Just like Proposition 8.3.0.1 was a stepping stone for Theorem A, we also
view Theorem A as a stepping stone; for any particular polynomial f of
interest one will most likely want to further simplify the strict mixed complex
provided by Theorem A before using it as input for further calculations.

In this chapter we thus go through one relatively simple but nontrivial
example in detail: Conditional on Conjecture D! holding for for f we describe
HHptixed (Z[21, ¥, 3]/ f), where f is the polynomial f = 2% — xow3 that
geometrically defines a cone. We will describe the process step by step in the
order one might proceed in when first working out the example.

10.1. Applying Theorem A

In order to be able to apply Theorem A, f needs to be in particular monic
with respect to a chosen monomial order. While f is monic with respect to
any monomial order, which one we choose matters with regards to what the
degree of f will be — either w323 or 2% could be chosen as the leading term.

We choose < to be the lexicographic monomial ordering on three vari-
ables so that z? is the leading term. We then have deg-(f) = (2,0,0), and

for 7 € Z3,, the monomial 27 s f-reduced if and only if i; < 1. We
can now apply Theorem A to obtain a strict mixed complex representing
HHo\vixed (Z[ml, xo, w3] /(23 — xgxg)), conditional on Conjecture D holding for
for f.

Proposition 10.1.0.1. Let f = x? — xow3 as an element of Z[x1, 2, x3),
and assume that Conjecture D holds for f. Then there is an equivalence

HHjtixed (Z[21, ©2, 23]/ f)
~ YWixed (Z[x1, T2, 23]/ f @ A(dx1,dwe,dw3) @ (1))

in Mixed, where

Y = Z[l‘l,xg,l‘g]/f ® A(dl‘l,dxg,d.ﬁg) ®F(t)

IThat the discussion of the example in this chapter is conditional on a conjecture is
of course slightly unsatisfactory, but allows us to discuss an illustrative example with
nontrivial features.
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1s the strict mized complex with underlying graded abelian group as indicated,
with x; of degree 0, d x; of degree 1 andt of degree 2, and with boundary opera-
tor and differential given by the following formulas®, for a,b >0, € € {0,1}3,
and m > 0.

o(p(asa}) da®elm) = ( — 2. p(eragal) day + p(agal™) das
+p(agttal) dw3> ~d € tm=1]
0(p(ziagat) daT i) = ( o (el dan + plarafelt) da
+p(z1252h) dxg) ~dagml
a(p(agah) dai") = (a p(28 k) das
+b-p(agalt) dx3> ~dz € em]
d(p(ersa}) da i) = ((1 +2m) - p(agay) dzy +a-p(a125~ " 25) da
+b-p(ziagayt) dJ;g) dactim]

In the formulas above, terms involving negative exponents of a variable are
to be interpreted as 0. Q

Proof. As x1 is the only variable occurring in the leading term of f and the
exponent of x; in the other term xox3 is 0, the assumptions of Theorem A
are satisfied, so that it suffices to check that the formulas for 9 and d from
Theorem A specialize to the ones given in the statement above. We have

deQCUldlL'l —l'gdl'g—LEgd.’Eg

so the two formulas for 9 follow directly from their description in Theorem A,
where in the second formula we need only note that p(z3xgz3) = p(z3ai™).

The formula for d from Theorem A is as follows, for n € {0, 1}.
d(p(x’fwgzg) dxﬁt[m]) = (p(d(zf2328)) +m - p(qf(d f - 2afa}))) d ™
As the maximum exponent of z; occurring in z$x4 and d f is 0 and 1, respec-

tively, d f - 2428 is f-reduced and thus q}(df -2428%) = 0, so that the first
formula for d follows.

2We use p as notation for the quotient morphism Z[z1, z2, z3] — Z[z1, 22, 23]/ (2?2 —z223),
like in Construction 9.3.2.1
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For the second formula for d, we first note that

df-zmaial = 2022828 doy — zalat dag — 2§ 2b das

= (22525 dxy) - f + 225 bt day

— xlxgxgﬂ dag — zz5 b das

which implies that
q} (df- xlzgxg) = 22928 dx

The following calculation then shows the second formula for d from the state-
ment.

d(p(xlxzxg) dxet[m]>

= (p(d(x1x2m3)) +m- p(2x2x3 dwzy)) d z<tm

= (p(a:ng) dzy +a-p(z25” xg) dzo +b- p(xlexB ) dzs
+2m p(xgmg) day) dzctlm

= <(1 +2m) - p(2523) day + a - p(zi25 ™ 2f) das

+b- p(x1x2x3 ) da:3> d g™ O

10.2. Comparison with the mixed complex of
de Rham forms

To describe Y it will be useful to compare it to the mixed complex of de
Rham forms. We first note the following about Qi[ml waws)/f /2"

Remark 10.2.0.1. It follows from [Wei94, 9.2.7] that the identification
Q%[m,xzwg]/z > 7wy, 20, 23] @ A(dx1,dxo,d z3)
from Section 7.1 induces an isomorphism
Dfar 22,201/ /2 = (Llx1, @2, 23]/ f @ AMd 2y, d s, dwg))/d f
of strict mixed complexes?. &
We next define a morphism
Y = Q20 s w)/7 /2

of strict mixed complexes.

3The boundary operators are zero, and the differential d maps x; to d x; and satisfies the
Leibniz rule.
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Definition 10.2.0.2. Consider the following morphism of graded abelian
groups.

Y = W s/ )2

- = 0 >0 — -
plz? )dz ™ — - _m for i €7%,,€c{0,1}3,m>0
plz")dz® m=0 =0

It is clear from Proposition 10.1.0.1 that ¢ is compatible with the chain com-
plex and mixed structure so that ¢ is a morphism of strict mixed complexes.
We furthermore define the morphism of strict mixed complexes

VK=Y

to be the kernel of . &

10.3. Grading

To make it easier to discuss K and Y, we equip them with a Z2 -grading.

Construction 10.3.0.1. We upgrade Z[x1,x2,x3] to a Z;O—gradcd ring
by declaring deg,, (1) = (1,1), degy, (z2) = (2,0), and deg,, (z3) = (0,2).
This makes f into a homogeneous polynomial of gradmg deg,, (f) = (2, 2)
s0 Z[xy,x9,x3)/(f) inherits a grading where deggr(p(x )) = deggr(rf( ))

(note that f being homogeneous ensures that 7"(}(:137) is homogeneous). Declar-
ing deg,,(dz;) = deg,,(z;) and deggr(t[m]) = m - (2,2) makes both Y and
Qi[m17m27z3] y into Z;O—graded strict mixed complexes, as one can easily see
by inspecting the formulas for 0 and d in Proposition 10.1.0.1. Furthermore,
p:Y = QF iy clearly respects the grading, so the kernel K obtains
an induced grading, making ¢: K — Y into a morphism of Z2 ,-graded strict
mixed complexes as well.

Let us denote the sub-mixed- complex of Y (of QZ[x1 vawal/f /70 OF K) of

Z[{L’l 2, :Eg]

homogeneous elements of grading j € Z>0 by Y(7) (by Z[30173027363]/]0/2( ),

by K(j ))7 so that we obtain a sum decomposition as a strict mixed complex
v vy (}')
jeri,
and similarly for Qi[rl - and K. &

Remark 10.3.0.2. Note that the additive submonoid of Zzzo generated by
(1,1), (2,0), and (0,2) is not equal to all of Z>0; it contains precisely those
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elements (a,b) for which the sum a + b is even®. It follows that

—

Y ()= 00, 20247 /2(0)

1%

K(J)

I
o

if 7 € ZQZO such that j; + js is odd.

Note that the mixed complexes Y(j) for j € 72, such that j; + jo is
even might look different depending on the parity of ji; In the even case,
x1 and d x1 must always “occur together”, while in the odd case they never
do. Indeed, one consequence is that the summand (1 4 2m) -p(mgxg) dz; in
the second formula for d in Proposition 10.1.0.1 vanishes in the even case, as
dl‘l . dxl =0. <>

10.4. Non-diagonal pieces

10.4.1. A first look at Y ((6,4)) and Y ((7,5))

We will next look at two illustrative examples to understand the mixed
complexes Y (j ) better, one where j; is even and one where it is odd. We will
depict the strict mixed complexes diagrammatically in the manner introduced
in Convention 4.2.1.7, with respect to the basis given by elements of the form
p(x’ )dx?t[m]. In this basis, the components of d all have absolute value
0, 1, or 2. To make the diagram more readable, we omit the labels to the
respective arrows and instead use a normal arrowhead to indicate an absolute
value of 1, and a double arrowhead to indicate an absolute value of 2, while
not indicating the sign to avoid overloading the diagram. We also omit p from
the notation and write e.g. x3z3 instead of p(z3z3).

We first consider Y ((6,4)).

4This is obviously an additive condition, so as it holds for the three generators it holds
for the full submonoid. On the other hand, if (a,b) € Z2>0 with @ + b = 2c¢ even, and

without loss of generality say b > a, then (a,b) =a-(1,1) + (¢ —a) - (0, 2).
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¥ S ).

xgt\m ”,—"/ T d.Z'l dl‘gt[]‘] i) dxg d.Z'gf,[l]
== T ) -
—————— [ ] \ o \J%
il ¥ ¥ ¥
r1zodzr;dasdas ¥ T1X2 jzlt[” Tox3 j zot] x% d x5t
ﬁ’\ 1
T D 2
e e
r1xox3dxy ds xlmg dzidzs x%xs dzodzs I%Igt[”
72/%\ —1 ﬂ -2 ’J‘,‘/JJH /?3 J
¥ I L3 S
r1rir3d 322 dzy r3z3dws N
3
M
w3a?

Next, the following diagram depicts Y ((7,5)) as representative of the odd
case.

dmldzgtm o=
l‘gdl‘ltm T dwgt[z] —_,_—’—‘——— L Igdajld.rgdl‘gtm
rgk TR —7'&’— <t ?3
PPEEi YV R
x1wot12 ) mozrsdz; dagt z3dx; d st 212 d zo d 25t
A B S I I v
------------- A AV Vi
£££ '. - v v

:I;%.Tg,dl‘l dozodzs N\ .’L‘%l‘{;dl‘lt[l] 212973 d 2ot zlw% d x5t

m%x%dxldng I%SEng’l;::UM‘ZJlmgxgdl‘gdl’g

gg T i 13 s
¥ A 3

x322dx r12222 d xo r123w3 d xs i
273 273 3

1%\ ﬁm .

T12373

Looking at these diagrams we can see that in both cases we can split of
a large acyclic subcomplex (ignoring the mixed structure for now). Let us
discuss the first case Y'((6,4)). Starting from the top, we can first replace the
basis element p(z) d 2o d 23tl] with the following element

a(d xgt[Q]) = —p(z2)d s dzstll — 2 -p(xy)day d 2ot
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Then d z5t/?! and the new basis element generate a subcomplex that splits off
as an acyclic summand. Continuing downward, we can replace p(z3) d x5t
with d(p(x2)t?), and so on. In the end, the only basis elements that “survive”
are p(x3z3), p(r123xs) d o1, p(2323) dza, and p(z120w3) d 21 d 22.

10.4.2. A new basis

In general, we would like to do the following. For a,€1,e5 € {0,1} and
b,c,m > 0, we would like to replace the basis element

p(afabas) dz$ das? d agti™

of Y(7) by the element d(p(z¢z%125) dz$ d z5¢™+1). Roughly, we divide
by 2 d x3, increase the divided power of ¢ by one, and then take the boundary.
This is of course not possible if b = 0. So when could b = 0 happen? If
p(z8as) dz$ d o dastl™ is in YV(), then we have j; = 2m +a + €, + 2€;
and jo = 2m +a + 2¢c + €1 + 2. As e < 1 this implies that such an element
can only occur in Y () if j1 < jo.

So we are lead to distinguish three cases: For Y(;) with j; > js, we can
“eliminate” basis elements divisible by d z3, and for Y(;) with j; < jo, we
can analogously “eliminate” basis elements divisible by d 2, leaving the case
of Y(j) with j; = ja to still be analyzed (and which will indeed turn out to
be more interesting).

We will now carry out the idea we just sketched and first construct the
indicated new basis for Y(?) for 7 € 7%, with j; # jo. We will then be able

to use this to show that K () is acyclic.

Definition 10.4.2.1. To ease notation in the following, we make the follow-
ing definitions for j € 2220.

V ={0,1} x Z%, x {0,1}* x Zx¢
V' ={0,1} x Z%( x {0,1}* x Z>

V(;) = {(a7b,0,61,62,63,m) evVv ‘

deg,, (p(:c‘fxgxg) dz$ dzg? dm§3t[m]> _ 7}

‘/2 (7) = {(a7 bv C, €1, €2, m) € V/
deg,, (p(a:‘fa:gxg) daf dx?t[m]) = 7}

\/}(7) = {(a,b, c,€1,€3,m) €V’

deg,, (p(x‘fxgxg) dai dx§3t[m]) = 7} O
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Proposition 10.4.2.2. Let 7 € 2220 with j1 > jo. Then the set

Bo(7) = { platebes) dog dag e | (a,b,c.e1,e0m) € Va(7) }
U { 8<p(a:?xgm§) daf dmgzt[m]) ’ (a,b,c,€1,€2,m) € VQ(T),m >0 }
forms a basis of Y(j) Analogously, let j € Zzzo with j1 < jo. Then the set

By(7) = { platahas) daf dagil

((L,b, 07617637m) S ‘/3(7) }

U { 5‘(p(m‘fxgx§) daf dxgat[m]) ’ (a,b,c,€e1,€3,m) € Vg(j),m >0 }

forms a basis of Y(;) Q

Proof. We only discuss the statement for j; > jo, the other is completely anal-
ogous. We will refer to the basis given by elements of the form p(z?)daxtm
used up to now as the monomial basis. We wrote Ba( j ) as a union, and will
call elements of the first set elements of the first type and elements of the
second set elements of the second type.

Note that the monomial basis can be written as follows, following the dis-
cussion before Definition 10.4.2.1 showing that any element of the monomial
basis divisible by d 3 must have x5 as a factor as well.

{p(331332353) daf dag ™ ‘ (a,b,c,e1,e2,m) € Va(7) }
U {p(m‘fxé’“ §) daf dag? d zgtm=1] ’ (a,b,c,e1,e2,m) € Va(j),m >0 }
In this subdivision of the basis elements of the monomial basis, the first
subset is exactly equal to the elements of Bo( j ) of the first type.

For the elements of the second type we note that for (a,b,c,€1,€2,m) an
element of V5(j) with m > 0, they have the following form.

8( (z§x52§) d 2y dx”t[m])
= (=1)Tep (x%xgﬂ c) dzf' dzs? dzs tlm—1]
(=1)% (m‘fxgxgﬂ) daf dx?“t[m*l] 2p( a“achg) dwi”‘l dx?t[m*”

Note that the first summand is always the negative of the corresponding (also
indexed by (a,b,c, €1, €2,m)) basis element of second type in the monomial
basis, while the other two summands are multiples of elements of the first
type. This shows the claim. O

10.4.3. Non-diagonal pieces of K are acyclic
Proposition 10.4.3.1. Let ? € ZQZ() with j1 # jo. Then K(?) is acyclic.
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Proof. We again only discuss the case j; > ja, as the other case is completely
analogous.

Using Remark 10.2.0.1 and the same kind of argument as in the proof of
Proposition 10.4.2.2 shows that

{p(x‘fmgxg) dat dzg? | (a,b, ¢ €1,€2,0) € ‘/2(7) }

is a basis of Q5 70 7). It thus follows immediately from Proposi-
tion 10.4.2.2 that

{ p(z{zha§) daf d gt

(CL,b,C,€17627m) € ‘/2(7),7’77, > 0}

U { (“)(p(ac‘f:tgxé) daf dx§2t[m]) ‘ (a,b,c,€e1,e2,m) € Vg(?),m >0 }

is a basis for K (7) We can thus easily define a contracting homotopy & of
K (7) as follows, where (a, b, c, €1, €3, m) € Vo(7) with m > 0.

h(p(x1x2$3) daf d;ve"’t[m]> 0

(8 p(z§zbzs) daf dxezt[m])> = p(zfabzs) dzf d gt O

10.5. Diagonal pieces

10.5.1. A first look at Y ((5,5)) and Y ((6,6))

Let us now look at what happens when when j; = j>. The following is the
diagram for Y'((5,5)). We use the same conventions as we did for Y ((6,4))
and Y ((7,5)) above.
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Chapter 10. Example: 23 — zox3

dxlt[gl ____—l—"_ ————— d$1d$2d$3t[l]
k ————— -- Mp/\,ﬁﬂa .
5? T B 1 ?5
Iltm ,’ I3 d T dﬂ?gt[l] ) dl’l dl‘gt[l] X d.ZL'Q d Igt[l]
| St e e | e L
------------- TRy U s b
(e ¥ ¥ ¥
zoxsdridradrs ‘o zemsd gt 175 d 2otV 119 d 25t
S b
gf | i e
azgazg dzidas x%xd dxydaxs T1row3dwad oy &~ z1z2xst!]
1 —2 1 -2 AN
N A L3 .
z%z%dzl xlzgzgdzz 1’11’%1’3(1173 N
t M
12323

As mentioned in Remark 10.3.0.2, Y((7, 7)) may differ in character depend-
ing on the parity of j, so let us also look at Y'((6,6)).

d D) d .’Egtm

) L /03] s
N S
N i : 1
Qfldibltp] l‘3d1‘2t[2] xgdxgtm—__——’ T d.’L‘l dl‘g dl‘gt[l]
’IJL////) 1 _,——”———— Ml
T ~\ N\
.TQ.IEt[Q] ,/I $1$3d$’1d$2t[1] .T1£U2d331 diﬂgt[ll .C(?Q.’L‘gdl' dl‘gt[l]
: i - = Jz
————————————— 7 _ _ —2
[ = Y
212or3drdrodrs \\\ 2120973 d 21t zox3 d gt z3x3 dzgt!
zgi % ) * ------------ /gz

l, 4 -
xlxgxgdxl dxzo «j 1'1.’13%.’173 dridzs «j
72% o’ N h

7 T -

<
N
N
2,2 2,.3 3,2 .
xlzgx?sdw ryrzdas
w
3
3.3

ToT3
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10.5. Diagonal pieces

We can already see the difference between these two cases as well as Y(?)
with j; # jo in these two examples. Indeed, note how in the diagrams for both
Y ((5,5)) and Y ((6,6)) the upper element in the rightmost column represents
a nonzero element in the homology of K, showing that K () is in general not
acyclic for j; = jo, in contrast to the case j; # jo (see Proposition 10.4.3.1).
In Y((6,6)) this element in homology is of order 2, in contrast to Y ((5,5)),
where it is of infinite order.

10.5.2. A new basis

To simplify Y(?) for j1 = jo we make a similar base change as we did for
j1 # jo. We again try to eliminate replace basis elements from the monomial
basis that are divisible by d z3, as in Proposition 10.4.2.2. This time, we will
not be able to write all of the relevant elements as boundaries, however the
formulas themselves still make sense.

Notation 10.5.2.1. Let j > 0 be an integer and (a,b, ¢, €1, €3,1,m) an el-
ement of V((j,7)). We will define an element b, p.c e, es,m) of Y((4,7)), by
distinguishing three cases. If b > 0, then we define b, p,c.c, e,,m) as follows.
blab,cier,ea,m) = 8(p(x‘f$gflx§) daf dac?t[mﬂ])
= (-1)rep(afabas) daf dag? d 5t
+ (=D 9p(afaltas™) daf day e
—2p(z§ el tag) day T d x5t

If instead b = 0, then note that this implies e = 1 and ¢ = 0. We then make
the following definitions.

b(0,07076171,m) = (71)61+1 d :L'il dzsd :L'gt[m]

b(l,o,o,el,l,m) = (—1>€1+1P($1) dzi' day d$3t[m] — 2p(x3) dxiﬂl dl‘2t[m] &

Proposition 10.5.2.2. Let j > 0. Then the following form a basis for

‘B((]7])) = {p(xtllxg'rg) dl‘il dx§2t[m] (a7b7 c, €1a€2am) S V2((.]a])) }
U { b(a,b,c,el,ez,m) | (CL,b,C,€17627 17m) € V((]7])) } Q

Proof. The proof is very similar to Proposition 10.4.2.2. The monomial basis
can be written as follows.

{ patabas) dag dagtt™ | (a,b.c 1, 0,m) € V() }

u {p(x’fxgmg) dz$t das? d zst™ ‘ (a,b,c,e1,€2,1,m) € V((4,7)) }
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Chapter 10. Example: x% — ToX3

Again the elements of B((7, j)) of the first type correspond to elements of the
monomial basis of the first type, and the element of the second type indexed
by (a, b, c,€1,€2,1,m) is — up to sign — the sum of the corresponding element
of the second type indexed by (a,b, ¢, €1, €2,1,m) of the monomial basis and
a linear combination of elements of the first type. O

We can record the following behavior of the new basis with respect to the
boundary operator.

Proposition 10.5.2.3. Let j > 0. Then the following holds in Y ((j,7)) for
elements (a‘v b7 C, €1, €2, m) Of ‘/2((]7;7))

0 ifm=0

8(p z0xhas) d dzﬁzt[m]) = :
( e 3) ! 2 b(a,b+1,c,el,ez,m—1) me >0

Furthermore, the following holds for (a,b,c,€1,€2,1,m) € V((4,7)).

2-b(1,001,1,m-1) if (a,b,e1) =(0,0,0) and m >0
a(b(a,b,c,el,EQ,m)) = 0

otherwise

Q

Proof. The first formula follows immediately from the definitions in Nota-
tion 10.5.2.1. The second formula follows from 9% = 0 if b > 0 and from
Proposition 10.1.0.1 if m = 0. So we can assume that b = 0 and m > 0.
We distinguish three cases: first e, = 1, then (a,e;) = (0,0), and finally
(a,€e1) = (1,0). In each case the formula follows by writing out the elements
and using Proposition 10.1.0.1°.

(b(a,0,0,1,1,m)) = 3(19(55?) dzidzs degtW]) =0

9(b0,0,0,0,1,m)) = 3(— dzy dx:ﬂf[m])
=2p(z1)dz; das dagtm=t =2. b(1,0,0,1,1,m—1)
A(b(1,0,0,0,1,m)) = a(*P(Il) dag dast™ — 2p(z3)da; d Izt[m]>

m—1]

= 2p(x9x3)da; dasd 2t

— 2p(xoxs)dxy dag d z5tm—1

=0 ]

Note that we can see a distinction between the cases of Y ((4,7)) with j
odd and even in Proposition 10.5.2.3; the first (non-zero) case in the formula
for 8(b(a7b767517527m)) only occurs if j is even.

5Note that b = 0 implies ez = 1 and ¢ = 0.
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10.5. Diagonal pieces

10.5.3. Another look at Y ((5,5))

We can now look at Y((5,5)) again, but in this new basis.

dxltm [UPESL b(0,0,0,1,1,1)
-7 1
U - i
T \
x 2 /T3 dzq daott] b0,1,0,1,0,1) b(1,0,0,0,1,1)
’ l oo > < T
: ‘ )
b0,1,1,1,1,0) ' ! ! b(1,1,0,0,0,1)
] gl
xzxgdmdxz b(0,2,1,1,0,0) b(1,1,1,0,1,0) \\\ Cmélczjﬂgtm
ol L S
r3x3da 12273 d ag b(1,2,1,0,0,0) :
5/5 M
xlxgxg

(10.1)

Note that the Z-graded-abelian group generated by the underlined basis

elements is closed under both boundary operator and differential. It is also

acyclic, so the the quotient map from Y ((5,5)) obtained by dividing out this

sub-mixed-complex is a quasiisomorphism. The following diagram depicts the
resulting strict mixed complex.

PP b(0,0,0,1,1,1)
-- —W ? _
- -5
' z3dzydrot!!] b(1,0,0,0,1,1)
S 1
b(0,2,1,1,1,0) . x113dTot!!)
-5 T~ o -
2f |
2 T RN
rozidrdTs b(1,1,1,01,00 "~
~
2 ~
x2x3dx1 T1Tox5dTs
5%
T 2372
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Chapter 10. Example: x% — ToX3

From this we can read off that K ((5,5)) will not be acyclic, but rather equiv-
alent to the strict mixed subcomplex generated by b(1,0,0,0,1,1) and b(0,0,0,1,1,1)>
which is isomorphic to D_5[4], where we use notation from Definition 4.2.1.5.

10.5.4. Another look at Y ((6,6))

Let us now consider the even case. The following diagram depicts Y ((6, 6))
in the basis from Proposition 10.5.2.2.

b(0,0,0,0,1,2) LB »
L % 1 ~a. 4 _______ - -
+ | 3
ay dayth! 3 d st bornoon } brooiin
of P e -
P M \
rayt? ’l/ e dxﬁ dayt! w b(0,1,1,0,1,1)
_____________ : ﬂ\’\—\,\ﬂ T R ﬂ
I | 7 4 , o\
b(1,1,1,1,1,0) S\ zywewsdagtt zox3 d ot b(0.2.1,00.1)

2? e | T Tl /52
2 N 2..24[1
r12273 d 2y d oo b(1,2,1,1,0,0) bo22010) v zaaitl
)
Y
2%0 3% -4 N
Y
2,.2 2,..3 A
rir3rydr z3r3d s b(0,3,2,0,0,0)
6
3
w3y

We again underlined basis elements that generate an acyclic sub-mixed-
complex that we can divide out, obtaining the strict mixed complex depicted
in the diagram below.
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10.5. Diagonal pieces

b(0,0,0,0,1,2) -

(Egdxgt[Q] T b(1,0,0,1,1,1)

\?2

, $1$3dfﬂj1d$2t b0,1,1,0,1,1)

______ f % ﬁ

1
b(1,1,1,1,1,0) . 2023 d zotl!]
:f

2
r1T275d 2z d g 5(0,2,2,0,1,0) N

N
N
6 M .
N

r1z2a?d o 2223 d zo
273 2T3
of

3.3
T3

This time we see that K((6,6)) will be equivalent to Z/2[5], generated by
b(1,0,0,1,1,1)-

10.5.5. A basis for K((j,7))

We will now show how the description above of K((j,7)) generalizes to
j > 5 other than 5 and 6, whereas K ((j,7)) for j < 5 is acyclic. We start by
describing a basis of K((j,7)).

Proposition 10.5.5.1. Let j > 5. Then a basis of K((4,7)) is given by the
following set.

{ p(atabas) daf dag ™ | (a,b,c 1, 0,m) € Va((3,5))m >0 }
U { b(a,b,c,q,@,m) | (av ba C,€1,€2, lam) € V((]a])) }

Furthermore, K((0,0)) =20, K((1,1)) 20, a basis of K((2,2)) is given by

{ b(0,1,0,0,0,0> 1] }

a basis of K((3,3)) is given by

{ b(1,1,0,0,0,0)5 b(0,1,0,1,0, 0),$1t dﬂntm }
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Chapter 10. Example: x% — ToX3
and a basis of K((4,4)) is given by the following set.

{ 0(0,2.1,0,0.0)5 b(1,1,0,1.0.0)5 5(0.1,1,0,1,0)+ 2 * b(1,0,0.1,1,0) }
) {p($2$3)t[1]7p(951) dxlt[l],p(a:g,) d gttt b(0,1,0,0,0,1) b(0,0,0,0,171)7t[2] }

Q

Proof. We first consider the case j > 5. This assumption implies that if
(a,b,c,€1,€2,€3,0) is an element of V((j,7)), then b > 0. In other words,
every element of grading (7, j) of the monomial basis of

Z[.Z‘l,xg,.%‘g)]/f (9 A(dxl,d.%‘g,d$3)
is divisible by zs. Like in Proposition 10.4.3.1 we can thus conclude that
{ p(afahas) daft dag? | (a,b,¢,e1,€2,0) € Va((4,4)) }

is a basis of Qi[azl,wg,mg]/f/Z((.j7j))'
By Proposition 10.5.2.2 the set

{p(x‘fxgxg) daf dzs? | (a,b,c,€1,€2,0) € Va((4,7)) }
u {p(ac‘fxgwg) daz$ dzs2t™ | (a,b, ¢, €1, e9,m) € Va((j,5)),m > 0 }

U { b(a,b,c,el,eg,m) ’ (av b7 C,€1,€2, 1; m) € V((]a])) }

is a basis of Y((4,7)), and elements of the first type (of this decomposi-
tion into three subsets) are mapped by ¢ to the corresponding element of
Qi[whwzm} It It thus suffices to show that elements of the second and
third type are mapped to 0 by ¢. If m > 0 in either of the two types of
elements, then this is clear. So it remains to consider elements of the form
blab,c,er,e0,0) fOr (a,b,¢,€1,€2,1,0) € V((4,7)). As mentioned at the start, this
implies b > 0. It thus follows from Proposition 10.5.2.3 that

babecr.er0) = O(platah g daf dagie 1)

from which ©(b(q,p,c.c;,e5,0)) = O follows from the m > 0 case as ¢ is a
morphism of chain complexes.

The cases of 0 < j < 4 can be done by inspecting each case individually.
The difference to the case j > 5 is that terms that are divisible by dxj
but not by ¢ need not automatically be divisible by xo as well. This means
that for example b1 0,0,1,1,0) is not in the kernel of ¢ (but 2-b¢,0,0,1,1,0) i5),
whereas the analogous element of Y'((6,6)), namely b(1,1,1,1,1,0), does lie in
the kernel. O
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10.5.6. K((j,j)) for j <5
We can now already finish the case of j < 5.
Proposition 10.5.6.1. Let 0 < j < 5. Then K((j,7)) is acyclic. Q

Proof. This follows immediately from Proposition 10.5.5.1 in combination
with Proposition 10.5.2.3. U

10.5.7. Splitting an acyclic summand off of K((j,j)) for
Jj>95
We now turn back to K((j, 7)) for j > 5. We start by splitting off an acyclic

summand.

Proposition 10.5.7.1. Let j > 5. Then define Kacyc((4, 7)) to be the sub-Z-
graded-abelian-group of K((j,7)) with basis the following set (compare Propo-
sition 10.5.5.1).

{ p(zfabzs) dzf d gt

(a,b,c, 617627m) € ‘/2((.]7.]))am >0 }
U { b(a,b,c,q,@ﬂn) | (aabv C,€1,€2, lam) € V((]a]))ab >0 }

Furthermore, we define K'((j,7)) to be the sub-Z-graded-abelian-group of
K((4,7)) with basis the following set.

{ b(@,0,0.e1,1,m) | (a,0,0,€1,1,1,m) € V((4,4)) }
Then the following hold.
(1) Kacye((4,7)) is a subcomplex of K((4,7))-
(2) Kacyc((4,7)) is acyclic.
(3) K'((4,7)) a subcomplex of K((j,7)).
(4) K((j, 7)) is the sum of Kacyc((j,7)) and K'((j,7)) as chain complexes.
(5) The inclusion of K'((j,7)) into K((j,7)) is a quasiisomorphism. v

Proof. Proof of claims (1), (2) and (3): Follows immediately from Proposi-
tion 10.5.2.3.

Proof of claim (4): If (a,0,c,€1,€2,1,m) is an element of V((j,4)), then
this implies that ¢ = 0 and e = 1. The claim now follows from Proposi-
tion 10.5.5.1.

Proof of claim (5): Immediate consequence of the preceding claims. O
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10.5.8. Description of the strict mixed structure

We next need to understand how d acts on K'((3,j)).

Proposition 10.5.8.1. Let j > 5. Then a basis of K'((j,7)) is given by the
following set.

{ 00,0,0,0.1,452) 01,0011, 35%) } if2]]

1,45
{ b(0,0,0,1,1,§)’ b(l,o,o,o,l,%) } if21j

Furthermore, the following holds for m > 0.

d(b(0,0,0,0,1,m)) =0
d(b(1,0,0,1,1,m)) =
d(b0,0,0,1,1,m)) =

( ) =

d b(l,0,0,0,l,m)

sJ,Us

Q©

Proof. The claim about the basis follows directly from Proposition 10.5.7.1,
it merely involves spelling out what a, €1, and m can be such that the tuple
(a,0,0,€1,1,1,m) is an element of V((j,7)).

For the formulas for d, we use the definition from Notation 10.5.2.1 and
then apply Proposition 10.1.0.1.

d(b(0,0,0,0,l,m)) = d(— d s dxgt[m]> -0

d(b(1.0.01.1.m) = d(p(z1 dxldzgdxgt[m]) -0

( ) = a(ot
d(b(0,0,0,1,1m) d(dx dzodastl™ ):0
() =3

—(

—(

d(b(1,0,0,0,1,m) d(—p(z1)das dast™ — 2. p(xg) dzy dzgtl™ ])

1+2m)da dzsdast™ —2.dx, doy dzgt™
2m—|—3 b(OOO,l,l m) O

10.5.9. A smaller model for K((j,7)) for j > 5

Proposition 10.5.8.1 implies that K’((j, 7)) is equivalent as a strict mixed
complex to K((j,7)) for j > 5, as we record next.

Proposition 10.5.9.1. Let j > 5. Then the strict mized structure of K((4,7))
restricts to K'((4,7)) and the inclusion K'((j,7)) — K((j,7)) is a weak
equivalence of strict mized complexes.

Furthermore, if j is even, then K'((j,7)) is isomorphic to the mapping
cone of Z[j — 1] 2 Zj —1). If j is odd, then K'((j,j)) is isomorphic to
D;[j — 1] (see Definition 4.2.1.5 for the notation,). @
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Proof. That the strict mixed structure of K ((j,J)) restricts to K'((j,7)) fol-
lows directly from Proposition 10.5.8.1, and that the inclusion is a weak
equivalence of strict mixed complexes then follows from Proposition 10.5.7.1

(5).

The identification of K’((j,7)) up to isomorphism follows from Proposi-
tion 10.5.2.3 and Proposition 10.5.8.1. For the isomorphism to D;[j — 1], note
that D; =2 D_;. O

10.6. HHMixed (Z[:Ul, X9, :L‘g]/(:l?% — 51725133)) as a
non-split extension

We can now sum up all the results by coming back to Hochschild homology.

Proposition 10.6.0.1. Assume that Conjecture D holds for the polynomial
f =22 — xox3 in Zlwy, w2, 23]. Then there is a cofiber sequence

P zei-1|o| @ mxeaD;li—1)

J=52|j J=5,2tj
9 cof
— HH\tixed (Z[l‘l, X2, 1‘3]/(1‘1 - -75255'3)) — YMixed ((Qi[xl,xz,mg]/f/2> )

in Mixed that does not split. Q
Proof. By definition of K we have a pullback square

K—Y vy

| I

0 ——= W wnsl/f /2

in Mixed. It is clear from Definition 10.2.0.2 and Remark 10.2.0.1 that ¢ is
levelwise surjective and hence a fibration in Mixed. As every object in Mixed
is fibrant, it follows from [HTT, A.2.4.4] that the above square is also a
homotopy pullback square.

We can apply YMmixed (—°F) (where —°f is the cofibrant replacement functor
for Mixed) to this diagram to obtain a commutative square in Mixed that is a
pullback square by [HA, 1.3.4.23]° By Proposition 4.4.3.1 Mixed is stable, so
said square is also a pushout square, so we have shown existence of a cofiber
sequence as follows.

cof
VMixed (KCOf) — YMixed (YCOf) — YMixed ((Qi[m,xz,m]/f/Z) )

6See Propositions 4.4.1.7 and 4.4.2.2 for Mixed being the underlying oo-category of the
model category Mixed.

617



Chapter 10. Example: x% — ToX3

We can identify ymixed (YY) with HHotixed (Z[21, 2, 23]/ f) along the equiva-
lence from Proposition 10.1.0.1, and for Ymixed (K cof) we obtain a sequence of
equivalences

Yixed (F°F)

~ ed | D K(5)f

J €z,

~ P WMixed<K(7)COf)

T e72
J EZZO

12

D cofib(Z[j—l] L/ 1}) & P MieaD;li — 1))

J=52]j J=5,2tj

where in the first equivalence we used the decomposition from Construc-
tion 10.3.0.1 and that coproducts of quasiisomorphisms are again quasiiso-
morphisms, in the second we used that coproducts of cofibrant objects are
homotopy coproducts and [HA, 1.3.4.24], and in the third we used Propo-
sitions 10.4.3.1, 10.5.6.1 and 10.5.9.17. This shows existence of a cofiber se-
quence as claimed.

It remains to show that this cofiber sequence does not split. So suppose
that there is a morphism

cof
YMixed ((92[11_’12713]“@) ) — HHtixed (Z[21, 72, z3]/ (23 — T223))

in Mixed such that postcomposition with the morphism induced by ¢ is homo-
topic to the identity on ymixea((23,, .., xg]/f/Z)COf). By Propositions 4.4.1.7
and 4.4.2.2 and [Hov99, 1.2.10 (ii)] we can then lift this section to a triangle

(QZ[a:l,azg,mg]/f/Z) .

Y ——— W wawslys /2

in Mixed that commutes up to homotopy, with ¢ a quasiisomorphism. We
will denote (Qihhmzp,m]/f/Z)C"f by C below. The following argument will use
Y ((5,5)), and it will likely be helpful to follow along with diagram (10.1).

We will in particular read off  and d from that diagram; to verify those
formulas one uses the formulas in Proposition 10.1.0.1 and the definition

"Note that Dy, has cofibrant underlying chain complex.
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of the basis elements in Notation 10.5.2.1. The diagram below provides an
overview over the argument; The left column depicts elements of C' and the
right column of Y((5,5)) In both columns we depict where the elements are
mapped by 9 and d using the conventions of Convention 4.2.1.7, and the
horizontal arrows correspond to application of s followed by the projection
Y — Y ((5,5)) associated with the decomposition from Construction 10.3.0.1.

S -

(2 - 5d) -

(0,0,0,1,1,1)

BUSNIN

———— 2-p(zg)drrdast + ¢ b10101) +d- b(1,0,0,0,1,1)

—

2-b0,1,1,1,1,0)

R S e Do

Q-‘M

p(razd)day da,y

As the homology of the fiber of ¢ is concentrated in degrees above 3 by the
already obtained cofiber sequence, Ha(¢p) is an isomorphism. From diagram
(10.1) we can read off that p(zaz3)dxy dxy is a cycle in Ya that represents
a nontrivial homology class. There must thus be a cycle o € C5 such that
s(a) = p(z223) dx1 dza + dy, with y € V3.

As «a is a cycle, we have

d(da) =—-d(0a) =0
so d « is a cycle. We furthermore obtain
s(da) = d(s(a)) = d(p(z223) d21 d 2o + Jy)
=2-b0,1,1,1,1,0) Td 0y = 5’(13(333) da; dagt! — dy)
so that s(d @) is a boundary. As H3(s) has to be injective, this implies that
d o must be a boundary. So let 5 € Cy be such that 95 = d a.

Using the description of a basis for Y4((5, 5)) from Proposition 10.5.2.2 we
can write s(53) as

s(B) = a-pla)t? +b-p(rs)dey daot ¢ b0,1,0,1,0,1) +d - b1,0,0,0,1,1) T2

with a,b,c,d € Z, and = € @7ezz | 74(5.5 Ya( ). It follows that

2-b(0,1,1,1,1,0) T d0y = s(da) = 5(9B)
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=0d(s(B))
=a-b1,1,0001) +0bo,1,1,1,1,00+¢c-0+d-0+0z

where both d 0y and 0z are elements of @?62107;#5’5) Yg(?), SO we can
conclude that @ = 0 and b = 2. -
We have
0(dp)=—-d(0) =—d(da) =0

so d 8 is a cycle. As H5(Q%[$1)I27w3]/f/z) =~ (, it thus follows that d 8 must
be of the form 9¢ for some element § € Cg, and hence d s(5) = s(d 8) must
be a cycle in Y5 that is also a boundary. But we can calculate

ds(8) = d(2 -p(az)day dzgtt 4 ¢ b0,1,0,1,0,1) +d - b(1,0,0,0,1,1) + Z)

=2:b0,0,0,1,1,1) + 0 —5d - bo,0,0,1,1,1) +dz
= (2 — 5d) . b(070)071)1’1) + dz

which, as z lies in @?GZQED’T#E)@ Yi(j) and (2 —5d) - b(o,0,0,1,1,1) is a cycle
representing a nontrivial homology class, is in contradiction to d s(/3) being

a boundary. |

10.7. Non-formality of
HHtixed (Z[21, T2, 23]/ (2] — 2213))

Let M be a strict mixed complex. Then the relation dod + dod = 0
ensures that d: M, — M,;; maps cycles to cycles, and thus induces an
operator increasing degree by 1 on homology. Equipping He(X) with the
zero boundary operator we can then consider Hq (M) again as an object of
Mixed.

Now let M be a mixed complex, i.e. an object in the oo-category Mixed.
Then we can make a similar construction using the functors

H,: D(k) — LMod,(Ab)

defined in Definition 4.3.3.1. From the element d in H;(D) we obtain with
Proposition 4.3.2.1 (5) a morphism k[1] — D in D(k) which induces a mor-
phism

M ~Ekl]leM DM —- M

in D(k), where the second morphism is the action of D on M. This morphism
induces an operator increasing degree by 1 in H,, and d* = 0 in H, (D) implies
that this operator squares to 0. Equipping He(M) with this operator as d
and the zero boundary operator we again obtain a strict mixed complex.
Proposition 4.3.3.2 ensures that the just discussed two constructions agree,
i.e. if M is a strict mixed complex with cofibrant underlying chain complex,
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then the strict mixed complexes He(Ymixed(M)) and He(M) are naturally
isomorphic.

Given an object M of Mixed, we can now ask whether M is formal, i.e.
whether there is an equivalence

M ~ YMixed (Ho (M>C0f)

in Mixed. In the next proposition we show that, still assuming that Conjec-
ture D holds for the polynomial 22 — w23 in Z[x1, 22, 23], that

HHotixed (Z[#1, 72, 23]/ (2] — 3223))

is not formal. Note that
H, ('YMixed (Ho(M)COf>> = H(M)

for every mixed complex M. This implies (under the assumption of Conjec-
ture D) that there are at least two mixed complexes whose homology, as a
strict mixed complex, is isomorphic to

Ho (HHMixed (Z[‘Tla €2, 563]/(1'% - IQIg)))

so the mixed complex HHyixed (Z[xl, To, w3] /(23 — .132333)) can not be recov-
ered from its homology (even including the action of d) alone.

Proposition 10.7.0.1. Assume that Conjecture D holds for the polynomial
f =% — xox3 in Z[x1, 29, 23]. Then there is no equivalence between

HHotixed (Z[#1, 72, 23]/ (2] — 3223))

and
YMixed (H. (HHMixed (Z[xh T2, 23]/ (2] — 3321‘3)) )COf)

in Mixed. Q

Proof. We will make use of the cofiber sequence constructed in Proposi-
tion 10.6.0.1, for which we will use the following notation.

F—2Z3%R
We show the claim by contradiction and assume that there is an equivalence
O miea (Ha(2)") =5 2
in Mixed.

Note that F' has homology concentrated in degrees > 4, so ® induces an
isomorphism in homology on degrees < 3. As R has homology concentrated
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in degrees < 3, it follows that there is a unique morphism of underlying chain
complexes s: He(R) — Ho(Z) such that He(®P) o s is the identity.

We claim that s is in fact also compatible with d and thus a morphism in
Mixed. As He(®) is an isomorphism in degrees < 3, it automatically follows
that d o s = s od on elements of degree < 2. What remains to show is that
d applied to every element of Hs(Z) is zero. From Proposition 10.6.0.1 and
the previous discussion in this chapter we know that the elements of

Hy(Z) =2 Hy(Y)

are precisely represented by the integer multiples of the element b(1 ,,0,1,1) of
Y ((5,5)) (see in particular Propositions 10.5.8.1 and 10.5.9.1). From the sum
decomposition of Y it follows that it suffices to show that there is no cycle
in Y((5,5)) that is mapped by d to a linear combination of basis elements
of Y((5,5)) with respect to the basis from Proposition 10.5.2.2, in which
b(1,0,0,0,1,1) has nonzero coefficient. But this follows from Proposition 10.5.2.3
and can be read off of the first diagram in Section 10.5.3.

Note that f
R = YMixed <<Q%[m,mz,:ﬂ3]/f/z> )

and that are isomorphisms as follows in Mixed;

H, (%vnxed ((Qi[xl,m,m]/f/z)COf)) =~ H, ((Qi[zl,zz,zs]/f/Z>COf>

as discussed before this proposition,
. cof .
H, <(QZ[z1,x2,m3]/f/Z) ) =H, (QZ[J/’l’m,Is]/f/Z)
induced by the cofibrant replacement, and

H, (Qi[mhmm]/f/z) = Vloy wa,23)/5 ) 2

as 92[351751527-7«'3]/]0/2 has zero boundary operator.

Combining these isomorphisms and applying Ymixed(—°f) we obtain an
equivalence
@: R S5 YMixed (H. (R)COf)
in Mixed.

We can now consider the composition

of

A R e (H.(R)“’f) e (57D, e (H.(Z)mf) NGNS

in Mixed. As a and © are equivalences, they induce isomorphisms on homol-
ogy. The morphism s induces an isomorphism in homology in degrees < 3, so
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vMixed(sCOf) does so too, and we already used above that ® induces an isomor-
phism in homology in degrees < 3. It follows that A induces an isomorphism
in degrees < 3. As R has homology concentrated in those degrees, it follows
that A actually induces an isomorphism on homology in all degrees and is
thus an equivalence.

Now define g to be the composition

B L (sCof
R A—1> R “YMixed (H.(R)COf> M_)_)

YMixed (HQ(Z)COf) ’®‘> Z
in Mixed. Then it follows that
Pop~roN!~idy

S0 o is a section of ®. This contradicts the fact that the cofiber sequence from
Proposition 10.6.0.1 does not split. O
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Appendix A.

oo-category theory

This is the first of two appendices in which we collect a number of small
results on various basic staples of oco-category theory, the second one being
Appendix D!.

In Section A.1 we will see that the homotopy category of the underly-
ing oco-category of a model category is canonically equivalent to the homo-
topy category of the model category. We will then discuss mapping spaces in
oo-categories in Section A.2, and collect some results relating to the (0o, 2)-
category of co-categories Cato, in Section A.3.

A.1. Homotopy categories of model categories

Given a model category C with a class of weak equivalences W, we can form
its homotopy category How (C) of C, as discussed for example in [Hov99, Sec-
tion 1.2]. There is also another way to produce a 1-category called “homotopy
category” from C: We can first pass to the underlying co-category C[W 1]
of C (see [HA, 1.3.4.1]), and then take the homotopy category Ho(C[W ~1])
of this co-category as explained in [HTT, 1.2.3]. The following proposition
shows that these two notions of “homotopy category” are consistent with
each other, i.e. they are canonically equivalent.

Proposition A.1.0.1. Let C be a model category with class of weak equiv-
alences W. Then there exists an equivalence Hoy C =~ Ho(C[W‘l]) fitting
into a commutative diagram as follows

C —2—— Cw1
'vl ls
How C —— Ho(C[W™1])
where How C is the homotopy category of the model category C (see [Hov99,

1.2]), HO(C[W*I]) is the homotopy category of the co-category C[W 1] (see
[HTT, 1.2.3]), and the functors «, 3, and v are the canonical ones. Q@

1Some parts of Appendix D depend on Appendices B and C.
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Proof. The functor « sends morphisms in W to equivalences?, and 3 sends all
equivalences to isomorphisms as Ho(C[W‘l]) is a 1-category. The universal
property of Hoy C (see [Hov99, 1.2.2]) furnishes us with a functor ® making
the following diagram commute.

C—2 WY

| !

How C —2— Ho(C[W~'])

As isomorphisms are in particular equivalences, the universal property of
C[W=1] (see [HA, 1.3.4.1]) provides us with a functor ¢: C[W '] — Hoy C
satisfying 1 o a ~ . Applying Ho we obtain a commuting diagram as follows.

Ho C[W~!] ———— Ho(How C)

As How C already is a 1-category, we can identify Ho(Hoy C) with Hoy C.
Call the resulting functor ¥: Ho C[W~!] — Hoy C.

Using the uniqueness part of the universal properties of «, 5, and ~ one
concludes that the compositions ® o ¥ and ¥ o & are naturally isomorphic to
the respective identity functors. O

A.2. Mapping spaces

In this section we discuss two results relating to mapping spaces of co-cat-
egories. In Proposition A.2.0.1 we show that mapping spaces can be calcu-
lated as certain pullbacks in Cat,,. We will then apply this result in Propo-
sition A.2.0.2 to show that a pullback diagram in Cat., induces pullback
diagrams of the respective mapping spaces.

Proposition A.2.0.1. Let C be an co-category and X and Y two objects of
C. Then there is a natural (in C) pullback square in Cato,

Map(X,Y) —— ¢l

! |

{(X,Y)} —— CxC

where the right vertical functor sends a morphism f: A — B to (A,B). Q
2See [HA, 1.3.4.1] for a definition of C[W ~1].
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Proof. We give a proof for this claim in the setting of quasicategories. The
discussion in [HTT, Discussion after 1.2.2.5 and 4.2.1.8] exhibits the map-
ping space as a pullback of quasicategories, so we need to argue why this
is a homotopy pullback in the Joyal model structure, and then identify the
resulting (iterated) homotopy pullback with the pullback square we claimed.
So let C be a quasicategory modeling the oco-category C. In [HTT, 4.2.1.8], a
model for Map.(X,Y) is identified with the pullback in simplicial sets of the
following diagram.
cXY Lo vy

Applying [HTT, 4.2.1.6]3 to X =C, S = {V}, K = {X}, and Ky = 0, we
obtain that

XY W sy (VY 2o xyy (Y} =C

is a left fibration. By [HTT, 2.4.2.4 and 3.3.1.4] this implies that the pullback
of
XY S o vy

is already a homotopy pullback in the Joyal model structure.
Unpacking the definition of CtX}/ (see [HTT, after 4.2.1.4]) one can write
ctX}/ as the pullback in simplicial sets of the following diagram.

(X} = ¢l &'

It follows from [HTT, 2.4.7.12] (applied to idc) that ¢2" — ¢{% is a cartesian
fibration, so again by [HTT, 3.3.1.4] the pullback in simplicial sets is already
a homotopy pullback in the Joyal model structure. Together this implies that
the co-groupoid Map.(X,Y) is naturally equivalent to the iterated pullback

<{X} X0y Cm) xcy {Y'}

in Cate. Using [HTT, 4.4.2.2] one can rewrite this iterated pullback into the
form that was stated in the claim. O

Proposition A.2.0.2. Let
[ )
GJ{ J{H (%)
E—— F

be a pullback square in Cato,, and X, Y two objects in C. Then the commutative
diagram in 8 induced by (%) on mapping spaces

Mape (X, Y) ——————— Mapp(F(X), F(Y))

l |

Mapg (G(X), G(Y)) —— Mapz(H(F(X)), H(F(Y)))

3¢ — {Y} is a categorical fibration by [HTT, 2.4.6.1].
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is a pullback diagram. Q

Proof. As C is given as a pullback in Cat., and products as well as Fun([1], —)
preserve limits, we can write Map,(X,Y") as a pullback of pullbacks by ap-
plying Proposition A.2.0.1: The co-groupoid Map.(X,Y") is the pullback of
the following diagram.

{(G(X),GY)} xqmrx))HEN))) LEFX), F(Y))}

!

(€ xE) X (FxF) (DxD)

I

g1 5y, DI

Commuting the two limits [HTT, 5.5.2.3] and applying Proposition A.2.0.1
again we can conclude that the commutative square

Mape (X,Y) ———————— Mapp(F(X), F(Y))

| |
Mapg (G(X X

); G(Y)) —— Mapx(H(F(X)), H(F(Y)))

induced by (x) is a pullback diagram in Cat.,, and hence a pullback diagram
in 8§ by [HTT, 1.2.13.7]. O

A.3. The (00, 2)-category of co-categories
In this section we discuss some results concerning the (oo, 2)-category of
oo-categories. We will characterize pullbacks in the underlying oo-category

Cat, in Section A.3.1, and show that checking that a natural transformation
is an equivalence can be done pointwise in Section A.3.2.

A.3.1. Pullbacks in Cat.,

Proposition A.3.1.1. Let

(A1)

Q
M

HT@
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be a commutative diagram in Cats,. Then diagram (A.1) is a pullback diagram
if and only if the induced diagram on oo-groupoid cores

= —— D=
l l (A.2)
& —— F=

as well as the induced diagram on mapping spaces

Mapc (X,Y) —————— Mapp(F(X), F(Y))

l l (A.3)

Mapg (G(X), G(Y)) —— Mapz(H(F(X)), H(F(Y)))

for every pair of objects X and 'Y in C are pullback diagrams in S. Q

Proof. The functor (—)=: Cats, — 8§ is right adjoint to the inclusion (see
[HTT, 1.2.5]) and thus preserves pullbacks, which together with Proposi-
tion A.2.0.2 shows the “only if”-direction.

For the “if”-direction, consider the following commutative diagram in Cats,
induced by (A.1), where the small square is to be a pullback diagram.

It suffices to show that ® is an equivalence. The already proven “only if”-
direction and the assumption that (A.2) is a pullback diagram imply that ®=
is an equivalence of spaces, which implies that ® is essentially surjective (see
[HTT, 1.2.10.1]). Analogously we deduce from (A.3) that ® is fully faithful
(see [HTT, 1.2.10.1] and Definition B.2.0.1 below). Thus ® is an equivalence.

O

Remark A.3.1.2. In Proposition A.3.1.1, if diagrams (A.3) are pullback
diagrams, then it follows immediately from the proof that we can replace the
condition that diagram (A.2) is a pullback diagram with the a-priori weaker
claim that the map ®~ constructed in the proof is induces a surjection on
mo. As (—)= preserves pullbacks we can identify ®= with the induced functor
C= - D= X g~ F=. <>

A.3.2. Natural transformations

Proposition A.3.2.1 ([Lur2l, Theorem 01DK]). Let C and D be co-cate-
gories, F and G two functorsC — D, and ®: F' — G a natural transformation.
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Then ® is an equivalence in Fun(C, D) if and only if ®x: F(X) — F(X) is
an equivalence in D for every object X of C. V)

Proof. Equivalences can be described via colimits; A morphism f in some
oo-category £ is an equivalence if and only if the corresponding functor
[0]> ~ [1] — &€ is a colimit diagram, see [HTT, 4.4.1 and 1.2.4.1]. The claim
now follows from the fact that colimits in functor categories can be detected
pointwise by [HTT, 5.1.2.3 (2)]. O
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(Fully) faithful functors and
monomorphisms in Cat

In this appendix we discuss three important classes of functors of co-cate-
gories that are all in some sense analogues to the notion of injections of sets.
These are the faithful functors, fully faithful functors, as well as monomor-
phisms in Cats.

The notion of monomorphism can be defined in any oco-category, not just
Catoo, SO we begin by discussing monomorphisms in this greater generality
in Section B.1. We then define (fully) faithful functors Section B.2 and dis-
cuss some immediate consequences of the definitions. Before discussing these
three classes of functors of oco-categories further, we will need to show an
intermediate result in Section B.3, stability of (fully) faithful functors under
Fun(Z, —) for an oo-category Z. We will then be ready to discuss monomor-
phisms in Cat, in detail in Section B.4. In Section B.5 we will cover a number
of stability results, including descriptions of replete images, for (fully) faith-
ful functors and monomorphisms in Cat,, under Fun(Z, —), pullbacks along
another functor, and pullbacks. We will end this section with Section B.6, in
which we will discuss the correspondence between monomorphisms in Cat.,
with codomain a fixed oo-category C and replete subcategories of HoC.

B.1. Monomorphisms

Let C be an oo-category and f: X — Y a morphism in C. Then f is called
a monomorphism! if the morphism

f«: Mape(Z,X) = Mapg(Z,Y)

is a monomorphism in § for every object Z of C.

In Section B.1.1 we will give a number of equivalent characterizations for
monomorphisms in 8, before discussing the interaction of monomorphisms
with compositions in Section B.1.2 and with limits in Section B.1.3.

1See the definition given in [HTT, Between 5.5.6.13 and 5.5.6.14] as well as [HTT, 5.5.6.8].
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B.1.1. Monomorphisms in the co-category §

The following proposition recalls the notion of monomorphisms in the
oo-category 8.

Proposition B.1.1.1. Let f: X — Y be a morphism in 8. Then the following
are equivalent.

(1) f is a monomorphism in the sense of [HTT, Directly after 5.5.6.13],
i.e. if f is (—1)-truncated in the sense of [HTT, 5.5.6.8].

(2) For every point y in Y the fiber of f over y is (—1)-truncated, i.e.
empty or contractible.

(3) For every point x in X the fiber of f over f(zx) is (—2)-truncated, i.e.
contractible.

(4) For every point x in X the morphism induced by f
T (X, 2) = (Y, f(2)) (B.1)
is a bijection for n > 0 and an injection for n = 0.

(5) The induced morphism on path components wo(f) is injective and the
commutative diagram

x—L Ly
7o (X) NG mo(Y)

is a pullback diagram in S.

(6) Considering f as a functor of co-categories (via the inclusion of co-
groupoids into Cate,) the induced map on mapping spaces®

MapX(xvx/) - MapY(f(x)v f(CB/)) (B2)
is an equivalence for every pair of points x and x' in X.

Q

Proof. Proof that (1) is equivalent to (2): This is [HTT, 5.5.6.9].

Proof that (2) is equivalent to (3): Follows from the fact that points in YV
are equivalent to f(z) for a point « in X if and only if the fiber of f over y
is not empty.

2These are the path spaces if we think of X and Y as spaces.
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Proof that (5) implies (1): As any injective morphism of discrete spaces
satisfies (3) and hence (1), and monomorphisms are stable under taking pull-
backs by [HTT, 5.5.6.12], (5) implies (1).

Proof that (3) is equivalent to (4): Follows immediately from the long exact
sequence of homotopy groups.

Proof that (3) implies (5): That mo(f) is injective is part of (4). Now
consider the following diagram, where the small square is a pullback square.

3 ¥
Pp——

Y
m0(X) ——— oY)
mo(f)
It suffices to show that ¢ is an equivalence. By the long exact sequence of
homotopy groups, it suffices for this to show that mo(p) is surjective and
the fiber of ¢ over every point in P is contractible. As Y — mo(Y) is 1-
connective (see [HTT, 6.5.1.10] for a definition) we obtain that P — mo(X)
is 1-connective by [HTT, 6.5.1.16 (6)], and as X — mo(X) is 1-connective as
well it follows that (@) must be an isomorphism.
Now let p be a point in P. Consider the following diagram of pullback
squares.

fiby(¢) ———— {p}

| |

fiby(p) (f) — fiby ) () —— {¢

| |

X 4 P
|

7T()(X) — T

—
=

=
—

~

—~

Y)

As mo(¢p) is surjective, ¥(p) is equivalent to f(z) for some point = in X, so
it follows from the assumption that fiby,)(f) is contractible. Furthermore,
as fiby ) (1) can be identified as a fiber of a map of discrete spaces, it is
discrete as well. It follows, using the long exact sequence of homotopy groups
associated to the fiber sequence

fibp((p) — flbw(p)(f) — fib¢(p) (’lﬂ)

that fib,(¢) is contractible.
Proof that (6) is equivalent to (4): Let x and z’ be points of X. We
distinguish two cases. If z and z’ are not in the same path component,
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then Mapy (z,2') is empty, and so (B.2) is an equivalence if and only if
Mapy (f(x), f(2')) is empty. That this is the case for all points « and 2’ in
different path components of X is equivalent to mo(f) being injective.

If z and 2’ are two points of X that lie in the same path component, then
the map (B.2) can be identified with the induced map on loop spaces.

Qa2 (f)

As 1, (Q:(f)) & mpt1(f) (where on the left we use the constant loop at x
as the basepoint, and at the right the point x) we can conclude that (B.2)
being an equivalence for all z and 2’ in the same path component of X is
equivalent to (B.1) being an isomorphism for n > 0. O

B.1.2. Monomorphisms and composition

Proposition B.1.2.1. LetC be an co-category and f: X — Y andg: Y — Z
two morphisms in C such that g is a monomorphism. Then go f is a monomor-
phism if and only if f is a monomorphism. V)

Proof. The statement for C = 8 follows immediately from criterion Proposi-
tion B.1.1.1 (4). The claim for general C now follows immediately from the
definition. O

B.1.3. Monomorphisms and limits

Proposition B.1.3.1. Let Z and C be oco-categories, A, B: T — C two func-
tors, and F a natural transformation from A to B. Assume that for every

object X of I the morphism F(X): A(X) — B(X) in C is a monomor-

phism. Then the morphism limz A limz F, limz B in C is a monomorphism
as well. Y%

Proof. We first prove the claim for C = 8. Let y be a point in limz B. We
have to show that fib,(limz F') is (—1)-truncated. But as limits commute
with limits, we have an equivalence

fib,, (llenzl F(o)) ~ lig(fibpr.(y) F(o))
so that the claim follows from the closure of (—1)-truncated objects under
limits, see [HTT, 5.5.6.5].
The case of general C now follows from this special case using that for every
object X of C the functor
Map.(X,—): C — 8

preserves limits. O
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B.2. (Fully) faithful functors

In this section we define the notions of (fully) faithful functors of co-cate-
gories® and record some direct consequences of the definition.

Definition B.2.0.1. Let ¢: C' — C be a functor of co-categories. We say that
¢ is (fully) faithful if for every pair of objects X and Y of C’ the morphism
in 8§ induced by ¢

Mape/ (X,Y) — Map(F(X), F(Y))
is a monomorphism (is an equivalence). O

Remark B.2.0.2. It is clear from the definition, that the notions of (fully)
faithfulness agree with the classical definitions on 1-categories. Furthermore,
as mo: & — Set sends equivalences to isomorphisms and monomorphisms to
monomorphisms (see Proposition B.1.1.1), if a functor ¢ of oco-categories is
(fully) faithful, then the same is true for the functor Ho ¢ of ordinary categories.

&

Proposition B.2.0.3. Let v: C' — C be a faithful functor of co-categories.
Then the commutative diagram

' ———¢C

l l (B.3)

Ho(C") —;- Ho(C)

s a pullback diagram in Cat. @

Proof. We use Proposition A.3.1.1 and Remark A.3.1.2. Let X and Y be two
object of C'. Diagram (B.3) induces the following diagram of mapping spaces.

Mapg/ (X,Y) ——— Mape(e.X, 1Y)

l l

mo(Mape/ (X,Y)) —— mo(Mape (¢ X, 1Y))

It follow from Proposition B.1.1.1 that this square is a pullback square in 8.
It now remains to show that

= = Cc™= XHO(C)Z HO(C/)Z
induces a surjection on 7. The map?*

C'™ — Ho(C')™ ~ Ho(C'™) ~ 7<1(C'7)

3Fully faithful functors are defined in [HTT, 1.2.10.1].
4That Ho(C)~ ~ Ho(C™) can be seen directly using the definitions, it boils down to
the subspace of Mapg/(X,Y) spanned by the equivalences consisting exactly of the
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Appendix B. (Fully) faithful functors and monomorphisms in Cat

is 2-connective. Similarly, C= — Ho(C)= is 2-connective, so by [HTT, 6.5.1.16
(6)] the projection pry: C= X1o(c)~ Ho(C')~™ — Ho(C’)~ is 2-connective as well.
We thus have a commuting triangle

~

c'~

C™ Xpo(c)= Ho(C')™

\ o

Ho(C')™

where the two non-horizontal maps are 2-connective, so the horizontal map
must in particular induce a surjection on . O

Proposition B.2.0.4. Let v: C' — C be a faithful functor. Then for any
objects X and Y of C’, the induced map

Mape~(X,Y) = Mape~ (¢.X, 1Y) (B.4)
s a monomorphism in S. V)

Proof. The map in question is by definition the induced vertical map by
taking limits of the horizontal diagrams in the following commutative diagram

Map./ (X,Y) —— mo(Mape (X, Y)) «—— mo(Mape~(X,Y))

l l l

Map.(X,Y) —— mo(Map¢(X,Y)) +—— mo(Mape~ (X, Y))

where the vertical maps are induced by ¢, the horizontal maps from the left to
the middle are the canonical ones, and the horizontal maps from the right to
the middle are the inclusions of the path components spanned by invertible
morphisms.

As all vertical maps are monomorphisms, we can apply Proposition B.1.3.1
to conclude that (B.4) is a monomorphism as well. O

B.3. (Fully) Faithful functors and Fun

When we discuss monomorphisms in Cat,, in Section B.4, we will need to
use a first stability result for (fully) faithful functors that we prove in this

path components that as elements of mo(Mape/(X,Y)) = Mory, ¢/ (X,Y) correspond
to isomorphisms in HoC’. That Ho(C’'™) ~ 7<1(C'™) amounts to the fact that the
diagram of inclusions

SS1*>S

]

Cat —— Catoo

is left adjointable in the sense of [HTT, 7.3.1.1]. However, in this situation this follows
from the horizontal functors being fully faithful.
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section; for an co-category Z, the functor Fun(Z, —): Cats, — Caty, preserves
(fully) faithful functors.

Proposition B.3.0.1. Let ¢: C' — C be a (fully) faithful functor of oco-
categories and let T be some oco-category. Then the induced functor

tx: Fun(Z,C’) — Fun(Z,C)
is (fully) faithful as well. Q

Proof. Let F and G be two objects of Fun(C,D’). Mapping spaces in func-
tor categories can be written as ends, see [Glal6, 2.3]. Concretely, the map
induced by ¢, on mapping spaces

MapFun(C,D’)(F’ G) — MapFun(C,D) (L o Fa Lo G)

can be identified with the following map of ends, induced by the maps induced
by ¢ on mapping spaces Mapp, (e, ) — Mapp(i(e), L(e)).

Mapp (F(s),G(s) — | Mapp(i(F(s),i(G(s))
ecC ecC
If ¢+ is fully faithful, then this is an equivalence as ends, like other limits,
are invariant under equivalences, so ¢, is fully faithful as well.
If ¢ is faithful, then we can use that limits commute with limits, so for
¢: F'— G a morphism in Fun(C,D’) we obtain

flbg& (MapFun(C,D,) (}’—‘7 G) — MapFun(C,D) ([, [©] F, L O G))

~ /.ec fib,,, (Mapp, (F(e), G(e)) = Mapp (t(F(e),1(G(e))))

";“/ * X ok
ecC

where in the second-to-last step we use that ¢ is faithful in combination with
criterion (3) of Proposition B.1.1.1, and in the last step we use that a limit
of a diagram that is pointwise a terminal object (which is a limit over the
empty diagram) is the terminal object (as limits commute with limits). Thus
Lx 1s again faithful. O

B.4. Monomorphisms in Cat.,

In this section we discuss monomorphisms in Cat.,. We will start in Sec-
tion B.4.1 by giving several equivalent characterizations of monomorphisms
in Cats,, that will be crucial for later results. In Section B.4.2 we will then
discuss the analogue of monomorphism in Cat, for 1-categories, the notion
of pseudomonic functors, as well as the relation between monomorphisms
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Appendix B. (Fully) faithful functors and monomorphisms in Cat

in Cat,, and pseudomonic functors in Cat. Section B.4.3 will provide the
important criterion for lifting along monomorphisms in Cat,. Finally, we
end this section with Section B.4.4, where we show that faithful functors are
monomorphisms.

B.4.1. Equivalent characterizations of monomorphisms
in Cat

In this section we provide a number of equivalent characterizations of
monomorphisms in Cat,,. We also show that monomorphisms in Cat., are
conservative functors, i.e. reflect equivalences.

Proposition B.4.1.1. Let t: C' — C be a functor of co-categories. Then the
following are equivalent.

(1) ¢ is a monomorphism in Cats, in the sense of [HTT, After 5.5.6.13].
(2) For every co-category L, the induced map
(t,)%: Fun(Z,C")~ — Fun(Z,C)~
s a monomorphism in 8.

(3) v is faithful and the induced functor on oco-groupoid cores 1=: C'= — C=
s a monomorphism in 8.

(4) v is faithful and for every two objects X and Y in C' and equivalence
f:1X — Y there is an equivalence f': X — 'Y such that of’ is homo-
topic to f.

Q

Proof. Proof that (1) is equivalent to (2): This follows immediately by un-
packing the definition of monomorphisms and using that

Mape,,. (Z,—) ~ Fun(Z,—)~

by definition [HTT, 3.0.0.1].

Proof that (2) implies (3): Applying the assumption to Z = [0], we deduce
immediately that :~ is a monomorphism in 8. Let X and Y be objects of
C'. Using that (—)= preserves pullbacks as a right adjoint [HTT, 1.2.5] we
obtain from Proposition A.2.0.1 that the map induced by ¢

Mape (X,Y) — Map (¢ X, 1Y) (%)

is the map induced on limits of the horizontal diagrams in the following
commutative diagram.

Fun([1),¢")* —— Fun({0,1},¢")* +—— {(X,Y)}

| | J

Fun([1],€)T —— Fun({0,1},C)~ +—— {(tX,Y)}
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where the vertical maps are induced by ¢, the horizontal maps from the left
to the middle are induced by precomposition with the inclusion of {0, 1} into
[1] and the horizontal maps from the right to the middle are the inclusions
of the functors sending 0 to the first component of the tuple and 1 to the
second component. The vertical map on the right is an equivalence and thus
a monomorphism, and the other two vertical maps are monomorphisms by
assumption. It follows from Proposition B.1.3.1 that (%) is a monomorphism
as well.

Proof that (3) implies (4): Follows immediately from description Proposi-
tion B.1.1.1 (6) of monomorphisms in 8§ applied to ¢=.

Proof that (4) implies (2): Let Z be an oco-category. As

Mapeas.. (Z,-) ~Fun(Z,—-)~

preserves limits, we obtain from Proposition B.2.0.3 a pullback diagram of
spaces as follows

Fun(Z,C")~ S CON Fun(Z,C)~

| l

Fun(I, HOC/): ((H—)):> FUH(I, Ho C):

where the vertical maps are induced by postcomposition with the canoni-
cal functors. We have to show that the top map is a monomorphism, so as
monomorphisms are stable under pullback by [HTT, 5.5.6.12], it suffices to
show that ((Hot).)= is a monomorphism in 8. Note that as Ho¢ is a functor
of 1-categories, we can identify ((Hot).)™ with the following functor.

((Hot),)™: Fun(HoZ,HoC')~ — Fun(HoZ,HoC)~

Let F and G be two functors from HoZ to HoC’, considered as objects of
Fun(HoZ,Ho(C’)=. By criterion Proposition B.1.1.1 (6) it suffices to show
that postcomposition with Ho ¢ induces an equivalence on mapping spaces as
follows.

Mapg,(to 7,Ho ¢1)~ (X,Y) = Mapg ., (to 7,Ho €)=~ (LoX,10Y) (%)

By Remark B.2.0.2 together with Proposition B.3.0.1 the functor (Ho:).
is faithful, so by Proposition B.2.0.4, the map (xx) is already a monomor-
phism, so that it suffices to show that it induces a surjection on 7. So let
®: 1,0 F — 1 oG be a natural isomorphism of functors from HoZ to HoC.
We have to show that we can lift ® to a natural transformation from F' to
G. Let X be an object of HoZ. Then we can apply the assumption on ¢ and
lift the isomorphism ®x: t(F (X)) — «(G(X)) in HoC’ to an isomorphism
' F(X) — G(X) in HoC such that ¢(®’y) = ®x. It remains to check that
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®’ defines a natural transformation from F to G. As F and G are functors
of 1-categories, this is a property, not data, and it suffices to check that for
every morphism f: X — Y in Z, the diagram

q>/

F(X) 2%, G(X
F(f)l a(r
*> G(Y

commutes. But as Ho is faithful, it suffices to check that ¢ applied to this
square yields a commutative square, which is the case as ® is a natural
transformation. O

Proposition B.4.1.2. Let t: C' — C be a monomorphism in Cats,. Then t
s conservative, i. e. reflect equivalences. Q

Proof. Let f: X — Y be a morphism in C’ such that «(f) is an equivalence.
By Proposition B.4.1.1 (4) we can lift ¢(f) to an equivalence f': X — Y in
C'. But faithfulness of ¢ implies that mo(Map¢/ (X,Y)) = mo(Mape (¢ X, (Y))
is injective, hence f and f’ must be homotopic, so f is an equivalence as
well. O

B.4.2. Pseudomonic functors and replete images

The notion of monomorphisms in Cat, corresponds to the notion of pseu-
domonic functors of 1-categories, as we discuss in this section. Like injective
maps of sets, pseudomonic functors of 1-categories are, up to equivalence, de-
termined by their image. In the case of pseudomonic functors we will usually
consider a more invariant notion of image, the replete image, which we also
introduce below.

Remark B.4.2.1. Let ¢t: (' — C be a monomorphism in Cats,. Then if
follows immediately from Proposition B.4.1.1 (4) and Remark B.2.0.2 that
Ho:: HoC' — HoC is a pseudomonic functor, i.e. Ho ¢ satisfies the following
two conditions.

(1) Hou is faithful.

(2) If X and Y are two objects of HoC’ and f: (Hot)(X) — (Ho:)(Y) is
an isomorphism in HoC, then f lifts to an isomorphism f’: X — Y in
Ho C’ such that (Ho)(f") = f.

If .: C' — Cis a pseudomonic functor of 1-categories, then it follows simi-
larly that ¢ is a monomorphism in Catye. &

Definition B.4.2.2. Let C' be a subcategory of the 1-category C. We say
that C’ is a replete subcategory of C if the collection of morphisms in C’ is
closed under isomorphisms in the arrow category Fun([1], C).
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If F: C — D is a functor of 1-categories, then the replete image Im F' of F
is the replete subcategory of D generated by the image of F', i.e. it consists
of those objects isomorphic to an object of the form F(X) for X in C, and
those morphisms isomorphic in the arrow category of D to a morphism of the
form F(f) for f a morphism in C. &

Remark B.4.2.3. Let .: C' — C be a pseudomonic functor of 1-categories.
Then it follows directly from the definitions that the induced functor

J:C > Ime

is essentially surjective as well as fully faithful and thus an equivalence. <

B.4.3. Lifting along monomorphisms

We now show that monomorphisms in Cats, have the expected property:
We can check whether two functors into the domain of a monomorphism ¢
are homotopic by checking their compositions with ¢, and any functor into
the target of ¢ can be lifted as long as its image is contained in the image of
L

Proposition B.4.3.1. Let t: D' — D be a monomorphism in Cat,, and
F:C — D a functor of co-categories.

Then F' can be lifted along v, i. e. there exists a commutative diagram as
follows

D/
P /7{ J{L
C——D
if and only if Im(Ho F) is contained in Im(Ho ). If this is the case, then the
lift is essentially unique in the sense that the fiber over F' of the map

~

(1) : Fun(C,D")” — Fun(C,D)~

is contractible. Q

Proof. Proof of the “only if ’-direction: Clear.

Proof of the “if ”-direction: By Proposition B.4.1.1 ¢ is faithful and so the
right square in the following commutative diagram is a pullback square by
Proposition B.2.0.3.

D' —— HoD'

’ A
F/// ib lHOL
C — D — HoD

It thus suffices to show that the composition F of F with the canonical functor
D — HoD can be lifted along Hot. But Ho: factors by Remark B.4.2.3
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as an equivalence composed with the inclusion Im(Hot) — HoC, and by
assumption F factors over this inclusion.

Proof that the lift is essentially unique if it exists: As we assume a lift
exists, the fiber can not be empty. That it is then contractible follows from
Proposition B.4.1.1 (2). O

B.4.4. (Fully) faithful functors are monomorphisms

In this short section we show that (fully) faithful functors are monomor-
phisms.

Proposition B.4.4.1. Fully faithful functors of co-categories are monomor-
phisms in Catys. Q

Proof. Let ¢: C' — C be a fully faithful functor. We will use criterion Propo-
sition B.4.1.1 (4). That ¢ is faithful is clear. Let X and Y be objects of C’
and f: X — /Y an equivalence in C. Let f~! be an inverse of f. As ¢ is fully
faithful, we can lift f to a morphism f: X — Y and f~! to a morphism
f”:Y — X. But as ¢ also induces an equivalence

Mape (X, X) — Mape (¢ X, tX)

we can also lift the homotopy f~'o f ~ id,x to a homotopy f” o f’ ~idx,
and similarly f'o f” ~idy, so f': X — Y is an equivalence with ¢f’ ~ f. [

B.5. Stability properties of (fully) faithful
functors and monomorphisms in Cat.,

In this section we show that monomorphism in Cat., as well as (fully) faith-
ful functors are stable under various constructions. In Section B.5.1 we handle
the case of induced functors on functor oo-categories, and in Sections B.5.2
and B.5.3 we discuss two types of stability under taking pullbacks.

Section B.5.2 concerns taking the pullback along an arbitrary other functor,
i.e. we show that if vp is faithful (fully faithful, a monomorphism), then the
functor ¢¢, defined via a pullback diagram

c—£5c

Pl

D ——7D
LD

in Caty,, with F' any functor, is so as well.

In Section B.5.3 we instead consider stability under taking pullbacks in the
arrow oo-category; in Proposition B.1.3.1 we already showed that a natural
transformation between two diagrams that is pointwise a monomorphism in-
duces a monomorphism between the two limits. Section B.5.3 specializes this
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to the case of pullbacks in Cat.,, and adds additional information regarding
the replete image of the induced functor.

B.5.1. Functor oo-categories

Proposition B.5.1.1. Let t: C' — C be a monomorphism in Caty, and T an
oco-category. Then the induced functor

te: Fun(Z,C") — Fun(Z,C)

is a monomorphism in Cats, as well.
Let J be defined to be the replete subcategory of HoFun(Z,C) where

e a functor F': T — C considered as an object of HoFun(Z,C) is in J if
and only if Im(Ho F') is contained in Im(Hot).

e a natural transformation ®: F — G of functors T — C, considered as
a morphism from F to G in HoFun(Z,C), is in J if and only if F and
G are objects of J and ®x is in Im(Ho) for every object X of T.

Then the replete image Im(Hot,.) of the functor
Ho(cs): HoFun(Z,C") — HoFun(Z,C)
s equal to J. Q

Proof. Proof that v, is a monomorphism: Follows from description Proposi-
tion B.4.1.1 (2) using that for any oo-category J there is a natural equivalence
as follows.

Fun(J,Fun(Z,—)) ~ Fun(J x Z,—)

Proof that Im(Ho ¢..) is contained in J: Clear

Proof that J is contained in Im(Ho e, ): It suffices to show an inclusion of
the respective collection of morphisms, as the case of objects is covered by
the identity morphisms. So let ®: F — G be a natural transformation of
functors Z — C, considered as a morphism from F to G in HoFun(Z,C),
and assume that @ lies in J. What we have to show is that ® can be lifted
along ¢, i.e. that there is a natural transformation @’ of functors Z — C’ such
that ¢ o @ ~ ®. But we can encode ® as a functor ®: [1] x Z — C, and the
assumptions mean precisely that Im(Ho ®) is contained Im(Ho:). That we
can lift ® along ¢ now follows from Proposition B.4.3.1. O

Remark B.5.1.2. Let ¢: C' — C be a fully faithful functor. By B.4.4.1 ¢ is
also a monomorphism in Cats,, so we can apply Proposition B.5.1.1. In this
case, the replete subcategory J of HoFun(Z,C) appearing in the statement
of Proposition B.5.1.1 has a simpler description, using that Ho: is full: J is
the full subcategory of Ho Fun(Z,C) spanned by those functors F: Z — C for
which F(X) is in the essential image of Ho: for every object X of Z. &
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B.5.2. Pullbacks along another functor
Proposition B.5.2.1. Let

c—L5c

F’l lF (B.5)

D——1D
LD

be a pullback square in Caty, and assume that vp is faithful (fully faithful,
a monomorphism). Then ic is faithful (fully faithful, a monomorphism) as
well.

Furthermore, if vp is a monomorphism®, then the induced diagram on
homotopy categories

Ho(C') —22'< Ho(C)
Ho F/l lHoF (B.6)
Ho(D') —— Ho(D)

Houp

is a pullback®. Q

Proof. That ¢ is a monomorphism in Cat, if tp is follows immediately from
pullbacks of monomorphisms being pullbacks again, see [HTT, 5.5.6.12].

We next show the first statement for (fully) faithful functors. Let X and
Y be objects of C’. We have to show that the map in §

Map/ (X,Y) = Mape(te(X), te(Y))

induced by ¢ is a monomorphism (is an equivalence). By Proposition A.2.0.2
the commutative square induced by (B.5)

Mape/ (X,Y) ———— MapC(LC (X)ec (Y))

| |

Mapp, (F'(X), F'(Y)) —— Mapp (tp(F'(X)), vp(F'(Y)))

is a pullback diagram in 8. As ¢p is (fully) faithful the lower horizontal map
is a monomorphism (equivalence), and hence so is the upper horizontal map
(see [HTT, 5.5.6.12] for monomorphisms being preserved by pullbacks) This
shows that «¢ is (fully) faithful.

Finally it remains to show that diagram (B.6) is a pullback diagram if ¢p is
a monomorphism in Cat.,. By Remark B.4.2.1, the functors Hotp and Ho¢¢
are pseudomonic, so this boils down to showing that the replete image of

5Recall that by Proposition B.4.4.1 fully faithful functors are automatically monomor-
phisms in Cateo.
6We take the pullback in the co-category of 1-categories.
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Ho ¢ is equal to the Ho F-preimage of the replete image of Hovp. It is clear
that Ho F' maps the replete image of Ho (¢ to the replete image of Hotp. On
the other hand, if f is a morphism in C such that Ho F'(f) is in the replete
image of Ho tp, then there must exist a morphism ¢’ in D and an equivalence
tp(g") ~ F(f) in Fun([1], D). We can interpret the situation as a commuting
square as depicted as the outer square in the following diagram.

C

[1] onst g
N

c—L5c

Pl e

D——1D
[Z5)

As the small square is a pullback square we obtain the dashed functor, which
we can interpret as a morphism in C’ that is mapped by Ho t¢ to a morphism
isomorphic to C. That the objects of the two replete subcategories we are to
compare agree can be proven analogously, or deduced from this by considering
identity morphisms. O

B.5.3. Pullbacks
Proposition B.5.3.1. Let

C— D R
J . (B.7)
Q gl .F/

/

=TS
_—
& 3 F
be a commuting cube of co-categories such that Fp, Fg, and Fr are faithful
(fully faithful, monomorphisms) and the front and back squares are pullback
squares in Cato,. Then the functor Fe is faithful (fully faithful, a monomor-
phism) as well.
Furthermore, if Fr is a monomorphism” in Cat.,, then an object (mor-

phism) in HoC is in Im(Ho F¢) if and only if it is mapped by Ho P and Ho @
to an object (morphism) in Im(Ho Fp) and Im(Ho F¢), respectively. @

Proof. To show that F¢ is again faithful or fully faithful we apply Proposi-
tion A.2.0.2 and use Proposition B.1.3.1 and that the formation of pullbacks

"By Proposition B.4.4.1, fully faithful functors are monomorphisms as well.
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is invariant under equivalences. The case of monomorphisms in Cat., is even
simpler, as it follows directly from Proposition B.1.3.1.

It remains to show the statement concerning replete images. The “only if”-
direction is clear. We show that a morphism in Ho C satisfying the assumption
lies in Im(Ho F¢), the statement for objects follows from this by considering
identity morphisms. As the front of (B.7) is a pullback diagram, a morphism
in C satisfying the assumptions corresponds to a commutative square

such that Im(Ho ®p) is contained in Im(Fp) and Im(Ho ®s) is contained
in Im(Fg). What we have to show is that we can extend this square to a
commutative cube as follows.

P L
idp | Fp
}‘Pg/
1] —>‘ s D R
| *
| i ()
(DS 6‘/ fl

£ F

The assumptions on Im(Ho ®p) and Im(Ho ®¢) imply that we can fill the
dashed arrows together with the top and left squares by Proposition B.4.3.1,
as Fp and Fp are monomorphisms. We are left to find a filler for the back
square and the cube. But this amounts to lifting the homotopy between
FroR o®p and Fr oS’ o ®g encoded by the other sides to a homotopy
between R’ o ®pr and S’ o ®gr. This is possible as the following map induced
by F]:

Map(Fun([l],}"):)(R/ o (I)D/, Sl o (I)g/)
— Map(Fun([l]y}'):)(F]: e} R/ o CI)DH F]: e} S/ e} (I)g/)

is an equivalence by Proposition B.4.1.1 (2) and Proposition B.1.1.1 (6). O

B.6. Subcategories

In this short section we briefly discuss how monomorphisms into a fixed
oo-category C correspond to replete subcategories of HoC.
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Remark B.6.0.1. Let C be an co-category and (HoC)” a replete subcategory
of HoC. Then define +: C' — C as in the following pullback diagram

¢ ———=c

l |

(HoC) —— HoC

where the right vertical functor is the canonical one. As the inclusion of a re-
plete subcategory of a 1-category is a pseudomonic functor of 1-categories, it
follows from Remark B.4.2.1 that ¢/ is a monomorphism in Cat.,. By Proposi-
tion B.5.2.1 ¢ is also a monomorphism, and furthermore the induced functor
Ho(C') — Ho(C)' is an equivalence®, so Im(Hot) = (HoC)'.

By Proposition B.4.3.1, two monomorphisms ¢': ' — C and "': C"" — C are
equivalent as functors to C in the sense that there is a commutative triangle

if and only if Im(Ho¢') = Im(Ho:”). This implies that all monomorphisms
arise up to equivalence from the above construction, and that there is a
bijection between equivalence classes of monomorphisms with target C and
replete subcategories of HoC. &

8As HoC — Ho(HoCQ) is.
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Appendix C.

(Co)Cartesian Fibrations

For many technical parts of this thesis, (co)cartesian fibrations play a cru-
cial role. For a very readable model-independent introduction [Maz19] can
be recommended. For a full introduction to (co)cartesian fibrations and their
properties in the setting of quasicategories see [HTT, 2.4]. We will follow
[Maz19] in deviating somewhat from Lurie’s terminology by using a more
model-independent definition: For us, a cartesian fibration is a morphism in
Cato, that can be represented by a morphism of quasicategories that is a
cartesian fibration in Lurie’s sense (see [HTT, 2.4.2.1]). Equivalently, those
are the functors of co-categories which satisfy condition [HTT, 2.4.1.1 (2)],
with the pullback in the definition of cartesian morphisms in [HTT, 2.4.1.1]
replaced by the homotopy pullback in Cat.,. For a definition along these lines,
see [Maz19, 3]. It is shown in [Maz19, 4.3 and 4.4] that these two descriptions
coincide, and we can thus use the latter model-independent definition while
still making use of all the properties of (co)cartesian fibrations proved in
[HTT].

In this appendix we collect some statements relating to (co)cartesian fi-
brations that we need; in Section C.1 we will show a number of stability
statements, and in Section C.2 we will discuss compatibility of cocartesian
fibrations with products.

C.1. Stability properties of (co)cartesian
fibrations

In this section we discuss stability of (co)cartesian fibrations under some
constructions. Concretely, in Section C.1.1 we consider pullbacks of cartesian
fibrations along any other functor, in Section C.1.2 we discuss a condition
under which restrictions of cartesian fibrations along fully faithful functors
are again cartesian fibrations, and in Section C.1.3 we show that if p: C — D
and g: D — &£ are cartesian fibrations, then p is also a morphism of carte-
sian fibrations from gp to ¢, i. e. maps gp-cartesian morphisms to g-cartesian
morphisms.

Remark C.1.0.1. The definitions of cocartesian and cartesian fibrations
are dual to each other: p: C — D is a cocartesian fibration if and only if
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p°P: C°P — D°P is a cartesian fibration [HTT, 2.4.2.1]. Because of this it
suffices to prove many statements for only one of the two (usually cartesian
fibrations), the other case following by passing to opposite co-categories. To
avoid overly long statements we will not state the dual versions in the propo-
sitions below, but use them without further comment. &

C.1.1. Pullbacks

We record the following fact, that is clear from [HTT, 2.4.1 and 2.4.2], but
not stated like this.

Proposition C.1.1.1. Let

¢ L,

]

D ——7D

be a pullback diagram of co-categories where p is a cartesian fibration.
Then p’ is also a cartesian fibration and a morphism ¢: X —'Y in C' is
P’ -cartesian if and only if F(yp) is p-cartesian. Q

Proof. That p’ is also a cartesian fibration is [HTT, 2.4.2.3 (2)], which follows
from [HTT, 2.4.1.3 (2)], which also covers the “if”-direction. For the “only
if”-direction, let ¢: X — Y be a p’-cartesian morphism in C’. Then ¢ is in
particular locally p’-cartesian®, so we can apply [HTT, 2.4.1.12] to conclude
that F(¢) is locally p-cartesian. As p is a cartesian fibration we can then
apply [HTT, 2.4.2.13] to show that F'(¢) is in fact p-cartesian. O

C.1.2. Restriction along fully faithful functors

Proposition C.1.2.1. Let p': C' — D be a cartesian fibration of co-cate-
gories and v: C — C' a fully faithful functor. Assume that for every object Y
in C and every p'-cartesian morphism f': X' — (Y in C’' there is an object
X in C with (X) ~ X'.

Let p=p't. Then p is also a cartesian fibration, and a morphism f in C is
p-cartesian if and only if L(f) is p’-cartesian. Q@

Proof. We start by noting that the “if”-direction, i.e. the criterion for check-
ing when a morphism of C is p-cartesian, follows immediately from [HTT,
2.4.4.3].

We can now use this criterion to show that p has a sufficient supply
of cartesian lifts to be a cartesian fibration. So let Y be an object in C
and g: X — p(Y) a morphism in D. Then there exists a p’-cartesian lift

I This follows from the already proved “if”-direction. See [HTT, 2.4.1.11] for a definition
of locally p’-cartesian morphisms.
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q: X - 1(Y) in C’, as p' is a cartesian fibration. By the assumption on ¢,
there exists an object X of C such that ¢(X) =~ X', As ¢ is also fully faith-
ful, there exists a morphism g: X — Y in C such that «(g) ~ g’ and hence
p(g) ~ g. We can now use the already proven criterion to deduce that g
is p-cartesian from g’ being p’-cartesian. This finishes the proof that p is a
cartesian fibration.

Finally, let f: X — Z be a p-cartesian morphism in C. We want to show
that ¢(f) is p’-cartesian. In C’ we can factor ¢(f) as ¢(f) = ¢’ o ¢/, where ¢/
is p'-cartesian and ¢’ is a morphism in C) (x)» as depicted in the following
commutative diagram

(X 4>Y’

Lﬁl

lying over the following commutative diagram in D.

p(X) % p(x)

\ ipm

Using the assumptions on ¢, we can find an object Y in C together with an
equivalence ¥: Y/ = 1(Y), as well as a commuting diagram

X —7 Ly

NS

in C which maps to the following composite commutative diagram in C’.

U(X) “e) W(Y)

As 9 is an equivalence and v’ is p’-cartesian, also ¢(¢)) is p’-cartesian, so that
we can conclude that 1 is p-cartesian by the already proven “if”-direction. If
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follows from [HTT, 2.4.1.7] that ¢ is also p-cartesian. Furthermore, p(y) is
an equivalence as the composition of the two equivalences id,x) and P (9),
so by [HTT, 2.4.1.5] ¢ itself is an equivalence. Thus ¢(y) is an equivalence
and hence by [HTT, 2.4.1.5] p’-cartesian, and so ¢(f) is p’-cartesian by [HTT,
2.4.1.7]. O

C.1.3. Morphisms of cartesian fibrations

Proposition C.1.3.1. Let

be a commutative diagram of oco-categories such that p, q, and s are cartesian
fibrations.

Then p is a morphism of cartesian fibrations over &, i. e. maps s-cartesian
morphisms to g-cartesian morphisms. Q

Proof. Let f: X — Y be an s-cartesian morphism in C. As ¢ is a cartesian fi-
bration, there exists a g-cartesian lift g: Z — p(Y") in D of s(f). As p is a carte-
sian fibration, we can further lift g to a p-cartesian morphism f’: X’ — Y in
C. By [HTT, 2.4.1.3 (3)] f’ is even s-cartesian, so by uniqueness of cartesian
lifts (see [HTT, 2.4.1.9]) f" and f are equivalent as morphisms in C and hence
p(f) = p(f’) ~ g is g-cartesian because g is. O

C.2. Cocartesian fibrations and products

Let D be an oco-category and F: D — Caty, a functor. Let O be an
oo-operad. By [HA, 2.4.2.4] the oo-category Monp(Caty,) of O-monoids in
Cat, can be identified with the co-category of O-monoidal co-categories. If F
preserves products, then we obtain an induced functor on @-monoids, which
we can thus interpret as functorially producing O-monoidal co-categories out
of O-monoids in D. We will be very interested in this situation in this thesis,
in particular in Chapter 3. However, it will usually be easier to construct and
work with the cocartesian fibration p: C — D associated to F' rather than
with F directly. For this reason we will start this section by describing the
property of F' preserving products in terms of the cocartesian fibration p (see
Definition C.2.0.1), and will then prove some consequences of this property,
as well as one result (see Proposition C.2.0.4) that can help deduce that a
cocartesian fibration has this property.

Definition C.2.0.1. Let p: C — D be a cocartesian fibration. We say that
p has fibers compatible with products if D admits all products and for any set
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I and collection of objects Y; in D for i € I, the functor

Hi (pri)y
v — = []ew ¢
el

is an equivalence of co-categories, where pr; : [Lic; Yi — Y is the projection
and (pr;): is the functor induced by pr; on fibers.

Remark C.2.0.2. Let p: C — D be a cocartesian fibration that is classified
by a functor F' : D — Cat.,. Then p has fibers compatible with products if
and only if D admits all products and F' preserves products. O

If p: C — D is a cocartesian fibration whose fibers are compatible with
products, then we will see in the next proposition that C admits all products
as well, and p preserves them. In fact we can say more and also describe
concretely how to construct products in C.

Proposition C.2.0.3. Let p: C — D be a cocartesian fibration whose fibers
are compatible with products in the sense of Definition C.2.0.1.

Let I be a set and (X;)icr a collection of objects in C. As fibers of p are
compatible with products, we obtain the following equivalence.

Hi, (Pri)y
Crt,., pixy) ——= [ Corx
el

There thus exists an object X in C lying over [],c; p(X;) together with
p-cocartesian morphisms pr;: X — X; lying over the projections

pr;: [[p(X:) = p(X))
iel
inD.
Then the morphisms Pr; exhibit X as a product of the collection of objects

X; fori € I in C. In particular, C admits all products and p preserves
products. @

Proof. We use notation as in the statement. By [HTT, 4.4.1] we need to prove
for every object Z of C that the map

[T;er(Prio—
_—

)
[ Mape (2. X,)
i€l

MapC(Z7X)

is an equivalence. This map fits into the following commutative square as the
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left vertical map, with the horizontal maps being induced by p.

Mape(Z, X) ————— Mapp (p(2), [[p(X2)

i€l
Hie](ﬁo_) Jniel(prio) (*)
[ Mape (2, X;) —— [ Mapp(p(2), p(X.)
el el

As by definition the projections pr; exhibit [ [, ; p(X;) as a product of (X;);er,
it follows by [HTT, 4.4.1] that the right vertical map is an equivalence. Let
f:p(Z) — Ilie;p(X;) be a morphism. We can extend diagram (x) to a
morphism of fiber sequences by taking the fiber of the top horizontal map
over f and of the lower horizontal map over (pr;of);cs. By the five lemma
it will then suffice to show that for every such f the induced map on fibers
is an equivalence.

To identify this induced map on fibers, we let f: Z — fiZ be a p-cocarte-
sian lift of f, let

;s fiZ = pry,(fiZ)

be a p-cocartesian lift of

pr;: [[p(Xi) = p(X;)
el

and ponder the following diagram.

Mape, o (712, X) ——— Mape(Z, X) % Mapp (p(2), [T p(X0)

el
lpn prjo— [
pr;jo—

Mapg,  (pr3,(2). %) T2 Mape (2, X,) 5 Map(p(2). 5(X,)
()

The top and bottom rows come with homotopies of the composition to const
and constpr of, respectively. For the top horizontal sequence this homotopy is
indicated in the following diagram, the case for the lower horizontal diagram
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is analogous.

MapcnieIp(Xi) (f'Z7X) \
70? J{
MapC(Z,X) <_—, Mapc(f!Z,X) constiq

of
I»

Mapy, ([T p(x0), [T p(X0))

iel el
p lfof const ¢
Mapp (p(Z),Hp(Xi)) A—
i€l

By [HTT, 2.4.4.2 and the discussion preceding it], this homotopy upgrades
the top row of diagram (x*) into a fiber sequence, and analogously for the
bottom row.

Unpacking the various definitions we can also upgrade the vertical mor-
phisms in diagram (*x) into a morphism of fiber sequences. For example
commutativity of the left square essentially boils down to the functor

prj: Cripcxs) = Cx,

by definition sending a morphism g: fiZ — X to the essentially unique mor-
phism pr;,g that fits in a commutative diagram

HhzZ — pri!ng

| [

X —— pry X

where the horizontal morphisms are p-cocartesian lifts of pr;, see [HTT, 5.2.1].
We have thus shown that the induced morphism on fibers (which we have
to show is an equivalence) can be identified with the morphism

H(pri!) : Mapcniez p(X;) (f!Z’ X) - H Mapcp(xj) (prj!(f!Z)’ X])
i€l i€l
But that this is an equivalence follows immediately from
LI e, wixo = T Cocx
i€l il

being an equivalence and mapping spaces in products of co-categories being
equivalent to the respective product of mapping spaces. O
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The following proposition will be key to show that some cocartesian fibra-
tions we are interested in have fibers that are compatible with products.

Proposition C.2.0.4. Let

c—E ¢

N

be a morphism of cocartesian fibrations over D and assume that p’ and p have

fibers that are compatible with products in the sense of Definition C.2.0.1.
If F is also a cocartesian fibration, then its fibers are also compatible with

products. Q

Proof. Let I be a set and (X;);er a collection of objects in C. Proposi-
tion C.2.0.3 provides us with an object X in CHieIp(Xi) together with, for
every element j of I, p-cocartesian lifts pr;: X — X of the projections
pr;: [Lie; p(Xi) — p(Xj), such that the collection of morphisms (Pr;)ier
exhibits X as the product of (X;);er in C.

As F' is a morphism of cocartesian fibrations, we obtain a commutative
square as depicted as the right hand square in the following diagram.

Fy )

[Tier p(X3)
/ /
 ——————— vy ———— (g X,
¢ CIIiEIp( i) ¢ ier P(X3)

e (r0?") Mer(Gr)F)  (4)
Hc/ H X 161 Fpx;) HC
el i€l el

Taking fibers in the horizontal direction, over X in the top line, and over
(X:)icr in the bottom line, we obtain the induced commutative square de-
picted on the left. As by assumption both p’ and p have fibers that are
compatible with products, the middle and right vertical functors are equiv-
alences, and hence so is the induced left vertical functor. We are not quite
done however, as a priori this functor is the induced functor constructed from
p’-cocartesian morphisms, whereas we need to show that the functor

[ ek - ] ek, (+%)

i€l i€l
is an equivalence, which is constructed from F-cocartesian morphisms.

So let Y be an object in C% and let pr;’: X — pr;,(X) be an F-cocartesian
lift of pr;. As pr;’ maps under F to the p-cocartesian morphism pr;, we can
conclude by [HTT, 2.4.1.3 (3)] that pr;’ is in fact also an p’-cocartesian lift
of pr;. We can thus identify the functor (xx) with the left vertical functor in
diagram (). O
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If p: C = D is a cocartesian fibration whose fibers are compatible with
products, then by Proposition C.2.0.3 C admits products and p preserves
products, so we obtain an induced symmetric monoidal functor p*: C* — D*
with respect to the cartesian symmetric monoidal structures, see [HA, 2.4.1.8].
It will be useful for us to know that p* is again a cocartesian fibration, so
we will show this as Proposition C.2.0.6 below, after the following technical
prerequisite.

Proposition C.2.0.5. Let p: C — D be a cocartesian fibration with fibers
compatible with products in the sense of Definition C.2.0.1. Then products of
p-cocartesian morphisms are again p-cocartesian. Q

Proof. Let I be a set and let f;: C; — C! be a p-cocartesian morphism in C
for every element i of I. We have to show that the product

f=11#IIc—1]¢

icl icl icl

is p-cocartesian. By Proposition C.2.0.3, p preserves products, so f lies over
the morphism [],.; p(fi). We can then factor f as indicated in the following
diagram

¢1([Lier i)

b

[[¢: —— [lc

i€l iel

where ¢ is a p-cocartesian lift of [[,c; p(fi) and ¢ lies over idyy,_, pcy)- It
then suffices to show that 1 is an equivalence.

Let i be an element of I, and let pr;: o1(]],c; Ci) — Ci’ be a p-cocartesian
lift of pr;: [[,c; p(C;) — p(C;). It then follows from Proposition C.2.0.3 that
the collection (pr;)icr exhibits o([];c; Ci) as a product [],.; C;’. Further-
more, 9 induces morphisms ); : CJ’»’ — CJ’» for every element j of I as in the
following diagram, and 1 can thus be identified with the product T, .

[Ter —— Tlc

i€l el
lprj lpr]‘
w .
i J !
C] > C]
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The following commuting diagram depicts the situation:

@

T,

Hci f HC{ [Ticr s HCZN

el el el
lpr J JPTJ‘ iprj
C; c’ c”
J fi J P J

In the outer commuting diagram, all morphisms except possibly 1; are p-
cocartesian, so by [HTT, 2.4.1.7] also 1; is p-cocartesian. It then follows
from [HTT, 2.4.1.5] and p(3);) = id,(c;) that ¢; is even an equivalence. Hence
Y = [I;e; ¥ is an equivalence, and thus f is p-cocartesian as it is equivalent
to the p-cocartesian morphism ¢. O

Proposition C.2.0.6. Let p: C — D be a cocartesian fibration whose fibers
are compatible with products in the sense of Definition C.2.0.1. Let

p*: C* — D

be the induced symmetric monoidal functor between the respective cartesian
symmetric monoidal structures on C and D as in [HA, 2.4.1.8] (using that C
has all products and p preserves products by Proposition C.2.0.3).

Then p* is also a cocartesian fibration. Q

Proof. We will apply [GHN15, 9.6]? to the commutative triangle

c v D>
~

Fin,

where ¢ and r are the cocartesian fibrations that are part of the structure
of a symmetric monoidal co-category. In this situation (the dual version of)
[GHN15, 9.6] states that p* is a cocartesian fibration if the following hold:

(a) ¢ and r are cocartesian fibrations.
(b) p* sends g-cocartesian morphisms to r-cocartesian morphisms.

(c) For each object (n) in Fin,, the induced functor on fibers
X . X X
Py Cimy = Py

is a cocartesian fibration.

2[GHN17] is the published version of [GHN15], but does not contain [GHN15, 9.6].
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(d) Let n,m > 0, let f1,..., fn and g1,...,gm be morphisms in C (with
fit Xy = X} and g;: Y; — Y/), and let ¢ and ¢ be morphisms in C*
such that the following square in C* commutes®

Xl@"'@Xn L> Yl@@y;n
fl@w@fni lgl@weagm (%)
XjooX, ——Ye oY,

and lies over a commuting square of the following form in Fin,, with
a: (ny — (m) some morphism.

(n) —— (m)

o e

(n) —5— (m)
Assume that ¢ and ¢ are g-cocartesian and f1 @ --- @ f, is (px)<n>—
cocartesian. Then g1 @ -+ @ gy, is (p* )<m>-cocartesian.

Condition (a) holds by definition, and (b) holds as p* is a symmetric
monoidal functor from C* to D* (see the definition in [HA, 2.1.3.7]). The
functor p<Xn> can be identified with p*™: C*™ — D*"| so (c) follows from the
fact that products of cocartesian fibrations are again cocartesian fibrations
(which follows from [HTT, 2.4.2.3]).

So now suppose we are in the situation of condition (d). We have to show
that g1®- - - D g is p<Xm>—cocarteSian. Unpacking the data of the commutative

square (x) we see that it corresponds to the data of a commutative square

I X ——

in C for every 1 < 7 < m. That ¢ and 1 are g-cocartesian implies that ¢; and
1; are equivalences, so we can conclude that g; is equivalent to Ha(i): y fi

inC.As i@ ---® f, is p<xn>—cocartesian, it follows from the identification

p<xn> ~ p*™ in combination with [HTT, 3.1.2.1] that f; is p-cocartesian for

3We are using the notation from [HA, 2.1.1.15]: For f1,...,fn: C — C we denote by
f1 & @ fn the morphism in C(,, which under the equivalence C,) ~ C™ corresponds
to the tuple (f1,..., fn)-
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each 1 < i < n. Applying Proposition C.2.0.5 we can then conclude that
Ha(i): j fi is also p-cocartesian, so g; is equivalent to a p-cocartesian mor-

phism and thus p-cocartesian as well. Applying the equivalence p<><m> ~ pxm

and [HTT, 3.1.2.1] again we conclude that g1®- - -® gy, is p<Xm>—cocartesian. O
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Appendix D.

More oo-category theory

This appendix is really a continuation of Appendix A and collects some
facts about more basic concepts of oco-category theory: Undercategories in
Section D.1 and adjunctions in Section D.2.

D.1. Undercategories

In this section we discuss undercategories. [HTT, 1.2.9.5] gives a defini-
tion in terms of quasicategories, so we start in Section D.1.1 by providing a
model independent construction that can be carried out in Cat.,. We then
show in Section D.1.2 that the property of a functor being (fully) faithful or
a monomorphism is preserved by passing to induced functors on undercate-
gories. Finally, in Section D.1.3 we describe mapping spaces in an overcate-
gory Cx, as pullbacks of mapping spaces in C.

D.1.1. Model independent construction

Proposition D.1.1.1. Let C be an oo-category and X an object of C. Let C
be a quasicategory representing C and X an object of C representing X .

Then the undercategory Cy; defined as in [HTT, 1.2.9.5], together with its
projection functor Cx; — C represent the functor

eviopr;: Fun([1],C) x¢ {X} = C

in Catoo, where the pullback is taken with respect to the functor evy and the
inclusion of {X} into C. Q

Proof. The inclusion of {0} into [1] is a cofibration of simplicial sets, so the
functor
evg: sSet([1],C) — C

is a Kan fibration by [Hov99, 4.2.8 and 4.2.2]. In particular, using [HTT,
3.3.1.4 and 2.4.2.4], the pullback (along morphisms like in the statement)
sSet([1],C) x¢ {X} is a homotopy pullback in the Joyal model structure, and
thus represents Fun([1],C) x¢ {X}.

The claim now follows from checking that sSet([1],C) satisfied the defining
universal property of Cy, (see [HTT, 1.2.9.5 and 1.2.9.2]). O
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D.1.2. Undercategories, faithful functors, fully faithful
functors, and monomorphisms

Proposition D.1.2.1. Let F: C — D be a monomorphism (faithful functor,
fully faithful functor) in Cats and X an object of C. Then the induced functor
on undercategories Cx ; — Dp(x), is a monomorphism (faithful functor, fully
faithful functor) as well. Q

Proof. Using the description of undercategories from Proposition D.1.1.1,
this follows immediately from Proposition B.5.1.1, Proposition B.3.0.1, and
Proposition B.5.3.1. O

D.1.3. Mapping spaces in undercategories

In this section we show that mapping spaces in undercategories can be
calculated through the expected pullback diagram. Before we can show this,
we need the following small result on how initial objects interact with functors
which are retractions.

Proposition D.1.3.1. Let t: C — D and r: D — C be functors of oco-
categories and assume that r o v is homotopic to the identity functor.

Let X be an initial object of D. As X is initial, there is an essentially
unique morphism f: X — wrX in D. Assume that rf: rX — rurX is an
equivalence. Then rX is an initial object of C. Q

Proof. Let Y be an object of C and consider the following commutative dia-
gram of mapping spaces.

Map;(rX,Y)

] f

Mapp (1rX, YY) N AN Mapp(X,Y)

Mape (rer X, riY') —5 Mape(rX,rY)
The left vertical composite is homotopic to the identity by the assumption
that 7. ~ id¢ and the bottom horizontal functor is an equivalence as r(f) is
an equivalence by assumption. As the mapping space in the middle right is
contractible by the assumption that X is initial, it thus follows that the top
left mapping space Map,(rX,Y) is also contractible!, which is what we need
to show. O

Proposition D.1.3.2. Let C be an oo-category, X an object of C, and
f: X =Y and g: X — Z morphisms in C. Let p: Cx, — C be the pro-
jection functor.

1As a retract of a contractible space.
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Then the commutative diagram in 8

Mape,,(f,9) — {g}

| |

Mape(Y, Z) —— Mape (X, Z)

is a pullback diagram. Q

Proof. Note that there is a degenerate commutative triangle

1(7 X‘
_
X 7 Y
in C that we interpret as a morphism idx — f in Cx,, which we will call f’.
By [HTT, 2.1.2.2], p: Cx; — C is a left fibration, and hence by (the dual
of) [HTT, 2.4.2.4] a cocartesian fibration such that every morphism of Cx,
is p-cocartesian. Applying (the dual of) [HTT, 2.4.4.3] to the p-cocartesian
morphism f’: idy — f, we obtain the following pullback diagram in 8.

f/* .
Mape,,(f,9) — Mapc,, (idx, g)

| I

Mape (Y, Z) — Map. (X, Z)

Note that

TN

X ——F 2

is a point in Mapcx/(idx,g) that maps to g under p, so it suffices to show
that the mapping space Mapcx/ (idx, g) is contractible, i.e. that idx is an
initial object in Cx,.

We provide a quick proof for this fact here in the setting of quasicategories.
So let C be a quasicategory and X an object of C. To show that idyx is an
initial object of Cx it suffices by Proposition D.1.3.12 to provide a retraction
r of the inclusion Cx, — {i} x Cx, that sends the unique morphism i — idx
in {i} xCx, to an equivalence.

Using the universal property of Cx, (see [HTT, 1.2.9.2]) it suffices for this
to give a morphism?

o: ({x} x{i})xCx, = C

2The idea for this argument is from the proof of [HTT, 1.2.12.5].
3We are using associativity of the join operation %, see [HTT, 1.2.8].
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such that the restriction of ¢ to {2} x Cx, — C is adjoint to the identity of
Cx/ (this corresponds to r being a retraction of the inclusion) and such that
the unique 2-simplex

idx

-

7

in ({x} x {i}) * Cx, is mapped by ¢ to the degenerate 2-simplex

idx
idx‘/ X
f
which covers the condition of the unique morphism ¢ — idx being sent to an
equivalence.
We can define such a morphism as follows: Let ¢: {z} x {i} — {«} be the
unique morphism. Then we take the composite

({w}* {i}) % Cx, i 72N {z}*Cyx, — C

where the second morphism is adjoint to idc,, . O

D.2. Adjunctions

In this section we discuss adjunctions of co-categories. In Section D.2.1 we
briefly recall the two equivalent descriptions of adjunctions that are explicitly
given in [HTT] and prove that they are equivalent to a third characterization.
In Section D.2.2 we discuss the interaction of adjunctions with Fun(C, —) for
some oo-category C.

D.2.1. Equivalent characterizations of adjoints

There are several ways to define adjunctions of co-categories. The definition
used in [HTT] describes adjunctions as cocartesian and cartesian fibrations
over [1] (see [HTT, 5.2.2.1]). Lurie also shows that adjunctions are equiva-
lently given by pairs of functors F': C — D and G: D — C together with a
unit transformation u: id¢ — G o F satisfying the usual property for map-
ping spaces (see [HTT, 5.2.2.7 and 5.2.2.8]). We will use both descriptions
and refer to [HTT, 5.2.2] for full definitions and how to translate between
the two descriptions. We will also need a related third description, which we
prove in the next proposition.
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Proposition D.2.1.1. Let F: C — D and G: D — C be functors of oco-
categories, and n: ide — G o F' a natural transformation. Then the following
are equivalent.

(1) There exists a natural transformation €: FoG — idp and the composite
natural transformations

A por < p

and
¢S ara &S

are homotopic to idp and idg.
(2) n is a unit transformation for (F,G) in the sense of [HTT, 5.2.2.7]. Q

Proof. Let us first assume (2). The proof of (1) is really an extension of what
is shown in the proof of [HTT, 5.2.2.8], so we will assume the reader is familiar
with that proof and sketch the additions that need to be made.

In [HTT, 5.2.2.8], assuming (2), an adjunction ¢: M — [1] in the sense of
[HTT, 5.2.2.1] associated to F' and G is constructed from 7. Let

B:[1] xC— M

be the pointwise (in C) g-cocartesian natural transformation from the inclu-
sion* of C into M to F exhibiting F as associated to ¢ and similarly ¥ for
G.

It is clear from unpacking the definitions, that the unit transformation
extracted from ¢ in the other direction of [HTT, 5.2.2.8] can be identified with
7. One can extract a natural transformation e¢: F'o G — idp in a completely
analogous manner, as we will also explain in more detail now.

Both natural transformations 7 and € are obtained are by combining [HTT,
3.1.2.1]% and [HTT, 2.4.1.4] to lift find fillers in certain diagrams of natural
transformations. For example, for ¢ we consider the following diagram of
functors D — M

where a filler for the dashed arrow and the triangle can be found as the
bottom left arrow is cocartesian.

4We identify C with Mg and D with M.

5That induced functors gi: Fun(J, M) — Fun(J, [1]) are again (co)cartesian fibrations
and natural transformations are g.«-(co)cartesian if and only if they are pointwise g¢-
(co)cartesian.
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To show that
JalERNy e iy

is homotopic to the identity, we can now ponder the following diagram of
functors C — M.

F
+~
UF 1
leF
|
|
SGF
F —2¢F , PGF
4~ 4~
| |
| |
n vE i
i i

The dashed arrow on the left comes with a filler for the triangle at the bottom
left and uses that W F' is g.-cartesian. The dashed arrow on the bottom right
then comes with a filler for the lower square and uses that & is g,-cocartesian.
The dashed arrow on the upper right comes with a filler for the upper triangle
and uses that ®GF is g.-cocartesian. We can thus conclude that eF o F'np is
a filler in the following diagram.

GF —Y¥ , F

n eFoFn

ide ———— F
But by definition of 1 (see the lower left triangle in the previous diagram),
one such filler is idp, so it follows that €F o F'p ~ idp. The other case is
completely analogous. This shows (1).
We now assume (1) and show that 7 is a unit transformation for (F,G).

For this we have to show that for every object C' in C and object D in D, the
composition

Mapy(F(C), D) <5 Mape(GF(C), G(D)) " Mape (C, G(D))

is an equivalence. Using ¢ we can define a map in the opposite direction as
Mape(C, G(D)) £ Mapp (F(C), FG(D)) <25 Mapp, (F(C), D)

and it follows immediately from (1) that these two maps are inverse equiva-

lences. O
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D.2.2. Adjunctions and Fun

In this short section we show that whenever C is an co-category, the func-
tor Fun(C, —) preserves adjunctions in a manner made precise in the next
proposition.

Proposition D.2.2.1. Let p: M — [1] be a cartesian and cocartesian func-
tor, and F: My — My the corresponding left adjoint, G: My — Mg the
corresponding right adjoint, and w: idp, — G o F' the corresponding unit
transformation.

Let C be an oo-category. Then the functor p': M’ — [1] that is defined by
the following pullback diagram

M’ —— Fun(C, M)

v |-

]~ Fun(C, [1])

is also a cartesian and cocartesian fibration and hence defines an adjunction.
Furthermore, the fibers M{ and M’ can be identified with Fun(C, M) and
Fun(C, M1), and under this identification the encoded left adjoint can be
identified with F, the encoded right adjoint with G, and the corresponding
unit transformation with u,. v

Proof. That p’ is again a cartesian and cocartesian fibration follows from
[HTT, 3.1.2.1] and Proposition C.1.1.1. Using composability of pullback dia-
grams and Fun(C, —) preserving pullbacks we obtain the following chain of
equivalences with which we can identify M, as stated.

; >~ Fun(C, M) Xpun(c,1)) {const; }
~ Fun(C, M) xpun(c ny) Fun(C, {i})
~ Fun(C M xq )
~ Fun(C, M,)

Let the commuting diagram

M()X

\/

exhibit F as the left adjoint to p (see [HA, 5.2.1.1 and 5.2.2.1]). We can then
construct a diagram exhibiting F, as the left adjoint to p’ as indicated in the
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following diagram

Fun(C, My) x [I] ————  Fun(C, M, x [1])
\‘\\\(F*)/ J{F/

~ <

M —— Fun(C, M) (pra),

I J
[1] —5s— Fun(C, [1])

where the top horizontal functor is the composition

Fun(C, Mg) x [1] 2222 Fun(C, Mg) x Fun(C, [1]) = Fun(C, Mo x [1])

That (Fy)" as constructed in the above diagram indeed exhibits F, as the left

adjoint associated to p’ follows from the description of cocartesian morphisms
in [HTT, 3.1.2.1] and Proposition C.1.1.1.
The statements regarding G, and u, can be proven analogously. O
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Appendix E.

oo-operads and algebras

This appendix collects various results concerning co-operads and their oco-
categories of algebras.

We begin in Section E.1 with generic facts on (morphisms of) co-operads.
For most of the remaining sections we then turn towards co-categories of alge-
bras. In Section E.2 we will look into the relationship between oco-categories
of algebras and base changes of co-operads, and in Section E.3 we show that
passing from morphisms of co-operads to functors between the respective
oo-categories of algebras preserves various properties.

If O is an oc-operad and C is a symmetric monoidal co-category, then
Alg,(C) inherits an induced symmetric monoidal structure, which will be
discussed in Section E.4. If @’ is another oco-operad, then the symmetric
monoidal structure on Alg,(C) allows us to take (’-algebras in Alg(C). In
Section E.5 we will show that there is another way to describe O’-algebras
in O-algebras in C, namely as O ® O’-algebras in C. In Section E.6 we then
discuss the commutative co-operad Comm and show that the tensor product
of co-operads of any oco-operad O with Comm is equivalent to Comm again.

In Section E.7 we discuss colimits of algebras as well as free algebras,
and in particular when they are preserved by induced functors on algebra
oo-categories. Finally, in Section E.8 we discuss relative tensor products and
when monoidal functors preserve them. We also show that pushouts of com-
mutative algebras are given by relative tensor products.

E.1. oco-operads

In this section we collect three statements relating to properties of mor-
phisms of oo-operads or helpful for showing that a functor is a morphism
of oo-operads or a symmetric monoidal functor. Concretely, Section E.1.1
helps showing that a morphism of co-operads between symmetric monoidal
oo-categories is symmetric monoidal, Section E.1.2 is about consequences of
a morphism of oco-operads being conservative, and Section E.1.3 discusses
functors that are pullbacks of a morphism of co-operads along a cocartesian
fibration of co-operads and vice versa.
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Appendix E. oco-operads and algebras

E.1.1. Symmetric monoidal functors

By definition', a morphism of co-operads between symmetric monoidal
oo-categories is symmetric monoidal if it is a morphism of cocartesian fibra-
tions, so preserves all cocartesian morphisms?. In the following proposition,
we show that it suffices to check cocartesian lifts of two select morphisms
in Fin,: The multiplication p: (2) — (1) and unit e: (0) — (1). This is an
analogue of [HA, 2.1.2.9] which similarly reduces the amount of inert mor-
phisms that need to be checked to verify a functor over Fin, is a morphism
of oo-operads.

Proposition E.1.1.1. Let

ce £ D®
A A

Fin,

be a commutative diagram of morphisms of co-operads, and assume that pc
and pp exhibit C® and D® as symmetric monoidal co-categories. Then the
following two conditions are equivalent.

(1) F® is symmetric monoidal, i.e. maps pc-cocartesian morphisms to
pp-cocartesian morphisms.

(2) F® maps pc-cocartesian lifts of the active morphism® u: (2) — (1)
and pc-cocartesian lifts of the unique morphism e: (0) — (1) to pp-
cocartesian morphisms. Q

Proof. Tt is clear that (1) implies (2), so it remains to show the converse
direction. Morphisms in Fin, are generated (by composition) by morphisms
of the following forms (compare [HA, 2.1.2.2]).

(A) Inert morphisms?.
(B) For every n > 1 the morphism g, : (n+1) — (n) that sends an element
i of (n+1)° to i if i <n, and to n otherwise®.

(C) For every n > 0 the inclusion €,: (n) — (n + 1) (i.e. sending i to ).

As the collection of cocartesian morphisms is closed under composition [HTT,
2.4.1.7] and cocartesian lifts with fixed source object are unique up to equiv-
alence [HTT, 2.4.1.9], it suffices to prove that F'® maps pc-cocartesian lifts
of morphisms of type (A), (B), and (C) to pp-cocartesian morphisms. By

ISee [HA, 2.1.3.7].

2With respect to the respective canonical cocartesian fibrations of co-operads to Fin.
380 this is the morphism that sends 1 and 2 to 1.

4Note that in particular all isomorphisms are inert.

5S0 n is the unique element of the target that has two preimages, n and n + 1.
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assumption we already know that F'® is a morphism of co-operads and hence
preserves inert morphisms, so this covers type (A).

We now show that F® maps pe-cocartesian lifts of morphisms of type
(B) to pp-cocartesian morphisms. So let n > 1, let p,, be the morphism of
Fin. defined in (B), and let f: X — Y be a p¢-cocartesian lift of p,. As
pp is a cocartesian fibration, we can lift u, to a pp-cocartesian morphism
f: FO(X) = ()1 (F®(X)), and obtain an induced morphism ¢ lying over
id(,), such that there is a commutative diagram as follows.

By [HTT, 2.4.1.7 and 2.4.1.5], F®(f) is pp-cocartesian if and only if g is an
equivalence, so we prove the latter.

Let us first consider pj(g) for 1 < j < n. This is the induced morphism
indicated in the following diagram, where 7 and r are pp-cocartesian lifts of

.
() (FE(X)) —= (¢’ 0 pu )i (F®(X))

b A

FO(X) —— FOY) ———— pl(F®(Y))

But note that for 1 < j < n the composition p’ o p, is equal to p/. The
morphism pf (g) is thus also equivalent to the morphism

gi: L F®(X)) = p (F(Y))

induced by r o F®(f). Now let

Y —2 pl(Y)
/ lid o] (id)
X —=Y —— Pl (Y)

be the diagram constructed completely analogously from f in C®, with s a
pe-cocartesian lift of p?. In this case we can use f itself as a pc-cocartesian
lift of p,,, and the identity morphism can play the role of g. In particular,
the morphism f;: p{(Y) — p/(Y) induced by s o f is an equivalence. As F'®
preserves inert morphisms F'®(s) can be identified with r, and F®(so f) with
7o f. This implies that F'®( fj) = g;, and as F® preserves equivalences, g;
must be an equivalence.
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Let us now consider p™(g). In this case p" o u, is not p", but po p™n+1,

where p™" 1 (n41) — (2) maps i to * if i < n, maps n to 1, and maps n+1
to 2. We can argue completely analogously to the previous case, but have
to additionally use that F'® maps pe-cocartesian lifts of 1 to pp-cocartesian
morphisms, which is the case by assumption (2).

As the functor

Iicj<n ol xn

D(n} —_— D<1>

is an equivalence and we showed that p!j (g) is an equivalence for every

1 < j < n, we can conclude that ¢ is an equivalence. Thus we have shown

that F'® maps pc-cocartesian lifts of morphisms of type (B) to pp-cocartesian
morphisms.

The case of morphisms of type (C) is similar, in this case we will need to

use the assumption regarding e. O

E.1.2. Conservative morphisms of co-operads

In the following proposition we record a very useful consequence of a mor-
phism of co-operads being conservative.

Proposition E.1.2.1. Let

c® £ D®
h A

Fin,

be a commutative diagram of morphisms of co-operads, and assume that F'®
s a conservative functor, i. e. reflects equivalences. Then the following hold.

(1) A morphism f in C® is inert if and only if F®(f) is inert.

(2) Assume that pc and pp ezhibit C® and D® as symmetric monoidal
oo-categories, and that F'® is symmetric monoidal. Then a morphism
[ in C® is pc-cocartesian if and only if F®(f) is pp-cocartesian.

Proof. In both cases the “only if”-direction is handled directly by the assump-
tion that F'® is a morphism of co-operads, and that F® is even symmetric
monoidal in the case of (2).

We will prove the “if”-direction of both (1) and (2) at the same time. So
let f: X — Y be a morphism in C® that lies over a morphism ¢ in Fin,
and is mapped by F® to a pp-cocartesian morphism in D®. For (1) assume
additionally that ¢ is inert. We have to show that f is pp-cocartesian.

672



E.1. co-operads

We can factor f as indicated in the following commutative diagram in C®

such that f’ is pc-cocartesian and f” lies over an identity morphism in Fin,.
Both F®(f") and F®(f) are pp-cocartesian morphisms, so by [HTT, 2.4.1.7
and 2.4.1.5] F®(f") is an equivalence. As F'® is conservative, it follows that
f" is also an equivalence, which by [HTT, 2.4.1.7 and 2.4.1.5] implies that f
is p¢-cocartesian. O

E.1.3. Base changes of cocartesian fibrations of
oo-operads

By Proposition C.1.1.1 a pullback of a cocartesian fibration along any func-
tor is again a cocartesian fibration. The next proposition can be considered
an upgrade of this statement to the situation in which both functors are
morphisms of oo-operads.

Proposition E.1.3.1. Let

R

o]

0% —— 0% —o~ Fin.

be a commutative diagram in Caty, such that the square is a pullback square,
po and r are morphisms of co-operads, and p is a cocartesian fibration of
oo-operads.

Then p’ is a cocartesian fibration of co-operads and q is a morphism of
oo-operads. Furthermore, a morphism f in C'® is inert if and only if q(f)
and p'(f) are inert. v

Proof. By Proposition C.1.1.1 p’ is a cocartesian fibration, and the descrip-
tion of p’-cocartesian morphisms also implies that if n > 0 and X; are objects
in @ forl <i<mn, and f;: X1 ®---® X,, = X; are the canonical inert
morphisms in @’®, then the induced functor on fibers

H1§7ﬂ§n fiy

C¥ enax,, Ccy (%)

can be identified with the following functor that is induced on the fibers of
.

H1<1< ,T(fz‘)z
® <ign ®
Crxigax,y) — Cr(x)
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As r is a morphism of co-operads we can for each 1 < i < n identify r(f;)
with the inert morphism r(X;) & --- ® r(X,,) — r(X;). As p is a cocartesian
fibration of co-operads, it thus follows that () is an equivalence, so p’ is a
cocartesian fibration of oc-operads®.

Let f be a morphism in C'®. It remains to show that f is inert if and
only if ¢(f) and p/(f) are inert. Denote the compositions from the four
oo-categories in the square to Fin, by p with subscript the name of the un-
derlying oo-category.

Assume that f is inert. Then f is by definition p¢/-cocartesian, and as p’
preserves inert morphisms, p’(f) is inert, so pos-cocartesian. It follows from
[HTT, 2.4.1.3 (3)] that f is p’-cocartesian. By Proposition C.1.1.1 we then
obtain that ¢(f) is p-cocartesian. Furthermore, p(q(f)) = r(p’(f)) is inert, i. e.
po-cocartesian, as r is a morphism of co-operads. We can again use [HTT,
2.4.1.3 (3)] to conclude that ¢(f) is pc-cocartesian, so inert.

Now assume that ¢(f) and p’(f) are inert. Again, as r is a morphism
of oo-operads, p(q(f)) = r(p'(f)) is inert, so by [HTT, 2.4.1.3 (3)] ¢(f) is
p-cocartesian, which by Proposition C.1.1.1 implies that f is p’-cocartesian,
from which we can deduce with another application of [HTT, 2.4.1.3 (3)] that
f is pe/-cocartesian, so inert. O

E.2. Alg and base change

This section concerns the interaction of Alg with base changes, with the
upshot being the following. Given a commutative diagram

®
ce £ o

AL
O — O'® 5 0%

of oc-operads such that the square is a pullback diagram in Cat.,, we will
obtain an induced pullback diagram

Algor /0 (C") —— Algon (C)

l lAlgo“ )

{B0a} —— Algo(0)

in Cat, of co-categories of algebras.

6See [HA, 2.1.2.13 and 2.1.2.12].
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Construction E.2.0.1. Let

®
ce L c®

V| Ir

0"e o 0®
@ B

be a commutative diagram of co-operads such that the square is a pullback
diagram in Cat..

Applying Fun(O0”®, —) to the pullback square we obtain the pullback on
the right in the following diagram, with the left square a pullback square as
well, by definition.

®
Funpre (0"®,C"®) —— Fun(0"®,C'®) BLLEN Fun(0"®,C®)

| o 12

{a} ———— Fun(0"®,0'®) — Fun(0"®,09)

Comparing the combined outer pullback square [HTT, 4.4.2.1] to the pull-
back square

Funpe (0"®,C®) Fun(0"®,C®)
{Boa} Fun(0"®,09)

we obtain a canonical equivalence
Funpre (0"®,C'%) ~ Funge (0"®,C%)
of co-categories. &

Proposition E.2.0.2. In the situation of Construction E.2.0.1 the equiva-

lence
Fungre (0"®,C'?) ~ Fungs (0"®,C%)

restricts to an equivalence on the full subcategories of algebras as follows.
Algo///o/(cl> ~ Alg@”/@(c) V)

Proof. Unpacking the definitions the statement boils down to the following:
Let

0"e A c'®

N
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be a commuting diagram and let f be an inert morphism in O”®. Denote
by ¢: O® — Fin, the unique morphism of co-operads. We have to show that
A(f) is gBp'-cocartesian if and only if F®(A(f)) is gp-cocartesian.

As « is a morphism of oc-operads, it preserves inert morphisms, so the
morphism a(f) = p'(A(f)) is gB-cocartesian. Then [HTT, 2.4.1.3 (3)] implies
that A(f) is gBp’-cocartesian if and only if A(f) is p’-cocartesian. By Propo-
sition C.1.1.1 A(f) is p’-cocartesian if and only if F®(A(f)) is p-cocartesian.
But as /3 o a preserves inert morphisms, S(a(f)) is g-cocartesian, so again
by [HTT, 2.4.1.3 (3)] F@(A(f)) is p-cocartesian if and only if F®(A(f)) is
gp-cocartesian. O

Proposition E.2.0.3 ([HA, 2.1.3.1]). Let v: O'® — O% and p : C® — O%
be morphisms of co-operads. Then the pullback diagram of co-categories

Funps (0'®,C%®) —— Fun(0'®,C?®)

| [

{v} ————— Fun(0'®,0%)
induces on full subcategories a pullback diagram

l lAlgo/ )

{7} ——— Alg (0)

of co-categories”. Q

Proof. There is a commutative cube in Cat.,

AlgO’/O ©) Algo (C)
Funps (0'®,C%) Fun(0'®,C?)
{v} Algy (0)
/ —
{} Fun(O'®, 0®)

with all functors from the back to the front inclusions of full subcategories.
One can use Proposition B.5.2.1 to show that the top and bottom squares are

"We are using the the definition given in [HA, 2.1.3.1] for Algpr/0(C) as a full subcategory

of Funye (O'®,C®). The alternative description as the pullback given in this statement
is also mentioned in [HA, 2.1.3.1].
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pullback squares as follows: For the top square, consider the induced diagram

Algor/0(C)

D Algy ()

J |

Funpe (0'%,C%) —— Fun(0'®,C®)

where D is constructed as a pullback of the square. The right vertical functor
is fully faithful, so by Proposition B.5.2.1 the left vertical functor is fully faith-
ful as well. As we also know that the functor Algy, o (C) — Funpe (0%, C%)
is also fully faithful, it follows that the induced functor 6 is fully faithful too.
To show that # is an equivalence it thus suffices to show essential surjectivity
[HTT, 1.2.10]. As D — Funpe (0'®,C?®) is fully faithful, an object in D can
be thought of as an object in Funpe ((’)’®, C®), i.e. a commutative triangle

0@ . C®
\ / (E.1)

such that the corresponding object in Fun((’)’®,C®), i.e. A, lies in Algy, (C),
i.e. A must be a morphism of co-operads. But this is precisely the condition
for an object of Funpes (0'®,C®) to lie in Algy,(C), so 6 is essentially
surjective and hence an equivalence, which implies that the top square of the
cube is a pullback diagram. That the bottom square is a pullback diagram
can be proven analogously.

As the top and front of the cube are pullback diagrams, the composite
of those two squares is a pullback diagram as well by [HTT, 4.4.2.1]. This
composite is equivalent to the composite formed by the back and bottom
squares, so using that the bottom square is a pullback and the other direction
of [HTT, 4.4.2.1] we can conclude that the back square is a pullback as
well. O

Remark E.2.0.4. Combining Proposition E.2.0.2 and Proposition E.2.0.3
in the situation of Construction E.2.0.1, we obtain the following pullback
diagram

Algoi o/ (C') — Algpn(C)

l lAlgon (»)
{Boa} — Alg(0)

in Caty,. Tracing through the definitions is is not difficult to see that this
square is also natural in C (with O,0’, and O” staying fixed and C’ changing
with C as a pullback). &
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E.3. Properties preserved by Alg

In this section we show that passing to co-categories of algebras preserves
several properties of functors. Specifically, we will discuss pullbacks in Sec-
tion E.3.1, cocartesian fibrations in Section E.3.2, adjoints in Section E.3.3,
the property of a functor being conservative in Section E.3.4, and fully faith-
fulness in Section E.3.5.

E.3.1. Pullbacks

Proposition E.3.1.1. Let

c® L®> D O'®
| [ge us
5@ = J’.‘® o O®

be a commutative diagram of co-operads such that the square is a pullback
diagram in Cats,. Assume furthermore that a morphism f in C® is inert if
and only if F®(f) and G®(f) are inert.

Then the induced commutative diagram

Algo’/o(F)
_—>

Alg@/o(c) Alg(’)’/(’)(D)
Algo//o(G)J JAlgo'/o(H)
Alg(y/o(g) W AlgO'/o(]:)

is a pullback diagram in Cat. Q

Proof. As Fun(O'®, —) preserves pullbacks and limits commute with each
other, we first obtain an induced pullback square as follows.

®
Funps (0'%,C%) EELEN Funps (0'®, D®)

G®l J/H®

Funpe (0'®, £9) W Funpe (0%, F®)
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Let P be defined to be the pullback in the square in the following diagram

Algor o (F)

PP Algy0(D)

¥ l J{Algo//o(H)

Funo@ (O/®, C®) Algoz/o(g) Algo//O(K) Algol/o (f)

where ¢ and v are the induced functors, and ¢ is the canonical fully faithful in-
clusion. It suffices to show that ¢ is an equivalence. By Proposition B.5.3.1, ¢
is fully faithful with essential image spanned by those functors A: O'® — C®
over O® whose compositions with F® and G® send inert morphisms to inert
morphisms. But by the assumptions on inert morphisms in C®, this means
that the essential image of v is exactly the essential image of ¢. It now fol-
lows from Proposition B.4.4.1 and Proposition B.4.3.1 that ¢ is an equiva-
lence. O

E.3.2. Cocartesian fibrations

Proposition E.3.2.1. Let

c® s DX

\/

be a commuting diagram of maps of co-operads, and let a: O'® — O be
another map of co-operads.

If F® is a cocartesian fibration, then the induced functor

Algo,/O(F): Algo'/o(c) - Alg@’/O(D)

s a cocartesian fibration as well. Q@
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Proof. Consider the following commutative diagram induced by F'®

AlgOf/o(C) \LCJ

£ —— Funps (0'®,C%) — Fun(0'®,C®)

Algor /o (F) J,, h@ JFP

Algo0(D) —5~ Funpe (0'®,D¥) — Fun(O0'®, D¥)

where £ is defined to be the pullback of the middle square, tc, tp, and the
two right horizontal functors are the canonical ones, and ¢ is the induced
functor into the pullback.

By [HTT, 3.1.2.1], the right vertical morphism F® = Fun(idpre, F'®) is a
cocartesian fibration, so as both squares are pullback squares we can apply
Proposition C.1.1.1 to conclude that p is also a cocartesian fibration. As
cocartesian fibrations are closed under composition [HTT, 2.4.2.3 (3)], it thus
suffices to show that ¢ is a cocartesian fibration.

By definition, tp and ¢ are inclusions of full subcategories and hence fully
faithful, and as a pullback of tp, Proposition B.5.2.1 implies that t¢ is fully
faithful as well. It follows that  is also fully faithful, so by Proposition C.1.2.1
it suffices to show that for any object A in Alg,, /O(C) and p-cocartesian
morphism 60: p(A) — B’ in € there exists an object B in Algy,,o(C) such
that ¢(B) is equivalent to B’.

Unpacking definitions, this means the following. Assume we have given a
morphism : A — B in Funpe (0'®,C%), which we can think of as a natural
transformation between two commuting triangles as in the following diagram.

A
/_\
0@ Jo c®
I S

B
a p
0®
We furthermore assume that:

(a) A preserves inert morphisms. This corresponds to A lying in the full
subcategory Alge, o (C) of Funpe (0'®,C®).

(b) F® o B: O'® — D® preserves inert morphisms. This corresponds to B
lying in the full subcategory £ of Funpe (0'®,C®).

(c) For every object O in O'®, the morphism 6o: A(O) — B(O) in C is
F®-cocartesian. This corresponds to 6 (considered as a morphism in &)
being p-cocartesian.
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We then have to show that B preserves inert morphisms.

In the following we let gc: C® — Fin, and gp: D® — Fin, be the canonical
maps of co-operads. Let f: U — V be an inert morphism in O%. We have to
show that B(f) is gc-cocartesian. The natural transformation 6 induces the
following commuting square in C®.

AU) -2 B(U)

A(f)J{ J{B(f)

A(V) —— B(V)
By (a), A preserves inert morphisms, so A(f) is inert, hence gc-cocartesian.
As F® is a map of oo-operads it also preserves inert morphism, and thus
F®(A(f)) is gp-cocartesian. It then follows from [HTT, 2.4.1.3 (3)] that
A(f) is F®-cocartesian. By (c) both 6y and 6y are also F®-cocartesian,
so it follows from [HTT, 2.4.1.7] that B(f) is F®-cocartesian as well. Finally,
F®(B(f)) is gp-cocartesian by (b), so by applying [HTT, 2.4.1.3 (3)] in the
other direction we can conclude that B(f) is ge-cocartesian. O

E.3.3. Adjoints

Proposition E.3.3.1. Let pc: C® — O%®, pp: D€ — 0%, as well as
a: O'® — O be maps of co-operads and let furthermore F®: (C® — D®
and G®: D® — C® be maps of co-operads over OF. Let u: ides — G® o F'®
be a natural transformation eshibiting F® as left adjoint to G® and assume
that pc maps u to the identity natural transformation of pc (in other words,
u is a unit for an adjunction between F® and G® relative to O in the sense
of [HA, 7.3.2.3]).
Then the induced natural transformation

Algorjo(u): idalg,, ) = Algorjo(G o F)
exhibits Algo: o (F) as left adjoint to Alge 0(G). Q@

Proof. Applying Fun(O'® —) we obtain two commuting triangles as indi-
cated in the following diagram

Fun(0'®,C%) Fun(0'®, D¥)

D« PD«

Fun(O'®, 0%)

as well as a natural transformation w.: idpynore cey — G® o F®. By Propo-
sition D.2.2.1, u, exhibits F® as left adjoint to G®. As p¢, maps u, to the
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identity natural transformation of pe,, this makes u, into the unit for an ad-
junction between F® and G¢ relative to Fun(O’®, O®) in the sense of [HA,
7.3.2.3]. Taking the pullback of this adjunction along {a} — Fun(O'®, 0®)
and applying [HA, 7.3.2.5] yields an induced adjunction between the co-cat-
egories Funpe (O'®,C®) and Funpe (0'®,D®). The claim now follows by
restricting the relevant functors and natural transformation to the full sub-
categories of co-operad maps [HA, 2.1.2.7]. O

E.3.4. Reflecting equivalences

Proposition E.3.4.1. Let C and D be symmetric monoidal co-categories

and F: C — D a symmetric monoidal functor. Let O be an co-operad.
Assume that F is conservative, i. e. reflects equivalences. Then Algn(F) is

conservative as well. @

Proof. There is a commutative diagram as follows for every object X in O.

Algy (C) Aleo(F) Algn (D)

evxl levx

C————PD

Now suppose that ¢ is a morphism in Alg,(C) such that Alg,(F)(yp) is an
equivalence. By [HA, 3.2.2.6] evx preserves equivalences, so the morphism

evx (Algo (F)(9)) = Flevx(#))

is an equivalence for every object X of O. As F' is conservative, this implies
that evx(p) is an equivalence for every object X of O, which by another
application of [HA, 3.2.2.6] implies that ¢ is an equivalence. O
E.3.5. Fully faithfulness

Proposition E.3.5.1. Let

e . C®

\/

0® , O9

be a commutative diagram of co-operads and assume that v is fully faithful.
Then the functor

Algcy/@@: AlgO//o(Cl) - Algo,/@(C)

is fully faithful. Furthermore, an object A of Alge, /0 (C) lies in the essential
image of Algo,/o(L) if and only if for every object X of O the evaluation
evyx(A) of A at X lies in the essential image of . Q@
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Proof. Combining Propositions B.3.0.1, B.5.1.1 and B.5.3.1 we obtain that
121 Funps (0',C'%) — Funpe (0'®,C%)

is fully faithful with essential image spanned precisely by those functors
F®. 0% — C® over O% for which F®(X) lies in the essential image of
1® for every object X of O'®. There is a commutative diagram

P
Funps (0'®,C'%) — s Funeps (0'¢,C%)

T T

Alg(’)’/(’)(c) W AlgO//o(C/)
where the the vertical functors are the canonical inclusions and thus by
definition fully faithful, so it follows that Algy,o(¢) is also fully faithful,
with essential image spanned by those algebras whose associated functors
F®: 0'® — C® are such that F®(X) lies in the essential image of % for
every object X of O'®,

As F® and o® are morphisms of co-operads, we obtain a commutative
diagram

® ®
0'® i c® o
(n) (n) (n)
len Fxn CXn — C/X'n
«

for every n > 0 that shows that F'®(X) lying in the essential image of 1% for
every object X of O'® is equivalent to F/(X) lying in the essential image of
¢ for every object X of O. O

E.4. Induced oc-operad structures on Alg

Let C be a symmetric monoidal co-category and O an ococ-operad. Then
the tensor product on C induces a symmetric monoidal structure on Alg,(C)
such that the forgetful functor Alg,(C) — C can be upgraded to a sym-
metric monoidal functor. In the setting of quasicategories, this structure is
constructed in [HA, 3.2.4.1, 3.2.4.2, and 3.2.4.3]. However, it is not immedi-
ately obvious from the definition that this construction does not depend on
the choice of representatives (or in other words, whether it is invariant under
categorical equivalences). In Section E.4.1 we will give a description of the
construction that can be performed entirely in Cats, i.e. without the help
of models like quasicategories, and show that it agrees with the one given
by Lurie. Apart from the aesthetic gain from being able to work as model
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independently as possible, the reformulated description will also be helpful
in some results we will prove later.

In Section E.4.2 we will then collect a number of properties that the induced
oo-operad structure has, deducing most of them from the results of [HA, 3.2.4].
It would also be possible to prove these statements without referring back to
the quasicategorical model. However, we need to show agreement of the two
approaches anyway, as throughout the text we will need to make use of several
other results from [HA] using the induced oc-operad structure on algebras,
so giving an independent, more model-independent proof of the statements
discussed in Section E.4.2 would not save us from having to go through the
comparison in Section E.4.1.

E.4.1. The quasicategorical model

In this section we discuss Lurie’s quasicategorical model for induced oo-
operad structures on oo-categories of algebras, and compare it to a more
model-independent definition.

We will make use of the following convention during our discussion.

Convention E.4.1.1. In contrast with the rest of the text, wherever we
explicitly invoke this convention every notion should be taken to refer to
the respective quasicategorical notion as defined in [HTT] and [HA]. So for
example the claim that a diagram of quasicategories commutes means that it
is a strictly commuting diagram of simplicial sets, and an co-operad is a map
of simplicial sets 0¥ — Fin, where 0 is a quasicategory and such that the
map satisfies some properties, rather than a morphism O% — Fin, in Cats,
satisfying some properties. &

We start by reviewing the construction given in [HA, 3.2.4.1].

Definition E.4.1.2 ([HA, 3.2.4.1]). We make use of Convention E.4.1.1 in
this construction. Let py: 0® — Fin,, py : 0 — Fin,, and py,: 0”7® — Fin,
be oo-operads, and let q: C® — 0”® be a fibration of cc-operads, i.e. a map
of oo-operads where q is also a categorical fibration of quasicategories (see
[HA, 2.1.2.10]). Let £: 0° x 0'® — 0”® be a bifunctor of cc-operads, i.e. a
functor of quasicategories such that the diagram

0®x0p® —f @

Pg XPD’J JPD”

Fin, x Fin, — Fin,

commutes and such that £ sends pairs of inert morphisms to inert morphisms,
see [HA, 2.2.5.3].

684
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Define ® to be the functor sSet jge — Set that sends g: K — 0% to the set
of commutative diagrams as indicated below.

Kx0® —E— ¢c®

gXidg/@l J{r (E2)

0% x 0'® — 0"®

Furthermore, define ®: sSet oo — Set to be the functor which sends a map

g: K — 0% to the subset of ®(g) of commutative diagrams (E.2) which have
the property that F(idy, «) is inert for every vertex k of K and every inert
morphism « in 0”%.

We say that an object r in sSet ge is a quasicategorical model (a quasicat-
egorical pre-model) for the co-operad structure on algebras with respect to
f, g, etc. as introduced above, if there exists a natural bijection of functors
sSet g — Set between Morssetm@ (—,r) and @ (between Morsset/O® (—,r) and
P).

Note that the Yoneda lemma implies that if a quasicategorical (pre-)model
for the oco-operad structure on algebras exists, then it is unique up to isomor-
phism in sSet/ge. We will give a more concrete construction of a quasicate-
gorical (pre-)model for the co-operad structure on algebras below. &

Remark E.4.1.3. In this remark we make use of Convention E.4.1.1, and
assume that we are in the situation of Definition E.4.1.2. Let

ff: :ﬁéo//ou (C)® — D®
be a quasicategorical pre-model for the oo-operad structure on algebras, and
let ¢ be a natural bijection Morsset/0® (—=,7) & ®. We then define a sub-
simplicial set Algg /o (C)® of Klgo, /0,/(C)® as the sub-simplicial set spanned
by those vertices A which correspond under ¢ to maps

0% =~ (A} x0'® 5 ¢®

that preserve inert morphisms.
Let r: Algg 0/ (C)® — 0% be the restriction of T to Algy /0/(C)®. As the

condition defining the natural subset ® of ® can be checked vertex-wise (in K,
where we use the notation from (E.2)), it is clear that ¢ restricts to a bijection
between Morss,et/u® (—,r) and ®. We conclude that r is a quasicategorical
model for the co-operad structure on algebras. &

Proposition E.4.1.4. In this proposition Convention E.4.1.1 applies. As-
sume we are in the situation of Definition E.4.1.2. Let T be the functor

f: Fun(0/®, C®) XFun(D’®,D”®) D® % O®
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where the functor Fun(0'®,C%) — Fun(0'®,0”®) that is part of the pullback
is g, and the functor 0¥ — Fun(0'®,0"%) is the adjoint functor to £. Let r
be the restriction of T to Fun(0'%, C®)I X Fun(ore 0@y 0%, where Fun(0'®, C®)/
is the sub-simplicial set of Fun(D’®,C®) spanned by the vertices which are
functors 0'® — C® that preserve inert morphisms.

Then T is a quasicategorical pre-model for the co-operad structure on al-
gebras and r is a quasicategorical model for the co-operad structure on alge-

bras. Q

Proof. Let g: K — 0% be an object in sSet ge. There is a chain of bijections
which are natural in g as follows.

Morsset (g,T)
= Morsset (K,Fun(O'®,C®) X Fun(0'®,07®) U®) X Morgse: (K,09) {g}
2 Morsset (K X 0%, C%) X forg, (kx 0 07@) MOTsset (K, 0%) Xntorg, k.00 {8}
2 Morgset (K X 0%, C%) X o, (kx0< 0@y {£ 0 (g X idye )}

=~ 3 (g)

This shows the claim about ¥. The claim for r follows using Remark F.4.1.3
after noting that for a vertex A of Fun(0'®,C%) X pun(o® 072y 0® considered
as a functor

a: {A} — Fun(U@,C@) XFun(D’®,D”®) O®
the composition of the chain of bijections above with the projection to
Morsset({A} X O/®,C®) = Morsset (O'®,C®)

sends a to pry(4). O

We can now state the construction of the induced oo-operad structure on
oo-categories of algebras without referring to quasicategories.

Proposition E.4.1.5. Let ppo: O® — Fin,, po: O'® — Fin,, as well as
porn: 0" — Fin, be co-operads and let q: C® — O"® be a morphism of
oo-operads. Let f: O% x O'® — O"® be a bifunctor of co-operads.

Let py: 0% — Finy, py: 0° — Fin,, and py,: 0"® — Fin, be func-
tors of quasicategories which represent po, por, and por, respectively. Let
q: C® — 0"”® be a categorical fibration of quasicategories representing q and
let £: 0%° x 0'® — 0" be a functor of quasicategories representing f.

Define Algo,/o/,(c), /A\léo,/o,, (C), T, r, s/, and s via the following diagram,
where the two squares are to be pullback diagrams, f is adjoint to £, and ipun
is the inclusion of the full sub-simplicial set spanned by those vertices which
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E.4. Induced oo-operad structures on Alg

correspond to functors that preserve inert morphisms.

r

| | l (E.3)

Fun(0’®,c®), rr— Fun(0®,C%) — Fun(0'®,0"9)

Then the above diagram represents the following diagram in Cats, were
both squares are pullback diagrams as well, f is adjoint to f, and tpu, s the
inclusion of the full subcategory spanned by those functors that preserve inert
morphisms.

T

m

! | b

Fun(0'®,c®)’ o Fun(0'%,C®) —— Fun(0'®,0"®)

Q

Proof. What we have to show is that both squares in diagram (E.3) are
homotopy pullback diagrams with respect to the Joyal model structure. We
begin by showing that q, and ipy, are categorical fibrations.

By assumption q: C® — 0”® is a categorical fibration of quasicategories. A
map of simplicial sets is a categorical fibration if and only if it has the right
lifting property with respect to maps of simplicial sets which are monomor-
phisms as well as categorical equivalences (see [HTT, 2.2.5.1]). By adjoining
the lifting problems we need to solve to show that q, is a categorical fibra-
tion we are reduced to showing that if j is a map of simplicial sets which is
a monomorphism as well as a categorical equivalence, then j x idye is so as
well. That j x idye is again a monomorphism is clear, and that it is also a
categorical equivalence is [HTT, 2.2.5.4].

We next argue that ipuy is also a categorical fibration. As Fun(0'®,C%) is
a quasicategory by [HTT, 1.2.7.3 (1)], we can apply [HTT, 2.4.6.5] so that
it suffices to show that ipy, is an inner fibration and that for any natural
equivalence p: g — g’ of functors 0'® — C® such that g preserves inert
morphisms it follows that g’ preserves inert morphisms as well. The latter
property follows immediately from the fact that cocartesian morphisms are
closed under equivalences. It remains to show that iy, is an inner fibration.
But note that every horn inclusion A} C A™ for 0 < ¢ < n is an isomorphism
on 0-simplices, and as ipyy is the inclusion of a full sub-simplicial set lifting
positive dimensional simplices is always possible, s0 ipyy is an inner fibration.
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We have now shown that q, and ip,, are both categorical fibrations. By
assumption 0% is a quasicategory and Fun(O' ® 0" ®) is a quasicategory by
[HTT, 1.2.7.3 (1)], so it follows from [HTT, A.2.4.4, variant (i) and A.2.4.5]
that the right square in diagram (E.3) is a homotopy pullback square with
respect to the Joyal model structure. As a pullback of the categorical fibration
q, is the functor T a categorical fibration as well, so as 0% is a quasicategory,

Klgo, Jor (€)% is also a quasicategory [HTT, 2.4.6.1]. It was already mentioned

that Fun(0'®,C®) is a quasicategory, so we can apply [HTT, A.2.4.4, variant
(i) and A.2.4.5] again to conclude that the left square in diagram (E.3) is also
a homotopy pullback square with respect to the Joyal model structure. [

E.4.2. Properties of the induced oco-operad structure

In Proposition E.4.1.5 we gave a construction of the induced oco-operad
structure on oco-categories of algebras that could be formulated without refer-
ring back to quasicategorical models. In this section we collect the properties
of this construction.

Remark E.4.2.1. In the situation of Proposition E.4.1.5, it follows from
Proposition B.5.2.1 that as tpun is a fully faithful functor, so is tai,. We can
thus identify

LAlg - Alg@’/@“ (C)® — Fun(0’®, C®) XFun(0'®,07®) 0®

with the inclusion of the full subcategory spanned by those objects whose
projection to the first factor is a functor O'® — C® that preserves inert
morphisms. &

Remark E.4.2.2. Let O, O, and O” be oo-operads, let

ce £ D®
% A

ON®

be a commutative diagram of oc-operads, and let f: O%® x O'® — O"®
be a bifunctor of co-operads. Then the functor indicated as the right vertical
functor in the following diagram induces a functor Alge, /o (F)® on algebras
that makes the diagram commute

C
Algol/on (C)® L Fun(@’®,C®) XFun((’)’®,O”®) O®

Alger o (F)® % J(F@’)* Xiqid
Algo//o// (D)® T) Fun(0'®, D®) X Fun(0’®,0""®) O®
LAlg
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where Lilg and Lflg are as in Remark E.4.2.1. This follows immediately from
the description in Remark E.4.2.1, as F' preserves inert morphisms as a mor-
phism of co-operads. From the definition it is also clear that Alge, ) on (F)®
is compatible with the projections to O%. &

In light of Proposition E.4.1.4 and Proposition E.4.1.5, all the properties
listed in [HA, 3.2.4.2 and 3.2.4.3] apply to r: Algy: /0 (C)¥ — O%. We re-
state them as the proposition below for easier reference.

Proposition E.4.2.3 ([HA, 3.2.4.2 and 3.2.4.3]). Let O, O, as well as
O" be oo-operads, let gec: C® — O"® be a morphism of co-operads, and let
f: 0% x O%® - O"® be a bifunctor of co-operads.
Let
l’gdg: AIgO’/O” (C)® — Fun(0'®,C®) XFun(O’®,O”®) O®

be as in Proposition E.4.1.5 and Remark E.4.2.1 and denote by r¢ the com-
position pry OLglg. Then the following hold:

(0) Let X be an object of O. Then Algy: o (C)S can be identified with
Algo,/o,, (C), where the latter co-category of algebras is taken with re-
spect to the following morphism of co-operads.

fx: 0% = (X} x 0® 5 0% x 0% L, 0@

This identification is compatible with the respective inclusions into the
following oco-categories.

(FUD(O/®,C®) XFun(O/®,O”®) O®) Xo® {X}
~ FUD(O/®,C®) XFun((’J/®,O”®) {fx}
(1) The functor rc is a morphism of co-operads.

(2) A morphism a in Algo,/o,/(C)@’ lying over an inert morphism in O%
is inert if and only if for every object X of O', the morphism

evix (pry (151(a)))
in C® is inert.
(8) If qc is a cocartesian fibration of co-operads, then so is rc.
(4) Assume that qc is a cocartesian fibration of co-operads. Then a mor-

phism o in Algey, jon (C)® is re-cocartesian if and only if for every object
X of O, the morphism obtained by evaluating at X, i. e.

evx (pr; (th1g(@)))

1S qc-cocartesian.
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(5) Let X be an object of O'. Then the functor evx OprloLCAIg s a morphism
of co-operads and fits into a commutative diagram

evxopr OLC
Alge jon(€)® 21, o

] -

o® — 5 0%
where the bottom horizontal functor is the following composition.
0® ~ 0% x {x} L 0@

Furthermore, if qc is a cocartesian fibration of co-operads, then the com-
position evx opry OLCAIg sends r¢-cocartesian morphisms to qc-cocartesian
morphisms.

We can also consider how the above properties behave under induced func-
tors as in Remark E.4.2.2. So let

c® e D®

O//@

be a commutative diagram of oco-categories, and let Lflg and rp be defined
analogously to LcAlg and rc. Then the following hold.

(6) Let X be an object of O. Then there is a commutative diagram
Algor o (F)?{ JAlgO//Ou (F)

Algo//o// (D)?} — = Algol/ou (D)

2

where the horizontal functors are the equivalences from (0).
(7) The functor
Algo//o// (F)® : Algo//on (C)® — AlgO//O// (D)®
is a morphism of co-operads.

(8) If qc and qp are cocartesian fibrations of co-operads, and F' is an O"-
monoidal functor, then the functor

is O-monoidal.
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(9) Let X be an object of O'. Then there is a commutative diagram

Alg / (C)® Algeor o (F)®
O/ O//

Algol/@// (D) ®
evxoprlowcﬂg evXoprIOLE1g

C® - DX

of oco-operads. Q

Proof. Claims (0) to (4) are just restatements of [HA, 3.2.4.2 and 3.2.4.3]
which applies in this form due to Proposition E.4.1.4 and Proposition E.4.1.5.

Claim (5) follows directly from (2) and (4). Claim (6) follows immediately
from Remark E.4.2.2 and (0). Combining that F' is a morphism of co-operads
with the description of inert morphisms in (2) implies (7), and if F is a O"-
monoidal, then combining this with (4) implies (8). Finally, (9) is immediate
from the definitions. O

Remark E.4.2.4. Let Op, O}, Og, and O’ be oco-operads, let gc: C® — O'®
be a morphism of co-operads, let

f: 02 x 0% 0®

be a bifunctor of co-operads, and let a®: O} — O be a morphism of
oo-operads.

We obtain another bifunctor of co-categories f’ as the following composi-
tion.

®xid
£ 0E x 05 2 08 08 L o

We obtain a pullback diagram as follows

® & pr ; ®
FUH(OR,C®) XFun(O%,O”@) O/L : O/L

idX;dOz@J ha®

Fun((’)%,CQa) XFun(O%,O“@) O% proy O%

where the pullbacks on the left are take with respect to the morphisms as
in Proposition E.4.1.5, on the top with respect to f’ and the bottom with
respect to f.

It is clear from the definition of ta); (see Remark E.4.2.1) that an object
lies in the essential image of the functor ta), associated to the bifunctor f” if
and only if id x;q «® maps that object to the essential image of the functor
talg associated to the bifunctor f.
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It thus follows from Proposition B.5.3.1, Proposition B.4.4.1, and Propo-
sition B.4.3.1 that the above pullback diagram induces another pullback di-
agram as follows, where the Algy /o (C)® at the top left is the one with
respect to the bifunctor f’ and the one at the bottom left is with respect to
the bifunctor f.

PryOtalg

AlgoR/o' (C)® OIL®

| I

®
AlgOR/O’ (C) ProOtlalg O%

By Proposition E.4.2.3 (7), the horizontal functors are morphisms of co-op-
erads, a® is by assumption a morphism of co-operads, and it then follows
from Proposition E.4.2.3 (2) that the left vertical functor is also a morphism
of oo-operads. &

E.5. Iterating Alg

Proposition E.4.2.3 allows us to “iterate” passing to the oo-category of
algebras. In this section we show that there is an alternative description
of algebras of algebras: There is an equivalence of co-categories between the
oo-category of O-algebras in O’-algebras Alg, (Algy, (C)) and the co-category
of O ® O'-algebras Algp g, (C). This equivalence goes through an intermedi-
ate step, the oo-category BiFunc(O, O’,C) of bifunctors of oo-operads.

Proposition E.5.0.1. Let po: O® — Fin,, pjr: O'® — Fin,, as well as
pc: C® — Fin, be co-operads.
Then there is a commutative diagram as follows®

BiFunc(0, 0’;C) ——— Fun(0® x 0'® C®)

B | &)

Alg,(Algy (C)) ——— Fun(O®, Fun(0'®,C®))

where Algey, (C) carries the co-operad structure from Proposition E.4.2.3, see
[HA, 3.2.4.4] 9, the horizontal functors are the canonical ones, and the functor

(=) sends a functor G to its adjoint G. The functor ®s is an equivalence. Q

Proof. We consider the following diagram, in which the outer square cor-
responds to the square from the statement. We will explain the individual

8See [HA, 2.2.5.3] for a definition of BiFunc.
9 . . . 1@ 1dXpor . A o
There is a bifunctor of co-operads Fin, x O’® ————— Fin, X Fin, —— Fin, and it is

with respect to this bifunctor that we apply Proposition E.4.2.3.
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functors in the text below.

BiFunc(0, 0'; C) —------- T Algo(Alge (€))
Fungi,, (0%, Alge, (C)®)
J (eate),

& = Fungin, (0%, Fun(0'®,C®) Xpyn(o® fin,) Finy) —

~ W

Fung,, (0% x 0'®,C?®) % Funp,no/® fin,) (0%, Fun(0'®,C%®)) Ps3

P, P>

(=)
Fun(0® x 0'®,(C®) Fun(O®, Fun(0'®,C®)) «+——

=)
Functors Py, P, and P; are constructed from the relevant projection and
forgetful functors: P; forgets that the functor was over Fin,, and similarly
for P,. The functor Pg,\a/dditiorla\lly postcomposes with the projection to the
first factor. Functors (—) and (—) send functors to their respective adjoints,
both are equivalences.

We use notation from Proposition E.4.2.3, so a1 is the inclusion of the
full subcategory Algy, (C)® of Fun(O'®,C%) Xpun(o® Fin,) Fins of those ob-
jects whose projection to the first factor is a functor O'® — C® preserving
inert morphisms. It follows from Proposition B.3.0.1 that (taig)« is also fully
faithful, and applying Proposition B.5.3.1 and Remark B.5.1.2 we can further
conclude that the functor ¢a)g, in the diagram is fully faithful, with essential
image spanned by precisely those objects of £ which are mapped by Ps to
functors

0% - Fun(0’®,C®)
which evaluated at every object of O% yield a functor O'® — C® that pre-
serves inert morphisms.

The functor ¢ is the canonical inclusion of the full subcategory of those
functors O — Alg,, (C)® over Fin, which send inert morphisms to inert mor-
phisms. Using Proposition C.1.2.1, Proposition C.1.1.1, and [HTT, 3.1.2.1]
we can reformulate this condition: ¢ is the inclusion of the full subcategory of
objects who are mapped by Ps o (ta1g)« to functors

0% - Fun(0'®, C®)

which send an inert morphism in O® to a natural transformation for which
every component is an inert morphism in C%®.
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Appendix E. oco-operads and algebras

The above discussion can be summarized as follows: The composition
(talg)s o ¢ is fully faithful, and an object E of £ is in the essential image
of (talg)« o ¢ precisely when P3(E) is a functor O® x O'® — C® that pre-
serves inert morphisms separately in each variable. As identity morphism in
0% and O'® are inert [HTT, 2.4.1.5] and cocartesian morphisms are closed
under composition [HTT, 2.4.1.7], this condition is equivalent to the functor
sending pairs of inert morphisms to inert morphisms in C®.

The functor W is an equivalence and constructed using compatibility of
Fun with pullbacks, the x — Fun-adjunction, as well as the pasting law for
pullbacks [HTT, 4.4.2.1]; It is the following composition.

Funpun(o@fm*) (O®7 Fun(O@, C®))

~ FUH(O®, Fun(0/®7 C®)) XFun(O®,Fun(O/®,Fin*)) {(po//\?(:)’)}
~ Fun (0%, Fun(0'®,C%)) Xpun(0® Fun(0’@ Fin.)) Fun(O%, Fin,)

><Fun(O‘X’,Fin*) {(p(? A pO’)}

= FUD(O®,FUD<O/®,C®) XFun(0O’® Fin,.) Fm*) XFun(O® Fin,) {(p(;\?@’)}
~ Fun,:;n* ((9@, Fun(@’®,C®) XFun((’)@,Fin*) Fin*)

It is clear that W defined like this satisfies P3 o W ~ P.

The equivalence V is defined using quite similar manipulations, as indicated
below.

Funpin* (O® X O/®, C®)
~ Fun(0% x 0'®,C%) Xpun(0® x0® fin,) {P0 AP0}
~ Fun (0%, Fun(0'®,C®)) Xpun(0® Fun(0'® fin.)) {Po A Do}
~ FunFun(o/®,Fin*) (O®, FU.H(O/®, C®))

—

It is clear that then PyoV ~ (=)o P;.

The description obtained above of the essential image of the fully faithful
functor (ta1g)« 04 now implies that the composition V=1 o W=t o (1p15)« 01 is
fully faithful with essential image spanned by those functors O%® x O0’'® — C®
that map pairs of inert morphisms to inert morphisms. But this is by defini-
tion [HA, 2.2.5.3] precisely the essential image of the fully faithful functor j.
This shows that an induced functor ®; making the diagram commute exists
and that ®5 is an equivalence. O

Proposition E.5.0.2. Let po: O® — Fin,, pir: O'® — Fin,, as well as
pe: C® — Fin, be co-operads, and let F: O® x O'€ — 0" be a bifunctor of
oo-operads (see [HA, 2.2.5.8]). Then there exists a commutative diagram as
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follows

Algn, (C) ———— Fun(0"?,C?®)

BiFunc(0, 0’;C) —— Fun(O® x O'®,C®)

where the horizontal functors are the canonical ones.
By definition [HA, 2.2.5.3] F exhibits O"® as a tensor product of O® and
O'® if and only if ®, is an equivalence for every co-operad C. Q

Proof. The existence of the induced dashed functor ®; on full subcategories
in the following diagram follows immediately from the fact that F' maps pairs
of inert morphisms to inert morphisms.

Algyi (C) —------27------ > BiFunc(O, O’; 0")

| J

Ful’lFin* (ON®,C®) T FunFin* (O® X O/®,OH®)

E.6. The commutative co-operad

Let O be an co-operad. In the next proposition we show that the co-operad
Comm has the property that the tensor product of O and Comm is given by
Comm again.

Proposition E.6.0.1. Let ppo: O® — Fin, be a reduced’’ oo-operad and
denote the essentially unique object in O by o.

Then the bifunctor of oo-operads!!
®

® ®

a: 0% x Comm® 2279% Comm® x Comm® —2=5 Comm
ezhibits Comm as a tensor product of O and Comm.

Let pc: C® — Fin, be an co-operad. By applying Proposition E.4.2.3 to the
bifunctor of co-operads — A — we obtain an induced oco-operad Alge . (C)®,
and the forgetful functor eviiy: Algcomm(C) — C can by Proposition E.4.2.3
(5) be upgraded to a morphism of co-operads.

108ee [HA, 2.3.4.1] for a definition. It means that O is a unital co-operad and that the
underlying oo-category O is a contractible co-groupoid.
HGee [HA, 2.2.5.1] for — A —.
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Appendix E. oco-operads and algebras

Then there is a commutative diagram as follows.

Alg(’) (AlgComm (C))
eve w)(evm) (E4)
AlgComm (C) P Alg@ (C)

Furthermore, the forgetful functor ev, is an equivalence. In particular, if
po = idFin, , then Algconm(evy) is homotopic to evqy and an equivalence.

Proof. Let pc: C® — Fin, be an oo-operad. What we have to show for the
first part of the claim is that the functor

®y: Algeomm(C) — BiFunc(O, Comm;C)

from Proposition E.5.0.2 is an equivalence. Note that by Proposition E.5.0.1,
the functor

®y: BiFunc(O, Comm;C) — Algn (Algcomm(C))

is an equivalence. We consider the following diagram of commutative squares
that summarizes the situation.

Algcomm(C) ———— Fun(Fin,,C?®)

L3 J{(a)*

BiFunc(O, Comm;C) ——— Fun(O® x Fin,,C®)
By |~ l(i\) (*)
Alg o (Algcomm(C)) —— Fun(O®, Fun(Fin,,C®))

evg lCVo

Algconm(C) ——————  Fun(Fin,,C®)

Define ®; to be the left vertical composition ®; = ev, 0 P5 o ®1. As the
oo-operad Algeomm(C)® is cocartesian by [HA, 3.2.4.10], we can apply [HA,
2.4.3.9], which states that the forgetful functor ev, is an equivalence. To show
that a exhibits Comm as a tensor product of @ and Comm it thus suffices to
show that @, is an equivalence.

Using naturality of (/5) we can identify the right vertical composition with
precomposition with the following functor.

po XidFin,

const, XidFin, . . . —A— .
: ™y O%® x Fin, ——— Fin, x Fin, —— Fin,

Fin,

This functor is naturally equivalent to idg,, , so we conclude that the vertical
composition on the right in diagram (x) is naturally equivalent to the identity.
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Diagram () is natural in C'2, so it follows that the morphism of co-operads
pc: C® — Fin, induces a commutative cubes as follows.

Algeomm(€) Fun(Fin,,C®)
/ ¢ /
Algeomm(Comm) Fun(Fin,, Fin,) id
!
q:'éiomm AlgComm (C) Fun(Fin*a C®)
Algeomm(Comm) Fun(Fin,, Fin,)

Note that the functor Algc,,m(Comm) — Fun(Fin,, Fin,) can be identified
with the inclusion of {idfin, }, from which it also follows that ®¢_,, ., can be
identified with the identity. Passing to the induced functors from Algc,,m(C)
into the pullbacks of the top and bottom squares we conclude that there is a

commutative squares as indicated below

Algcomm(C) —— Fung,, (Fin,,C®)

Algcom(C) —— Fung,, (Fin,,C®)

where the horizontal functors are the canonical inclusions. As both horizontal
functors are by definition the same inclusion of a full subcategory, it follows'3
that @, is homotopic to the identity functor and hence an equivalence.

It remains to show that there exists a commutative diagram (E.4). For this
we can proceed very analogously. As we now know that ®; in diagram (x) is
an equivalence, it suffices to construct a homotopy between pf, oev, o @50 @y
and Algy(ev(yy) o @2 o ;. Completely analogously to the arguments above,
this time using that the compositions

const, X idFin,
%

. . Po X idFin, . . A=
0% Lo, Fin, 0% x Fin, ———™3 Fin, x Fin, —— Fin,

and

id,@ X const gy po XidFin,
—)

0® 02 x Fin, 227" Fin, x Fin, —2=5 Fin,

120ne can check that the two squares involving ®; and ®3 are natural in C by going
through their definitions. This is also discussed in Remark F.3.0.4 below.
13See Proposition B.4.4.1 and Proposition B.4.3.1.
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are both naturally equivalent to pp, one can obtain commutative diagrams

Algcomm(C) ———— Fungip, (Fin,, C®)

Alg(C) ———— Fung,, (0%,C9)

for both p§, o evy 0 &g 0 @1 as well as Algo(ev<1>) o &9 o ®; as the left ver-
tical functor. We thus obtain a homotopy between p{, o evy 0 5 0 &1 and
Algy(ev(ry) o @3 o ®; by using that the bottom horizontal functor is the
inclusion of a full subcategory and applying Proposition B.4.4.1 and Propo-
sition B.4.3.1. O

E.7. Colimits and free algebras

In this section we discuss (operadic) colimits and free algebras, as well as
compatibility of functors

Algp(F): Algp(C) — Algp (D)

induced by a symmetric monoidal functor F': C — D, with free algebras and
colimits.

We start in Section E.7.1 by discussing operadic colimits, which will be an
ingredient for the later sections. In Section E.7.2 we then discuss free algebras,
and in analogy we will also briefly show that induced functors on co-categories
of left modules preserve free modules in Section E.7.4. In Section E.7.3 we
provide a result for Alg,(F) preserving small colimits.

E.7.1. Operadic colimits

In this section we discuss some helpful results regarding operadic col-
imit diagrams. Section E.7.1.1 covers a criterion that simplifies checking
whether certain types of diagrams in a symmetric monoidal co-category are
operadic colimit diagrams, and Section E.7.1.2 applies this to show that
colimit-preserving symmetric monoidal functors also preserve operadic colim-
its. Both statements as well as their proofs are essentially taken from [GH15,
A.2.9]H.

E.7.1.1. A criterion for operadic colimits

We record the following proposition whose proof is essentially given in the
proof of [GH15, A.2.9].

M The paper [GH15] is however concerned with the theory of non-symmetric co-operads,
rather than the symmetric co-operads used in [HA], which is why we do not merely cite
[GH15, A.2.9].
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Proposition E.7.1.1 ([GH15, A.2.9]). Let q: C® — Fin, be a symmetric

monoidal oco-category that is compatible with small colimits in the sense of

[HA, 3.1.1.18] and let p: K> — C® be a diagram such that qop is the constant

functor with value (i). Let m: (i) — (1) be the unique active morphism.
Then the following two conditions are equivalent.

(1) p is an operadic q-colimit diagram?®.
(2) The composition

K> 2 ¢ =5 C (E.5)

is a colimit diagram. @

Proof. By [HA, 3.1.1.16] the condition (1) is equivalent to the following con-
dition.

(3) For every object Y of C® the composition

K> Led =25 e

(eqy) € (*)

is a colimit diagram, where m’: (i) ® q(Y) — (1) is the unique active
morphism.

Note that given an object Y of C®, we can write the unique active morphism
m’: (i) & q(Y) = (1)

as the composition
m' = o (mem”)

with m”: ¢(Y) — (1) and p: (2) — (1) the unique active morphisms. By [HA,
2.2.4.8], we can identify (m @& m'), with my & m}’, so that the composition in
(%) can be identified with
> PA —BY  H»® mydmy’ ® M
B2 =5 Ch — Caeary — 2 C) 7€

which can be further identified, using the functoriality of @, with the compo-
sition

—emi' (Y

K*2cd ™ cd ) cg e

which finally can be identified with the following composition.

m&%ﬂwﬁﬂﬂc (55)

As we assumed that the symmetric monoidal structure on C is compatible
with small colimits, (x*) is a colimit diagram for all objects Y of C® if and
only if (E.5) is a colimit diagram?6. O

153ee [HA, 3.1.1.2] for the definition.
16The composition (E.5) can be identified with (%) in the special case of Y = 1.
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E.7.1.2. Symmetric monoidal functors and operadic colimits

The following statement is given in [GH15, A.2.9] with the same proof as
given below.

Proposition E.7.1.2 ([GH15, A.2.9)). Letq: C® — Fin, and ¢': C'® — Fin,
be symmetric monoidal oco-categories that are compatible with small colimits
in the sense of [HA, 3.1.1.18] and let F®: C® — C'® be a symmetric monoidal
functor such that F preserves colimits.

Letp: K> — CZ. be a operadic q-colimit diagram. Then F®op is a operadic
q'-colimit diagram. @
Proof. Let po = qop and let 9 be the constant functor K* — Fin, with
image pg(00)'”. Then there is a unique natural transformation ag: pg — 7o.
By [HTT, 3.1.2.1] we can lift this natural transformation to a natural trans-
formation a: p — 7 of functors K» — C® such that for each object k of K
the morphism «y,: p(k) — r(k) is g-cocartesian.

Note that by construction of o the functor « factors through C, . Further-
more, (i is g-cocartesian and lies over the equivalence id, (o) and is thus
an equivalence by [HTT, 2.4.1.5]. Hence all the assumptions for [HA, 3.1.1.15
(2)] are satisfied and we can conclude that as p is an operadic g-colimit dia-
gram, So is 7.

As F® maps g-cocartesian morphisms to ¢’-cocartesian morphisms and
preserves equivalences, we can apply [HA, 3.1.1.15 (2)] also to F® o a to
conclude that F o p is an operadic ¢’-colimit diagram if and only if F or is,
so it now suffices to show that F or is an operadic ¢’-colimit diagram.

Let m: pg(oc0) — (1) be the unique active morphism. Then by Proposi-
tion E.7.1.1 the composite

K*5c®

po (oo

€ (%)
is a colimit diagram, and it suffices to show that

K 5es e

my oy
Po(c0) po(oe) — € (%)

is a colimit diagram.
But as F' is symmetric monoidal, composition (¥#) can be identified with

s

K 5ee Mcehe
Po(o0)

so that this is a colimit diagram follows from (x) being a colimit diagram and
F preserving colimit diagrams by assumption. O

E.7.2. Free algebras

In this section we discuss free algebras; existence of free algebras in Sec-
tion E.7.2.1 and compatibility of induced functors on co-categories of algebras
with free algebras in Section E.7.2.2.

1750 denotes the cone point of K.
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E.7.2.1. Detection of free algebras

Let C be a symmetric monoidal co-category, O an oo-operad, and X an
object of the underlying oco-category of 0. We can then ask whether the
forgetful functor

evy: Algn(C) = C

has a left adjoint, i. e. a free algebra functor!'®. In a more general setting, [HA,
3.1.3.4] shows existence of a free algebra functor, under some assumptions.
However, those assumptions, requiring existence of certain operadic colimit
diagrams, are not a priori easy to verify!?. In the next proposition we thus
provide easier to check conditions for C in the case that O is either Assoc or
Eq that imply the existence of free algebras, and discuss descriptions of the
free algebra generated by a an object of C.

Proposition E.7.2.1 ([HA, 4.1.1.18 and 4.1.1.19]). Let q: C® — Fin, be a
symmetric monoidal co-category. Let O be either Assoc or Ey. Furthermore,
assume the following.

e If O = Assoc, assume that C admits countable coproducts and that the
tensor product preserves countable coproducts in each variable.

e If O = Ey, assume that C admits finite coproducts and that the tensor
product preserves finite coproducts in each variable.

Then the forgetful functor
V(1) : AlgO(C) —C
admits a left adjoint Free™'#0 and for every object X of C, the unit

X —ev) (FreeAlgo (X))

of the adjunction exhibits Free™20(X) as a q-free O-algebra generated by
X?0,
Let X be an object of C, let A be an object of Alg,(C), and let furthermore
[+ X = eviy(A) be a morphism in C. Then the following are equivalent.
(1) f exhibits A as a q-free O-algebra generated by X .

(2) The morphism
Free®®o(X) — A

that is adjoint to f is an equivalence in Alg,(C).

18See [HA, 3.1].

19Unless much stronger assumptions are available, such as the symmetric monoidal struc-
ture on C being compatible with small colimits. See [HA, 3.1.3.5].

208ee [HA, 3.1.3.1 and 3.1.3.12] for a definition.
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(8) o If O = Assoc: The composition

Lo £ .
H X® L) H ev<1>(A)® — ev<1>(A)
n>0 n>0

is an equivalence, where the morphisms ev<1>(A)®n — eviy(A)
are those associated to the evaluation of A at an active morphism
(n) — (1) in Assoc®?!,
o If O =Eg: The composition
1TX M> 1Ievy, (A) ﬂ ev(y) (A)
is an equivalence, where i is the morphism associated to the eval-
uation of A at the unique morphism (0) — (1) in (Eo)®. @

Proof. For O = Assoc, this is precisely [HA, 4.1.1.18]%2, albeit under stronger
assumptions regarding what colimits C needs to be admit and its tensor
product needs to be compatible with. That countable coproducts suffice is
remarked in [HA, 4.4.1.19]. This follows by tracing through the proof of [HA,
4.1.1.18], where one is ultimately led to [HA, 3.1.3.4], where one needs to
ensure that one can construct certain operadic g-colimit diagrams. One then
notes that in the specific situation we need to apply this the diagram category
is equivalent to [],,~, P(n), where P(n) are the spaces defined in [HA, 3.1.3.9].
For Assoc these spaces can easily seen to be contractible®3, so colimits indexed
by this diagram category are countable coproducts.

The proof for O = E is completely analogous; the relevant P(n) are empty
for n > 1 rather than contractible. O

E.7.2.2. Symmetric monoidal functors and free algebras

Given a symmetric monoidal functor F': C — D, an oc-operad O, and
an object X of the underlying oo-category of O, the induced functor on
oo-categories of algebras

Algp(F): Algo(C) — Algn (D)

is compatible with the respective forgetful functors evy. The next proposition
gives conditions for C, D, and F' such that Alg,(F') is also compatible with
the respective free algebra functors.

Proposition E.7.2.2. Let a®: O® — O'® be a morphism of co-operads,
gc: C® — Fin, and gp: D® — Fin, symmetric monoidal co-categories, and
F®:C% — D® g symmetric monoidal functor.

Assume one of the following sets of assumptions.

21'Which active morphism is chosen does not change whether the composition is an equiv-
alence or not.

22The proof can be found above the statement.

23See [HA, above 4.1.1.18].
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C and D admit small colimits.

(1)
e The tensor product functors of C and D preserve small colimits
separately in each variable.

o [': C — D preserves small colimits.

(2) o O%=Triv® and O'® = Assoc.
e C and D admit countable coproducts.

o The tensor product functors of C and D preserve countable coprod-
ucts separately in each variable.

e F:C — D preserves countable coproducts.
(3) o O® =Triv® and O'® = E,.
e C and D admit finite coproducts.

e The tensor product functors of C and D preserve finite coproducts
separately in each variable.

o [': C — D preserves finite coproducts.

Then the following commutative diagram induced by F (where the two
horizontal functors are the forgetful functors given by precomposition with «)

Algo (C) —Z=— Alg,(C)

Algo, (F)J JAlgo(F) (E.6)

Algo/ (D) U Algy(D)

is left adjointable®*, i.e. Uc and Up have left adjoints Freeﬁlgo'(c) and

lgo ()
Freei}ii’(g), and the associated push-pull transformation

Algo) (D Algo (C
FreeAéZ ((D)) oAlgy(F) — Algy (F) o FreeAég(é))

s a natural equivalence. Q

Proof. By [HA, 3.1.3.5] in case (1) and Proposition E.7.2.1 in cases (2) and
(3), the left adjoints exist and for A an object of Alg,(C) the unit

Alger (€
nS: A= Ue (FreeAég ((c))(A))

of the adjunction exhibits Freeﬁig'((cc))(A) as the free ('-algebra generated
by A, and completely analogously for the other adjunction, whose unit we

denote by nP.

248ee [HTT, 7.3.1.1] for the definition.
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Let A be an object in Alg,(C). We have to show?® that the morphism

Ale, (D Algy (C
(Freede(5) o Algo (F) ) (4) = (Alge (F) o Freey £/ (4)

that is adjoint to the following composition®®

(Algo (F))(A)

Alg,, (F)(nS
4)1%0( )(n3) (Algo (F)oUco Freeiiiz/((cc;)) (A)

=, (UD o Algy, (F)o Freeiizl((cc))) (4)

is an equivalence (see [HTT, beginning of 7.3.1]).

But by definition of Freeiig'((g)) (see [HA, 3.1.3.5 and 3.1.3.1] in case (1)

and see Proposition E.7.2.1 in cases (2) and (3)), the former morphism is an
equivalence if and only if the latter morphism exhibits

Algey (C
(Alg@ (F)o FreeAég(é))> (A)
as a gp-free O’-algebra generated by (Alg, (F))(A) — so this is what we need
to show.

Similarly, by definition of Freeiig’((cc)), the morphism

n5: A= (UC o Freeﬁ}ig/((cc))) (A)

exhibits Freei}iz/(éc)) (A) as a ge-free O’'-algebra generated by A.

Proof in case (1): Unpacking the definitions of free algebras (see [HA,
3.1.3.1]) one sees that the claim boils down to showing that F® preserves cer-
tain operadic colimit diagrams, so the claim follows from Proposition E.7.1.2.

Proof in cases (2) and (3): In these cases we can use the criteria from Propo-
sition E.7.2.1 and thus the claim follows from F' being symmetric monoidal
and preserving countable/finite colimits. O

E.7.3. Induced functors on Alg and colimits

In the following proposition we show that a colimit preserving symmetric
monoidal functor induces a colimit preserving functor on oo-categories of
algebras.

25By Proposition A.3.2.1 a natural transformation is a natural equivalence if and only if
it is a pointwise equivalence.

26The equivalence used is to be the one obtained from the equivalence
Algy(F) oUc ~ Up o Algy/ (F') encoded in the commutative diagram (E.6).
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Proposition E.7.3.1. Let C and D be symmetric monoidal co-categories
and F: C — D a symmetric monoidal functor. Assume that C and D admit
all small colimits, that the tensor product functors of C and D preserve small
colimits separately in each variable, and that F' preserves small colimits.

Let O be an co-operad. Then Alg, (F') preserves small colimits as well.

Proof. Consider the commutative diagram

Algo(€) —2227, Alg (D)

U{ JUD (*)

Fun(o, C) T> Fun(@, D)

where Uz and Up are the forgetful functors.

To show that Alg,(F) preserves colimits it suffices by combining [HTT,
4.2.3.12] with [HA, 1.3.3.10 (2)] to show that Alg,(F) preserves sifted colim-
its as well as coproducts.

By [HA, 3.2.3.1]*" together with [HTT, 5.1.2.3 (2)], the two vertical func-
tors in diagram (x) detects sifted colimits. As F preserves all small colimits
by assumption, we obtain with [HTT, 5.1.2.3 (2)] that the bottom horizontal
functor in diagram () preserves all small, so in particular all sifted, colimits.
We can thus conclude that Alg,(F) preserves sifted colimits.

It then follows from the proof of [HA, 3.2.3.3]7 that Alg,(F) also preserves
coproducts if the composition with the left adjoint Freec of Ue does. But by
Proposition E.7.2.2 there is a commutative diagram

Alg o, (F)
Algy (C) Zo Algon (D)

FrcccT TFrch

Fun(0,C) —— Fun(0, D)

where Freep is the left adjoint of Up. That the composition from the bottom
left to the top right in this diagram preserves coproducts now follows im-
mediately from F} preserving small colimits as mentioned above and Freep
preserving colimits as a left adjoint [HTT, 5.2.3.5]. O

E.7.4. Free modules

Similarly to Proposition E.7.2.2, which dealt with compatibility of induced
functors on oco-categories of algebras with free algebras, the next propositions
discusses compatibility of induced functors on oco-categories of left modules
with free modules.

27 Which is applicable to our situation by Proposition E.2.0.2.
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Appendix E. oco-operads and algebras

Proposition E.7.4.1. Let F': C — D be a monoidal functor of monoidal
oo-categories and let R be an (associative) algebra in C. Then the commutative
diagram

LModg(C) —=™ ¢

LModR(F)J l{F (E.7)

LMOdF(R) (D) T} D

induced by F is left adjointable in the sense of [HTT, 7.3.1.1], i. e. the asso-
ctated push-pull transformation

Freep o ' — LModg(F) o Freec

is an equivalence, where Freec and Freep are the free module functors for C
and D, respectively (see [HA, 4.2.4.8]).

In other words, F' preserves free left-R-modules. The analogous statement
is true for right-R-modules. Q

Proof. Let X be an object of C. By Proposition A.3.2.1 it suffices to show
that the push-pull morphism

(Freep o F)(X) — (LModg(F') o Freec)(X)

is an equivalence, and as evy, is conservative by [HA, 4.2.3.3], we actually
only need to show that ev,, of that morphism is an equivalence.
Consider the following commutative diagram that will be explained below.

F(R)® F(X) - F(R)® (evm o Freep o F)(X) ———— (evm o Freep o F')(X)

| |

F(R) ® (evin 0 LModRg(F) o Freec)(X) — (evm 0 LModg(F') o Freec)(X)

! |

F(R)® F(X) — F(R) ® F((evm o Freec)(X)) F((evm o Freec)(X))

l l l

F(R® X) —— F(R® (evm o Freec)(X)) ————— F((evm) o Freec(X))

The left horizontal morphisms are induced by the units of the adjunctions
Freep - evy and Freeg - evy,, and the right horizontal morphisms are (in-
duced by) the action morphism of the respective modules. The top vertical
morphisms on the left and the bottom vertical morphism on the right are the
identity morphisms, and the bottom vertical morphism in the left and mid-
dle column are the equivalences arising from monoidality of F. In the middle
and right column, the top vertical morphism is induced by the push-pull-
transformation, and the middle vertical morphisms arise are the equivalences
that arise from commutativity of (E.7).
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E.8. Relative tensor products

The composition of the top two horizontal morphisms is an equivalence by
the definition of free modules [HA, 4.2.4.1], and so is the composition of the
bottom two horizontal morphisms. The two left vertical morphisms as well
as the bottom and middle vertical morphism on the right are equivalences as
well, so it follows that the vertical morphism at the top right is an equivalence,
which is what needed to be shown. O

E.8. Relative tensor products

Let C be a monoidal category and R, S, and T associative algebras in C.
If M is an R-S-bimodule and N an S-T-bimodule, then we can form the
relative tensor product of M with N over S, denoted by M ®g N, which
yields an R-T-bimodule.

This construction is generalized to the co-categorical setting in [HA, 4.4]
and can be (very) roughly summarized as follows. If C is a monoidal co-cate-
gory that is compatible with A°P-indexed colimits, R an associative algebra in
C, M aright-R-module, and N a left- R-module, then there exists a simplicial
object in C denoted by Barr (M, N) that is given in level n by?® M @ R®" @ N
and has structure morphisms constructed from the unit morphism of R, the
multiplication of R, and the action of R on M and N. The relative tensor
product M ®pr N is then the geometric realization of Barg (M, N). See [HA,
4.4.2.8].

In this section we will record some properties of relative tensor products
that we will need.

28
)

Proposition E.8.0.1. Let C and D be monoidal co-categories and F: C — D
a monoidal functor. Assume that C and D admit A°P-indexed colimits, their
tensor product functors commute with A°P-indexed colimits in each variable
separately, and F preserves A°P-indezed colimits.

Then F preserves relative tensor products. Q@

Remark E.8.0.2. Let us clarify what the statement of Proposition E.8.0.1
actually means at a more concrete or technical level. Let pc: C® — Assoc®
and pp: D® — Assoc® be the cocartesian fibrations of co-operads that ex-
hibit C and D as monoidal co-categories. Suppose we have given a morphism

28Unfortunately there seems to be a mistake in the definition of Tens® in [HA, 4.4.1.1].
For morphisms one should additionally require for any element j of (n/)° such that
() # ¢/, (4) that the preimage of j under « is non-empty. One can think of it like
this: Any nontrivial step from ¢ () to ¢/, (j) needs to come from a step in the preimages.
The same mistake occurs in the description [HA, 4.3.1.5] of the co-operad encoding
bimodules. Here one needs to make the same correction. Without this correction alge-
bras over this operad would not consist of triples (R, M, S) with R and S associative
algebras and M an R-S-bimodule, but such triples together with an additional unit
morphism 1 — M for M, encoded by the morphism from the unique object () over (0)
to m.
29That this is really how the bar construction looks like in level n can be seen by digging
through and unpacking the definition [HA, 4.4.2.7], but it is a bit tedious.
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Appendix E. oco-operads and algebras

of generalized oco-operads ¢ fitting into the following commutative diagram

C® s DX

SN

Tens — 5 Assoc®

where the bottom horizontal functor is the forgetful functor. Then the state-
ment of Proposition E.8.0.1 is that if ¢ is an operadic pc-colimit diagram,
then F® o ¢ is an operadic pp-colimit diagram, see [HA, 4.4.2.3].

From this the various other, perhaps more concrete, formulations of what
it means for a monoidal functor to preserve relative tensor products follow.
For example we then have a commutative square

BlMOd(C) X Alg(C) BlMOd(C) E— BiMOd(D) X Alg(D) BiMOd(D)

| |

BiMod(C) BiMod(D)

where the horizontal functors are those induced by F' and the vertical functors
are the relative tensor product functors of [HA, 4.4.2.11]. O

Proof of Proposition E.8.0.1. We will make use the notation and setup from
Remark E.8.0.2. Let the restriction of ¢ to Tens‘[%] correspond to a quin-
tuple (R, M,S,N,T), with R, S, and T associative algebras in C, with M
an R,S-bialgebra, and N an S,T-bialgebra, see [HA, 4.4.2.2]. Similarly, let
the restriction to Tensﬁ] correspond to a triple (R, X, T") with R’ and T’
associative algebras and X an R/, T’-bialgebra.

By [HA, 4.4.2.8], the morphisms R — R’ and T — T" induced by ¢ are
equivalences®® and the comparison morphism

|Barg (M, N)| — evn(X)

is an equivalence. What we have to show is that the morphisms F'(R) — F(R')
and F(T) — F(T") induced by F® o ¢ are equivalences and that the compar-
ison morphism

|Barp(s)(F(M), F(N))| = F(evm (X)) (%)

is an equivalence.
The former is clear because these morphisms are just given by F' applied
to the analogous morphisms R — R’ and T'— T" in C.

30Condition (i) boils down to this, as Assoc is reduced, see [HA, 4.4.2.6].
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E.8. Relative tensor products

As F® maps pe-cocartesian morphisms to pp-cocartesian morphisms, it
follows from the definition that

Barp(s)(F(M), F(N)) ~ F o Barg(M, N)

see [HA, 4.4.2.7]. That (x) is an equivalence now follows from combining this
with F preserving A°P-indexed colimits by assumption. O

Proposition E.8.0.3. Let C be a cocartesian symmetric monoidal struc-
ture®? such that the underlying co-category of C admits A°P-indexed colimits
as well as pushouts

Then the tensor product of C is compatible with A°P-indezed colimits as
well as pushouts in the sense of [HA, 3.1.1.18].

Let R, S, and T be associative algebras inC. Let f: M — M’ be a morphism
in BiModg s(C) and g: N — N’ a morphism in BiModg r(C). We obtain a
commutative diagram

idM®iagg

M ®s N M ®g N’

f®idsidNJ Jf'(@i(lsidN’

M ®s N — M'®s N’
idp Qiag g

in BiModg, 1 (C). Then this diagram is a pushout square. Q

Proof. We first show that the symmetric monoidal structure on C is compat-
ible with pushouts and A°P-indexed colimits. So let X be an object of C. Let
T be either AP or A2 = (e +— e — o) and F: Z — C a functor. It suffices to
show that the canonical comparison morphism

colim(X IT F') — X II colim F'

is an equivalence. As colimits commute with colimits [HTT, 5.5.2.3] this mor-
phism factors as an equivalence colim(X II F') ~ (colim const x ) II (colim F')
and the canonical morphism (colim constx) IT (colim F') — X II colim F'. Tt
thus suffices to show that (colimconstyx) — X is an equivalence, which fol-
lows from [HTT, 4.4.4.10], as Z is weakly contractible®?.

We can now apply [HA, 4.3.3.9] to conclude that pushouts are detected
by the forgetful functor evy: BiModg 1(C) — C, so combining this with the
description of relative tensor products from [HA, 4.4.2.8] it suffices to show

31See [HA, 2.4.0.1] for a definition.
32This means that the co-groupoid completion of T is contractible as a space.
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that the commutative diagram

|Barids (id]u ,g) |

|Barg (M, N)| |Barg (M, N')|

|Barids(f,idN)|J J|Barids(f,idN,)

|BarS(M,,N)| m) |BarS(M/,N/)|
ariag (id s,

is a pushout square in C.
Using compatibility of colimits with colimits again it suffices to show for
every n > 0 that the commutative square

id s HidIlg

MI([[, §) I N MI([[, §) I N

indHidNJ Jfﬂidﬂidl\,/

M=y S) TN S—res MY, S) TN
is a pushout square in C, which yet again follows from colimits commuting
with colimits, as this is evidently a coproduct of pushout diagrams. O

Construction E.8.0.4. Let C be a symmetric monoidal co-category, and
assume that the underlying oco-category admits A°P-indexed colimits, and
that the tensor product functor preserves A°P-indexed colimits separately in
each variable.

Let f: R — S and g: R — T be morphisms in CAlg(C). We can upgrade
f and g to morphisms in right- R-modules and left- R-modules in CAlg(C), as
we now explain for g, the case for f being completely analogous.

By [HA, 3.2.4.7] the induced symmetric monoidal structure on CAlg(C) is
cocartesian, so by [HA, 2.4.3.9] the forgetful functor

evy: Alg(CAlg(C)) — CAlg(C)

is an equivalence, and so we can upgrade g to a morphism g in Alg(CAlg(C))
with evqe(g) ~ g.

By applying the section Alg(CAlg(C)) — LMod(CAlg(C)) discussed in [HA,
4.2.1.17] we obtain a morphism g: (R,R) — (T,T) in LMod(CAlg(C)) to-
gether with equivalences evq(g) ~ g and evy,(g) ~ g. The forgetful functor
LMod(CAlg(C)) — Alg(CAlg(C)) is a cartesian fibration by [HA, 4.2.3.2] and
a cartesian lift of § with target (T,T) lies over an equivalence in CAlg(C).
This cartesian lift can be interpreted as the restriction of the T-action on T
to R along g. We obtain an induced morphism of left- R-modules ¢': R — T
with evi,(¢') ~ g.

By [HA, 3.2.3.2] the co-category CAlg(C) admits A°P-indexed colimits, and
as the forgetful functor ev(;y: CAlg(C) — C is both symmetric monoidal by
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E.8. Relative tensor products

Proposition E.4.2.3 (5) as well as preserves and detects A°P-indexed colimits
by [HA, 3.2.3.2], it follows that the induced tensor product on CAlg(C) is
compatible with A°P-indexed colimits as well.

We thus obtain a commutative diagram in CAlg(C) as follows

R g T
idr®ia 9
! RopR — 7MY R@pT (E.8)
[ ®iapidr ['®iagidr
S — SrRR ———— S®rT

= ids®iap g’

where the unlabeled equivalences are the unitality equivalences of the relative
tensor product discussed in [HA, 4.4.3.16], see also [HA, 4.4.3.18]. &

Proposition E.8.0.5. Assume that we are in the situation of Construc-
tion E.8.0.4, and that C additionally admits small colimits and that the tensor
product preserves small colimits separately in each variable.

Then the commutative square

R—% T

7| |

S —— S®rT

from (E.8) is a pushout square in CAlg(C). @

Proof. Tt suffices to show that the smaller square on the lower right in diagram
(E.8) is a pushout square.

Note that by [HA, 3.2.3.3] CAlg(C) again admits small colimits. We can
thus apply Proposition E.8.0.3, which shows the claim. O
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Appendix F.

Cartesian symmetric monoidal
oo-categories

In this appendix we collect some results relating to cartesian symmet-
ric monoidal oo-categories. In Section F.1 we discuss how cocartesian fi-
brations whose fibers are compatible with products in the sense of Defi-
nition C.2.0.1 interact with cartesian symmetric monoidal structures. The
short section Section F.2 describes limits in oco-categories of monoids. The
main part of this section is Section F.3, in which we discuss how to relate
Algpgor (C), Monpgor (C), Monp(Moner (C)), and Algy, (Algy(C)), where C
is an oo-category admitting finite products that is equipped with the carte-
sian symmetric monoidal structure, and O and O’ are co-operads.

F.1. Cocartesian fibrations and cartesian
symmetric monoidal structures

Let p: C — D be a cocartesian fibration whose fibers are compatible with
products in the sense of Definition C.2.0.1, and let 7p: D* — D be the
cartesian structure on the cartesian symmetric monoidal structure on C (see
[HA, 2.4.1]). By Proposition C.2.0.3, p preserves products. The goal of this
section is to show that the induced functor p*: C* — D* can be obtained as
a pullback of p along 7p. Before we can prove this, we first show the following
statement regarding how cocartesian morphisms interact with weak cartesian
structures.

Proposition F.1.0.1. Let q: C® — Fin, be a symmetric monoidal co-cate-
gory and w: C® — D a weak cartesian structure! on C®.

Let C ~ C1 & -+ @ Cp be an object of Cpy with C; an object of C for
1<i<n. Let o: (n) — (m) be a morphism in Fin, and let f : C — C' be a
q-cocartesian lift of ¢.

1See [HA, 2.4.1.1] for a definition
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Appendix F. Cartesian symmetric monoidal co-categories

Then there exists a commutative diagram

n(C) — L ()

{ J”

H m(Ci) — H m(Cy)
1<i<n 1<i<n,
P(i)F#*

where the bottom horizontal morphism is the projection to the subproduct,
the right vertical morphism is an equivalence, and the left vertical morphism
is induced by the canonical morphisms w(C) — w(C;) (which are induced by
inert morphisms lying over p*), and thus an equivalence as 7 is a lax cartesian
structure. V)

Proof. We first consider the case in which ¢ is inert. Then we can identify f
with the following canonical projection morphism.

b P o

1<i<n 1<i<n,
P(8)#x
Let
g;: @ Cl — Cj
1<i<n,
P(1)F#*

be the canonical projection morphism for 1 < j < n with ¢(j) # * and define
h; similarly to be the projection @, ,.,, Ci = C; for 1 < j < n. That 7 is
lax cartesian means that the morphism

1<i<n M
o @ o) ==t T e

1<i<n 1<i<n

is an equivalence, and similarly for @, <i<n (i) C;. The claim now follows
from the fact that for 1 < i < n with (i) # * the composition g; o f can be
identified with h;.

Let us now consider the general case. Let g: C' — C” be a g-cocartesian
lift of the active morphism (m) — (1). As 7 is a weak cartesian structure,
m(g) is an equivalence. It thus suffices to consider the case where m = 1. We
can factor ¢ as a composition ¢ = a0 where § is inert and « active (see [HA,
2.1.2.2)). Lifting 5 and « to a commuting triangle f ~ g o h of g-cocartesian
morphisms, with h a lift of 5 and g a lift of «, we can again use the fact that
7 is a weak cartesian structure (and that m = 1) to conclude that 7(g) is an
equivalence. We are thus reduced to the case of inert morphisms, which we
have already proven. O
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F.1. Cocartesian fibrations and cartesian sym. monoidal structures

Proposition F.1.0.2. Let p: C — D be a cocartesian fibration whose fibers
are compatible with products in the sense of Definition C.2.0.1, and let
mc: C* — C and mp: D* — D be the cartesian structures on the cartesian
symmetric monoidal structures on C and D, respectively (see [HA, 2.4.1.5
(5)]).

Then the square induced via [HA, 2.4.1.8 and 2.4.1.6] by the product pre-
serving functor p (see Proposition C.2.0.3)

cr —= ¢

s a pullback in Catee. Q

Proof. Consider the following commutative diagram, where the square is a
pullback square.

D* —— D

It suffices to show that 0% is an equivalence.

The oo-category D* comes with a cocartesian fibration, which we will de-
note by ¢: D* — Fin,, that makes D* into a symmetric monoidal co-category
with underlying oco-category D (see [HA, 2.4.1.5 (4)]). With this we can now
state the three claims through which the proof will proceed:

(A) p® is a cocartesian fibration of co-operads?.

It follows from (A) that the functor gop®: C® — Fin, upgrades C® to a sym-
metric monoidal co-category. Note that by construction p*: C* — D> arises
as a symmetric monoidal functor between symmetric monoidal co-categories,
so in particular p* can be lifted to a functor over Fin,. It then follows that
also 0% can be lifted to a functor over Fin,. This gives meaning to the next
claim.

(B) The functor 8% can be upgraded to a symmetric monoidal functor.

(C) The functor 0 = 9% is an equivalence.

2See [HA, 2.1.2.13] for the definition.

715



Appendix F. Cartesian symmetric monoidal co-categories

Once we have proven these three claims, the statement follows immediately
from [HA, 2.1.3.8], which states that as a symmetric monoidal functor (by
(B)), 6% is already an equivalence if 6 is is an equivalence (which it is by
(©)).

Proof of (A): As p is a cocartesian fibration we can conclude by Proposi-
tion C.1.1.1 that p® is also a cocartesian fibration. We will use [HA, 2.1.2.12]
to show that p® is even a cocartesian fibration of co-operads. So let

D~D®---®&D,

be an object in D<Xn> with D; objects in D for 1 < i <, and let f*: D — D;
for 1 < i < n be the canonical inert morphisms. We have to show that the
induced morphism on fibers

g EEn asesn A IT <5, (F.1)

1<i<n

is an equivalence of co-categories. The fiber of p® over some object D’ can be
identified with the fiber of p over mp(D’), and it follows from the description
of p®-cocartesian morphisms in Proposition C.1.1.1 that this identification
is compatible with the respective induced morphisms on fibers. We can thus
identify functor (F.1) with the following functor.

ITi< nTrD(fi)!
CTK"D(D) L) H Cﬂ'D(Di) (FQ)

1<i<n

As 7p is a lax cartesian structure® we can identify 7p(D) with the product
[1,<i<,, 7»(D;) and the morphisms p(f7): 7p(D) — 7p(D;) for 1 < j <n
with the projection pr;. We can thus identify functor (F.2) with the following
functor.

[Ti<i<yn Priy
CH1§¢9LWD(D@') — H CTrD(D,i)
1<i<n

But the cocartesian fibration p has by assumption fibers compatible with
products, and this means exactly that functors of this form are equivalences.

Proof of (B): Let f be a qo p® o §®-cocartesian morphism in C*. Then we
have to show that 0% (f) is g o p®-cocartesian. As p* is symmetric monoidal,
the morphism p* (f) = p®(6%(f)) is g-cocartesian, so by [HTT, 2.4.1.3 (3)] it
suffices to show that 0%(f) is p®-cocartesian. Applying Proposition C.1.1.1
we are further reduced to showing that (0% (f)) = mc(f) is p-cocartesian.
As ¢ is a weak cartesian structure, Proposition F.1.0.1 shows that ¢ (f) is
a projection from a product to a factor, and by the description of products in
C given in Proposition C.2.0.3, projection morphisms in C are p-cocartesian.

3See [HA, 2.4.1.1].
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Proof of (C): Consider the commuting diagram

C<X1> — C*¥

0 0% &
C% c® u C
p® p
D}, DX ——— D
q

{(1)} —— Fin,

where the horizontal functors on the left are all the respective inclusions,
and the vertical functors on the left are the functors induced by vertical
functors in the middle. All squares in the diagram are pullback squares. As
mp is a cartesian structure, the composition D(X1> — D in the third row is
an equivalence. As the two squares in the middle row are pullbacks (and
hence so is the outer commuting rectangle in the middle row) it follows that
the composition C% — C in the second row is an equivalence as well. As
me is a cartesian structure, the composition C <X1> — C at the top is also an
equivalence. It follows that # must also be an equivalence. O

Remark F.1.0.3. Let p: C — D be a cocartesian fibration whose fibers are
compatible with products in the sense of Definition C.2.0.1. Then combining
Proposition F.1.0.2 with Proposition C.1.1.1 we obtain another, independent,
proof of Proposition C.2.0.6. O

F.2. Monoids and limits

In this short section we briefly discuss limits in co-categories of monoids.

Proposition F.2.0.1. Let O be an co-operad and C an co-category.

Let T be a small co-category and assume that C admits T-indexed limits.
Then Mone (C) (for a definition see [HA, 2.4.2.1]) admits T-indexed limits as
well, and they are preserved and detected by the inclusion functor

t: Monp(C) — Fun(0®,C)
as well as the composition
Monp (C) = Fun(0®,C) EMN Fun(O,C)

where j: O = O% — O% is the inclusion. V)
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Proof. As ¢ is the inclusion of a full subcategory, it follows from [HTT,
1.2.13.7] that to show that Monp(C) admits Z-indexed limits and that ¢
preserves and detects them it suffices to show that Mone(C) is closed un-
der Z-indexed limits in Fun(O®,C). But this follows immediately from the
definition [HA, 2.4.2.1] in combination with the fact that limits in functor
categories are computed pointwise [HTT, 5.1.2.3], and that limits commute
with limits [HTT, 5.5.2.3].

For the composition j* o ¢, note that there is a commutative diagram as
follows

Algy(C) — Mone (C)

| |

Fungi,, (0®,0*) —— Fun(0%,C*) ——— Fun(0®,C)

| b

Fun(0O,C) Fun(0O,C)

id

where the unlabeled functors are the obvious forgetful functors or inclusions,
and the top horizontal functor is an equivalence by [HA, 2.4.2.5]. That j* o
preserves and detects Z-indexed limits now follows from [HA, 3.2.2.4] in com-
bination with [HTT, 5.1.2.3] and Proposition E.2.0.2. O

F.3. Cartesian symmetric monoidal
oo-categories and iterating Mon and Alg

Let C be an oo-category admitting finite products and let O and O’ be two
oo-operads. Then C can be upgraded to a symmetric monoidal co-category
with the cartesian symmetric monoidal structure C* (see [HA, 2.4.1.5]). We
can then consider the oco-category of O ® (0’-algebras in C*, denoted by
Algpso (C). By [HA, 2.4.2.5] this oo-category is equivalent to an co-category
that can be constructed without invoking C*, namely the oco-category of
O ® O’-monoids Monpgo:(C).

On the other hand, the cartesian symmetric monoidal structure C* induces
a symmetric monoidal structure on Algy, (C), and there is an equivalence

Algogor (C) ~ Algp(Alge (C))

as we saw in Section E.5. One would expect that the induced symmetric
monoidal structure on Alg,, (C) is again cartesian so that we can identify
Algo, (C)® with Alg, (C)* and hence with Mone/(C)*, so that we ultimately
obtain further equivalences such as

Algppo/ (C) ~ Algy(Algy (C)) ~ Monp(Mone: (C))
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in Cat.

In this section we will show that this is indeed the case, and describe the
steps involved in these types of equivalences in detail, as we will need to
know not only that such equivalences exist but also concrete descriptions of
the corresponding objects under those equivalences.

Construction F.3.0.1. Let po: O'® — Fin, be an oo-operad, let fur-
thermore p¢: C® — NFin, be a symmetric monoidal oo-category, and let
m: C® — C be a cartesian structure?.

There is a bifunctor of co-operads

. idFin, Xp . . Al s
f: Fin, x 0"® —2279% Fin, x Fin, & Fin,

where A is the bifunctor of co-operads defined in [HA, 2.2.5.1].
Consider the functor®®

q: Algy (C)® LN Fun((’)'®7C®) X Fun(0'® Fin,) Finx L2, Fin, (F.3)

defined as in Proposition E.4.1.5, which by Proposition E.4.1.5 and [HA,
3.2.4.2 and 3.2.4.3 (3)] defines a symmetric monoidal structure on Alge, (C).
Finally, define 7 as the following composition.

71 Alge (C)° P Fun(0'€,C%) ™5 Fun (0’2, C) &
Proposition F.3.0.2. In the situation of Construction F.3.0.1, the functor

7' factors through Mongse (C), i.e. there exists a functor T fitting into a
commuting diagram

Alg, (€)% r Moner (C)

Fun(0'®,C)

where the functor Mone/(C) — Fun(O'®,C) is the canonical inclusion”.

Furthermore, T is a cartesian structure on Alge, (C)%. Q@

4See [HA, 2.4.1.1] for the definition.

5We write Alge, instead of Algor /Fin, -

60ne should be careful not to confuse the functor Fin. — Fun(O’®, Fin,) appearing in
the pullback with the inclusion of the constant functors. Instead this functor is the one
adjoint to the composition

idXpes

Fin, x O'® Fin, x Fin, EAN Fin.

In particular, this means that the functors O’® — C® one obtains from objects of

Alg/(C)® by projecting to the first factor are generally not functors over Fin,, so even

though they preserve inert morphisms we can not interpret them as maps of co-operads.
"Mong (C) is defined as a full subcategory of Fun(0’®,C), see [HA, 2.4.2.1]
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Proof. Let A be an object of Algy, (C)®, lying over (n), i.e. ¢(A) = (n). What
we have to show is that the functor

7 (A) = 7 o (pr (arg(A))): 0® Pnla) oo 7, 6

is an O’-monoid. For ease of notation we will write A" := pr;(¢aig(A)).
Solet X ~ X7 &--- @ X,, be an object of (9’(%>, with X; objects of O’ for

1<i<m.Forl<i<m,letg;: X — X; bean inert morphism lying over
p': (m) — (1). We have to show that then

ngigm 7T(A/(gi))

m(A'(X)) [T =) (%)

1<i<m

is an equivalence in C.
By definition, A’: O’'® — C® preserves inert morphisms, so the morphisms
A’(g;) are inert morphisms in C®. Furthermore, for 1 < i < m we have

pe(A'(9i)) = pe(pri(taig(A4))(9i)
= ((pc. o pry)(taig(4)))(g:)
9i

(Fopra) ane(4) ) ()

= id(n) AP0’ (9:)
=idy,) Ap*
where f: Fin, — Fun(O’®, Fin,) is the adjoint of f and thus the functor
occurring in the pullback in (F.3). So for 1 < ¢ < m the morphism A’(g;) in
C® is a pe-cocartesian lift of id () Ap'.
Let Y; be an object in C for each element i in ({n) A (m))° such that there

is an equivalence
AX)~ P
ie((n)A(m))°
in Ca>/\<m>. Applying Proposition F.1.0.1 we have an identification
rAX)~ I =~
i€((n)A(m))°

such that for each 1 < j < m the morphism 7(A’(g;)) corresponds to the
following projection to the subfactor.

I ~vo- II =)
ie((n)A(m))° i€((n)A(m))°,
(id(n) /\pJ)(i)#*

720



F.3. Cartesian sym. monoidal co-categories and iterating Mon and Alg

As (m)° can be written as the disjoint union {J, <, {ie(m)°|pi(i)#x*}
it follows that we also have a decomposition of ((n) A (m))° as a disjoint
union as follows

() Am))” = () {i e (n) A (m)” | (idy Ap') (6) # =

1<j<m

which implies that the morphism (x) is an equivalence, and 7 thus factors
over Mone (C).

It remains to show that 7 is a cartesian structure. We start by showing that
7 is a lax cartesian structure. So let A; be objects of Algy, (C) for 1 <1i <mn,
andlet g;: A=A, @ ---® A, — A; be an inert lift of p for each 1 < i < n.
We have to show that

#A) ITi<icn 7(90) H #(Ay) ()

1<i<n

is an equivalence in Mone:(C). As the inclusion Mone/(C) — Fun(O0'®,()
is fully faithful and equivalences in functor categories are detected pointwise
(see Proposition A.3.2.1), it suffices to check that for every m > 0 and every
object X of (’)2‘% evaluation at X of morphism (xx) is an equivalence in C.
As by Proposition F.2.0.1 the inclusion Mone/ (C) — Fun(O’®,C) preserves
products, and as products in functor categories are detected pointwise [HA,
5.1.2.3] we can thus identify the evaluation at X of the morphism (%) with
the morphism

ngign(%'(gi)(‘x))

7 (A)(X) II #@)x)

1<i<n
in C, which by using the definition of 7 is the following morphism

H1gign(77(hi))
—_—

m((pry © aig)(4)(X)) [T #((pry o ag)(A)(X)  (+% %)

1<i<n

where we use the notation h; == (pr; o taig)(gi)(X).

Let 1 < j < n. By assumption, g; is g-cocartesian, which by [HA, 3.2.4.3
(4)] implies that h; is pc-cocartesian. Unwrapping the definition completely
analogously to when we showed that 7 factors over monoids we find that
pc(hi) = p' Aid(m). That (s %) is an equivalence can now be shown com-
pletely analogously to before.

We next need to show that 7 is in fact a weak cartesian structure. So assume
that g: A — A’ is a g-cocartesian morphism lying over the active morphism
a: (ny — (1). We have to show that 7(g) is an equivalence in Mone: (C). Sim-
ilarly to before it suffices to check that for each m > 0 and object X € 02‘%
the morphism m(h) is an equivalence, where h = (pr; o ta1g)(9)(X). Also anal-
ogously to the case above, we find that h is a pc-cocartesian lift of a Aid ),
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which is an active morphism as « is active. That 7(h) is an equivalence now
follows from Proposition F.1.0.1.

Finally, it remains to show that the weak cartesian structure 7 is a cartesian
structure. Consider the following commutative diagram, where the two top
squares and the square on the right are pullback squares.

Algy (C)F) ——— Fungi, (0'%,C%) {1}

j r
Algo/(C)® T1g> FUH(O/@),C@) X Fun(0’® Fin,) Fin, L) Fin,

pry f

7 Fun(0'®,C®) — e Fun(O’®, Fin,)

T

Moner (C) —— Fun(0'®, ()

The oo-category of functors Fung,, (0’®,C®) over Fin, is to be taken with
respect to por and pe — this description uses that as (1) A — is naturally

isomorphic to the identity functor on Fin, we can identify f((1)) with po-.

What we need to show is that 7 o j is an equivalence. As ta1g is the in-
clusion of the full subcategory of objects A such that pr;(A) preserves inert
morphisms, we can apply Proposition B.5.2.1 to conclude that k is the inclu-
sion of the full subcategory of objects A such that (pr; or)(A) preserves inert
morphisms. This implies that the composite 7 o j can be identified with the
functor Alge, (C) — Mone-(C) that is an equivalence by [HA, 2.4.2.5]. O

Proposition F.3.0.3. Let po: O — Fin, and pl: O'® — Fin, be oco-
operads, let pc: C® — Fin, be a symmetric monoidal co-category, and let
7 :C® — C be a cartesian structure. Let F': O® x O'® — O0"%® be a bifunctor
of co-operads (see [HA, 2.2.5.3]).

Then there is a commutative diagram as follows such ¥, ®5, &3 and ¥’
are equivalences. If F' exhibits O"® as a tensor product of O® and O'®, then
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D, is an equivalence as well.

Mone (C) Fun(0"?,0)
v]= T
Alg . (C) Fun(0"®,C®)

.| I-

BiFunc(0®,0'®;C®) ——— Fun(0® x 0'® (%)

2, |~ = (F.4)
Algn(Algn (C)) ——— Fun(O®,Fun(0'®,C®))

0|~ lm)*

Monp (Mone/ (C)) ——— Fun(O?®, Fun(0’®,C))

o |~ T(’TFUI,(o’@,c))*

Algy(Mone/ (C)) —— Fun (O®, Fun(0'®,C)”" )

The symmetric monoidal co-category Mone/ (C) appearing on the bottom left
carries the cartesian symmetric monoidal structure Mone:/ (C)* (see [HA,
2.4.1.5]) and Algy, (C) appearing on the left in the middle row carries the sym-
metric monoidal structure from Construction F.3.0.1. The horizontal functors
are all the respective canonical functors that combine the various inclusions
and forgetful functors or projections. The functor = sends a functor G to its
adjoint, which we denote by G. @

Proof. The existence of equivalences ¥ and ¥’ making the topmost and bot-
tommost square of (F.4) commute is shown in [HA, 2.4.2.5].

Construction of ®; and ®, fitting into the diagram was handled in Propo-
sition E.5.0.2 and Proposition E.5.0.1.

We are left to construct ®3. Proposition F.3.0.2 provides us with a cartesian
structure

7: Alge, (€)® — Mone: (C)
Applying [HA, 2.4.2.5] we obtain Composition with 7 then induces an equiv-
alence ®3 as in the following commuting diagram by

Algn(Algn (C)) ------ o) > Monp (Mone/ (C))

i J

FunFin* (0®7 Algol (C)®) m Fun(0®7 MOHO' (C))

| |

Fun(O%, Fun(0'®,C®)) o Fun(O%, Fun(0’®,())

*
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where pr denotes the forgetful functor
® ® ® ®
Fungin, (o ,Algo, (C) ) = Fun(o ,Alg,,, (C) )

and the vertical functors are the canonical functors constructed the various
forgetful functors, inclusions, and projections. The bottom square commutes
by definition of 7, see Construction F.3.0.1. O

Remark F.3.0.4. The right column of (F.4) is covariantly functorial in C®
(together with its cartesian structure) and contravariantly functorial in F.
Let
Ox0 —L5 0"

a®xﬁ®l \b@

UXU'TU"

be a commutative diagram of functors over Fin, with o®, 8%, and v® mor-
phisms of oco-operads, and F' and G bifunctors of co-operads.
Let

ce M2, po

e |

be a commutative diagram of oo-categories with H® a symmetric monoidal
functor of symmetric monoidal co-categories and 7¢ and wp cartesian struc-
tures.

Then the induced commutative diagram on the right column of (F.4) re-
stricts to a commutative diagram as follows.

MOI’luu (C) Mon (H) Mono// (D)
U~ ~ | U
T Alg. (H) T
Alguu (C) Algou (D)

.|

BiFunc(U®,U'®;C®)

|o

BiFunc(O®, 0'®; D®)

<I>2J/: szbg

Algy, (Alg,(C)) Algp (Algo: (D))

<I>3l: :J/@g

Mony, (Mong (C)) Mona (Mons (1)) Mone (Mone: (D))

] v

Alg, (Mong(H))
Alg,, (Mong(C)) £ 5 Alg,(Mone: (D))

BiFunc(a® B ;H®)

Alg, (Alg/a (H))
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One could argue for this by considering the individual constructions, or one
could use that the first, third, fourth, and fifth horizontal functor in (F.4)
are monomorphisms®? and apply the uniqueness part of Proposition B.4.3.1.
This also implies compatibility with compositions.

Additionally, note that construction of ®; and ®5 does not need the as-
sumption that C carries a cartesian symmetric monoidal structure'®, so if we
only consider the part of the above diagram involving ®; and ®5, then we
can drop this assumption. O

8That we only need those horizontal functors to be monomorphisms is because they are
the “targets” in the diagram.

9The first and third horizontal functors are by definition fully faithful, so monomorphisms
by Proposition B.4.4.1. The third and fourth horizontal functors are equivalent, so the
fourth one is a monomorphism as well. Finally, the fifth horizontal functor is a monomor-
phism by a combination of the definitions, Proposition B.4.4.1, Proposition B.5.1.1, and
Proposition B.1.2.1.

10See Proposition E.5.0.2 and Proposition E.5.0.1.
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