
U N I V E R S I T Y  O F  C O P E N H A G E N

F A C U L T Y  O F  S C I E N C E

PhD thesis

On the Hochschild homology
of hypersurfaces as a mixed complex

Malte Sander Leip

Advisor: Lars Hesselholt

Submitted: 2022-04-12

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen



Abstract
In this thesis we describe Hochschild homology over k of quotients of polynomial

algebras k[x1, . . . , xn]/f for certain polynomials f in n ≤ 2 variables, as an object of
the∞-category of mixed complexes Mixed, where k is a commutative ring in which 2 is
invertible.

In 1992, the Buenos Aires Cyclic Homology Group [BACH] constructed, for any n and
any commutative ring k, a quasiisomorphism between the standard Hochschild complex
over k of k[x1, . . . , xn]/f and a quite small chain complex, under the assumption that
f is monic with respect to a chosen monomial order. This result was improved upon by
Larsen in 1995 [Lar95] by taking the mixed structure into account as well, though only
considering polynomials f in n = 2 variables that are monic with respect to one of the
variables.

Assuming a conjectural description of Hochschild homology of polynomial rings, we
extend these previous results by constructing, for a large subset of the polynomials f
considered in [BACH], a strict mixed structure on the chain complex described in [BACH]
and showing that it represents the Hochschild homology over k of k[x1, . . . , xn]/f as an
object in the ∞-category of mixed complexes. We also verify the conjecture in some
cases, leading to unconditional results for n ≤ 2 variables, as long as 2 is invertible in k.

The results of this thesis do not rely on the two aforementioned prior results, but
instead use the modern approach to Hochschild homology based on∞-categorical meth-
ods. Along the way, to be able to state and prove our result in this setting, we prove
some results that may be of independent interest.

ii



Resumé
I denne afhandling beskriver vi Hochschild homologi over k for kvotienter af polynomi-

umsalgebraer k[x1, . . . , xn]/f for visse polynomier f i n ≤ 2 variable, som et objekt i
∞-kategorien Mixed af såkaldte blandede komplekser, for k en kommutativ ring, hvori
2 er invertibel.

I 1992 konstruerede Buenos Aires Cyclic Homology gruppen [BACH] en kvasiisomorfi
mellem standardhochschildkomplekset over k af k[x1, . . . , xn]/f og et lille kædekompleks,
under antagelsen, at f er monisk med hensyn til en valgt monomisk ordning, men for
alle n og alle kommutative ring k. Denne resultat blev forbedret af Larsen i 1995 [Lar95],
som også betragtede den blandede struktur, dog kun for polynomier f i n = 2 variabler
som er monisk med hensyn til én af de to variable.

Under antagelsen af en formodete beskrivelse af Hochschild homologi af polynomi-
umsalgebraer generaliserer vi disse tidligere resultater ved at konstruere, for en stor
delmængde af de polynomier f studeret i [BACH], en strengt blandet struktur på
kædekomplekset beskrevet i [BACH] og at vise, at det repræsenterer Hochschild ho-
mologi over k af k[x1, . . . , xn]/f som objekt i ∞-kategorien af blandede komplekser. Vi
også verificerer formodningen i nogle tilfælde, og får dermed ubetingede resultater for
n ≤ 2 variable, forudsat, at 2 er invertibel i k.

Resultaterne i denne afhandling afhænger ikke af de to førnævnte arbejder, men bruger
derimod den moderne tilgang til Hochschild homologi baseret på∞-kategoriske metoder.
Undervejs til at kunne beskrive og bevise vores resultat i denne ramme beviser vi nogle
resultater som kan have selvstændig interesse.

iii



Contents
Abstract ii

Resumé iii

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Hochschild homology as a mixed complex . . . . . . . . . . . . . . . . 4

1.2.1. Hochschild homology as an object with circle action . . . . . . . 4
1.2.2. Mixed complexes . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. The first step in the proof of the main result . . . . . . . . . . . . . . . 6
1.4. The second step in the proof of the main result . . . . . . . . . . . . . 9
1.5. Overview over the chapters of this thesis . . . . . . . . . . . . . . . . . 11
1.6. Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Notation and conventions 16
2.1. Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. On how this thesis is structured . . . . . . . . . . . . . . . . . . . . . . 16
2.3. Various notations and conventions . . . . . . . . . . . . . . . . . . . . . 17
2.4. Size issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Bialgebras and modules over them 27
3.1. Modules over algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1. Cocartesian families of monoidal ∞-categories . . . . . . . . . . 29
3.1.1.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1.2. The universal family . . . . . . . . . . . . . . . . . . . 31
3.1.1.3. Compatibility of fibers with products . . . . . . . . . 32

3.1.2. Algebras in cocartesian families . . . . . . . . . . . . . . . . . . 33
3.1.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2.2. Comparison with Lurie’s definition . . . . . . . . . . . 35
3.1.2.3. Functoriality when varying families . . . . . . . . . . . 37
3.1.2.4. Functoriality when varying the operad . . . . . . . . . 40
3.1.2.5. Functoriality encoded by families . . . . . . . . . . . . 41
3.1.2.6. Algebras in cocartesian families and products . . . . . 45

3.1.3. Functorial construction of ∞-categories of left modules . . . . . 47
3.1.3.1. Review of the relevant operads . . . . . . . . . . . . . 48
3.1.3.2. Construction of LMod . . . . . . . . . . . . . . . . . . 50

iv



Contents

3.1.3.3. LMod and colimits . . . . . . . . . . . . . . . . . . . . 57
3.2. LMod and monoidality . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1. LMod and products . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2. AlgOpPr as a symmetric monoidal ∞-category . . . . . . . . . . 61

3.2.2.1. The symmetric monoidal structure on PrL . . . . . . . 61
3.2.2.2. The symmetric monoidal structure on MonPr

O (Cat∞) . 63
3.2.2.3. The symmetric monoidal structure on AlgOpPr . . . . 76

3.2.3. LMod as a symmetric monoidal functor . . . . . . . . . . . . . 79
3.3. Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3.1. Bialgebras in (co)cartesian symmetric monoidal ∞-categories . 89
3.4. Modules over bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.1. Algebras in AlgOp . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.2. LMod as a functor from BiAlgOp . . . . . . . . . . . . . . . . . 103

4. Mixed complexes 106
4.1. Chain complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1. Ch(k) as a 1-category . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2. Ch(k) as a closed symmetric monoidal 1-category . . . . . . . . 107
4.1.3. Ch(k) as a model category . . . . . . . . . . . . . . . . . . . . . 108
4.1.4. Homotopies in Ch(k) . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.5. Extension of scalars . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2. Strict mixed complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.1. Mixed as a closed symmetric monoidal 1-category . . . . . . . . 111

4.2.1.1. The bialgebra D . . . . . . . . . . . . . . . . . . . . . 111
4.2.1.2. Definition of Mixed . . . . . . . . . . . . . . . . . . . . 112
4.2.1.3. Diagrams depicting strict mixed complexes . . . . . . 114
4.2.1.4. The symmetric monoidal structure on Mixed . . . . . 115
4.2.1.5. Algebras in Mixed . . . . . . . . . . . . . . . . . . . . 116
4.2.1.6. The closed symmetric monoidal structure on Mixed . . 116

4.2.2. Mixed and Alg(Mixed) as model categories . . . . . . . . . . . . 117
4.2.2.1. Model categories of algebras and modules . . . . . . . 118
4.2.2.2. The model structure on Mixed . . . . . . . . . . . . . 119
4.2.2.3. The model structure on Alg(Mixed) . . . . . . . . . . 123
4.2.2.4. Homotopies in Mixed . . . . . . . . . . . . . . . . . . . 126
4.2.2.5. Homotopies in Alg(Ch(k)) . . . . . . . . . . . . . . . . 128
4.2.2.6. Homotopies in Alg(Mixed) . . . . . . . . . . . . . . . . 132

4.2.3. Strongly homotopy linear morphisms of strict mixed complexes 135
4.2.3.1. Definition of strongly homotopy linear morphisms . . 136
4.2.3.2. Strongly homotopy linear morphisms as zigzags . . . . 137

4.3. The derived category of k . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3.1. Semiadditive ∞-categories . . . . . . . . . . . . . . . . . . . . . 143
4.3.2. Properties of D(k) . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.3.3. Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.4. Properties of the truncation functors . . . . . . . . . . . . . . . 155

v



Contents

4.4. The ∞-category of mixed complexes . . . . . . . . . . . . . . . . . . . 157
4.4.1. Construction of comparison functors . . . . . . . . . . . . . . . 159
4.4.2. The comparison functors are equivalences . . . . . . . . . . . . 163
4.4.3. Mixed is stable . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.4.4. Strongly homotopy linear morphisms . . . . . . . . . . . . . . . 170

5. Mixed complexes and circle actions 172
5.1. Formality of certain E∞,E1-bialgebras . . . . . . . . . . . . . . . . . . 173

5.1.1. Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.1.2. Construction of a resolution . . . . . . . . . . . . . . . . . . . . 181

5.1.2.1. Notation for freely generated dgas . . . . . . . . . . . 182
5.1.2.2. Construction of A as a directed colimit . . . . . . . . 182
5.1.2.3. Homology of A . . . . . . . . . . . . . . . . . . . . . . 184
5.1.2.4. Construction of An+1 from An . . . . . . . . . . . . . 186
5.1.2.5. Identification of Bn up to quasiisomorphism . . . . . . 189
5.1.2.6. The resolution in D(k) . . . . . . . . . . . . . . . . . 190
5.1.2.7. Free generation of certain associative algebras . . . . . 191

5.1.3. Formality of certain associative algebras . . . . . . . . . . . . . 194
5.1.4. Group homology . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1.5. Formality of certain commutative algebras . . . . . . . . . . . . 197
5.1.6. Identification of some mapping spaces . . . . . . . . . . . . . . 202

5.1.6.1. Identification of a mapping space in an overcategory . 203
5.1.6.2. The homology of a pushout of commutative algebras . 204
5.1.6.3. On a mapping space of commutative algebras . . . . . 209

5.1.7. Formality of certain E∞,E1-bialgebras . . . . . . . . . . . . . . 210
5.2. The k-linear circle as an E∞,E1-bialgebra . . . . . . . . . . . . . . . . 214

5.2.1. The circle group . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.2.2. The linearization functor . . . . . . . . . . . . . . . . . . . . . . 215
5.2.3. Definition of the k-linear circle . . . . . . . . . . . . . . . . . . 219
5.2.4. Formality of the k-linear circle as an E∞,E1-bialgebra . . . . . 219

5.3. Group actions and modules over group rings . . . . . . . . . . . . . . . 222
5.4. The monoidal equivalence D(k)BT ≃Mixed . . . . . . . . . . . . . . . 238

6. Hochschild homology 241
6.1. The cyclic bar construction and geometric realization of cyclic objects . 241

6.1.1. Connes’ cyclic category Λ . . . . . . . . . . . . . . . . . . . . . 242
6.1.1.1. The simplex category ∆ . . . . . . . . . . . . . . . . . 242
6.1.1.2. Definition of Λ via posets . . . . . . . . . . . . . . . . 243
6.1.1.3. Definition of Λ via generators and relations . . . . . . 245
6.1.1.4. Comparison of the two definitions of Λ . . . . . . . . 245
6.1.1.5. Cyclic objects . . . . . . . . . . . . . . . . . . . . . . 247
6.1.1.6. Self-duality of Λ . . . . . . . . . . . . . . . . . . . . . 247

6.1.2. The cyclic bar construction as a cyclic object . . . . . . . . . . 247
6.1.2.1. The symmetric monoidal envelope . . . . . . . . . . . 249

vi



Contents

6.1.2.2. From associative algebras to active diagrams . . . . . 251
6.1.2.3. Tensoring active diagrams together . . . . . . . . . . . 259
6.1.2.4. The functor V : Λ→ Assoc⊗act . . . . . . . . . . . . . . 265
6.1.2.5. The definition of Bcyc

• . . . . . . . . . . . . . . . . . . 266
6.1.2.6. Bcyc

• for cocartesian symmetric monoidal ∞-categories 267
6.1.2.7. Bcyc

• and sifted colimits . . . . . . . . . . . . . . . . . 271
6.1.3. Geometric realization of cyclic objects . . . . . . . . . . . . . . 272

6.1.3.1. The ∞-groupoid completion of Λop . . . . . . . . . . . 272
6.1.3.2. Definition of the geometric realization . . . . . . . . . 273
6.1.3.3. Monoidality . . . . . . . . . . . . . . . . . . . . . . . 274

6.2. Hochschild homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.2.1. Definition of Hochschild homology . . . . . . . . . . . . . . . . 278
6.2.2. Hochschild homology and commutative algebras . . . . . . . . . 279

6.2.2.1. HH for commutative algebras . . . . . . . . . . . . . . 279
6.2.2.2. Circle actions on tensor products with T . . . . . . . . 282
6.2.2.3. HH on CAlg as a tensor product with T . . . . . . . . 283
6.2.2.4. HH on CAlg as a pushout . . . . . . . . . . . . . . . . 284
6.2.2.5. HH on CAlg as a relative tensor product . . . . . . . 286

6.2.3. Hochschild homology and relative tensor products . . . . . . . . 286
6.3. The standard Hochschild complex . . . . . . . . . . . . . . . . . . . . . 287

6.3.1. The standard Hochschild complex for associative algebras . . . 287
6.3.1.1. The cyclic bar construction for chain complexes . . . . 288
6.3.1.2. Geometric realization of cyclic chain complexes . . . . 289
6.3.1.3. The standard Hochschild complex . . . . . . . . . . . 292
6.3.1.4. C for algebras concentrated in degree 0 . . . . . . . . 292
6.3.1.5. The normalized standard Hochschild complex . . . . . 294

6.3.2. The standard Hochschild complex for commutative algebras . . 295
6.3.2.1. The bar resolution . . . . . . . . . . . . . . . . . . . . 296
6.3.2.2. C as a relative tensor product . . . . . . . . . . . . . . 300
6.3.2.3. The shuffle product . . . . . . . . . . . . . . . . . . . 300
6.3.2.4. C for commutative algebras . . . . . . . . . . . . . . . 302
6.3.2.5. C for commutative algebras concentrated in degree 0 . 303

6.3.3. Relative tensor products in Ch(k) and D(k) . . . . . . . . . . . 309
6.3.4. The standard Hochschild complex as a model for HH . . . . . . 314

6.3.4.1. The mixed case . . . . . . . . . . . . . . . . . . . . . 314
6.3.4.2. The commutative case . . . . . . . . . . . . . . . . . . 317

7. Hochschild homology of polynomial algebras 321
7.1. The mixed complex of de Rham forms . . . . . . . . . . . . . . . . . . 323
7.2. De Rham forms as a strict model in CAlg(Ch(k)) . . . . . . . . . . . . 324

7.2.1. A smaller replacement for the bar complex . . . . . . . . . . . . 325
7.2.2. Construction of the quasiisomorphism . . . . . . . . . . . . . . 333

7.3. De Rham forms as a strict model in Mixed . . . . . . . . . . . . . . . . 339
7.3.1. Definition of the higher homotopies . . . . . . . . . . . . . . . . 340

vii



Contents

7.3.2. Simplification of the boundary . . . . . . . . . . . . . . . . . . 342
7.3.3. Identification of summands of ϵ(l−1)

X ◦ d of a first type . . . . . . 355
7.3.4. Reindexing of summands of ϵ(l−1)

X ◦ d of a second type . . . . . . 364
7.3.5. A first look at d ◦ ϵ(l−1)

X . . . . . . . . . . . . . . . . . . . . . . 372
7.3.6. Progress so far . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
7.3.7. Reindexing remaining summands from the boundary . . . . . . 377
7.3.8. Subdivisions of the remaining indexing sets . . . . . . . . . . . 384
7.3.9. Canceling of some summands of ϵ(l−1)

X ◦ d . . . . . . . . . . . . . 388
7.3.10. Matching up of the remaining summands . . . . . . . . . . . . . 393
7.3.11. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

7.4. De Rham forms as a strict model in Alg(Mixed) . . . . . . . . . . . . . 398
7.4.1. A first cofibrant model . . . . . . . . . . . . . . . . . . . . . . . 401
7.4.2. An improved cofibrant model . . . . . . . . . . . . . . . . . . . 403
7.4.3. Comparing the algebra and mixed structure separately . . . . . 416
7.4.4. Compatibility of Φ with d in the case of a single variable . . . . 425
7.4.5. A free resolution for de Rham forms . . . . . . . . . . . . . . . 429

7.4.5.1. The general construction . . . . . . . . . . . . . . . . 429
7.4.5.2. Specific choices for Y0, Y1, and Y2 . . . . . . . . . . . . 431
7.4.5.3. Proof that the construction is a cofibrant resolution . 444

7.4.6. Naturality of ϵ . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
7.4.7. Naturality of Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
7.4.8. Compatibility of Φ with d in degree 0 . . . . . . . . . . . . . . . 454
7.4.9. Proof of Conjecture B for sets of cardinality at most 2 . . . . . 457

7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms . . . . 461
7.5.1. Conjecture C for zero variables in the domain . . . . . . . . . . 463
7.5.2. Conjecture C for one variable in the domain . . . . . . . . . . . 463

7.5.2.1. Morphisms and homotopies out of Ω′•
k[t]/k . . . . . . . 465

7.5.2.2. Construction of Ω′•
F/k . . . . . . . . . . . . . . . . . . 468

7.5.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 476
7.5.3. Conjecture D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
7.5.4. Conjecture C for two variables in the domain . . . . . . . . . . 485

8. Hochschild homology of certain quotients of commutative algebras 489
8.1. Hochschild homology of certain quotients as relative tensor products . . 490

8.1.1. Certain quotients as relative tensor products . . . . . . . . . . . 490
8.1.2. Application to Hochschild homology . . . . . . . . . . . . . . . 492

8.2. A sufficiently cofibrant strict model of k . . . . . . . . . . . . . . . . . 493
8.2.1. Construction of the strict model . . . . . . . . . . . . . . . . . . 494
8.2.2. Cofibrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
8.2.3. Quasiisomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 498

8.3. A formula for Hochschild homology of certain quotients . . . . . . . . . 500

viii



Contents

9. Hochschild homology of certain quotients of polynomial algebras 503
9.1. Prerequisites on polynomials and dividing with remainder . . . . . . . 506

9.1.1. Monomial orders . . . . . . . . . . . . . . . . . . . . . . . . . . 507
9.1.1.1. Partial, total, and well-orders . . . . . . . . . . . . . . 507
9.1.1.2. The standard partial order on Zn≥0 . . . . . . . . . . . 508
9.1.1.3. Definition of monomial orders . . . . . . . . . . . . . . 508
9.1.1.4. Properties of monomial orders . . . . . . . . . . . . . 509

9.1.2. Degrees for multivariable polynomials . . . . . . . . . . . . . . 510
9.1.3. Dividing multivariable polynomials with remainder . . . . . . . 512

9.1.3.1. Monic polynomials . . . . . . . . . . . . . . . . . . . . 512
9.1.3.2. Reduced polynomials . . . . . . . . . . . . . . . . . . 513
9.1.3.3. Division with remainder . . . . . . . . . . . . . . . . . 514
9.1.3.4. Full sum decomposition . . . . . . . . . . . . . . . . . 516
9.1.3.5. Properties of remainders . . . . . . . . . . . . . . . . 518

9.2. A strict model for HHMixed of medium size . . . . . . . . . . . . . . . . 519
9.2.1. k[x1, . . . , xn] as a module over k[t] . . . . . . . . . . . . . . . . . 519
9.2.2. A strict model for HHMixed . . . . . . . . . . . . . . . . . . . . . 520
9.2.3. A basis for the strict model . . . . . . . . . . . . . . . . . . . . 524

9.2.3.1. Interaction of q1f with d and multiplication . . . . . . 524
9.2.3.2. The basis . . . . . . . . . . . . . . . . . . . . . . . . . 525
9.2.3.3. Description of boundary and differential . . . . . . . . 526

9.3. A smaller strict model for the underlying complex . . . . . . . . . . . . 529
9.3.1. The smaller strict model as a subcomplex . . . . . . . . . . . . 530
9.3.2. A different description of the smaller model . . . . . . . . . . . 532

9.4. Logarithmic dimension of polynomials . . . . . . . . . . . . . . . . . . 534
9.4.1. Logarithm for polynomials . . . . . . . . . . . . . . . . . . . . . 535
9.4.2. Logarithmic dimension for polynomials . . . . . . . . . . . . . . 536

9.5. A smaller strict model for the mixed complex . . . . . . . . . . . . . . 541
9.5.1. Restricting the strict mixed structure . . . . . . . . . . . . . . . 541
9.5.2. An alternative description of the smaller strict mixed model . . 542

9.6. On the quasiisomorphisms constructed by BACH . . . . . . . . . . . . 543
9.7. On a question of Larsen . . . . . . . . . . . . . . . . . . . . . . . . . . 547

10.Example: x21 − x2x3 551
10.1. Applying Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
10.2. Comparison with the mixed complex of de Rham forms . . . . . . . . . 553
10.3. Grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
10.4. Non-diagonal pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

10.4.1. A first look at Y ((6, 4)) and Y ((7, 5)) . . . . . . . . . . . . . . . 555
10.4.2. A new basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
10.4.3. Non-diagonal pieces of K are acyclic . . . . . . . . . . . . . . . 558

10.5. Diagonal pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
10.5.1. A first look at Y ((5, 5)) and Y ((6, 6)) . . . . . . . . . . . . . . . 559
10.5.2. A new basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

ix



Contents

10.5.3. Another look at Y ((5, 5)) . . . . . . . . . . . . . . . . . . . . . 562
10.5.4. Another look at Y ((6, 6)) . . . . . . . . . . . . . . . . . . . . . 563
10.5.5. A basis for K((j, j)) . . . . . . . . . . . . . . . . . . . . . . . . 565
10.5.6. K((j, j)) for j < 5 . . . . . . . . . . . . . . . . . . . . . . . . . 566
10.5.7. Splitting an acyclic summand off of K((j, j)) for j > 5 . . . . . 567
10.5.8. Description of the strict mixed structure . . . . . . . . . . . . . 567
10.5.9. A smaller model for K((j, j)) for j > 5 . . . . . . . . . . . . . . 568

10.6. HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
as a non-split extension . . . . . . . 568

10.7. Non-formality of HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
. . . . . . . . . . . 571

A. ∞-category theory 575
A.1. Homotopy categories of model categories . . . . . . . . . . . . . . . . . 575
A.2. Mapping spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
A.3. The (∞, 2)-category of ∞-categories . . . . . . . . . . . . . . . . . . . 578

A.3.1. Pullbacks in Cat∞ . . . . . . . . . . . . . . . . . . . . . . . . . 578
A.3.2. Natural transformations . . . . . . . . . . . . . . . . . . . . . . 579

B. (Fully) faithful functors and monomorphisms in Cat∞ 580
B.1. Monomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

B.1.1. Monomorphisms in the ∞-category S . . . . . . . . . . . . . . . 580
B.1.2. Monomorphisms and composition . . . . . . . . . . . . . . . . . 583
B.1.3. Monomorphisms and limits . . . . . . . . . . . . . . . . . . . . 583

B.2. (Fully) faithful functors . . . . . . . . . . . . . . . . . . . . . . . . . . 583
B.3. (Fully) Faithful functors and Fun . . . . . . . . . . . . . . . . . . . . . 585
B.4. Monomorphisms in Cat∞ . . . . . . . . . . . . . . . . . . . . . . . . . . 586

B.4.1. Equivalent characterizations of monomorphisms in Cat∞ . . . . 586
B.4.2. Pseudomonic functors and replete images . . . . . . . . . . . . 588
B.4.3. Lifting along monomorphisms . . . . . . . . . . . . . . . . . . . 589
B.4.4. (Fully) faithful functors are monomorphisms . . . . . . . . . . . 590

B.5. Stability of (fully) faithful functors and monomorphisms in Cat∞ . . . 590
B.5.1. Functor ∞-categories . . . . . . . . . . . . . . . . . . . . . . . . 591
B.5.2. Pullbacks along another functor . . . . . . . . . . . . . . . . . . 592
B.5.3. Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

B.6. Subcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

C. (Co)Cartesian Fibrations 596
C.1. Stability properties of (co)cartesian fibrations . . . . . . . . . . . . . . 596

C.1.1. Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
C.1.2. Restriction along fully faithful functors . . . . . . . . . . . . . . 597
C.1.3. Morphisms of cartesian fibrations . . . . . . . . . . . . . . . . . 599

C.2. Cocartesian fibrations and products . . . . . . . . . . . . . . . . . . . . 599

x



Contents

D. More ∞-category theory 606
D.1. Undercategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

D.1.1. Model independent construction . . . . . . . . . . . . . . . . . . 606
D.1.2. Undercategories and (fully) faithful functors, monomorphisms . 607
D.1.3. Mapping spaces in undercategories . . . . . . . . . . . . . . . . 607

D.2. Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
D.2.1. Equivalent characterizations of adjoints . . . . . . . . . . . . . . 609
D.2.2. Adjunctions and Fun . . . . . . . . . . . . . . . . . . . . . . . . 611

E. ∞-operads and algebras 613
E.1. ∞-operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

E.1.1. Symmetric monoidal functors . . . . . . . . . . . . . . . . . . . 614
E.1.2. Conservative morphisms of ∞-operads . . . . . . . . . . . . . . 616
E.1.3. Base changes of cocartesian fibrations of ∞-operads . . . . . . . 617

E.2. Alg and base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
E.3. Properties preserved by Alg . . . . . . . . . . . . . . . . . . . . . . . . 621

E.3.1. Pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
E.3.2. Cocartesian fibrations . . . . . . . . . . . . . . . . . . . . . . . 622
E.3.3. Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
E.3.4. Reflecting equivalences . . . . . . . . . . . . . . . . . . . . . . . 625
E.3.5. Fully faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . 625

E.4. Induced ∞-operad structures on Alg . . . . . . . . . . . . . . . . . . . 626
E.4.1. The quasicategorical model . . . . . . . . . . . . . . . . . . . . 627
E.4.2. Properties of the induced ∞-operad structure . . . . . . . . . . 630

E.5. Iterating Alg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
E.6. The commutative ∞-operad . . . . . . . . . . . . . . . . . . . . . . . . 637
E.7. Colimits and free algebras . . . . . . . . . . . . . . . . . . . . . . . . . 640

E.7.1. Operadic colimits . . . . . . . . . . . . . . . . . . . . . . . . . . 640
E.7.1.1. A criterion for operadic colimits . . . . . . . . . . . . 640
E.7.1.2. Symmetric monoidal functors and operadic colimits . 641

E.7.2. Free algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
E.7.2.1. Detection of free algebras . . . . . . . . . . . . . . . . 642
E.7.2.2. Symmetric monoidal functors and free algebras . . . . 644

E.7.3. Induced functors on Alg and colimits . . . . . . . . . . . . . . . 646
E.7.4. Free modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

E.8. Relative tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . 648

F. Cartesian symmetric monoidal ∞-categories 653
F.1. Cocartesian fibrations and cartesian symmetric monoidal structures . . 653
F.2. Monoids and limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
F.3. Cartesian sym. monoidal ∞-categories and iterating Mon and Alg . . . 658

Bibliography 665

xi





Chapter 1.

Introduction
In this thesis we evaluate Hochschild homology over a commutative ring k of quotients

of polynomial algebras k[x1, . . . , xn]/f for certain polynomials f , as an object of the
∞-category of mixed complexes Mixed, assuming a conjectural description of Hochschild
homology of polynomial algebras. We do this by giving an explicit, and quite small,
strict mixed complex representing HH(k[x1, . . . , xn]/(f)). We verify the conjecture in
some cases, leading to unconditional results in the case of n ≤ 2 variables as long as 2 is
invertible in k. This result improves upon prior work by Larsen [Lar95] where stronger
conditions on f are imposed1, and by the Buenos Aires Cyclic Homology Group [BACH],
where only the underlying chain complex was considered. The results of this thesis do
not rely on the two aforementioned prior results, but use a different approach, employing
the modern framework for Hochschild homology in the setting of ∞-categories.

The motivation for calculating Hochschild homology as a mixed complex stems from its
usefulness to calculations of algebraic K-theory. The modern framework for topological
cyclic homology by Nikolaus–Scholze [NikSch] opened up the possibility of obtaining
calculations of algebraic K-theory using trace methods with only Hochschild homology
as a mixed complex as input, via a method developed by Speirs [Spe18; Spe20; Spe21] and
Hesselholt–Nikolaus [HN20]. In this modern setting, Hochschild homology is a functor
of ∞-categories

HHT : Alg
(
D(k)

)
→ D(k)BT

assigning to each associative algebra in the derived category of k an object of D(k)
equipped with an action by the circle group T. The ∞-category D(k)BT is equivalent to
the underlying∞-category Mixed of a model category Mixed of strict mixed complexes2,
and we denote the composition of HHT with this equivalence by HHMixed. We now for-
mulate the main result of this thesis, and will explain the meaning of the conditions on
f and the notation used in the formula for d later in this introduction.

Theorem A. Let k be a commutative ring in which 2 is invertible3, n ≤ 2 a positive
integer, and � a monomial order (for n variables). Let f be a monic (with respect to �)
polynomial in n variables, and assume that furthermore the following property holds for
any i⃗ ∈ Zn≥0 such that the coefficient of the monomial xi⃗ in f is non-zero: If 1 ≤ j ≤ n

1But no assumption is made on invertibility of 2 in k.
2A strict mixed complex is a chain complex with an additional operator d increasing degree by 1 and

satisfying ∂d + d∂ = 0 and d2 = 0.
3The assumption that 2 is invertible in k is not needed when n ≤ 1.

1



Chapter 1. Introduction

and deg�(f)j 6= 0, then i⃗j ≤ deg�(f)j. In other words, we require that every monomial
appearing in f divides the leading monomial, after replacing by 1 those variables that do
not appear in the leading monomial of f .

Then there is an equivalence4

HHMixed
(
k[x1, . . . , xn]/f

)
≃ γMixed

(
k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

)

in Mixed, where
k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

is a strict mixed complex with underlying Z-graded k-module5 as indicated, with xi of
degree 0, dxi of degree 1 and t of degree 2. The boundary operator ∂ is defined by extending
the following formulas6 by k-linearity and the Leibniz rule, where P ∈ k[x1, . . . , xn]/f ,
1 ≤ i ≤ n, and m ≥ 0.

∂(P ) = 0, ∂(dxi) = 0, ∂
(
t[m]
)
= −p(d f)t[m−1]

The differential d is defined by extending by k-linearity the following formula for a
polynomial P ∈ k[x1, . . . , xn], ϵ⃗ ∈ {0, 1}n, and m ≥ 0.

d
(
p(P ) dxϵ⃗t[m]

)
:=
(
p

(
d
(
r0f (P )

))
+mp

(
q1f

(
d f · r0f (P )

)))
dxϵ⃗t[m] ♥

A proof of Theorem A can be found on Page 543. Most of the steps in the proof of
Theorem A do not require the assumption that n ≤ 2 and that 2 is invertible in k. We
however need Conjecture D to hold for f . Conjecture D will be formulated and verified
for n ≤ 2 as long as 2 is invertible in k in Section 7.5.

Let us now give an overview over the remainder of this chapter. We begin in Section 1.1
by describing our motivation for studying Hochschild homology as a mixed complex,
which arises from its relevance in the methods used in calculations of algebraic K-theory
groups in [Spe20], [Spe21], and [HN20].

In Section 1.2 we explain how HHMixed(k[x1, . . . , xn]/f), the main object of study, as
well as the ∞-category Mixed and 1-category Mixed are defined.

We will then turn towards describing the proof of Theorem A, which splits up naturally
into two main steps. We describe the first main step in Section 1.3, which involves writing
the quotient k[x1, . . . , xn]/f as a relative tensor product k[x1, . . . , xn] ⊗k[t] k, and then
using that HHMixed preserves relative tensor products. This yields a strict mixed complex
Xf of medium size representing HHMixed(k[x1, . . . , xn]/f). Finding a smaller sub-mixed-
complex such that the inclusion into Xf is a quasiisomorphism is the content of the
second main step in the proof of Theorem A and will be described in Section 1.4. Along

4γMixed is a functor from the category of strict mixed complexes with cofibrant underlying chain complex
to Mixed and will be discussed in Section 1.2.2.

5We will use the commutative Z-graded k-algebra structure to write elements and describe ∂, but we
warn that d does not satisfy the Leibniz rule, so this is not an algebra in strict mixed complexes.

6We denote by p the quotient morphism p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f .

2



1.1. Motivation

the way we will introduce the definitions of concepts and notation used in the formulation
of Theorem A.

In Section 1.5 we then give an overview over the content of the individual chapters
and appendices of this thesis, and in Section 1.6 we describe some directions for future
work and questions left open by this thesis.

1.1. Motivation
The project that eventually became this thesis started with the goal of determining the

structure of the algebraic K-theory groups K∗(k[x1, . . . , xn]/(x1 · · · xn), (x1, . . . , xn)) for
k a perfect field of positive characteristic, with the polynomial x1 · · · xn geometrically
corresponding to the union of the coordinate hyperplanes. A method recently made
possible by the Nikolaus–Scholze framework for topological cyclic homology [NikSch],
and used by Speirs in the case of truncated polynomial algebras [Spe20]7 and the union of
coordinate axes [Spe21]8, and by Hesselholt–Nikolaus for cuspidal curves [HN20], makes
attacking such questions significantly easier.

In all these cases, what is determined are algebraic K-theory groups

K∗

(
k[x1, . . . , xn]/(f1, . . . , fm), (x1, . . . , xn)

)

for k a perfect field of positive characteristic, n and m positive integers, and f1, . . . , fm
specific polynomials in n variables with coefficients in Z. This is done by employ-
ing trace methods, and the input ultimately required for this method circles around
HHT(Z[x1, . . . , xn]/(f1, . . . , fm)), though there are variations between [Spe21], [Spe20],
and [HN20] in what precisely is used as input. The following table is an overview.

n (f1, . . . , fm) Input used
[Spe21] n ≥ 1 (xixj)i 6=j Bcyc(Π)9as an object of SBT

∗

[Spe20] 1 (xa1), for a ≥ 1 an
integer

Homotopy groups of HHT(Z[x1]/(xa1))
together with Connes’ operator

[HN20] 2 xa1 − x
b
2 for a, b ≥ 2

relatively prime
HHT(Z[x1, x2]/(xa1 − xb2)) as an object
of D(Z)BT

In [Spe21], Speirs uses that HHT(Z[x1, . . . , xn]/(xixj)i 6=j) is the Z-linearization of a
space with T-action Bcyc(Π), and manages to even determine the T-equivariant homotopy
type of Bcyc(Π), rather than only its Z-linearization. In general we would however expect
that it will be easier to only determine HHT(Z[x1, . . . , xn]/(f1, . . . , fm)) itself, which is
all that is required.

7The relevant K-theory groups had first been evaluated by Hesselholt–Madsen [HM97], but the calcu-
lation was significantly simplified by Speirs.

8Generalizing results by Hesselholt [Hes07] from the two-dimensional case.
9Bcyc(Π) denotes the cyclic bar construction of the pointed monoid

Π = {0, 1, x1, x
2
1, . . . , x2, x

2
2, . . . , xn, x

2
n, . . . }.

3



Chapter 1. Introduction

In contrast, in [Spe20] Speirs manages to get by with even less information than
HHT(Z[x1]/(xa1)) as an object of D(Z)BT, only using its homology as well as Connes’
operator (induced by the circle action), and extracting e. g. the homotopy groups of
the T-fixed points using the fixed points spectral sequence. In this particular case, this
is made feasible due to HHT(Z[x1]/(xa1)) decomposing into pieces whose homology is
concentrated in only two successive degrees, making the relevant spectral sequences easy
enough to evaluate. In more complicated cases we can however not expect to (in general)
be able to fully evaluate those spectral sequences without additional information.

Thus, in order to expand the results of [Spe20], [Spe21], and [HN20] to similar al-
gebras, it seems reasonable to start by evaluating the relevant Hochschild homology
HHT(Z[x1, . . . , xn]/(f1, . . . , fm)) as an object of D(Z)BT.

1.2. Hochschild homology as a mixed complex
1.2.1. Hochschild homology as an object with circle action

Having motivated our interested in HHT, we will now give an idea of how it is defined.
As HHT is a special case of the cyclic bar construction, we begin in somewhat greater
generality.

Let C be a presentable symmetric monoidal∞-category. Then the cyclic bar construc-
tion for C is a functor

Bcyc : Alg(C)→ CBT

that associates to every associative algebra R in C an object with T-action Bcyc(R) in
C. To construct the underlying object in C of Bcyc(R), one proceeds in two steps. One
first constructs out of R a simplicial object Bcyc

• (R) in C such that Bcyc
n (R) is given by

R⊗(n+1) and the structure morphisms di : R⊗n → R⊗(n−1) and si : R
⊗n → R⊗(n+1) can

be described as follows.

1. If i ≤ n−2, then di is id⊗i
R ⊗µ⊗id⊗(n−2−i)

R , where µ : R⊗R→ R is the multiplication
morphism.

2. dn−1 is the postcomposition of the symmetry isomorphism that brings the last
tensor factor to the front with µ⊗ id⊗(n−2)

R .

3. si is idi+1
R ⊗ ι⊗ id⊗(n−i−1)

R , where ι : 1C → R is the unit morphism.

Defining a simplicial object in C, i. e. a functor ∆
op → C, also requires data for higher

morphisms; for a full definition of the functor Bcyc
• : Alg(C) → Fun(∆op, C) see Sec-

tion 6.1.2. The underlying object of Bcyc(R) is then given by the geometric realization10

of Bcyc
• (R). The circle action on Bcyc(R) is constructed by first using cyclic permutations

of the tensor factors to upgrade Bcyc
• (R) to a cyclic object in C, i. e. lift the functor Bcyc

•

to a functor to Fun(Λop, C), where Λ is Connes’ cyclic category. The additional struc-
ture encoded by Λ equips the geometric realization of a cyclic object with the action
10So the underlying object of Bcyc(R) is

∣∣Bcyc
• (R)

∣∣ := colim∆op Bcyc
• (R).

4



1.2. Hochschild homology as a mixed complex

of the circle group, so that composing Bcyc
• with the geometric realization functor for

cyclic objects yields a functor Bcyc : Alg(C) → CBT. For a more detailed account of the
construction of Bcyc we refer to Chapter 6.

In the special case C = Sp, the ∞-category of spectra, the functor Bcyc is denoted by
THH, and if C is D(k), the derived ∞-category of a commutative ring k, we denote the
functor Bcyc by HHT(−/k) and call HHT(R/k) the Hochschild homology of R over k. We
will from now on fix a commutative ring k and just write HHT(−) instead of HHT(−/k).

1.2.2. Mixed complexes
Our goal is to determine HHT(R) for specific k-algebras R. However it is somewhat

difficult to write down and manipulate objects of D(k)BT directly, so we use strict mixed
complexes instead. The situation can be summarized by the following diagram.

Mixedcof

D(k)BT Mixed

γMixed

≃

(1.1)

The horizontal functor is an equivalence between D(k)BT and the ∞-category of mixed
complexes, which the functor γMixed exhibits as the underlying ∞-category of the 1-
category with weak equivalences Mixedcof of strict mixed complexes (with cofibrant un-
derlying chain complexes)11.

We begin explaining diagram (1.1) with the 1-category Mixed. A strict mixed complex
consists of an underlying chain complex of k-modules X (with boundary operator ∂
decreasing degree) together with an additional operator d, that we sometimes call the
differential, increasing degree by 1, and satisfying the following identities.

d ◦ d = 0 and d ◦ ∂ + ∂ ◦ d = 0

A morphism of strict mixed complexes is a morphism of underlying chain complexes
that commutes with the respective differentials d. The strict mixed complexes and their
morphisms define a 1-category Mixed.

There is also another description of Mixed: It is isomorphic to the category of left
modules in Ch(k) over the differential graded algebra D = k[d]/(d2), where d is of chain
degree 1. Under this isomorphism Mixed ∼= LModD(Ch(k)), the action by the element
d of D corresponds to the differential d. This suggests a definition of the ∞-category
of mixed complexes as Mixed := LModD(D(k)). The symmetric monoidal functor12
γ : Ch(k)cof → D(k) exhibiting D(k) as the underlying∞-category of Ch(k) then induces
a functor

γMixed : Mixedcof →Mixed
11The reason why we do not just say that D(k)B T is exhibited as the underlying∞-category of Mixedcof

by the composition is that, while both D(k)B T and Mixed carry symmetric monoidal structures, the
equivalence is only shown to be E1-monoidal. We should thus be careful to distinguish D(k)B T and
Mixed whenever E2-monoidal structures may become relevant.

12The superscript cof refers to the subcategory of cofibrant objects.

5



Chapter 1. Introduction

where Mixedcof refers to the subcategory of Mixed spanned by those strict mixed com-
plexes whose underlying chain complex is cofibrant with respect to the projective model
structure13.

We can make Mixedcof into a category with weak equivalences, where a morphism
is a weak equivalence if and only if the underlying morphism of chain complexes is a
quasiisomorphism, and it turns out that γMixed then exhibits Mixed as the ∞-category
obtained from Mixedcof by inverting weak equivalences. We will discuss both Mixed as
well as Mixed in greater detail in Chapter 4.

The equivalence D(k)BT ≃ Mixed is the composition of two different equivalences.
There first is an equivalence D(k)BT ≃ LModk⊠T(D(k)), where k ⊠ T is the k-linear
circle. The remaining equivalence LModk⊠T(D(k)) ≃ LModD(D(k)) = Mixed is then
induced by an equivalence k ⊠ T ≃ D in Alg(D(k)). We discuss these equivalences in
detail in Chapter 5.

1.3. The first step in the proof of the main result
As mentioned before, we define HHMixed to be the composition of HHT with a specific

equivalence D(k)BT ≃ Mixed sketched above. Theorem A then sets the task before us
to define a strict mixed complex that is mapped by γMixed to an object in Mixed that is
equivalent to HHMixed(k[x1, . . . , xn]/f).

The proof of Theorem A proceeds in two main steps. The idea of the first main step
is to use that HHMixed is compatible with relative tensor products and that the quotient
k[x1, . . . , xn]/f can be written as a relative tensor product of polynomial algebras14.

Before going into more detail about why HHMixed is compatible with relative tensor
products, let us first describe the monoidal structure on Mixed. Given strict mixed com-
plexesX and Y , we define the underlying chain complex ofX⊗Y to be the tensor product
in Ch(k) of the underlying chain complexes. The differential d is then defined using the
Leibniz rule, so d(x⊗ y) = d(x)⊗ y + (−1)degCh(x)x⊗ d(y). Taking the perspective that
a strict mixed complex is a left-D-module as described above, this symmetric monoidal
structure arises from a bialgebra structure on D, where the comultiplication maps d to
d⊗ 1+1⊗d. Chapter 3 constructs monoidal structures on∞-categories of left modules
over bialgebras in a functorial way, so that we can upgrade γMixed : Mixedcof →Mixed to
a monoidal functor.

That HHT is a symmetric monoidal functor essentially follows from the fact that ∆op

is sifted and the tensor product in D(k) preserves colimits separately in each variable;
we roughly obtain equivalences

∣∣R•+1
∣∣⊗
∣∣S•+1

∣∣ ≃
∣∣R•+1 ⊗ S•+1

∣∣ ≃
∣∣(R⊗ S)•+1

∣∣

that should make plausible that HHT is symmetric monoidal. HHT also preserves sifted
colimits, and hence preserves relative tensor products. For more details see Chapter 6.
13See Fact 4.1.3.1 for a definition.
14This idea was suggested by Thomas Nikolaus.

6



1.3. The first step in the proof of the main result

To then deduce that HHMixed also preserves relative tensor products it remains to
show that D(k)BT ≃ Mixed preserves relative tensor products. As an equivalence, it is
clear that this functor preserves sifted colimits, but that it is E1-monoidal is not obvious,
relying on a longer argument15 carried out in Section 5.1, showing that D and k⊠T are
equivalent not only as associative algebras in D(k), but as E∞,E1-bialgebras16 .

The quotient k[x1, . . . , xn]/f is isomorphic to the relative tensor product

k[x1, . . . , xn]⊗k[t] k

in Alg(LModk(Ab)), where t acts by multiplication with f on k[x1, . . . , xn] and by mul-
tiplication with 0 on k. Under the assumptions made for f in Theorem A, this ordinary
relative tensor product calculates the derived one, so that we obtain an equivalence

k[x1, . . . , xn]/f ≃ k[x1, . . . , xn]⊗k[t] k

in Alg(D(k)) as well, inducing an equivalence

HHMixed
(
k[x1, . . . , xn]/f

)
≃ HHMixed

(
k[x1, . . . , xn]

)
⊗HHMixed(k[t]) HHMixed(k)

in Mixed.
To proceed we require a description of HHMixed(k[x1, . . . , xn]) and HHMixed(k) as mod-

ules over HHMixed(k[t]) in Mixed. The following conjecture provides such a description
in terms of the mixed complexes of de Rham forms.

Conjecture D. Let n ≥ be an integer and f an element of k[x1, . . . , xn]. Denote by
F : k[t] → k[x1, . . . , xn] the morphism of commutative k-algebras that maps t to f and
by G : k[t] → k the morphism of commutative k-algebras that maps t to 0. Then there
exists a commutative diagram

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed
(
k[t]
)

Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed
(
k[x1, . . . , xn]

)
Alg(γMixed)

(
Ω•
k[x1,...,xn]/k

)

≃

≃

HHMixed(F )

HHMixed(G)

Alg(γMixed)
(
Ω•
F/k

)

Alg(γMixed)
(
Ω•
G/k

)

≃

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative diagram for a specific f as

“Conjecture D holds for f”. ♧

15The strategy for this argument was suggested by Achim Krause.
16I. e. as commutative and coassociative bialgebras.

7



Chapter 1. Introduction

Conjecture D will be discussed in Section 7.5, where we will also show that it holds if
n ≤ 1 or n = 2 and 2 is invertible in k.

Assuming that Conjecture D holds for f , we then obtain an equivalence17

HHMixed
(
k[x1, . . . , xn]

)
⊗HHMixed(k[t]) HHMixed(k)

≃ γMixed
(
k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)

)
⊗
γMixed(k[t]⊗Λ(d t)) γMixed(k)

where xi and t are in degree 0, d xi and d t are in degree 1, and t acts by multiplication
with f on k[x1, . . . , xn] ⊗ Λ(dx1, . . . , dxn) and trivially on k. As alluded to by the
naming, the differential of the respective mixed complexes maps xi to d xi and t to d t,
and is defined on the other elements by k-linearity and the Leibniz rule, while all three
underlying chain complexes have zero boundary operator.

To obtain a strict mixed complex that represents HHMixed
(
k[x1, . . . , xn]/f

)
we thus

have to calculate the derived tensor product of k[x1, . . . , xn] ⊗ Λ(dx1, . . . , dxn) over
k[t]⊗Λ(d t) with k in Mixed. To do so, we need to replace k with a sufficiently cofibrant
replacement as a module over k[t] ⊗ Λ(d t) in Mixed. Such a replacement is given by a
strict complex A whose underlying graded k-module is given by the tensor product18

k[t]⊗ Λ(d t)⊗ Λ(s)⊗ Γ(d s)

where t is of degree 0, d t and s are of degree 1, and d s is of degree 2. The boundary
operator ∂ and differential d are k-linear and satisfy the Leibniz rule, and are thus
determined by the following formulas.

∂(t) = 0, ∂(d t) = 0, ∂(s) = t, ∂
(

d s[m]
)
= − d t d s[m−1]

d(t) = d t, d(d t) = 0, d(s) = d s[1], d
(

d s[m]
)
= 0

There is an obvious morphism of algebras in Mixed from k[t]⊗Λ(d t) to A that maps t to
t. In Section 8.2 it is shown that this makes A into a sufficiently cofibrant replacement
for k as a left-(k[t] ⊗ Λ(d t))-module to calculate the derived relative tensor product
discussed above as the ordinary relative tensor product

(
k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)

)
⊗k[t]⊗Λ(d t)

(
k[t]⊗ Λ(d t)⊗ Λ(s)⊗ Γ(d s)

)

∼= k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s) =: Xf

in Mixed. We thus obtain an equivalence

HHMixed
(
k[x1, . . . , xn]/f

)
≃ γMixed

(
k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

)

in Mixed. The boundary operator ∂ and differential d satisfy the Leibniz rule on Xf ,
and ∂(s) = f .
17The notation Λ is used for the exterior algebra, see Section 2.3 (29).
18The notation Γ is used for the divided power algebra, see Section 2.3 (30).

8



1.4. The second step in the proof of the main result

1.4. The second step in the proof of the main result
With the strict mixed complex Xf as above we already have a reasonably small strict

model for HHMixed(k[x1, . . . , xn]/f), but we still want to identify a smaller, quasiisomor-
phic, sub-mixed-complex. In particular, Xf is given by k[x1, . . . , xn] in degree 0, while
the homology is k[x1, . . . , xn]/f in degree 0. We will thus try to find a small sub-mixed-
complex quasiisomorphic to Xf such that the k-module in degree 0 is isomorphic – as a
k-module – to k[x1, . . . , xn]/f .

Before we get started with this we first describe one of the assumptions we need to
make on f , which is that f needs to be monic with respect to a chosen monomial order.
A monomial order is a well-order � on the set of monomials in x1, . . . , xn, or equivalently
on Zn≥0, such that a⃗ � b⃗ implies a⃗ + c⃗ � b⃗ + c⃗ for a⃗, b⃗, c⃗ ∈ Zn≥0. From now on we fix a
monomial order �. We can then define f to be monic (with respect to �) if the biggest
(with respect to �) monomial appearing19 in f has coefficient 1. The degree of f (with
respect to �), denoted by deg�(f), is the element of Zn≥0 that is maximal with respect
to � such that the coefficient of xdeg⪯(f) in f is non-zero.

If f is monic, then it is possible to divide polynomials in x1, . . . , xn by f with remainder.
Specifically, if P is an element of k[x1, . . . , xn], then there is a unique decomposition of
P as P = q1f (P )f + r0f (P ) such that r0f (P ) is f -reduced, meaning that only monomials
that are not divisible by the lead monomial of f may appear in r0f (P ). For more details
on these notions for multivariable polynomials see Section 9.1.

One perspective on the just mentioned decomposition is that it means that there is
a unique f -reduced representative in k[x1, . . . , xn] for every element of k[x1, . . . , xn]/f .
We can thus define a section ϱ (as morphisms of k-modules) of the quotient morphism
p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f by defining ϱ(p(P )) to be r0f (P ). Along ϱ we can thus
identify k[x1, . . . , xn]/f as a k-module with the k-submodule of k[x1, . . . , xn] spanned by
the reduced polynomials, i. e. Im(ϱ).

We now start with the sub-graded-k-module Im(ϱ) of Xf , and discuss what additional
generators we need to add to our sub-graded-k-module to satisfy the following three
conditions.

(a) It needs to be closed under ∂, to define a subcomplex.

(b) It needs to be closed under d, to define a sub-mixed-complex.

(c) The inclusion into Xf must be a quasiisomorphism.

As we require closedness under d, we first enlarge to the sub-graded-k-module

Im(ϱ)⊗ Λ(dx1, . . . , dxn)

of Xf . Now there are however elements that are multiples of d f and which are cycles
but not boundaries, while they are boundaries in Xf . In order to achieve (c) we will
19That is, having non-zero coefficient.

9



Chapter 1. Introduction

thus need to add elements whose boundary are the relevant multiples of d f . Our first
attempt might be to consider the sub-graded-k-module

Im(ϱ)⊗ Λ(dx1, . . . , dxn)⊗ k · {1, d s[1]}

as ∂(− d s[1]) = d f . As we have now created new multiples of both d f as well as d s[1]
that will be cycles but not boundaries as needed for (c), we actually keep going and
consider the sub-graded-k-module

Im(ϱ)⊗ Λ(dx1, . . . , dxn)⊗ Γ(d s)

of Xf .
Let us turn towards condition (a) and check whether this could be a subcomplex of

Xf . For this, let R be an element of Im(ϱ). Then we obtain

∂
(
R d s[1]

)
= −R d f = −q1f (R d f)f − r0f (R d f)

For this to lie in our provisional sub-graded-k-module we need to have q1f (R d f) = 0,
but unfortunately this will in general not be the case. To fix this, we should then modify
R d s[1] by adding another generator whose boundary will be q1f (R d f)f . Such an element
is given by sq1f (R d f), which leads us to the following definition. We define J0 as the set

J0 :=
{ (

i⃗, ϵ⃗, m
)
∈ Zn≥0 × {0, 1}

n × Z≥0

∣∣∣∣ xi⃗ is f -reduced
}

and for (⃗i, ϵ⃗,m) an element of J0 we define

e⃗i,⃗ϵ,m := xi⃗ dxϵ⃗ d s[m] + sq1f

(
d f · xi⃗ dxϵ⃗

)
d s[m−1]

as an element of Xf . We can then define Xe
f,0 to be the sub-graded-k-module of Xf

spanned by the elements of the form e⃗i,⃗ϵ,m for (⃗i, ϵ⃗,m) in J0.
It turns out that Xe

f,0 indeed satisfies conditions (a) and (c), but not in general
(b). Thus the chain complex Xe

f,0 does represent the underlying object in D(k) of
HHMixed(k[x1, . . . , xn]/f) (this reproves the main result of [BACH] as long as Conjec-
ture D is satisfied for f), but we need to make further assumptions to ensure that Xe

f,0

is a sub-mixed-complex of Xf .
In the formulation of Theorem A we use a sufficient condition for f that is very easy

to check and that ensures that Xe
f,0 is a sub-mixed-complex of Xf . The strict mixed

complex used in the statement is then obtained by merely renaming the basis of Xe
f,0,

where the element e⃗i,⃗ϵ,m of Xe
f,0 corresponds to the element p(xi⃗) dxϵ⃗t[m] in the strict

mixed complex described in Theorem A.

10



1.5. Overview over the chapters of this thesis

1.5. Overview over the chapters of this thesis
This thesis tries to give a rigorous proof of Theorem A, so it was attempted to include

a proof for every needed statement for which no proof could be found in the literature. By
necessity this means that many statements and proofs will already have been known to
the experts, and some may even have already appeared, spread throughout the literature.
This holds particularly with regards to the material contained in the appendices, where
we collect various required statements on various aspects of working in an∞-categorical
setting. We hope that this will help fill some gaps in the literature. A reader primarily
interested in applying the result and already familiar with Hochschild homology and
mixed complexes may thus wish to only read Chapter 9 containing the statement of the
result and the notation and notions necessary to understand and apply it, as well as
Chapter 10, which contains an example worked out in detail.

The material is ordered linearly; proofs in the appendices only depend on statements
occurring earlier in the appendices, and proofs in the main text only depend on state-
ments occurring earlier in the main text or in the appendices.

We now briefly summarize the content of the chapters of this thesis. Each chapter,
and most sections and subsections, also begin with an introduction, so we refer there for
more details.

In Chapter 2 we list and explain the notation and conventions that we use, and
discuss what we assume the reader is familiar with.

In Chapter 3 we construct monoidal structures on∞-categories of left modules over
bialgebras. If C is a symmetric monoidal 1-category and A a (associative, coassociative)
bialgebra in C, then the category of left-A-modules LModA(C) can be given a monoidal
structure again, constructed from the coalgebra structure of A20. The underlying object
in C of the tensor product of two left-A-modules X and Y is the tensor product in C of
the underlying objects, with action of A defined via the composition

A⊗X ⊗ Y
∆⊗idX⊗idY−−−−−−−→ A⊗ A⊗X ⊗ Y

idA⊗τ⊗idX−−−−−−→ A⊗X ⊗ A⊗ Y → X ⊗ Y

where ∆ is the comultiplication, τ is the symmetry isomorphism, and the last morphism
is the tensor product of the action morphisms of A on X and Y .

In Chapter 3 we construct such monoidal structures on LModA(C), where C is now
allowed to be an E2-monoidal∞-category, and A an E1,E1-bialgebra in C. Our construc-
tion will be functorial in both A as well as C and thus allow us to compare Mixed, Mixed,
and LModk⊠T(D(k)), which are all monoidal ∞-categories arising via this construction.

In Chapter 4 we define the 1-category Mixed and ∞-category Mixed. Beyond what
was already mentioned in Section 1.2.2, we also discuss model structures on Mixed and
Alg(Mixed), show that Mixed and Alg(Mixed) are the respective underlying∞-categories,
and put the classical notion of strongly homotopy linear morphisms of strict mixed com-
plexes into this context. That every algebra in Mixed has a strict model will play a role in
Chapter 7, when we discuss HHMixed of polynomial algebras as an object of Alg(Mixed).
20This monoidal structure should not be confused with the monoidal structure one can define using

relative tensor products over A if A is commutative.

11



Chapter 1. Introduction

In Chapter 5 we construct a monoidal equivalence between D(k)BT and Mixed, as
discussed in Section 1.2.2 above.

In Chapter 6 we define Hochschild homology, both in its modern incarnation as a
symmetric monoidal functor of ∞-categories

HHT : Alg(D(k))→ D(k)BT

as well as the classical model for Hochschild homology given by the standard Hochschild
complex. In particular, we discuss how the standard Hochschild complex represents
HHMixed as a mixed complex (by [Hoy18]) as well as HH of commutative rings as an
object of CAlg(D(k)).

In Chapter 7 we show that the mixed complex of de Rham forms is a model for
HHMixed of polynomial algebras in at most 2 variables as an object in Alg(Mixed). Im-
portant input for this will be the comparison results discussed in Chapter 6 as well as the
strictification result for algebras in Mixed from Chapter 4. We also discuss compatibility
with morphisms of polynomial algebras, by formulating Conjecture C and Conjecture D,
and proving them in some cases.

In Chapter 8 we perform the first step of the proof of Theorem A that we discussed
in Section 1.3 above. The main result of Chapter 8 will be applicable in more gener-
ality, providing a strict mixed complex representing HHMixed(R/(y1, . . . , yn)) for R a
commutative algebra in Ch(k), and y1, . . . , yn elements of R in degree 0, providing that
the requirements of Proposition 8.3.0.1 are met, and we in particular are given a strict
model of HHMixed(R) with sufficient structure.

Finally, we put everything together in Chapter 9. This chapter introduces the neces-
sary notions for multivariable polynomials and carries out the second step of the proof
of Theorem A that we discussed in Section 1.4 above.

For actual applications, we expect that the user of Theorem A will likely need to
further simplify the resulting strict mixed complex. In Chapter 10 we thus discuss
the example f = x21 − x2x3 in detail21, identifying an even smaller strict model for
HHMixed(Z[x1, x2, x3]/f) than the one given by Theorem A (conditional on Conjecture D
holding for f). We take care to not only prove the end result, but to describe the steps
in the order and manner that one would take them when trying to come up with such a
simplification, and hope that this example will help the reader to similarly simplify the
result of Theorem A for other concrete polynomials.

The appendices contain various material relating to working with various notions in
an ∞-categorical setting that do not have a very strong thematic relation to the main
content of this thesis, apart from being needed in it.

Appendix A and Appendix D contain some statements on basic notions of ∞-
category theory, such as mapping spaces, undercategories, and adjunctions. The reason
this material is split up into two appendices is in order to conserve linearity of the mate-
rial in the appendices, as some material from Appendix A is needed in the intermediate
appendices, from where Appendix D needs some results.
21As this is an example in three variables, Theorem A only holds for f conditional on Conjecture D.

However, it is an interesting example with which we can demonstrate the combinatorial notions used
to formulate the result of Theorem A, and how the result can be further manipulated.

12



1.6. Future directions

In Appendix B we discuss the notions of (fully) faithful functors of ∞-categories as
well as monomorphisms in Cat∞.

Appendix C collects a number of statements involving (co)cartesian fibrations. In
particular, we discuss for functors of ∞-categories F : C → Cat∞ the property of the
cocartesian fibration classified by F that corresponds to C having all products and F

preserving them.
In Appendix E we discuss various statements that relate to ∞-operads and their

∞-categories of algebras, such as the induced ∞-operad structures on ∞-categories of
algebras, free algebras, and relative tensor products.

Appendix F discusses cartesian symmetric monoidal ∞-categories. If C is a carte-
sian symmetric monoidal ∞-category and O an ∞-operad, then the ∞-categories of
O-algebras and O-monoids in C are equivalent. A large part of Appendix F is concerned
with iterating this, i. e. applying AlgO′ or MonO′ to AlgO(C) or MonO(C) and comparing
the resulting∞-categories. The reason is that we not only need to know that there exist
some equivalences between the various ∞-categories, but require concrete descriptions
of specific equivalences.

1.6. Future directions
In this section we present some questions left open by this thesis and directions for

future work. The most obvious open problem is the conjecture our main result depends
on.

(1) Conjecture D is proven in Chapter 7 only for n ≤ 2 variables, in the case n = 2
requiring an assumption on k. Showing this conjecture for polynomials in more
variables would extend Theorem A.

The next possibility for future work we would like to mention is the application to
calculations of algebraic K-theory.

(2) Let k be a perfect field of positive characteristic, n a positive integer, and f a
polynomial in n variables satisfying the conditions of Theorem A. One can then
try to determine the structure of K(k[x1, . . . , xn]/f, (x1, . . . , xn)) using the tech-
niques of [Spe20], [Spe21], and [HN20], using the strict mixed complex representing
HHMixed(k[x1, . . . , xn]/f) as the starting point.
The project that became this thesis was in fact started with the goal of determining
the structure of

K∗

(
k[x1, . . . , xn]/(x1 · · · xn), (x1, . . . , xn)

)

i. e. of the K-theory groups of the union of hyperplanes. Another first test case to
apply this to might be the cone x21 = x2x3, i. e. trying to determine the structure
of K(k[x1, . . . , xn]/(x

2
1 − x2x3), (x1, x2, x3)). To obtain new unconditional results

both of these would require first extending the validity of Theorem A by proving
Conjecture D for the three-variable case.

13



Chapter 1. Introduction

There are also a number of questions directly left open in this thesis.

(3) In [Spe20] and [HN20] it is important that THH and HHT have a compatible
decomposition as a sum, which arises from a grading on the polynomial ring with
respect to which the polynomial divided out is homogeneous.
Before tackling (2) it will therefore be important to upgrade Theorem A to take
into account such a grading.

(4) In Chapter 5 we show that there is an E1-monoidal equivalence between D(k)BT

and Mixed. Does there exist an E2-monoidal equivalence? One can also add some
additional conditions, such as asking for a commutative triangle

D(k)BT Mixed

D(k)

≃

of E2-monoidal functors, with the horizontal one being an equivalence, and where
the two other functors are the forgetful ones.

(5) Theorem A is shown in Proposition 9.5.2.3, where, apart from Conjecture D need-
ing to hold for f , the condition is actually that f needs to be monic and satisfy
logdimf (d f) ≤ 1, rather then the condition used in the the formulation of Theo-
rem A above, which implies logdimf (d f) ≤ 1 by Corollary 9.4.2.6. This leaves the
question whether Corollary 9.4.2.6 is sharp. To be more precise, suppose f 6= 1 is
a polynomial that is monic with respect to a monomial ordering � and such that
logdimf (d f) ≤ 1. Then does it hold for every i⃗ ∈ Zn≥0 such that the coefficient
of the monomial xi⃗ in f is non-zero that if 1 ≤ j ≤ n and deg�(f)j 6= 0, then
i⃗j ≤ deg�(f)j?

(6) A related question to (5) is what kind of values logdimf (d f) can take. In particular,
is there a monic polynomial f such that logdimf (d f) is finite, but bigger than 1?

(7) Is there a class of monic polynomials f with logdimf (d f) > 1 and for which Xe
f,0 is

not a sub-mixed-complex of Xf , but there is some other, intermediate sub-mixed-
complex that is also equivalent to Xf? For example it may be that there exists
such a sub-mixed-complex for some f in which the power of f is bounded22,23,
unlike in X.

It is possible that logdimf (d f) has already been studied (if so, likely under a different
name), so perhaps there already exist answers to (5) and (6) in the literature.
22In the sense that it is generated as a graded k-module by elements c⃗i,l,⃗ϵ,m and e⃗i,l,⃗ϵ,m as in Defini-

tion 9.2.3.2 such that l is smaller than or equal to some lmax.
23For example the power of f might be bounded by n · (logdimf (d f)−1) (as long as logdimf (d f) ≥ 1),

which would yield the correct bound 0 for logdimf (d f) = 1. This would of course not be helpful if
it turned out that there exist no monic polynomials f with 1 < logdimf (d f) <∞.

14



1.7. Acknowledgments

1.7. Acknowledgments
There are many people who helped make this thesis possible. This project was sug-

gested by my advisor, Lars Hesselholt, and he and my co-advisor, Jesper Grodal, helped
keep me on track. The idea to approach Hochschild homology of quotients by writing
quotients as relative tensor products was suggested to me by Thomas Nikolaus, and a
sketch of the proof strategy used to show formality of the k-linear circle as an E∞,E1-
bialgebra in Section 5.1 was suggested to me by Achim Krause.

In a earlier version there was a mistake in the proof of what is now Proposition 7.2.2.2,
where it was claimed that ϵ is natural with respect to all morphisms of k-algebras,
rather than only those that map variables to variables. This incorrect result was then
used in what amounted to a proof of Conjecture B, Conjecture C, and Conjecture D
for polynomial algebras in arbitrary many variables. The mistake was pointed out by
Thomas Nikolaus.

I had useful mathematical discussions that left their marks on this thesis with many
people, among them David Bauer, Elden Elmanto, Aras Ergus, Jesper Grodal, Lars
Hesselholt, Kaif Hilman, Joshua Hunt, Achim Krause, Markus Land, Jonas McCandless,
Thomas Nikolaus, Riccardo Pengo, Philipp Schmitt, Martin Speirs, and Robin Sroka,
and received helpful feedback on earlier drafts from David Bauer, Aras Ergus, Jesper
Grodal, Lars Hesselholt, and Martin Speirs. I am sure to have missed someone who
should have been listed above, for which I apologize.

Helpful discussions with Achim Krause and Thomas Nikolaus were made possible
by the hospitality of the University of Münster. This work was supported by the Dan-
ish National Research Foundation through the Centre for Symmetry and Deformation
(DNRF92) and the Copenhagen Centre for Geometry and Topology (DNRF151).

15



Chapter 2.

Notation and conventions

2.1. Prerequisites
We will work extensively in ∞-categorical settings, and thus reading this thesis will

likely require a solid foundation in the theory of ∞-categories and higher algebra as
developed in [HTT] and [HA]. We will however try to give references for any major
statements that we use, and we refrain from using statements that are well-known to
experts without giving a proof ourselves if no citable reference could be found in the
literature – many such statements are thus collected in the appendices.

We assume that the reader is familiar with the basics of (homological) algebra, as well
as the theory of model categories, for which we use [Hov99] and [HTT, A.2] as our main
references. Wherever terminology differs between [Hov99] and [HTT, A.2], we follow the
terminology of [HTT, A.2].

In contrast, it is not strictly necessary to have prior exposure to Hochschild homology
or related concepts, as all the necessary definitions will be provided.

2.2. On how this thesis is structured
To make it easy to reference parts of this thesis we make liberal use of section sub-

divisions and encapsulate a large part of the material in various environments such as
remarks, constructions, propositions, proofs, and similar.

To mark the end of such an environment we use several different symbols, which appear
on the end of the last line of the respective environment, i. e. rightmost on the page. A
square □ is used to denote the end of a proof, as is usual. For statements that come
with a proof we use a heart ♥, and for statements that could come with a proof (facts,
conjectures, etc.) but do not we use a club ♧. Other environments, such as definitions,
constructions, etc. are ended with a diamond ♦. The author first saw the idea to use
card suits for environment end markers in Tashi Walde’s Master’s thesis.

The only types of mathematical statements with proof that we distinguish in the text
are corollaries (for statements whose proof is a direct specialization of previous results)
and propositions (for everything else). The only exception is Theorem A, which is stated
in the introduction.

16



2.3. Various notations and conventions

2.3. Various notations and conventions
In this section we state various conventions and notation that will be used throughout

the thesis.

(1) We fix a commutative ring k for the entire thesis. If X and Y are k-modules, then
X⊗Y refers to the tensor product over k unless something else is explicitly stated.

(2) With regards to ∞-categories, we try to work as model independently as possible,
so by an ∞-category we mean an object in the (∞, 2)-category of ∞-categories
Cat∞, not a representative in a specific model, such as quasicategories1. In particu-
lar, if we e. g. talk about a pullback of∞-categories, then this refers to a pullback in
the ∞-category of ∞-categories, not to a (categorical) pullback of quasicategories
(simplicial sets).

(3) We denote by Cat∞ the ∞-category of ∞-categories. If C and D are ∞-categories,
then there exists an ∞-category of functors from C to D, denoted by Fun(C,D).
We will thus also consider Cat∞ as an (∞, 2)-category, though we will not require
a general theory of (∞, 2)-categories.

(4) We denote by Cat the (∞, 2)-category2 of 1-categories3, as a full subcategory of
Cat∞. We will thus not use any notation to indicate the inclusion4 of Cat into
Cat∞; if C is a 1-category, then C is in particular an ∞-category.

(5) We use different fonts to visually distinguish between 1-categories, ∞-categories,
quasicategories, and other kinds of objects. Named 1-categories (like Ring rather
than C) use the same font as unnamed 1-categories, for named ∞-categories we
use a different calligraphic font than for unnamed ∞-categories.

We illustrate this with the following table.
Type of object Font description Examples
1-category sans-serif C, D, E
Named 1-category sans-serif Cat, Ring, Ch(k), Mixed, sSet
∞-category calligraphic C, D, E
Named ∞-category calligraphic Cat∞, D(k), Mixed, S
Quasicategories5 typewriter C, D, E, f, p
Other serif and Greek C, D, E, Φ, Ψ, α, β, γ, a, b, c

1For the implications for (co)cartesian fibrations see the introduction to Appendix C.
2By [HTT, 2.3.4.8] Cat is actually a (2, 2)-category.
3For us, 1-categories are ∞-categories with discrete mapping spaces, compare [HTT, 2.3.4.1, 2.3.4.5,

and 2.3.4.18].
4If we model ∞-categories by quasicategories, then this inclusion is given by the nerve construction,

see [HTT, 1.1.2.6].
5Including morphisms.

17



Chapter 2. Notation and conventions

(6) The following table collects notation for some named 1-categories.
Notation Description / ∞-category of Reference
Set sets
Fin finite sets
sSet simplicial sets [HTT, A.2.7]
Top nice6topological spaces [Hov99, 2.4.21]
Ab abelian groups
Ch(k) chain complexes of k-modules Definition 4.1.1.1
PoSet partially ordered sets Definition 6.1.1.2
ZPoSet partially ordered sets with Z-action Definition 6.1.1.2
Mixed strict mixed complexes Definition 4.2.1.2

(7) The following table collects notation for some named ∞-categories.
Notation Description / ∞-category of Reference
S spaces [HTT, 1.2.16]
Sp spectra [HA, 1.4.3]
D(k) derived category of k Proposition 4.3.2.1 (1)
Pr presentable∞-categories, as a full subcat-

egory of Cat∞
[HTT, 5.5.0.1]

PrL presentable ∞-categories, morphisms are
functors preserving all small colimits, as a
subcategory of Pr

[HTT, 5.5.3.1]

Mixed mixed complexes Notation 4.4.0.2

(8) We generally follow the notation used in [HA] for ∞-operads that we use, though
with a different font to be consistent with (4) and (5).
Notation Notation in [HA] Name Reference
Comm or Fin∗ Comm or Fin∗ commutative ∞-operad [HA, 2.1.1.18]
Assoc Assoc associative ∞-operad [HA, 4.1.1.3]
Triv Triv trivial ∞-operad [HA, 2.1.1.20]
LM LM ∞-operad of left modules [HA, 4.2.1.7]
En En ∞-operad of little n-cubes [HA, 5.1.0.3

and 5.1.1.6]
By [HA, 5.1.0.7] there is an equivalence of∞-operads E1 ≃ Assoc. We will identify

6It is not really relevant for us if one takes k-spaces, compactly generated topological spaces, or another
variant. What is important for us is that geometric realization and the singular simplicial set functor
define a Quillen equivalence as follows.

sSet Top
|−|

Sing

⊣

18



2.3. Various notations and conventions

these two ∞-operads along this equivalence and use E1 and Assoc as interchange-
able notation. The ∞-operad E∞ is by definition equal to Comm.

(9) We sometimes use parenthesis to cover multiple cases at the same time to avoid
repetitious language. For example we might write

X is adjective1 (adjective2, adjective3) if it satisfies property1 (property2,
property3).

which is to be interpreted as
X is adjective1 if it satisfies property1. Furthermore, X is adjective2 if
it satisfies property2. Finally, X is adjective3 if it satisfies property3.

A variant version of this convention is
X is (adverb) adjective if it satisfies property1 (property2).

which is to be read as follows.
X is adjective if it satisfies property1. Furthermore,X is adverb adjective
if it satisfies property2.

(10) If C is an ∞-category, then we use the notation

MapC(−,−) : C
op × C → S

for the mapping space functor. Similarly, if C is a (Ab-enriched, or LModk(Ab)-
enriched) 1-category, then we denote by MorC (by HomC) the morphism set functor
(Hom functor) with codomain Set (Ab and LModk(Ab), respectively). If C is an
object of C, then we use use AutC(C) as the notation for the automorphism space
of C, i. e. the subspace of MapC(C,C) spanned by equivalences C → C.

(11) We use − as notation for an unnamed argument in order to describe functions (and
functors etc.) without introducing unnecessary notation. For example, instead of
defining the function that maps a real number to its square by

f : R→ R, f(x) = x2

and then using f in some place where a function R → R is expected, we would
just use the following notation.

−2

If there is more than one argument we may subscript −, such as in the following
example.

(−1 +−2)
2 : R× R→ R

Finally, we also use • in a similar manner for “inner” functions. For example

•− : Z≥1 → MorSet(R,R)

would refer to the map that sends n to the map that sends x to xn.

19



Chapter 2. Notation and conventions

(12) Let C be a model category with class of weak equivalences W . Then we denote
by HoW (C) the homotopy category of C in the model-category sense. If C is an
∞-category, then we denote by Ho(C) the homotopy category of C as defined
in [HTT, 1.2.3]. For the relationship between these two definitions, see Proposi-
tion A.1.0.1.

(13) Let C be a model category. Then we denote by Ccof (by Cfib) the full subcategory of
cofibrant (fibrant) objects of C. The model categories we consider admit functorial
(co)fibrant replacement functors, which we will denote as follows.

−cof : C→ Ccof and −fib : C→ Cfib

(14) Let C be an ∞-category admitting products. If X and Y are objects of C and
X × Y a product object of X and Y , then we denote by pr1 : X × Y → X and
pr2 : X × Y → Y the morphisms that exhibit X × Y as a product of X and Y .
If f1 : X → Y1 and f2 : X → Y2 are two morphisms in C, then we denote by

f1 × f2 : X → Y1 × Y2

the induced morphism determined by equivalences pri ◦ (f1 × f2) ≃ fi.
If f1 : X1 → Y1 and f2 : X2 → Y2 are two morphisms in C, then we will also denote
by

f1 × f2 : X1 ×X2 → Y1 × Y2

the induced morphism between the products, which is determined by equivalences
pri ◦ (f1 × f2) ≃ fi ◦ pri. While this could in principle lead to confusion, we will
always make clear in the context which of the two interpretations are intended.
Analogous notation is used for products over more factors, possibly indexed by a
set.

(15) We say that a functor of ∞-categories detects something7 if it both preserves and
reflects it.

(16) Let F : C → D be a functor of ∞-categories and E another ∞-category. Then we
sometimes denote by F∗ the induced functor

Fun(E , F ) : Fun(E , C)→ Fun(E ,D)

and by F ∗ the following induced functor.

Fun(F, E) : Fun(D, E)→ Fun(C, E)

We also use this notation in variant cases, such as induced functors on subcategories
of functor categories, or ∞-categories of functors over another ∞-category.

7For example equivalences or colimits.

20



2.3. Various notations and conventions

(17) Let p : O⊗ → Fin∗ be an ∞-operad. We will often just say that O is an ∞-operad,
dropping the ⊗ superscript, or even that F : O → O′ is a morphism of ∞-operads
when O′ is another ∞-operad8. If we are referring to O⊗ as an ∞-category, for
example talking about an object of O⊗, then we will however never drop the
superscript. To make this convention consistent, the total∞-category of a functor
to Fin∗ that we think of as an∞-operad will always be denoted by a notation that
includes a superscript ⊗. We hope that this will not lead to confusion in practice,
but will instead make many terms more concise and readable.

(18) Consistent with (17), if O, O′, and O′′ are ∞-operads, then we use the notation
BiFunc(O,O′;O′′) for the ∞-category of bifunctors of ∞-operads that is denoted
by BiFunc(O⊗,O′⊗;O′′⊗) in [HA] – see [HA, 2.2.5.3].

(19) IfO and C are∞-operads, then we denote by AlgO(C) the∞-category of∞-operad
morphism from O to C 9. If O = Assoc we will also write Alg(C) instead, and if
O = Comm we will also write CAlg(C).
Similarly, if O = Assoc we will just say “monoidal” and if O = Comm we will say
“symmetric monoidal” instead of “O-monoidal”.

(20) For n ≥ 1 an integer and 1 ≤ i ≤ n we denote by ρi : 〈n〉 → 〈1〉 the morphism of
Fin∗ defined in [HA, 2.0.0.2], i. e. given by the following formula.

ρi(j) :=
{
1 if i = j

∗ otherwise

(21) Let O be an ∞-operad. Then we use ⊕ as notation for the operation defined and
discussed in [HA, 2.1.1.15 and 2.2.4.6]. In particular, if Xi is an object in O for
1 ≤ i ≤ n, then X = X1 ⊕ · · · ⊕ Xn will be an object in O⊗

〈n〉, coming with inert
morphisms X → Xi in O⊗ lying over ρi, or equivalently equivalences ρi!(X) ≃ Xi.
If we introduce an object X ∈ O⊗

〈n〉 as X ≃ X1⊕· · ·⊕Xn for Xi objects of O, then
we implicitly assume that X comes with inert morphisms X → Xi lying over ρi.

(22) If p : C → D is a cocartesian fibration and f : X → Y a morphism in D, then we
usually denote the induced morphism on fibers10 (see [HTT, 5.2.1]) by f! : CX → CY
if the cocartesian fibration p is clear from context, and otherwise as f p! .

(23) Let C be an ∞-category. A subcategory of C is an ∞-category C ′ together with a
monomorphism11 ι : C ′ → C in Cat∞. Up to equivalence a subcategory of C is given
by specifying a replete subcategory of Ho C, see Section B.6.

8Where we of course already use this convention, so implicitly we introduced a functor O′⊗ → Fin∗

exhibiting O′⊗ as an ∞-operad, and F is actually to be a functor O⊗ → O′⊗ over Fin∗.
9See [HA, 2.1.2.7] We will also use the related notation introduced in [HA, 2.1.3.1].

10The notation CX refers to the fiber of p over X, i. e. to the pullback object {X} ×D D of p along the
inclusion of {X}.

11See Appendix B for more on monomorphisms in Cat∞.

21



Chapter 2. Notation and conventions

(24) Let C, D, and E be ∞-categories. Then we denote by

−̂ : Fun(C × D, E) ≃
−→ Fun

(
C,Fun(D, E)

)

and
q− : Fun

(
C,Fun(D, E)

) ≃
−→ Fun(C × D, E)

the equivalences arising from the ×-Fun-adjunction12. We will use the same nota-
tion for the equivalences

−̂ : Fun(D × C, E) ≃
−→ Fun

(
C,Fun(D, E)

)

and
q− : Fun

(
C,Fun(D, E)

) ≃
−→ Fun(D × C, E)

and will make clear from context which of the two variants is meant.

(25) Let C be an ∞-category. We denote by CFib(C) the subcategory of (Cat∞)/C
spanned by the cartesian fibrations and morphisms of cartesian fibrations13. Simi-
larly, we denote by coCFib(C) the subcategory of (Cat∞)/C spanned by the cocarte-
sian fibrations and morphisms of cocartesian fibrations.

(26) Let C be an ∞-category. We denote by

Gr : Fun(C,Cat∞)→ coCFib(C)

the Grothendieck construction that maps a functor F : C → Cat∞ to the cocarte-
sian fibration classified by F .

(27) Let S be a set. Then an S-graded k-module is an S-tuple of k-modules, or equiva-
lently a functor S → LModk(Ab) from the discrete category with set of objects S
to the category of k-modules.
If (Xs)s∈S is an S-graded k-module, then we can form a k-module X :=

⊕
s∈S Xs,

but one should not confuse the k-module X with the S-graded k-module (Xs)s∈S,
for example in the context of (28) directly below.

(28) The category of Z-graded k-modules carries a symmetric monoidal structure de-
fined just like for chain complexes, in which the symmetry isomorphism contains
signs – see Definition 4.1.2.1. Commutative algebras in this symmetric monoidal
category will then of course involve signs in their commutativity relations, so if
x and y are elements of a commutative Z-graded k-algebra A of degrees n and
m, then this implies that x · y = (−1)nmy · x. In some places in the literature
this is referred to as “graded commutativity”. However, as the mentioned symmet-
ric monoidal structure on Z-graded k-modules is the only one we define, there is
no other, “non-graded commutativity” one could consider, so we do not use this
terminology.

12So if F : C × D → E is a functor, then F̂ : C → Fun(D, E) is its adjoint.
13See Appendix C for more on (co)cartesian fibrations.

22



2.3. Various notations and conventions

(29) Let M be a Z-graded k-module that is concentrated in odd degrees. Then the
tensor algebra T (M) (or Tk(M) if we want to make k explicit) of M is defined as

T (M) :=
⊕

i≥0

M⊗i

where the tensor product of Z-graded k-modules is as in (28). One can define a
multiplication on T (M) by k-linearly extending the formula

(m1 ⊗ · · · ⊗mi) · (m
′
1 ⊗ · · · ⊗m

′
j) := m1 ⊗ · · · ⊗mi ⊗m

′
1 ⊗ · · · ⊗m

′
j

for i, j ≥ 0 and m1, . . . ,mi,m
′
1, . . . ,m

′
j elements of M . This makes T (M) into a

Z-graded k-algebra, with unit given by the element 1 of k =M⊗0.
We define the exterior Z-graded k-algebra generated by M , denoted by Λ(M) or
Λk(M), to be the quotient of T (M) by the two-sided ideal generated by elements
of the form m ·m for m ∈M14.
The composition of the inclusion15 of M into T (M) with the quotient morphism
to Λ(M) is an injection, so that we can consider M as a sub-Z-graded-k-module of
Λ(M), and elements of M generate Λ(M) multiplicatively. For m and m′ elements
of M it holds in Λ(M) that

m ·m′ = (m+m′) · (m+m′)−m′ ·m−m ·m−m′ ·m′ = −m′ ·m

so that Λ(M) is in fact a commutative Z-graded k-algebra.
Finally, let us note that we will also use the notation Λ(x1, . . . , xn) as a shorthand
for Λ(k · {x1, . . . , xn}).

(30) For an even integer n we define a commutative Z-graded k-algebra Γ(x), called
the divided power Z-graded k-algebra generated by the variable x in degree n as
follows.
The underlying Z-graded k-module is given by

Γ(x) := k · {1, x[1], x[2], . . . }

with x[i] of degree i · n, where we let x[0] = 1. A multiplication on Γ(x) is defined
by k-linearly extending the formula

x[i] · x[j] :=
(
i+ j

i

)
x[i+j]

14This definition differs from the one given in [Lod98, A.1] if 2 is not invertible in k. In those cases the
usage of the definition of [Lod98, A.1] is however incorrect with regards to the results we cite from
[Lod98] relating to the mixed complex of de Rham forms – the definition we give here is the correct
one. In particular, the proof of [Lod98, 3.2.2] implicitly assumes the definition we have given here.

15This refers to the inclusion of M as the summand M⊗1.

23



Chapter 2. Notation and conventions

for i, j ≥ 0, which makes Γ(x) into a commutative Z-graded k-algebra with multi-
plicative unit 1.
We furthermore define

Γ(x1, . . . , xn) := Γ(x1)⊗ · · · ⊗ Γ(xn)

for all xi of even degree.

(31) Elements for Zn≥0 are tuples of nonnegative integers (a1, . . . , an). We will often
write such a tuple as a⃗, and use e⃗i as notation for the tuple (0, . . . , 0, 1, 0, . . . , 0),
where the single 1 is in the i-th slot. For ϵ⃗ ∈ {0, 1}n we furthermore make the
following definition.

|⃗ϵ| =
n∑

i=1

ϵi

We use analogous notation for tuples indexed by a set set other than {1, . . . , n}
for a natural number n.

(32) For a⃗ ∈ Zn≥0 we will write xa⃗ for the monomial xa11 · · · xann in the polynomial algebra
k[x1, . . . , xn]. Vectors in Zn≥0 are added pointwise, and we have e. g. xa⃗+b⃗ = xa⃗ · xb⃗.
We use analogous notation for exterior and divided power algebras. Concretely, we
will for ϵ⃗ ∈ {0, 1}n use the notation d xϵ⃗ to refer to

dxϵ⃗ := dxϵ11 · · · dxϵnn

and not to d(xϵ⃗). One can remember this as the convention that d binds stronger
than exponentiation with a vector.
Similarly, for i⃗ ∈ Zn≥0 we define

x[⃗i] := x
[i1]
1 · · · x

[in]
n

in the divided power algebra Γ(x1, . . . , xn).

(33) If f ∈ k[x1, . . . , xn] is a polynomial and i⃗ ∈ Zn≥0 a vector, then we let f⃗i ∈ k be
the coefficient of the monomial xi⃗ in f , i. e. the unique decomposition of f as a
k-linear combination of monomials is as follows.

f =
∑

i⃗∈Zn≥0

f⃗ix
i⃗

(34) If n ≥ 0 is an integer, then we denote by Σn the symmetric group on n elements; it is
the group of bijections of the set {1, . . . , n}, also called permutations of {1, . . . , n}.
It will sometimes be convenient to extend an element σ of Σn to a bijection of
{0, . . . , n} by setting σ(0) = 0, which we will do implicitly. If n′ > n, then there

24



2.3. Various notations and conventions

exists an inclusion of Σn into Σn′ given by extending an element σ of Σn by σ(i) = i

for n < i ≤ n′. We also usually not distinguish in notation between σ as an element
of Σn and its extension as an element of Σn′ .

Given a permutation σ on n elements and a subset S of {1, . . . , n}, we say that σ
preserves the ordering of S if for every pair of elements i < i′ in S it holds that
σ(i) < σ(i′). We also use this terminology for other injective maps between totally
ordered sets. Let 1 ≤ i, j ≤ n. Then there is a unique element of Σn that maps
i to j and preserves the ordering of {1, . . . , i − 1, i + 1, . . . , n}. We will call this
element σi→j. Note that if n′ > n, then the extension of σi→j to a permutation
of n′ elements is again of the same form, which justifies that n is not part of the
notation.

We define σcyc,n to be the element σn→1 of Σn. If n is clear from context we will
also denote σcyc,n by σcyc. We denote by Cn the subgroup of Σn generated by σcyc,n.

We also need a manner of restricting permutations. Let σ be an element of Σn, and
S a subset of {1, . . . , n}. Denote the set σ(S) by S ′. Then there are unique order-
preserving bijections ϕ : {1, . . . , |S|} → S and ψ : S ′ → {1, . . . , |S|}. We define
rS(σ) to be the element of Σ|S| that is given by the composition ψ ◦ σ

∣∣S′

S
◦ ϕ. This

defines a map of sets rS : Σn → Σ|S|. Note that in the above situation we have that
if σ′ is another element of Σn, then rS(σ

′ ◦ σ) = rS′(σ′) ◦ rS(σ).

We can also add permutations as follows. Let n, n′ ≥ 0. Then there is a group
homomorphism − ∐ − : Σn × Σn′ → Σn+n′ given as follows. If σ is an element of
Σn and σ′ an element of Σn′ , then we define σ ∐ σ′ as follows.

(
σ ∐ σ′

)
(i) :=

{
σ(i) if 1 ≤ i ≤ n

σ′(i− n) + n if n+ 1 ≤ i ≤ n+ n′

Note that r{1,...,n} ◦ (− ∐ −) and r{n+1,...,n+n′} ◦ (− ∐ −) are the projection to the
first and second factor, respectively.

Given a permutation σ on n elements and a subset S of {1, . . . , n}, we say that
σ cyclically preserves the ordering of S if rS(σ) is an element of C|S|. This ter-
minology can easily be extended to more general maps. Let f : X → Y be an
injective map between any finite totally ordered sets X and Y , and S a subset of
X. Then there exist unique order-preserving bijections ϕ : {1, . . . , |X|} → X and
ψ : Im(f) → {1, . . . , |X|}, making σ := ψ ◦ f |Im(f) ◦ ϕ into an element of Σ|X|.
We say that f (cyclically) preserves the ordering of the subset S if σ (cyclically)
preserves the ordering of the subset ϕ−1(S).

(35) Formulations such as “C admits all colimits” mean that C admits all small col-
imits. We never refer to non-small (co)limits with generic formulations. See also
Section 2.4 directly below.

25



Chapter 2. Notation and conventions

2.4. Size issues
In Section 2.3 (4) we defined Cat as the 1-category16 of all 1-categories. Taken directly

as stated Cat would be an object of itself and we would run into the usual set-theoretic
paradoxes, so we need to be more careful in defining Cat.

The usual way to deal with this issue is to postulate the existence of Grothendieck
universes U1 ∈ U2 ∈ U3 (and possibly more if required), which are sets whose elements
satisfy the usual axioms of set theory. Sets that are elements of Ui are called Ui-small.
We can then perform all the usual operations of set theory with Ui-small sets, but now
there exists e. g. a U2-small set of U1-small sets (namely U1).

For i ≥ j we could (this is ad hoc notation) define an (i, j)-small 1-category to be
a 1-category C whose set of objects is Ui-small and for which MorC(X, Y ) is Uj-small
for all objects X and Y of C. Let us use Cati,j as ad hoc notation for the 1-category
of (i, j)-small 1-categories. What we usually consider as 1-categories are (2, 1)-small 1-
categories, which then form the 1-category Cat2,1, which will however not be (2, 1)-small
itself, though it is (3, 2)-small. For a more detailed discussion of Grothendieck universes
and size issues in an ∞-categorical context, see [HTT, 1.2.15].

In this thesis we will very often use gadgets such as Cat or Cat∞. To be completely
rigorous we should thus always keep track of with respect to which universe the various
objects we consider are small. In most of the thesis this would however cause significant
notational bloat while being completely orthogonal to the rest of the content, so to make
the exposition more accessible we will instead stay silent on size issues, while of course
still taking care not to use inadmissible arguments. There will be one part of the thesis,
Chapter 7, where a size issue is somewhat relevant for the argument, and there we will
deal with this issue in an explicit manner.

In particular, we will not decorate Cat∞ to keep track of sizes, and might e. g. define
an ∞-category as a pullback in Cat∞ of a diagram that involves the ∞-category Cat∞.
While in this notation it would then seem as though the two occurrences of Cat∞ refer
to the same gadget, a diligent adding of size decorations would distinguish them, and we
will be careful not to make any arguments in which is not possible to do so consistently.

16We defined Cat as a (2, 2)-category, but to make our exposition here easier we only consider the
underlying 1-category.

26



Chapter 3.

Bialgebras and modules over them
Let C be a symmetric monoidal category and A an associative algebra in C. A left

module in C over A consists of an object X in C together with a morphism A⊗X → X

satisfying some properties. If A is commutative, then any left-A-module can naturally
be made into a A,A-bimodule, so that we can use the relative tensor product over A to
define a monoidal structure on the category of left-A-modules LModA(C).

Now let A be a associative, coassociative bialgebra. Then there is also a way to define
a tensor product on LModA(C), and in such a way that the underlying object in C of
the tensor product of two left-A-modules X and Y is just given by the tensor prod-
uct of the two underlying objects. To do this, we need to define an action morphism
A⊗ (X ⊗ Y )→ X ⊗ Y , which we do as the composition

A⊗ (X ⊗ Y )
∆⊗idX⊗Y
−−−−−−→ (A⊗ A)⊗ (X ⊗ Y ) ∼= (A⊗X)⊗ (A⊗ Y )→ X ⊗ Y

where ∆ is the comultiplication on A, the middle isomorphism uses associativity and
symmetry of the tensor product to swap the two middle tensor factors, and the last
morphism is the tensor product of the action morphisms for X and Y . One can then
check, that this makes X ⊗ Y into a left-A-module.

It is not only possible to construct the monoidal category LModA(C) for individual
bialgebras A – this construction enjoys functoriality in both A and C: If f : A→ B is a
morphism of bialgebras in C, then there is a monoidal functor

LModB(C)→ LModA(C)

that preserves the underlying object but restricts the action along f . If A is a bialgebra
in C and F : C→ D is a symmetric monoidal functor, then F induces a monoidal functor

LModA(C)→ LModF (A)(D)

that sends a left-A-module with underlying object X to a left-F (A)-module with under-
lying object F (X).

To encode this functoriality we can define a category BiAlgOp as follows. Objects are
pairs (C, A) with C a symmetric monoidal category and A an associative and coassocia-
tive bialgebra in C. Morphisms from (C, A) to (D, B) are pairs (F, f), where F : C→ D
is a symmetric monoidal functor, and f : B → F (A) is a morphism of bialgebras in D.
We can then upgrade the construction of LModA(C) to a functor

LMod : BiAlgOp→ MonAssoc(Cat)

27



Chapter 3. Bialgebras and modules over them

where MonAssoc(Cat) is the category of monoidal categories.
The goal of this section is to implement this idea for ∞-categories rather than just

ordinary categories. In this setting, we want to construct an∞-category BiAlgOp whose
objects can be described as pairs (C, A), where C is an E2-monoidal ∞-category and A

an E1,E1-bialgebra in C. We then want to upgrade LMod to a functor

BiAlgOp→ MonAssoc(Cat∞)

that can be interpreted as functorially upgrading left module categories over E1 algebras
to E1-monoidal ∞-categories in the way described above.

We now briefly describe our approach to constructing BiAlgOp. Instead of trying
to construct BiAlgOp directly, we will first construct an infinity category AlgOp that
can be described as having as objects pairs (C, A) where C is a E1-monoidal infinity
category and A is an E1-algebra in C, and where a morphism from (C, A) to (D, B) is
given by a pair (F, f) with F : C → D an E1-monoidal functor and f : B → F (A) a
morphism in AlgE1

(D). The∞-category AlgOp will turn out to have products, with the
product of (C, A) and (D, B) given by (C × D, (A,B)). We can thus consider monoids
in AlgOp. A monoid in AlgOp roughly consists of an object (C, A) in AlgOp together
with a coherently associative multiplication morphism (C, A) × (C, A) → (C, A). Such
a morphism corresponds to an E1-monoidal functor F : C × C → C and a morphism
f : A → F (A,A) in AlgE1

(C). By the Eckmann-Hilton argument, F (A,A) is equivalent
to A⊗A, so that we can identify f with a morphism A→ A⊗A, which we can interpret
as being the comultiplication of a coalgebra structure on A. We will later show that
MonE1(AlgOp) indeed implements the discussed idea of what BiAlgOp should be.

Finally, the functor LMod : AlgOp → Cat∞ sending a pair (C, A) to LModA(C) is
product-preserving, so that we obtain an induced functor BiAlgOp→ MonE1(Cat∞).

Our approach is heavily inspired by [HA, 4.8]. The goal in [HA, 4.8.3] is to functorially
encode the fact that the ∞-category of left-A-modules1 LModA(C) can be upgraded
to an ∞-category that is right-tensored over C. The functoriality encoded is however
not the same as the one we discussed above: Lurie’s construction maps a morphism
A → B of algebras in C to the functor LModA(C) → LModB(C) that sends a left-
A-module X to the left-B-module B ⊗A X. The functor Lurie constructs preserves
products as well [HA, 4.8.5.16] and so induces a functor on E1-monoids. However, due to
the covariant functoriality in algebras, this induced functor describes the E1-monoidal
structure induced on LModA(C) by an E2-algebra A using the relative tensor product
over A (see the discussion at the start of this section). Because of this, we will mostly
follow the ideas in [HA, 4.8.3 and 4.8.5], making the changes that are needed to make
the construction contravariant in algebras.

During preparation of this text, the preprint [Rak20] appeared, in which existence of
constructions similar to the ones we discuss below is also claimed in analogy to Lurie’s
construction, though without proof, see [Rak20, 2.2 and in particular 2.2.6].

1Lurie actually considers right modules, but to keep our exposition consistent we will discuss Lurie’s
results in the analogous form for left modules.

28



3.1. Modules over algebras

We now give a brief overview of the sections below. In Section 3.1 we will construct
AlgOp as well as the functor LMod : AlgOp → Cat∞. We will also discuss how LMod
interacts with presentability. For this we will construct a variant AlgOpPr of AlgOp whose
objects can be interpreted as pairs (C, A) with C a presentable monoidal∞-category and
A an algebra in C, and show that LMod lifts to a functor AlgOpPr → PrL.

In Section 3.2 we will show that LMod is product-preserving as a functor from AlgOp
to Cat∞ and hence induces a symmetric monoidal functor with respect to the respective
cartesian symmetric monoidal structures. We will also construct an appropriate symmet-
ric monoidal structure on AlgOpPr and show that the functor LMod : AlgOpPr → PrL
can be upgraded to a symmetric monoidal functor as well.

Bialgebras will be defined in Section 3.3, and in Section 3.4 we will then discuss how
LMod induces functors AlgO(AlgOp) → MonO(Cat∞) as well as the variant functor
AlgO(AlgOpPr) → MonPr

O (Cat∞), where MonPr
O (Cat∞) is the ∞-category of presentable

O-monoidal ∞-categories. We will furthermore make precise how we can interpret ob-
jects of AlgO(AlgOp) as pairs (C, A), where C is an O⊗Assoc-monoidal∞-category, and
A is an Assoc,O-bialgebra in C.

3.1. Modules over algebras
In this section we will construct a functor LMod : AlgOp → Cat∞ implementing the

idea described in the introduction to Chapter 3. To do so we first need to construct
the ∞-category AlgOp, which is to have as objects pairs (C, A) with C a monoidal
∞-category and A an associative algebra in C. We can thus interpret AlgOp as a sort of
∞-category of algebras not only in a single monoidal∞-category, but a whole collection
of them – in this case all of them. The notion that encapsulates the idea of a collection of
monoidal ∞-categories is that of a cocartesian family of monoidal ∞-categories, which
we will define in Section 3.1.1. The process of forming algebras in cocartesian families
of monoidal ∞-categories is then defined and studied in Section 3.1.2, and everything is
put together to construct AlgOp and LMod in Section 3.1.3.

3.1.1. Cocartesian families of monoidal ∞-categories

In this section we discuss the notion cocartesian families of O-monoidal ∞-categories
for ∞-operads O. We start in Section 3.1.1.1 with the definition. In Section 3.1.1.2
we discuss an important example: The universal cocartesian family of O-monoidal ∞-
categories, which can be though of as the collection of all O-monoidal ∞-categories. In
particular, this will be the example that we will use to define AlgOp and LMod as dis-
cussed in the introduction to Chapter 3. We end the section with Section 3.1.1.3, in which
we discuss the interaction between cocartesian families and products. This will be rele-
vant later, when we want to argue that the functor to be defined LMod : AlgOp→ Cat∞
is compatible with products.

29



Chapter 3. Bialgebras and modules over them

3.1.1.1. Definition

As we want to form∞-categories like AlgOp in which objects are algebras not just in
a single monoidal ∞-category, but in a whole collection of monoidal ∞-categories, we
first need a definition that encapsulates the idea of combining a collection of monoidal
∞-categories into a single mathematical object.

If O is an ∞-operad, then by [HA, 2.4.2.4] a cocartesian fibration over O⊗ is an
O-monoidal∞-category if and only if the associated functorO⊗ → Cat∞ is anO-monoid.
We can thus consider a functor

F : C → MonO(Cat∞)

for some ∞-category C as parametrizing a collection of O-monoidal ∞-categories by C.
Composing with the inclusion of the full subcategory MonO(Cat∞) into Fun(O⊗,Cat∞),
we obtain a functor

F ′ : C → Fun
(
O⊗,Cat∞

)

of which we can take the adjoint |F ′ : O⊗×C → Cat∞. By passing to the cocartesian fibra-
tion classified by the functor |F ′ we then obtain a cocartesian fibration p : D⊗ → O⊗×C.
This cocartesian fibration will have extra properties that correspond to F ′ factoring over
MonO(Cat∞). This leads us to the following proposition and definition.

Proposition 3.1.1.1. Let C be an ∞-category, O an ∞-operad, and p : D⊗ → O⊗ × C
a cocartesian fibration. Then the following are equivalent.

(1) The functor F : C → Fun(O⊗,Cat∞) that corresponds to p under the equivalence

coCFib
(
O⊗ × C

) Gr
←− Fun

(
O⊗ × C,Cat∞

) }(−)
←−− Fun

(
C,Fun

(
O⊗,Cat∞

))

factors through MonO(Cat∞).

(2) For every object X of C the restriction pX : D⊗
X → O

⊗ is a cocartesian fibration of
∞-operads2. ♥

Proof. Let G := Gr−1(p), let F be as in (1), and let X be an object of C. Naturality of the
Grothendieck construction3 (see [GHN17, A.32]) implies that the cocartesian fibration
pX is classified by the restriction of G to O⊗ ≃ O⊗ × {X}. [HA, 2.4.2.4] implies that
pX is a cocartesian fibration of ∞-operads if and only if this restriction is an O-monoid.
Using naturality of }(−) we can reformulate this as follows: The cocartesian fibration
pX is a cocartesian fibration of ∞-operads if and only if F (X) is an O-monoid. As
MonO(Cat∞) is defined as the full subcategory of Fun

(
O⊗,Cat∞

)
of O-monoids, this

finishes the proof.
2See [HA, 2.1.2.13] for a definition
3Precomposing a functor into Cat∞ by some functor ι corresponds to taking the base change along ι

of the corresponding cocartesian fibration.

30



3.1. Modules over algebras

Definition 3.1.1.2 ([HA, Definition 4.8.3.1]). Let C be an ∞-category and O an
∞-operad. A cocartesian C-family of O-monoidal ∞-categories is a cocartesian fibra-
tion p : D⊗ → O⊗ × C satisfying the conditions in Proposition 3.1.1.1.

We let coCFamO(C) be the full subcategory of coCFib(O⊗×C) spanned by cocartesian
C-families of O-monoidal ∞-categories. ♦

Remark 3.1.1.3 ([HA, 4.8.3.3]). Let C be an ∞-category and O an ∞-operad. Let ι
be the inclusion of MonO(Cat∞) into Fun(O⊗,Cat∞).

Then the equivalences Gr and }(−) as in Proposition 3.1.1.1 restrict as in the following
commutative diagram where the right vertical functor is the inclusion, and such that all
horizontal functors are equivalences.

Fun
(
C,Fun

(
O⊗,Cat∞

))
Fun

(
O⊗ × C,Cat∞

)
coCFib

(
O⊗ × C

)

Fun
(
C,MonO(Cat∞)

)
coCFamO(C)

}(−)

≃
Gr
≃

≃

ι∗

Note that Fun
(
C,MonO(Cat∞)

)
is contravariantly functorial in C and4 O, so the con-

struction of coCFamO(C) must be as well. Using naturality of }(−) and Gr (see [GHN17,
A.32] and [Maz19b]) we can describe this functoriality explicitly as follows.

Let G : C ′ → C be a functor of∞-categories, α : O′⊗ → O⊗ a morphism of∞-operads,
and F : C → MonO(Cat∞) a functor corresponding under the above equivalence to a
cocartesian C-family of O-monoidal ∞-categories p. Then the composite functor

C ′
G
−→ C

F
−→ MonO(Cat∞)

α∗

−→ MonO′(Cat∞)

corresponds under the above functor to the pullback p′ of p along α × G, as in the
following diagram.

D′⊗ D⊗

O′⊗ × C ′ O⊗ × C

p′ p

α×G

(3.1)

In particular, the pullback of a cocartesian family of monoidal ∞-categories along a
functor of the form α×G is again a cocartesian family of monoidal ∞-categories. ♦

3.1.1.2. The universal family

In this section we discuss the universal cocartesian family of O-monoidal∞-categories,
from which we can obtain every other cocartesian family of O-monoidal∞-categories by
pulling back. This will also be the main example that we will apply later constructions
to.

4If α : O′⊗ → O⊗ is a morphism of ∞-operads, then it follows directly from the definition that the
functor α∗ : Fun(O⊗,Cat∞)→ Fun(O′⊗,Cat∞) restricts to a functor on monoids.

31



Chapter 3. Bialgebras and modules over them

Definition 3.1.1.4 ([HA, 4.8.3.3]). Let O be an ∞-operad.
We define

pO : M̃onO(Cat∞)⊗ → O⊗ ×MonO(Cat∞)

to be the cocartesian MonO(Cat∞)-family of O-monoidal ∞-categories that under the
equivalence in Remark 3.1.1.3 corresponds to the functor idMonO(Cat∞). ♦

Remark 3.1.1.5 ([HA, 4.8.3.3]). Let O be an ∞-operad, let C be an ∞-category,
and let p : D⊗ → O⊗ × C be a cocartesian C-family of O-monoidal ∞-categories. Let
F : C → MonO(Cat∞) be the functor corresponding to p under the equivalence in Re-
mark 3.1.1.3. Then F factors as F ≃ idMonO(Cat∞) ◦ F , so by Remark 3.1.1.3 we can
conclude that there is a pullback diagram as follows.

D⊗ M̃onO(Cat∞)⊗

O⊗ × C O⊗ ×MonO(Cat∞)

p pO

idO⊗×F

♦

3.1.1.3. Compatibility of fibers with products

The property described in the following proposition and definition regarding a cocarte-
sian family of monoidal ∞-categories’ interaction with products will be needed later.

Proposition 3.1.1.6. Let C be an ∞-category, O an ∞-operad, p : D⊗ → O⊗ × C a
cocartesian C-family of O-monoidal ∞-categories, and F : C → MonO(Cat∞) the functor
corresponding to p as in Proposition 3.1.1.1. Assume that C admits all products. Then
the following are equivalent.

(1) F preserves products.

(2) For every object O in O⊗ the cocartesian fibration

pO : D
⊗
O := D⊗ ×O⊗×C

(
{O} × C

) pr2−−→ {O} × C
≃
−→ C

has fibers compatible with products in the sense of Definition C.2.0.1.

(3) For every object O in O the cocartesian fibration

pO : D
⊗
O := D⊗ ×O⊗×C

(
{O} × C

) pr2−−→ {O} × C
≃
−→ C

has fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Proof that (1) implies (2): Let ι denote the inclusion of the full subcategory
MonO(Cat∞) into Fun(O⊗,Cat∞), which preserves products by Proposition F.2.0.1. Let
O be an object in O⊗. As limits in in functor categories are computed pointwise by [HTT,

32



3.1. Modules over algebras

5.1.2.3], the functor evO : Fun(O⊗,Cat∞)→ Cat∞ preserves products as well, and thus
the composite evO ◦ ι ◦ F preserves products. By using naturality of the Grothendieck
construction and }(−) we can conclude that the cocartesian fibration pO is classified
by evO ◦ ι ◦ F , and hence pO having fibers compatible with products follows from Re-
mark C.2.0.2.

Proof that (2) implies (3): Clear.
Proof that (3) implies (1): Using notation from above, that pO has fibers compatible

with products for every object O in O implies by Remark C.2.0.2 that evO◦ι◦F preserves
products for every O in O. Combining that products in functor categories are detected
pointwise and that the composition

MonO(Cat∞)
ι
−→ Fun(O⊗,Cat∞)→ Fun(O,Cat∞)

detects products as well by Proposition F.2.0.1 we can conclude that F preserves prod-
ucts.

Definition 3.1.1.7. Let C be an ∞-category, O an ∞-operad, and p : D⊗ → O⊗ × C a
cocartesian C-family of O-monoidal ∞-categories.

We say that p has the product-fiber-property if C admits all products and satisfies the
equivalent conditions in Proposition 3.1.1.6. ♦

The product-fiber-property is preserved by taking the pullback as in Remark 3.1.1.3
of a cocartesian family of monoidal ∞-categories, as long as the functor G preserves
products, as we record in the following proposition.

Proposition 3.1.1.8. In the situation of diagram (3.1) of Remark 3.1.1.3, if p has the
product-fiber-property, C ′ admits all products, and G preserves products, then p′ has the
product-fiber property as well. ♥

Proof. Follows immediately from the definition in terms of condition (2) in Proposi-
tion 3.1.1.6 using that (induced maps on) fibers of p′ can be identified with (induced
maps on) fibers of p by Proposition C.1.1.1.

Finally, we end this section by noting that the universal cocartesian family of O-
monoidal ∞-categories satisfies the product-fiber-property.

Proposition 3.1.1.9. Let O be an ∞-operad. Then pO has the product-fiber-property.
♥

Proof. Follows immediately from the description Proposition 3.1.1.6 (1), as the functor
corresponding to pO is by definition the identity functor, which preserves products.

3.1.2. Algebras in cocartesian families
Given a cocartesian C-family of O-monoidal ∞-categories p : D⊗ → O⊗ × C, Lurie

defines5 in [HA, Notation 4.8.3.11] an ∞-category AlgO′/O(D) whose objects can be
5While the definition is only written down for O′⊗ = O⊗ = Assoc⊗ and O′⊗ = O⊗ = LM⊗, we present

a straightforward generalization.

33



Chapter 3. Bialgebras and modules over them

described as being pairs (X,A) where X is an object of C (and hence determines a
O-monoidal ∞-category D⊗

X) and A is an object of AlgO′/O(D
⊗
X). We will discuss a defi-

nition of AlgO′/O(D) in Section 3.1.2.1. Lurie’s definition is not quite written down like
the definition we present however, so we next show in Section 3.1.2.2 that the two defi-
nitions agree. We will then spend some time discussing various functorialities exhibited
by this construction. Fixing O′ → O, we can vary the cocartesian family of O-monoidal
∞-categories D by taking pullbacks along functors C ′ → C. In fact, we showed in Re-
mark 3.1.1.5 that every family ofO-monoidal∞-categories can be obtained like this from
the universal family ofO-monoidal∞-categories pO. The main message of Section 3.1.2.3
is that we also do not obtain anything new when taking algebras: AlgO′/O(D) can be ob-
tained as a pullback of AlgO′/O(M̃onO(Cat∞)). More useful is functoriality when varying
O′, which we discuss in Section 3.1.2.4, and functoriality that is encoded by the family
itself, which will be discussed in Section 3.1.2.5, and in which we we will show that there
is a cocartesian fibration AlgO′/O(D) → C. We end this section with Section 3.1.2.6, in
which we discuss the interaction of this cocartesian fibration with products in C.

3.1.2.1. Definition

Definition 3.1.2.1. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism of ∞-operads,
and p : D⊗ → O⊗×C a cocartesian C-family of O-monoidal∞-categories. Then we define
ÃlgO′/O(D) together with prC and prFun as the following pullback of ∞-categories.

ÃlgO′/O(D) Fun
(
O′⊗,D⊗

)

C Fun
(
O′⊗,O⊗ × C

)

prFun

prC p∗

̂(α×idC)

♦

Proposition 3.1.2.2. Let C be an∞-category, α : O′⊗ → O⊗ a morphism of∞-operads,
and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal ∞-categories.

Let A be an object of ÃlgO′/O(D). Then the following are equivalent.

(1) The functor prFun(A) : O′⊗ → D⊗ sends inert morphisms to p-cocartesian ones.

(2) The functor A′ : O′⊗ → D⊗
prC(A)

over O⊗ which corresponds to A under the equiv-
alence

ÃlgO′/O(D)prC(A)

≃ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O⊗×C) C ×C

{
prC(A)

}

≃ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O⊗×C)

{
prC(A)

}

≃ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O⊗×C) Fun

(
O′⊗,O⊗ ×

{
prC(A)

})
×Fun(O′⊗,O⊗) {α}

34



3.1. Modules over algebras

≃ Fun
(
O′⊗,D⊗ ×O⊗×C

(
O⊗ ×

{
prC(A)

}))
×Fun(O′⊗,O⊗) {α}

≃ FunO⊗

(
O′⊗,D⊗

prC(A)

)

lies in the full subcategory AlgO′/O(DprC(A)) of O′-algebras in the O-monoidal
∞-category D⊗

prC(A)
. ♥

Proof. Let A′ be as in (2). The following commutative diagram summarizes the situa-
tion, where pO : O⊗ → Fin∗ is the canonical morphism of ∞-operads, ι is inclusion of
O⊗ ≃ O⊗ ×

{
prC(A)

}
, and the square in the middle right is a pullback square.

O′⊗ D⊗
prC(A)

D⊗

O⊗ O⊗ × C

Fin∗

A′

α

prFun(A)

pprC(A)
p

ι

pO

By definition [HA, 2.1.2.7] A′ lies in AlgO′/O(DprC(A)) if and only if A′ carries inert
morphisms to pO ◦ pprC(A)-cocartesian ones. As α is a morphism of ∞-operads, it sends
inert morphisms to pO-cocartesian ones, so it follows from [HTT, 2.4.1.3 (3)] that A′ lies
in AlgO′/O(DprC(A)) if and only if it carries inert morphisms to pprC(A)-cocartesian ones,
which by Proposition C.1.1.1 is the case if and only if prFun(A) carries inert morphisms
to p-cocartesian ones.

Definition 3.1.2.3. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism of ∞-operads,
and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal ∞-categories.

Then we define AlgO′/O(D) to be the full subcategory of ÃlgO′/O(D) spanned by those
objects satisfying the equivalent conditions in Proposition 3.1.2.2. ♦

Remark 3.1.2.4. In the situation of Definition 3.1.2.3 it follows immediately from
Proposition 3.1.2.2 (2) that for any object C of C the fiber AlgO′/O(D)C is naturally
equivalent to AlgO′/O(DC). ♦

3.1.2.2. Comparison with Lurie’s definition

Lurie’s definition is not phrased quite like Definition 3.1.2.3, so we show below in
Proposition 3.1.2.7 that Lurie’s definition is equivalent to the one we used.

Definition 3.1.2.5 ([HA, 4.8.3.11]). Let C be a quasicategory representing an ∞-
category C, let O be a quasicategorical ∞-operad representing an ∞-operad O, let
p : D⊗ → O⊗× C be an inner fibration representing a cocartesian C-family of O-monoidal

35



Chapter 3. Bialgebras and modules over them

∞-categories, and let a : O′⊗ → O⊗ be a morphism of quasicategorical ∞-operads repre-
senting a morphism of ∞-operads α : O′⊗ → O⊗.

We define an unnamed property for functors of quasicategories q : A→ C, which is to
hold if there is a natural bijection

MorsSet/C(−, q) ∼= MorsSet/O⊗×C
(a×−, p)

of functors sSet/C → Set. ♦

Remark 3.1.2.6. In the situation of Definition 3.1.2.5, the Yoneda lemma implies that
if a q with the property exists, then it is unique up to canonical isomorphism as an
object of sSet/C. ♦

Proposition 3.1.2.7. Let C be a quasicategory representing an ∞-category C, let O
be a quasicategorical ∞-operad representing an ∞-operad O, let p : D⊗ → O⊗ × C be
an inner fibration of quasicategories representing a cocartesian C-family of O-monoidal
∞-categories, and let a : O′⊗ → O⊗ be a morphism of quasicategorical ∞-operads repre-
senting a morphism of ∞-operads α : O′⊗ → O⊗.

Define E and q via the following categorical pullback square in sSet.

E Fun
(
O′⊗, D⊗

)

C Fun
(
O′⊗, O⊗ × C

)
q p∗

̂(a×idC)

Then the following hold.

(1) The map q satisfies the property defined in Definition 3.1.2.5.

(2) In particular, if a = idAssoc and a = idLM, then q can be identified with the functors
of quasicategories Ãlg(D) → C and L̃Mod(D) → C as defined in [HA, 4.8.3.11],
respectively.

(3) The pullback is a homotopy pullback with respect to the Joyal model structure.

(4) The pullback square represents the pullback square of ∞-categories in Defini-
tion 3.1.2.1 that defines ÃlgO′/O(D).

(5) If a = idAssoc, then Alg(D)→ C as defined in [HA, 4.8.3.11] represents Alg/Assoc(D)
as defined in Definition 3.1.2.3. If a = idLM, then LMod(D)→ C as defined in [HA,
4.8.3.11] represents Alg/LM(D) as defined in Definition 3.1.2.3. ♥

Proof. Proof of (1): Let s : K→ C be a map of simplicial sets. Then there is a sequence
of bijections natural in s (as an object of sSet/C) as follows.

MorsSet/C(s, q)
∼= MorsSet(K, E)×MorsSet(K,C) {s}

36



3.1. Modules over algebras

∼= MorsSet

(
K,Fun

(
O′⊗, D⊗

))
×MorsSet

(
K,Fun(O′⊗,O⊗×C)

) MorsSet(K, C)×MorsSet(K,C) {s}

∼= MorsSet

(
K,Fun

(
O′⊗, D⊗

))
×MorsSet

(
K,Fun(O′⊗,O⊗×C)

)
{

̂(a× s)
}

∼= MorsSet
(
O′⊗ × K, D⊗

)
×MorsSet(O′⊗×K,O⊗×C)

{
(a× s)

}

∼= MorsSet/O⊗×C
(a× s, p)

Proof of (2): Follows directly from the definition.
Proof of (3): By assumption, p is a cocartesian fibration in the sense of [HTT, 2.4.2.1],

so that by [HTT, 3.1.2.1] the functor of quasicategories p∗ is again a cocartesian fibration
in the sense of [HTT, 2.4.2.1]. That the pullback square is a homotopy pullback square
in the Joyal model structure follows now by applying [HTT, 3.3.1.4] (to the opposite
diagram).

Proof of (4): Follows directly from (3).
Proof of (5): Immediate by unwrapping the definitions of the respective full subcate-

gories.

3.1.2.3. Functoriality when varying families

We next consider functoriality of ∞-categories of algebras of cocartesian families of
monoidal ∞-categories when we vary the cocartesian family. We first discuss functori-
ality in the ∞-operad factor, for which the following proposition can be considered a
generalization of Proposition E.2.0.2.

Remark 3.1.2.8. Let C be an∞-category, α : O′⊗ → O⊗ and β : O′′⊗ → O′⊗ morphisms
of∞-operads, and p : D⊗ → O⊗×C a cocartesian C-family of O-monoidal∞-categories.
Assume that the following diagram is a pullback diagram in Cat∞.

D′⊗ D⊗

O′⊗ × C O⊗ × C

G⊗

p′ p

α×idC

(3.2)

By Remark 3.1.1.3 is p′ is a cocartesian C-family of O′-monoidal ∞-categories.
Consider the following commutative diagram, where the square on the left is the

pullback square of Definition 3.1.2.1 and the square on the right is induced by the
pullback square (3.2) by applying Fun(O′′⊗,−) and hence also a pullback square.

ÃlgO′′/O′(D′) Fun
(
O′′⊗,D′⊗

)
Fun

(
O′′⊗,D⊗

)

C Fun
(
O′′⊗,O′⊗ × C

)
Fun

(
O′′⊗,O⊗ × C

)

prFun

prC

G⊗
∗

p′∗ p∗

̂(β×idC)

(̂−)((α◦β)×idC)

(α×idC)∗

37



Chapter 3. Bialgebras and modules over them

By the pasting lemma for pullbacks [HTT, 4.4.2.1], the outer square is a pullback as
well, so that we obtain a canonical identification as follows.

ÃlgO′′/O′

(
D′
)
≃ ÃlgO′′/O(D)

Furthermore, with the description of p′-cocartesian morphisms from Proposition C.1.1.1
it follows directly from Definition 3.1.2.3 in the form of Proposition 3.1.2.2 (1) that this
equivalence restricts to an equivalence of ∞-categories of algebras as follows.

AlgO′′/O′

(
D′
)
≃ AlgO′′/O(D) ♦

We now turn to functoriality in the ∞-category that parametrizes our cocartesian
family of monoidal ∞-categories.

Construction 3.1.2.9. Let F : C ′ → C be a functor of ∞-categories, α : O′⊗ → O⊗ a
morphism of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories. Assume that the following diagram is a pullback diagram in Cat∞.

D′⊗ D⊗

O⊗ × C ′ O⊗ × C

G⊗

p′ p

idO⊗×F

(∗)

Remark 3.1.1.3 implies that p′ is a cocartesian C ′-family of O-monoidal ∞-categories.
Then there is a commutative cube as follows

ÃlgO′/O(D
′) Fun

(
O′⊗,D′⊗

)

ÃlgO′/O(D) Fun
(
O′⊗,D⊗

)

C ′ Fun
(
O′⊗,O⊗ × C ′

)

C Fun
(
O′⊗,O⊗ × C

)

F∗

prFun

prC′ G⊗
∗

p′∗prFun

prC
F

̂(α×idC′)

(idO⊗×F)
∗

̂(α×idC)

p∗

where the front and back squares are the defining pullback squares for ÃlgO′/O(D) and
ÃlgO′/O(D

′), and the dashed functor F∗ is the induced one.
The square on the right is obtained by applying Fun(O′⊗,−) to the pullback square

(∗) and is thus a pullback square as well. As the front square is also a pullback square, it
follows that their composition, which we can identify with the composition of the left and

38



3.1. Modules over algebras

back square, is a pullback square as well. As the back square is also a pullback square,
if finally follows using the pasting law for pullbacks [HTT, 4.4.2.1] that the square

ÃlgO′/O(D
′) ÃlgO′/O(D)

C ′ C

F∗

prC′ prC

F

(3.3)

is a pullback square. ♦

Proposition 3.1.2.10. Assume we are in the situation of Construction 3.1.2.9. Then
the pullback square (3.3) restricts to a pullback square in Cat∞ as follows.

AlgO′/O(D
′) AlgO′/O(D)

C ′ C

F∗

prC′ prC

F

♥

Proof. It suffices to show that the dashed functor in the following commutative diagram
(where the vertical functors are the canonical inclusions) exists and that the square is a
pullback square in Cat∞.

AlgO′/O(D
′) AlgO′/O(D)

ÃlgO′/O(D
′) ÃlgO′/O(D)

F∗

F∗

Let A be an object in ÃlgO′/O(D
′). Then by Definition 3.1.2.3 and Proposition 3.1.2.2

(1), A is in AlgO′/O(D
′) if and only if prFun(A) : O′⊗ → D′⊗ sends inert morphisms

to p′-cocartesian morphisms, which by Proposition C.1.1.1 is the case if and only if
G⊗ ◦ prFun(A) ≃ prFun(F∗(A)) sends inert morphisms to p-cocartesian morphisms. Thus
A is in AlgO′/O(D

′) if and only if F∗(A) is in AlgO′/O(D). This shows that in the fol-
lowing commutative diagram of ∞-categories, where the small square is defined as a
pullback square, the dashed functor making the outer square commute exists, and that
the induced dotted functor is essentially surjective (this uses the description of E given
in Proposition B.5.2.1).

AlgO′/O(D
′)

E AlgO′/O(D)

ÃlgO′/O(D
′) ÃlgO′/O(D)

F∗

q

F∗

39



Chapter 3. Bialgebras and modules over them

By Proposition B.5.2.1 the functor q is fully faithful, so the dotted functor is fully faithful
as well and hence an equivalence. It follows that the outer square is a pullback square
because the inner square is.

Remark 3.1.2.11. Let C be an ∞-category, let α : O′⊗ → O⊗ be a morphism of
∞-operads, let p : D⊗ → O⊗×C be a cocartesian C-family of O-monoidal ∞-categories,
and let F : C → MonO(Cat∞) be the functor corresponding to p under the equivalence
in Remark 3.1.1.3. By Remark 3.1.1.5 there is a pullback diagram as follows.

D⊗ M̃onO(Cat∞)⊗

O⊗ × C O⊗ ×MonO(Cat∞)

p pO

idO⊗×F

Applying Proposition 3.1.2.10 we obtain a pullback diagram of algebra ∞-categories.

AlgO′/O(D) AlgO′/O

(
M̃onO(Cat∞)

)

C MonO(Cat∞)

F∗

prC prMonO(Cat∞)

F

♦

3.1.2.4. Functoriality when varying the operad

In this section we discuss functoriality of AlgO′/O(D) when varying O′.

Construction 3.1.2.12. Let C be an ∞-category, α : O′⊗ → O⊗ and β : O′′⊗ → O′⊗

morphisms of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories.

Then the commutative diagram

C Fun
(
O′⊗,O⊗ × C

)
Fun

(
O′⊗,D⊗

)

C Fun
(
O′′⊗,O⊗ × C

)
Fun

(
O′′⊗,D⊗

)
idC

̂(α×idC)

β∗

p∗

β∗

(̂−)((α◦β)×idC)
p∗

induces a functor on pullbacks as follows.

β∗ : ÃlgO′/O(D)→ ÃlgO′′/O(D) ♦

Remark 3.1.2.13. In the situation of Construction 3.1.2.12, if γ : O′′′⊗ → O′′⊗ is an-
other morphism of ∞-operads, then it is clear from the definition that the composition
γ∗ ◦ β∗ is equivalent to (β ◦ γ)∗. ♦

40



3.1. Modules over algebras

Proposition 3.1.2.14. In the situation of Construction 3.1.2.12, the functor

β∗ : ÃlgO′/O(D)→ ÃlgO′′/O(D)

restricts to a functor on algebras as follows.

β∗ : AlgO′/O(D)→ AlgO′′/O(D) ♥

Proof. What we have to show is by Definition 3.1.2.3 in the form of Proposition 3.1.2.2
(1) that the functor

β∗ : Fun
(
O′⊗,D⊗

)
→ Fun

(
O′′⊗,D⊗

)

sends functors that send inert morphisms to p-cocartesian morphisms to functors with
the same property. But this follows immediately from the fact that, as it is a morphism
of ∞-operads, β preserves inert morphisms.

Remark 3.1.2.15. Assume we are in the situation of Construction 3.1.2.12, and let C
be an object of C. The functor β∗ : AlgO′/O(D) → AlgO′′/O(D) is a functor over C and
thus induces a functor as follows.

β∗
C : AlgO′/O(D)C → AlgO′′/O(D)C

It follows directly from the definition together with Remark 3.1.2.4 that this functor can
be identified with the following functor induced by β.

AlgO′/O(DC)→ AlgO′′/O(DC) ♦

Remark 3.1.2.16. Assume we are in the situation of Construction 3.1.2.9 and we
are given another morphism of ∞-operads β : O′′⊗ → O′⊗. Then it follows from the
respective constructions that β∗ and F∗ commute in the sense that there is a commutative
diagram as follows.

AlgO′/O(D
′) AlgO′/O(D)

AlgO′′/O(D
′) AlgO′′/O(D)

F∗

β∗ β∗

F∗

♦

3.1.2.5. Functoriality encoded by families

Let C be an ∞-category, let α : O′⊗ → O⊗ be a morphism of ∞-operads, and let
p : D⊗ → O⊗×C be a cocartesian C-family ofO-monoidal∞-categories. In Section 3.1.2.1
we constructed a functor of ∞-categories

prC : AlgO′/O(D)→ C

and identified the fiber of prC over an object C in C with AlgO′/O(DC), see Remark 3.1.2.4.

41



Chapter 3. Bialgebras and modules over them

As was explained at the start of Section 3.1.1, we can interpret p as a collection of
O-monoidal ∞-categories that is indexed by C. We will show below that prC is again
a cocartesian fibration, and thus classified by a functor C → Cat∞, which we can then
interpret as encoding the functoriality of the construction AlgO′/O(−) that produces the
∞-category of O′-algebras out of an O-monoidal ∞-category.

Proposition 3.1.2.17 ([HA, 4.8.3.13]). Let C be an ∞-category, α : O′⊗ → O⊗ a
morphism of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories. Then the following hold.

(1) prC : ÃlgO′/O(D)→ C is a cocartesian fibration and a morphism f is prC-cocartesian
if and only if prFun(f)(X) is p-cocartesian for every object X of O′⊗ (see Defini-
tion 3.1.2.1 for this notation).

(2) prC : AlgO′/O(D) → C is a cocartesian fibration and a morphism f in AlgO′/O(D)
is prC-cocartesian if and only if prFun(f)(X) is p-cocartesian for every object X of
O′⊗.

(3) A morphism f in AlgO′/O(D) is prC-cocartesian if and only if prFun(f)(X) is
p-cocartesian for every object X of O′. ♥

Proof. Proof of (1): This is a combination of [HTT, 3.1.2.1] (applying Fun(O′⊗,−) to
a cocartesian fibration) with Proposition C.1.1.1 (taking a pullback of a cocartesian
fibration).

Proof of (2): It suffices to verify the assumption needed to apply the dual of Propo-
sition C.1.2.1 to the restriction of prC : ÃlgO′/O(D) → C to AlgO′/O(D). So let A be an
object in AlgO′/O(D) and f : A → B a prC-cocartesian morphism in ÃlgO′/O(D). We
have to show that B also lies in AlgO′/O(D). By definition this means that we need to
show that prFun(B) : O′⊗ → D⊗ sends inert morphisms to p-cocartesian morphisms. So
let φ : X → Y be an inert morphism in O′⊗. We obtain a commutative diagram in D⊗

as follows.
prFun(A)(X) prFun(B)(X)

prFun(A)(Y ) prFun(B)(Y )

prFun(f)(X)

prFun(A)(φ) prFun(B)(φ)

prFun(f)(Y )

(∗)

As f is prC-cocartesian, the top and bottom horizontal morphisms are p-cocartesian by
(1). As A lies in AlgO′/O(D), the left vertical morphism is p-cocartesian as well. That
the right vertical morphism is also p-cocartesian now follows from [HTT, 2.4.1.7].

Proof of (3): Let f : A→ B be a morphism in AlgO′/O(D) and assume that for every
object Y in O′ the morphism prFun(f)(Y ) in D⊗ is p-cocartesian. Let X ≃ X1⊕· · ·⊕Xn

be an object in O′⊗
〈n〉, and denote by γi : X → Xi the inert morphism in O′⊗ lying over

ρi. We have to show that then also prFun(f)(X) is p-cocartesian.

42



3.1. Modules over algebras

Let 1 ≤ i ≤ n. Consider the following diagram in D⊗

D Di

prFun(A)(X) prFun(B)(X) prFun(B)(Xi)

prFun(A)(Xi)

Ψ

Θ Θi

prFun(f)(X)

prFun(A)(γi)

Φ

prFun(B)(γi)

prFun(f)(Xi)

lying over the following commutative diagram in O⊗ × C

(
α(X), prC(B)

) (
α(Xi), prC(B)

)

(
α(X), prC(A)

) (
α(X), prC(B)

) (
α(Xi), prC(B)

)

(
α(Xi), prC(A)

)

id

(α(γi),id)

id

(id,prC(f))

(id,prC(f))

(α(γi),id)

(α(γi),id)

(id,prC(f))

and such that Φ and Ψ are p-cocartesian lifts of (idα(X), prC(f)) and (α(γi), idprC(B)),
respectively, and such that the dashed morphisms are the canonical fillers. As γi is inert
and A in AlgO′/O(D) the morphism prFun(A)(γi) is p-cocartesian, and the morphism
prFun(f)(Xi) is p-cocartesian by assumption, as Xi is an object of O′. Considering the
outer diagram it thus follows from [HTT, 2.4.1.7] that Θi is p-cocartesian, and thus by
[HTT, 2.4.1.5] an equivalence.

We now want to conclude that also Θ must be an equivalence. For this, note that as
pprC(B) is a cocartesian fibration of∞-operads, the following functor induced by the inert
morphisms α(γi) on fibers

(
D⊗

prC(B)

)
α(X)

∏
1≤i≤n(α(γi))!−−−−−−−−−→

∏

1≤i≤n

(
D⊗

prC(B)

)
α(Xi)

is an equivalence of ∞-categories. By Proposition C.1.1.1 we can identify this functor
with the following functor.

D⊗

(α(X),prC(B))

∏
1≤i≤n(α(γi),id)!−−−−−−−−−−→

∏

1≤i≤n

D⊗

(α(Xi),prC(B))

The morphism Θ lies in D⊗
(α(X),prC(B)), and by definition Θi ≃ (α(γi), id)!(Θ). As we

previously concluded that Θi is an equivalence for every 1 ≤ i ≤ n we can thus con-
clude that Θ is an equivalence, and hence p-cocartesian by [HTT, 2.4.1.5]. As Φ is

43



Chapter 3. Bialgebras and modules over them

p-cocartesian by definition we can then use [HTT, 2.4.1.7] to deduce that prFun(f)(X)
is also p-cocartesian.

Remark 3.1.2.18. Let C be an ∞-category, α : O′⊗ → O⊗ a morphism of ∞-operads,
and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal ∞-categories. A mor-
phism g : C → C ′ in C induces on fibers of p an O-monoidal functor6 G : D⊗

C → D
⊗
C′ .

Combining the identifications AlgO′/O(D
⊗
X) ≃ AlgO′/O(D

⊗)X from Remark 3.1.2.4 (for
X = C as well as X = C ′) with Proposition 3.1.2.17, in particular description Propo-
sition 3.1.2.17 (2), we can conclude that we can identify the functor induced by g on
fibers of prC : AlgO′/O(D)→ C with the functor AlgO′/O(G). ♦

Definition 3.1.2.19. Let α : O′⊗ → O⊗ be a morphism of ∞-operads. Then we define

AlgO′/O : MonO(Cat∞)→ Cat∞

the be the functor that the cocartesian fibration

prMonO(Cat∞) : AlgO′/O

(
M̃onO(Cat∞)

)
→ MonO(Cat∞)

is classified by. ♦

Remark 3.1.2.20. Let α : O′⊗ → O⊗ be a morphism of∞-operads. The functor AlgO′/O

sends by Remark 3.1.2.4 an O-monoidal ∞-category C to the ∞-category AlgO′/O(C),
so that we can interpret AlgO′/O as encoding the full functoriality of the construction of
∞-categories of O′-algebras in O-monoidal ∞-categories.

Now let C be an ∞-category, p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories, and F : C → MonO(Cat∞) the functor corresponding to p under the equiv-
alence in Remark 3.1.1.3. Then it follows from Remark 3.1.2.11 and naturality of the
Grothendieck construction (see [GHN17, A.32] and [Maz19b]) that the cocartesian fibra-
tion

prC : AlgO′/O(D)→ C

is classified by the following composition.

C
F
−→ MonO(Cat∞)

AlgO′/O
−−−−→ Cat∞ ♦

Proposition 3.1.2.21. Let C be an ∞-category, α : O′⊗ → O⊗ and β : O′′⊗ → O′⊗ a
morphism of ∞-operads, and p : D⊗ → O⊗ × C a cocartesian C-family of O-monoidal
∞-categories.

Then the functor
β∗ : AlgO′/O(D)→ AlgO′′/O(D)

constructed in Construction 3.1.2.12 and Proposition 3.1.2.14, which by construction
is a functor over C, is a functor of cocartesian fibrations, i. e. sends prC-cocartesian
morphisms to prC-cocartesian morphisms. ♥

6This is clear from Proposition 3.1.1.1.

44



3.1. Modules over algebras

Proof. By definition of β∗ there is a commutative diagram as follows.

Fun
(
O′⊗,D⊗

)
Fun

(
O′′⊗,D⊗

)

AlgO′/O(D) AlgO′′/O(D)

C

β∗

β∗

prFun

prC

prFun

prC

As the top horizontal functor clearly preserves pointwise p-cocartesian morphisms, cri-
terion Proposition 3.1.2.17 (2) implies that the middle horizontal functor preserves
prC-cocartesian morphisms.

3.1.2.6. Algebras in cocartesian families and products

Let C and C ′ be two O-monoidal ∞-categories. Then there is an induced O-monoidal
structure on C × C ′, and it is reasonable to expect that there should be an equivalence
as follows.

AlgO′/O

(
C × C ′

)
≃ AlgO′/O(C)× AlgO′/O

(
C ′
)

The next proposition shows that this is indeed the case.

Proposition 3.1.2.22. Let C be an ∞-category, let α : O′⊗ → O⊗ be a morphism
of ∞-operads, and let p : D⊗ → O⊗ × C be a cocartesian C-family of O-monoidal
∞-categories that has the product-fiber property from Definition 3.1.1.7. Then the co-
cartesian fibrations

prC : ÃlgO′/O(D)→ C

and
prC : AlgO′/O(D)→ C

have fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Let I be a set, let Xi be an object in C for every element i of I, and let
X :=

∏
i∈I Xi. We have to prove that the two functors induced on fibers

ÃlgO′/O(D)X

∏
i∈I pri!
−−−−−→

∏

i∈I

ÃlgO′/O(D)Xi (∗)

and
AlgO′/O(D)X

∏
i∈I pri!
−−−−−→

∏

i∈I

AlgO′/O(D)Xi (∗∗)

are equivalences.

45



Chapter 3. Bialgebras and modules over them

We start by considering the following commutative triangle induced by the projections
pri : X → Xi.

D⊗
X O⊗ ×∏

i∈I O
⊗

∏
i∈I D

⊗
Xi

O⊗

∏
i∈I(pri!)

pX pr1
(∗ ∗ ∗)

Both pX and pr1 in this diagram are cocartesian fibrations, and the horizontal functor
sends pX-cocartesian morphisms to pr1-cocartesian morphisms. The statement for pX
and pr1 follows from p being a cocartesian fibration and applying Proposition C.1.1.1, and
in the case of the functor on the right also using that products of cocartesian fibrations
are again cocartesian fibrations by [HTT, 3.1.2.1]. This also gives a description of the
respective cocartesian morphisms, and with that the statement about the horizontal
functor boils down to a statement about p-cocartesian morphisms that holds by [HTT,
2.4.1.7]. By assumption p has the product-fiber property, which precisely means that
the horizontal functor in the above diagram is a fiberwise (over O⊗) equivalence. It now
follows from [HTT, 2.4.4.4] that the horizontal functor is itself an equivalence.

We now consider the first of the two functors, (∗). Unpacking the definition (Defini-
tion 3.1.2.1) of ÃlgO′/O(D) as a pullback and using Proposition C.1.1.1 we can identify
the functor (∗) with

Fun
(
O′⊗,D⊗

)
idO⊗×constX

∏
i∈I(id×pri)!−−−−−−−−→

∏
Fun

(
O′⊗,D⊗

)
idO⊗×constXi

where the fibers are taken over Fun
(
O′⊗,O⊗ × C

)
, and id × pri is the natural transfor-

mation of functors O′⊗ → O⊗ × C from idO⊗ × constX to idO⊗ × constXi that is given
by the identity in the O⊗ factor and pri in the C factor.

Using that Fun
(
O′⊗,−

)
commutes with pullbacks together with [HTT, 3.1.2.1] we

can further identify functor (∗) with the functor

FunO⊗

(
O′⊗,D⊗

X

) ∏
i∈I(pri!)∗−−−−−−−→

∏
FunO⊗

(
O′⊗,D⊗

Xi

)

and in another step, using composability of pullback diagrams, that Fun(O′⊗,−) com-
mutes with products, Proposition C.1.1.1 and [HTT, 3.1.2.1] some more, we can further
identify this with the following functor.

FunO⊗

(
O′⊗,D⊗

X

)
(∏

i∈I(pri!)
)
∗−−−−−−−−→
∏

FunO⊗


O′⊗,O⊗ ×∏

i∈I O
⊗

∏

i∈I

D⊗
Xi




This exactly FunO⊗

(
O′⊗,−

)
applied to the horizontal functor in (∗ ∗ ∗), so this is an

equivalence.
Using Proposition 3.1.2.2 one can see that under these equivalences the functor (∗∗)

(which is a restriction of (∗) on domain and codomain to full subcategories) corresponds
to the application of AlgO′/O(−) to the horizontal functor in (∗ ∗ ∗), so this functor is
also an equivalence.

46



3.1. Modules over algebras

Corollary 3.1.2.23. Let α : O′⊗ → O⊗ be a morphism of ∞-operads. Then the cocarte-
sian fibration

prMonO(Cat∞) : AlgO′/O

(
M̃onO(Cat∞)

)
→ MonO(Cat∞)

has fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Combine Proposition 3.1.2.22 and Proposition 3.1.1.9.

3.1.3. Functorial construction of ∞-categories of left modules
In Definition 3.1.2.19 we constructed a functor

AlgAssoc/Assoc : MonAssoc(Cat∞)→ Cat∞

that sends an (Assoc-)monoidal7 ∞-category C to the∞-category Alg(C) := Alg/Assoc(C)
of Assoc-algebras in C, and can thus be interpreted as encoding the functoriality of the
construction C 7→ Alg(C), see Remark 3.1.2.20.

In this section we will similarly construct a functor LMod that can be interpreted as
encoding the functoriality of the construction that maps a pair (C, A) with C a monoidal
∞-category and A an associative algebra in C, to the ∞-category LModA(C) of left A
modules8. For functoriality in C, a monoidal functor F : C → D should induce a functor
LModA(C)→ LModFA(D) when A is an associative algebra in C. For functoriality in A,
we should be able to form the base change along a morphisms of algebras f : A→ B in
C, i. e. restricting the action, providing us with a functor LModB(C)→ LModA(C).

We already have constructed an ∞-category whose objects can be described as pairs
(C, A) with C a monoidal ∞-category and A an associative algebra in C, namely

Alg := AlgAssoc/Assoc

(
M̃onAssoc(Cat∞)

)

see Remark 3.1.2.20. By taking algebras in M̃onAssoc(Cat∞) with respect to two other
∞-operads, we will obtain a commutative diagram as follows.

AlgLMod AlgObj Alg

MonAssoc(Cat∞)

(3.4)

Objects in AlgLMod can be described as tuples (C, A,M), with C a monoidal∞-category,
A an associative algebra in C, and M a left module in C over A. Objects in AlgObj can
be described as tuples (C, A,X), with C and A as before, but X just an object of C. The
functors in diagram (3.4) are the obvious forgetful functors.

7We follow e. g. [HA, 4.1.1.10] and call Assoc-monoidal ∞-categories just monoidal ∞-categories.
8See [HA, 4.2] for this “pointwise” construction of ∞-categories of left modules.

47



Chapter 3. Bialgebras and modules over them

However, Alg is not quite the∞-category needed to encode the functoriality of LMod
that we alluded to at the start of this sub-subsection: A morphism from (C, A)→ (D, B)
consists of a monoidal functor F : C → D and a morphism F (A) → B of algebras in
D. So for our sought-after functoriality of LMod we would like the algebra-part of those
morphisms to go in the opposite direction. Luckily, the horizontal functors in diagram
(3.4) are morphisms of cocartesian fibrations over MonAssoc(Cat∞), so we can apply the
fiberwise −op-construction to fix this. We obtain a commuting triangle

AlgOpLModOp AlgOpObjOp

AlgOp

(3.5)

that turns out to be a morphism of cocartesian fibrations over AlgOp. Now AlgOp is
the category we are looking for, but the fiber of the cocartesian fibration

AlgOpLModOp→ AlgOp

over (C, A) is LModA(C)op. By passing to the opposite category fiberwise, and converting
the morphism of cocartesian fibrations to a natural transformation of functors to Cat∞,
we obtain a natural transformation that evaluated at (C, A) is given by the forgetful
functor LModA(C)→ C.

Let us now give a brief overview of the subsections below. We will start in Sec-
tion 3.1.3.1 with reviewing the relevant ∞-operads as well as some morphisms between
them that we will need. In Section 3.1.3.2 we will then carry out the construction of
LMod as a functor from AlgOp to Cat∞ as outlined above. If C is a presentable monoidal
∞-category and A is an algebra in C, then LModA(C) is also presentable by [HA, 4.2.3.7
(1)]. In Section 3.1.3.3 we will define a variant AlgOpPr of AlgOp whose objects can be
thought of as as pairs (C, A) where C is a presentable monoidal ∞-category and A is an
algebra in C, and show that LMod lifts to a functor from AlgOpPr to PrL.

3.1.3.1. Review of the relevant operads

Diagram (3.4) is constructed by taking algebras in M̃onAssoc(Cat∞) with respect to
different ∞-operads, so we begin by discussing the relevant ∞-operads in this section.

Lurie defines in [HA, 4.2.1]9 an ∞-operad LM, which encodes the structure of a left
module over an associative algebra: If C is a symmetric monoidal ∞-category, then we
can interpret an LM-algebra in C as a pair (A,M), where A is an associative algebra
in C and M is a left module over A. Indeed, if C is a 1-category, then this description
holds literally, with the usual classical notions of associative algebras and left modules

9Note that our conventions are such that what we denote by LM⊗ is what Lurie writes as LM⊗ or
LM

⊗ (as we do not notationally distinguish between 1-categories as objects of Cat and Cat∞). We
also use LM to both denote to LM⊗

〈1〉 as well as a shorthand to talk about the∞-operad LM⊗ → Fin∗,
which should not be confused with with the different type of object that Lurie denotes by LM (see
[HA, 4.2.1.1]).

48



3.1. Modules over algebras

over them, see [HA, 4.2.1.4]. The underlying ∞-category of LM is a discrete 1-category
with two objects, which we denote by a and m as in [HA, 4.2.1.1]. In the interpretation
of an LM-algebra in C as a pair (A,M) as before, the underlying object of A is given by
evaluation at a and the underlying object of M is given by evaluation at m.

We next fix notation for some morphisms of∞-operads defined in [HA, 4.2.1] that we
will need.

Definition 3.1.3.1. We let
ιAssoc : Assoc⊗ → LM⊗

be the morphism of ∞-operads defined in [HA, 4.2.1.10] and

νAssoc : LM⊗ → Assoc⊗

the morphism of ∞-operads defined in [HA, 4.2.1.9]. ♦

Continuing with our discussion from before, these to morphisms of ∞-operads can
be interpreted as follows: ιAssoc induces a functor AlgLM(C) → AlgAssoc(C) that can be
interpreted as mapping (A,M) to A (see [HA, 4.2.1.3]), and νAssoc induces a functor
AlgAssoc(C)→ AlgLM(C) that can be interpreted as mapping A to (A,A), with the second
A in the pair being A considered as a left module over itself (see [HA, 4.2.1.5]).

We will also need to make use of the trivial ∞-operad Triv defined in [HA, 2.1.1.20],
over which algebras are nothing more than objects of the underlying∞-category. Specif-
ically, the underlying ∞-category of Triv is discrete with a unique object, and for any
∞-operad O⊗, the functor AlgTriv(O) → O induced by evaluation at this object is an
equivalence, see [HA, 2.1.3.5].

We can now define an additional morphism of ∞-categories that we will need.

Definition 3.1.3.2. We let
ιTriv : Triv⊗ → LM⊗

be the morphism of ∞-operads that under the equivalence

AlgTriv(LM)
≃
−→ LM⊗

〈1〉 = {a,m}

corresponds to the element m. ♦

The previous discussion implies that we can interpret the functor induced by ιTriv

AlgLM(C)→ AlgTriv(C)

as mapping (A,M) to the underlying object of M .

49



Chapter 3. Bialgebras and modules over them

3.1.3.2. Construction of LMod

We write O⊗ ⊞ O′⊗ for the coproduct of ∞-operads as discussed in [HA, 2.2.3]. We
are now ready to construct diagram (3.4): The sequence of morphisms of ∞-operads

Assoc⊗ Assoc⊗ ⊞ Triv⊗ LM⊗ Assoc⊗ι1

idAssoc⊗

ιAssoc⊞ιTriv νAssoc (3.6)

induces as in Construction 3.1.2.12 and Proposition 3.1.2.14 on algebras in the univer-
sal family of Assoc-monoidal ∞-categories pAssoc (see Definition 3.1.1.4) a commutative
diagram as follows, where we shorten M̃onAssoc(Cat∞) to M̃on.

AlgLM/Assoc

(
M̃on

)
AlgAssoc⊞Triv/Assoc

(
M̃on

)
AlgAssoc/Assoc

(
M̃on

)

MonAssoc(Cat∞)

The functors to MonAssoc(Cat∞) are the respective functors called prMonAssoc(Cat∞) in Defini-
tion 3.1.2.1, which are cocartesian fibrations by Proposition 3.1.2.17. The above diagram
precisely implements the description of diagram (3.4) given in the introduction to Sec-
tion 3.1.3, as we will see below in Remark 3.1.3.4. This justifies making the following
definition.

Definition 3.1.3.3. We define

Alg :=AlgAssoc/Assoc

(
M̃onAssoc(Cat∞)

)

AlgObj :=AlgAssoc⊞Triv/Assoc

(
M̃onAssoc(Cat∞)

)

AlgLMod :=AlgLM/Assoc

(
M̃onAssoc(Cat∞)

)

and denote the respective functors10 prMonAssoc(Cat∞) to MonAssoc(Cat∞) by qAlg, qAlgObj, and
qAlgLMod, respectively. Furthermore, we denote the functors induced by the morphisms
of ∞-operads in (3.6)

AlgLMod→ AlgObj and AlgObj→ Alg

by ULMod
Obj and UObj, respectively. ♦

Remark 3.1.3.4. We can summarize our previous discussions as follows.
Let G : C → C ′ be a monoidal functor of monoidal ∞-categories that we also consider

as a morphism of MonAssoc(Cat∞). By definition, we can identify the monoidal functor
10See Definition 3.1.2.1.

50



3.1. Modules over algebras

induced by G on fibers of the universal family of Assoc-monoidal∞-categories pAssoc (see
Definition 3.1.1.4) with G⊗ : C⊗ → C ′⊗ itself.

As ULMod
Obj and UObj are morphisms of cocartesian fibrations over MonAssoc(Cat∞) by

Proposition 3.1.2.21, we obtain an induced commutative diagram as follows.

AlgLModC AlgObjC AlgC

AlgLModC′ AlgObjC′ AlgC′

G!

(
ULMod
Obj

)
C

G!

(UObj)
C

G!

(
ULMod
Obj

)
C′

(UObj)
C′

Using Remark 3.1.2.4, Remark 3.1.2.15, and Remark 3.1.2.18 we can identify this
diagram with the following commutative diagram induced by G and the morphisms of
∞-operads in (3.6).

AlgLM/Assoc(C) AlgAssoc⊞Triv/Assoc(C) AlgAssoc/Assoc(C)

AlgLM/Assoc(C
′) AlgAssoc⊞Triv/Assoc(C

′) AlgAssoc/Assoc(C
′)

AlgLM/Assoc(G) AlgAssoc⊞Triv/Assoc(G) AlgAssoc/Assoc(G)

The∞-category of algebras over a coproduct of∞-operads can be identified with the
product of the ∞-categories of algebras by [HA, 2.2.3.6]11, and the ∞-category of alge-
bras over Triv is by [HA, 2.1.3.6] equivalent to the underlying ∞-category. Considering
also the definition of LMod [HA, 4.2.1.16] we can thus identify the above diagram with
the following diagram

LMod(C) Alg(C)× C Alg(C)

LMod(C ′) Alg(C ′)× C ′ Alg(C ′)

LMod(G) Alg(G)×G

pr1

Alg(G)

pr1

where the left horizontal functors are on the first factor the forgetful functors ι∗Assoc from
left modules to algebras from [HA, 4.2.1.13] that send a pair (A,M) with A an associative
algebra and M a left module over it to A, and on the second factor the forgetful functors
evm that send a pair (A,M) to M considered as just an object of C or C ′. ♦

Next we fix the variance of morphisms in the fibers.
Definition 3.1.3.5. By applying the functor

coCFib
(
MonAssoc(Cat∞)

)

→Fun
(
MonAssoc(Cat∞),Cat∞

)

(−op)∗−−−−→Fun
(
MonAssoc(Cat∞),Cat∞

)

→ coCFib
(
MonAssoc(Cat∞)

)

11To apply this in our situation, combine this with Proposition E.2.0.3 and the fact that pullbacks
commute with products.

51



Chapter 3. Bialgebras and modules over them

to the morphisms ULMod
Obj and UObj of cocartesian fibrations over MonAssoc(Cat∞) we ob-

tain morphisms of cocartesian fibrations V LModOp
ObjOp and V ObjOp as depicted in the following

diagram.

AlgOpLModOp AlgOpObjOp AlgOp

MonAssoc(Cat∞)

V
LModOp
ObjOp

qAlgOpLModOp

V ObjOp

qAlgOpObjOp
qAlgOp

We define AlgOpLModOp, AlgOpObjOp, AlgOp, qAlgOpLModOp, qAlgOpObjOp, and qAlgOp
as indicated in the diagram. We furthermore define V LModOp to be the composition
V ObjOp ◦ V LModOp

ObjOp . ♦

Proposition 3.1.3.6. V LModOp and V ObjOp from Definition 3.1.3.5 are cocartesian fi-
brations and V LModOp

ObjOp is a morphism of cocartesian fibrations over AlgOp.
Furthermore, a morphism in AlgOpLModOp is V LModOp-cocartesian precisely if it is

the composition of a qAlgOpLModOp-cocartesian morphism with a (V LModOp)C-cocartesian
morphism for C a monoidal ∞-category. The analogous statement holds for V ObjOp-
cocartesian morphisms. ♥

Proof. By [GHN15, 9.6]12,13, to show that V LModOp and V ObjOp are cocartesian fibrations,
it suffices to show the following.

(1) qAlgOpLModOp, qAlgOpObjOp and qAlgOp are cocartesian fibrations.

(2) The functor V LModOp maps qAlgOpLModOp-cocartesian morphisms to morphisms that
are qAlgOp-cocartesian, and V ObjOp maps qAlgOpObjOp-cocartesian morphisms to mor-
phisms that are qAlgOp-cocartesian.

(3) Let C be an object of MonAssoc(Cat∞). Then the functor
(
V LModOp

)
C
: AlgOpLModOpC → AlgOpC

induced by V LModOp on fibers over C is a cocartesian fibration.

(3’) Let C be an object of MonAssoc(Cat∞). Then the functor
(
V ObjOp

)
C
: AlgOpObjOpC → AlgOpC

induced by V ObjOp on fibers over C is a cocartesian fibration.
12The referenced proposition can be summarized as saying that a morphism of cocartesian fibrations

over some ∞-category C is itself a cocartesian fibration if the restriction to fibers over any object of
C is a cocartesian fibration, and the functor on fibers induced by a morphism in C preserves those
cocartesian morphisms of the fibers.

13[GHN17] is the published version of [GHN15], but does not contain [GHN15, 9.6].

52



3.1. Modules over algebras

(4) Let
M N

M ′ N ′

α

β γ

δ

(3.7)

be a commuting diagram in AlgOpLModOp lying over the following diagram in
MonAssoc(Cat∞).

C D

C D

ϕ

id id

ϕ

Assume that α and δ are qAlgOpLModOp-cocartesian and β is (ULModOp)C-cocartesian.
Then γ is (ULModOp)D-cocartesian.

(4’) Let
M N

M ′ N ′

α

β γ

δ

be a commuting diagram in AlgOpObjOp lying over the following diagram in
MonAssoc(Cat∞).

C D

C D

ϕ

id id

ϕ

Assume that α and δ are qAlgOpObjOp-cocartesian and β is (UObjOp)C-cocartesian.
Then γ is (UObjOp)D-cocartesian.

From the proof of [GHN15, 9.6] it also follows that the V ObjOp-cocartesian mor-
phisms will be precisely the compositions of qAlgOpObjOp-cocartesian morphisms with
(V ObjOp)C-cocartesian morphisms for C an object of MonAssoc(Cat∞). A similar state-
ment holds for V LModOp. From this it follows that to show that V LModOp

ObjOp is a morphism
of cocartesian fibrations from V LModOp to V ObjOp it will suffice to show the following.

(5) V
LModOp
ObjOp sends qAlgOpLModOp-cocartesian morphisms to qAlgOpObjOp-cocartesian mor-

phisms.

(6) For every object C of MonAssoc(Cat∞) the functor (V LModOp
ObjOp )C sends (V LModOp)C-

cocartesian morphisms to (V ObjOp)C-cocartesian morphisms.

Proof of (1), (2) and (5): Hold by definition.

53



Chapter 3. Bialgebras and modules over them

Proof of (3): Let C be an object of MonAssoc(Cat∞). By Remark 3.1.3.4 we can identify
the functor (V LModOp)C with the opposite of the following forgetful functor.

ι∗Assoc : LMod(C)→ Alg(C)

This forgetful functor is a cartesian fibration by [HA, 4.2.3.2], and thus (V LModOp)C
is a cocartesian fibration. Furthermore, [HA, 4.2.3.2] also implies that a morphism in
LMod(C) is (V LModOp)C-cocartesian if and only if evm of that morphism is an equivalence.

Proof of (3’): Just as above we can identify the functor (V ObjOp)C using Remark 3.1.3.4
with the opposite of the left vertical functor in the following pullback diagram.

Alg(C)× C C

Alg(C) ∗

pr2

pr1 (3.8)

It follows by Proposition C.1.1.1 and [HTT, 2.4.1.5] that (V ObjOp)C is a cocartesian
fibration and that a morphism in Alg(C) × C is (V ObjOp)C-cocartesian if and only if pr2
of that morphism is an equivalence.

Proof of (6): Follows immediately from the description of the respective cocartesian
morphisms given above together with the description of the functor (V LModOp

ObjOp )C in Re-
mark 3.1.3.4.

Proof of (4) and (4’): The two proofs are analogous, so we only prove (4).
We use the same notation as in the statement of (4), and by the description of

(V LModOp)D-cocartesian morphisms in the proof of (3) we have to show that evm(γ)
is an equivalence. Applying evm to diagram (3.7) we obtain

evm(M) evm(N)

evm(M
′) evm(N

′)

evm(α)

evm(β) evm(γ)

evm(δ)

(3.9)

where by Proposition 3.1.2.17 the top and bottom horizontal morphisms are pAssoc-
cocartesian. Furthermore, the vertical morphism evm(β) is an equivalence, so by [HTT,
2.4.1.5 and 2.4.1.7] we can conclude that evm(γ) is also an equivalence.

Remark 3.1.3.7. Let C be a monoidal ∞-category, and let us consider it as an object
in MonAssoc(Cat∞). Then using Remark 3.1.3.4 we can identify the diagram

AlgOpLModOpC AlgOpObjOpC

AlgOpC

(
V

LModOp
ObjOp

)
C

(V LModOp)
C

(V ObjOp)
C

54



3.1. Modules over algebras

with the following diagram.

LMod(C)op Alg(C)op × Cop

Alg(C)op

(ι∗Assoc)
op

×(evm)op

(ι∗Assoc)
op pr1

Let A be an associative algebra in C. Then it follows that we can identify the functor
(V LModOp

ObjOp )A = ((V LModOp
ObjOp )C)A, with the following functor.

(evm)
op : LModA(C)op → Cop

Let us now turn to morphisms in AlgOp and induced functors on fibers. As the
functor qAlgOp : AlgOp → MonAssoc(Cat∞) is a cocartesian fibration, every morphism in
AlgOp is the composite of a qAlgOp-cocartesian morphism and a morphism in a fiber. Let
G : C → C ′ be a monoidal functor of monoidal ∞-categories, considered as a morphism
in MonAssoc(Cat∞). Then by Remark 3.1.3.4 the induced functor on fibers

G! : AlgOpC → AlgOpC′

can be identified with the functor

Alg(G)op : Alg(C)op → Alg
(
C ′
)op

which sends an object A of Alg(C) to an associative algebra Alg(G)(A) in C ′, that has
underlying object G(A), and so we will sometimes also write G(A) for Alg(G)(A). Hence
a morphism in AlgOp from an object A in AlgOpC to an object A′ in AlgOpC′ consists
of the composition of a qAlgOp-cocartesian morphism A → G(A) lying over a monoidal
functor G : C → C ′ and a morphism of associative algebras A′ → G(A).

Let us first consider a qAlgOp-cocartesian morphism G̃ : A → G(A) in AlgOp lying
over a monoidal functor G : C → C ′. By the description of cocartesian morphisms with
respect to V LModOp and V ObjOp in Proposition 3.1.3.6, we know that the the functors
induced by this morphism on fibers of the cocartesian fibrations V LModOp and V ObjOp are
the restrictions of of the functors induced by G on fibers of the cocartesian fibrations
qAlgOpLModOp and qAlgOpObjOp. Thus using Remark 3.1.3.4 again we can identify the induced
commutative diagram

AlgOpLModOpA AlgOpObjOpA

AlgOpLModOpG(A) AlgOpObjOpG(A)

(
V

LModOp
ObjOp

)
A

G̃! G̃!

(
V

LModOp
ObjOp

)
G(A)

55



Chapter 3. Bialgebras and modules over them

with the following commutative diagram.

LModA(C)op Cop

LModG(A)(C
′)op C ′op

(evm)op

LMod(G)op Gop

(evm)op

Let us now consider a morphism f : A′ → A of associative algebras in some monoidal
∞-category C, considered as a morphism f̃ : A → A′ in AlgOpC ≃ Alg(C)op. Again
using the description of cocartesian morphisms from Proposition 3.1.3.6 together with
Remark 3.1.3.4 and [HA, 4.2.3.2] we can identify the commutative diagram

AlgOpLModOpA AlgOpObjOpA

AlgOpLModOpA′ AlgOpObjOpA′

(
V

LModOp
ObjOp

)
A

f̃! f̃!

(
V

LModOp
ObjOp

)
A′

with the following commutative diagram.

LModA(C)op Cop

LModA′(C)op Cop

(evm)op

LModf (idC)op id

(evm)op

♦

Definition 3.1.3.8. By Proposition 3.1.3.6 we have a morphism of cocartesian fibrations
over AlgOp as depicted in the following diagram.

AlgOpLModOp AlgOpObjOp

AlgOp

V
LModOp
ObjOp

V LModOp V ObjOp

Under the equivalence

coCFib(AlgOp) Fun(AlgOp,Cat∞) Fun(AlgOp,Cat∞)Gr−1

≃

(−op)∗

the cocartesian fibrations V LModOp and V ObjOp correspond to functors AlgOp → Cat∞
that we will denote by LMod and pr, respectively. The morphism of cocartesian fibrations
V

LModOp
ObjOp corresponds to a natural transformation from LMod to pr that we will denote

by evm. ♦

56



3.1. Modules over algebras

Remark 3.1.3.9. Let C be a monoidal ∞-category and A an associative algebra in
C. Then Remark 3.1.3.7 shows that the natural transformation evm as defined in Defini-
tion 3.1.3.8 evaluated at A (considered as an object of AlgOpC) can be identified with the
usual forgetful functor14 evm : LModA(C) → C, justifying the notation we chose for the
two functors and the natural transformation. Furthermore, Remark 3.1.3.7 shows that
LMod, pr, and evm are similarly compatible with usual notations on morphisms. ♦

3.1.3.3. LMod and colimits

In this section we put together some results from [HA] that imply that the functor
LMod interacts well with the property of admitting and being compatible with colimits.

Definition 3.1.3.10 ([HA, 4.8.1.1 and 4.8.3.5] and [HTT, 5.5.3.1]). Let I be a collection
of small ∞-categories and O⊗ an ∞-operad.

We define an ∞-category Cat∞(I) together with a monomorphism to Cat∞ as the
monomorphism that under the construction of Remark B.6.0.1 corresponds to the replete
subcategory of HoCat∞ whose objects are∞-categories that admit I-indexed colimits15
and whose morphisms are represented by those functors that preserve I-indexed colimits.

We similarly define MonI
O(Cat∞) together with a monomorphism to MonO(Cat∞) as

the monomorphism corresponding to the replete subcategory of Ho MonO(Cat∞) whose
objects are the O-monoidal ∞-categories that are compatible with I-indexed colimits
in the sense of [HA, 3.1.1.19 and 3.1.1.18], and whose morphisms are represented by O-
monoidal functors C⊗ → D⊗ such that for every object X of O the underlying functor
of ∞-categories CX → DX preserves I-indexed colimits.

Now let J be the collection of all small ∞-categories. We denote by PrL the full
subcategory of Cat∞(J) spanned by the presentable ∞-categories16.

We furthermore define MonPr
O (Cat∞) to be the full subcategory of the ∞-category

MonJ

O(Cat∞) spanned by O-monoidal ∞-categories which are presentable in the sense
of [HA, 3.4.4.1]. ♦

Definition 3.1.3.11. Let I be a collection of small ∞-categories. We define AlgOpI

and qAlgOpI via the following pullback diagram of ∞-categories

AlgOpI AlgOp

MonI
Assoc(Cat∞) MonAssoc(Cat∞)

qAlgOpI qAlgOp

where the lower horizontal functor is the inclusion from Definition 3.1.3.10. We similarly

14Here LModA(C) refers to what is defined in [HA, 4.2.1.13].
15This means that they must admit I-indexed colimits for every I in I.
16See [HTT, 5.5]

57



Chapter 3. Bialgebras and modules over them

define AlgOpPr and qAlgOpPr via the following pullback diagram

AlgOpPr AlgOp

MonPr
Assoc(Cat∞) MonAssoc(Cat∞)

qAlgOpPr qAlgOp

where the lower horizontal functor is the inclusion from Definition 3.1.3.10. ♦

Proposition 3.1.3.12 ([HA, 4.2.3.5 and 4.2.3.7]). Assume that I is a collection of
small ∞-categories. Then the restriction of the natural transformation evm to AlgOpI

factors through Cat∞(I). Analogously, the restriction to AlgOpPr factors through PrL.
The situation is depicted in the following diagram.

AlgOpPr PrL

AlgOpI Cat∞(I)

AlgOp Cat∞

LMod

pr

LMod

pr

LMod

pr

evm

evm

evm

(3.10)

As suggested by the diagram, will denote the induced functors and natural transformations
by the same name again. ♥

Proof. Let E : [1]×AlgOp→ Cat∞ be the functor encoding the natural transformation
evm. By definition the right vertical functors in diagram (3.10) are monomorphisms, so
by Proposition B.4.3.1 the composition E ◦ (AlgOpI → AlgOp) can be lifted to Cat∞(I)
if and only if Im(E ◦ (AlgOpI → AlgOp)) is contained in Im(Cat∞(I) → Cat∞), and
similarly for the lift to PrL.

In light of Remark 3.1.3.7 and Remark 3.1.3.9, this boils down to the following
statements for any ∞-category I, monoidal ∞-category C, associative algebra A in
C, monoidal functor G : C → D, and morphism of associative algebras g : B → G(A).

(1) If the monoidal ∞-category C is compatible with I-indexed colimits in the sense
of [HA, 3.1.1.18], then LModA(C) admits I-indexed colimits.

58



3.2. LMod and monoidality

(2) If C is a presentable monoidal ∞-category in the sense of [HA, 3.4.4.1], then
LModA(C) is presentable.

(3) If the monoidal ∞-category C is compatible with I-indexed colimits, then the
forgetful functor

evm : LModA(C)→ C

preserves I-indexed colimits.

(4) If C admits and G preserves I-indexed colimits, then the functor induced by G

and g

LModg(G) : LModA(C)→ LModB(D)

also preserves I-indexed colimits.

Proof of (1): This is [HA, 4.2.3.5 (1)].
Proof of (2): This is [HA, 4.2.3.7 (1)].
Proof of (3): This is [HA, 4.2.3.5 (2)].
Proof of (4): This is a slight generalization of [HA, 4.2.3.7 (2)]. From the natural

transformation evm we obtain a commuting diagram

LModA(C) LModB(D)

C D

LModg(G)

evm evm

G

where by assumption the lower horizontal functor preserves I-indexed colimits. It then
follows immediately from [HA, 4.2.3.5 (2)] that the top horizontal functor also does
so.

3.2. LMod and monoidality
In this section we will start in Section 3.2.1 by showing LMod : AlgOp → Cat∞ pre-

serves products and can thus be upgraded to a symmetric monoidal functor with respect
to the respective cartesian symmetric monoidal structures. Furthermore, this induces a
symmetric monoidal structure on the restriction LMod : AlgOpPr → PrL (see Proposi-
tion 3.1.3.12). This will be shown in Section 3.2.3, after we discuss the relevant symmetric
monoidal ∞-categories in Section 3.2.2.

3.2.1. LMod and products
In this short section we show that LMod : AlgOp → Cat∞ preserves products and

can thus be upgraded to a symmetric monoidal functor with respect to the respective
cartesian symmetric monoidal structures.

59



Chapter 3. Bialgebras and modules over them

Proposition 3.2.1.1. The cocartesian fibrations

qAlgOpLModOp : AlgOpLModOp→MonAssoc(Cat∞)

qAlgOpObjOp : AlgOpObjOp→MonAssoc(Cat∞)

qAlgOp : AlgOp→MonAssoc(Cat∞)

have fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. Proposition F.2.0.1 implies that the∞-category MonAssoc(Cat∞) admits products.
Combining Remark C.2.0.2 with the fact that (−)op : Cat∞ → Cat∞ is an equivalence and
thus preserves products we are reduced to showing that qAlgLMod, qAlgObj, and qAlg have
fibers compatible with products. But this follows from combining Proposition 3.1.2.22
with Proposition 3.1.1.9.

Proposition 3.2.1.2. The cocartesian fibrations17 V LModOp and V ObjOp from Defini-
tion 3.1.3.5 have fibers compatible with products in the sense of Definition C.2.0.1. ♥

Proof. These cocartesian fibrations are by definition also morphisms of cocartesian fibra-
tions over MonAssoc(Cat∞). As those cocartesian fibrations have fibers compatible with
products by Proposition 3.2.1.1, the statement follows from Proposition C.2.0.4.

Proposition 3.2.1.3. The ∞-category AlgOp admits all products and the functors

LMod, pr : AlgOp→ Cat∞

preserve products. ♥

Proof. Follows directly from Proposition 3.2.1.2, Remark C.2.0.2, and the fact that (−)op
is an equivalence and thus preserves products.

Remark 3.2.1.4. Let C and C ′ be monoidal ∞-categories and A and A′ associative
algebras in C and C ′, respectively. Then Proposition C.2.0.3 and Proposition 3.2.1.1
imply that the pair (A,A′) considered as an object in

(
Alg(C)× Alg

(
C ′
))op

≃ Alg
(
C × C ′

)op
≃ AlgOpC×C′

is a product in AlgOp of A and A′.
That LMod preserves products by Proposition 3.2.1.3 means in particular that there

is an equivalence as follows.

LMod(A,A′)

(
C × C ′

)
≃ LModA(C)× LModA′

(
C ′
)

♦

17That they are cocartesian fibrations was shown in Proposition 3.1.3.6.

60



3.2. LMod and monoidality

3.2.2. AlgOpPr as a symmetric monoidal ∞-category
To be able to make sense of the claim that LMod : AlgOpPr → PrL should be upgrad-

able to a symmetric monoidal functor, we first need to define symmetric monoidal struc-
tures on PrL and in particular on AlgOpPr. This is what we will discuss in this section.

We will start in Section 3.2.2.1 by recalling the symmetric monoidal structure on PrL,
before discussing the symmetric monoidal structure on MonPr

Assoc(Cat∞) in Section 3.2.2.2.
While we will define MonPr

Assoc(Cat∞)⊗ directly, showing that this is indeed a symmetric
monoidal structure on MonPr

Assoc(Cat∞) will require a fair amount of work comparing it
to Alg(PrL)⊗, the induced symmetric monoidal structure on algebras in PrL. The reason
why we bother to do this rather than just using Alg(PrL)⊗ is that MonPr

Assoc(Cat∞) is a
better fit when discussing the symmetric monoidal structure on AlgOpPr, which we do
in Section 3.2.2.3.

3.2.2.1. The symmetric monoidal structure on PrL

In this section we recall the symmetric monoidal structures on PrL and Cat∞(I) for
I a collection of small ∞-categories, closely following [HA, 4.8.1].

Definition 3.2.2.1 ([HA, 4.8.1.2, 4.8.1.4 and 4.8.1.15]). Let I be a collection of small
∞-categories. We define a monomorphism

Cat∞(I)⊗ → Cat×∞

corresponding as in Remark B.6.0.1 to a replete subcategory H of Ho(Cat×∞) that we
describe next.

An object C1⊕· · ·⊕Cn of (Cat∞)×〈n〉 with C1, . . . , Cn∞-categories is to be an object of H if
and only if each Ci admits all I-indexed colimits. A morphism C1⊕· · ·⊕Cn → C ′1⊕· · ·⊕C ′m
lying over φ : 〈n〉 → 〈m〉 is to be in H if and only if for each 1 ≤ j ≤ m the associated
functor ∏

φ(i)=j

Ci → C
′
j

preserves I-indexed colimits separately in each variable.
Now let J be the collection of all small ∞-categories. We define PrL⊗ to be the full

subcategory of Cat∞(J)⊗ spanned by those objects C ≃ C1 ⊕ · · · ⊕ Cn where each Ci is
presentable. ♦

Remark 3.2.2.2. It is clear from the definitions that the functors

(Cat∞(I))⊗〈1〉 → (Cat∞)×〈1〉 and (PrL)⊗〈1〉 → (Cat∞)(J)×〈1〉

which are induced by the functors defined in Definition 3.2.2.1 can be identified with the
functors

Cat∞(I)→ Cat∞ and PrL → Cat∞(J)

from Definition 3.1.3.10. ♦

61



Chapter 3. Bialgebras and modules over them

Proposition 3.2.2.3 ([HA, 4.8.1.4 and 4.8.1.15]). Let J be the collection of all small
∞-categories, let I be a subcollection of J and I′ a subcollection of I. Then the following
statements hold.

(0) The monomorphism Cat∞(I)⊗ → Cat×∞ from Definition 3.2.2.1 factors through the
monomorphism Cat∞(I′)⊗ → Cat×∞ from Definition 3.2.2.1. The lift obtained in
this manner is also a monomorphism.

(1) The compositions
Cat∞(I)⊗ → Cat×∞ → Fin∗

and
PrL⊗ → Cat×∞ → Fin∗

where the first functor is the monomorphism from Definition 3.2.2.1 and the second
functor is the canonical morphism of ∞-operads, are cocartesian fibrations of
∞-operads.

(2) The functors
PrL⊗ → Cat∞(I)⊗ → Cat∞

(
I′
)⊗
→ Cat×∞

from Definition 3.2.2.1 and (0) are lax symmetric monoidal with respect to the
symmetric monoidal structures from (1).

(3) A morphism in Cat∞(I)⊗ or PrL⊗ is inert if an only if its image in Cat×∞ is inert.

(4) The functor
PrL⊗ → Cat∞(J)⊗

is symmetric monoidal with respect to the symmetric monoidal structure from (1).

(5) A morphism in PrL⊗ is cocartesian with respect to the canonical morphism of
∞-operads PrL⊗ → Fin∗ if and only if its image in Cat∞(J)⊗ is cocartesian with
respect to the canonical morphism of ∞-operads Cat∞(J)⊗ → Fin∗. ♥

Proof. Proof of (0): Immediate from the definition together with Proposition B.4.3.1
and Proposition B.1.2.1.

Proof of (1) and (2) for the compositions to Cat×∞: This is [HA, 4.8.1.4 and 4.8.1.15].
Proof of (4): This is [HA, 4.8.1.15].
Proof of(3) and (5): The functors Cat∞(I)⊗ → Cat×∞ and PrL⊗ → Cat×∞ were already

shown to be morphisms of ∞-operads, and PrL⊗ → Cat∞(J)⊗ was already shown to be
symmetric monoidal. As these functors are also monomorphisms18 and hence conserva-
tive by Proposition B.4.1.2, we can apply Proposition E.1.2.1 to deduce the claims.

Proof of the rest of (2): Follows directly from (3).
18That PrL⊗

→ Cat∞(J)⊗ is a monomorphism follows from Proposition B.4.4.1 and that PrL⊗
→ Cat×∞

is a monomorphism then follows from Proposition B.1.2.1.

62



3.2. LMod and monoidality

3.2.2.2. The symmetric monoidal structure on MonPr
O (Cat∞)

In this section we construct the symmetric monoidal structure on MonPr
Assoc(Cat∞).

While defining MonPr
Assoc(Cat∞)⊗ is relatively straightforward, showing that this defines

a symmetric monoidal structure (which is Proposition 3.2.2.10) will require a bit more
work, requiring a comparison result between MonPr

Assoc(Cat∞)⊗ and Alg(PrL)⊗ that will
be shown in Proposition 3.2.2.8.

Definition 3.2.2.4 ([HA, 4.8.5.14]). Let I be a collection of small ∞-categories and O
an ∞-operad. We define a monomorphism19

MonI
O(Cat∞)⊗ → MonO(Cat∞)×

corresponding as in Remark B.6.0.1 to a replete subcategory H of Ho(MonO(Cat∞)×)
that we describe next.

An object C1 ⊕ · · · ⊕ Cn of Ho(MonO(Cat∞)×) is to be in H if and only if for each
1 ≤ i ≤ n the O-monoidal ∞-category Ci is compatible with I-indexed colimits in the
sense of [HA, 3.1.1.19 and 3.1.1.18]. A morphism in Ho(MonO(Cat∞)×) between objects
of H is to be in H if and only if Ho((ev〈1〉)

×) maps that morphism to a morphism in
Im(Ho(Cat∞(I)⊗)→ Ho(Cat×∞))20.

Now let J be the collection of all small ∞-categories. We define MonPr
O (Cat∞)⊗ to be

the full subcategory of MonJ

O(Cat∞)⊗ spanned by those objects C1 ⊕ · · · ⊕ Cn for which
for each 1 ≤ i ≤ n the O-monoidal∞-category Ci is presentable O-monoidal in the sense
of [HA, 3.4.4.1]. ♦

Remark 3.2.2.5. It is clear from the definitions that the functors

MonI
O(Cat∞)⊗〈1〉 → MonO(Cat∞)×〈1〉

and
MonPr

O (Cat∞)⊗〈1〉 → MonJ

O(Cat∞)×〈1〉

which are induced by the functors defined in Definition 3.2.2.4 can be identified with the
functors

MonI
O(Cat∞)→ MonO(Cat∞)

and
MonPr

O (Cat∞)→ MonJ

O(Cat∞)

from Definition 3.1.3.10. ♦

Remark 3.2.2.6. It follows directly from the definitions in Definition 3.2.2.4 together
with Proposition B.4.3.1 that for I a collection of small∞-categories and I′ a subcollec-
tion of I the monomorphism

MonI
O(Cat∞)⊗ → MonO(Cat∞)×

19For products in MonO(Cat∞) see Proposition F.2.0.1.
20This condition boils down to associated underlying functors of the form

∏
φ(i)=j Ci → C

′
j preserving

I-indexed colimits separately in each variable.

63



Chapter 3. Bialgebras and modules over them

factors through the monomorphism

MonI′

O(Cat∞)⊗ → MonO(Cat∞)×

and the lift is by Proposition B.1.2.1 again a monomorphism. ♦

For easier reference we introduce some notation that we are going to use in some
statements and proof below.

Notation 3.2.2.7. The following notation will be used only when specifically invoked,
but not elsewhere. In the notation below, I will be a collection of small∞-categories, I′

a subcollection of I, and O an ∞-operad.

• Some of the below notations will use a superscript or subscript I. In the case I = ∅
we will allow ourselves to drop this superscript or subscript.

• We denote by
pO : O⊗ → Fin∗

the canonical morphism of ∞-operads.

• We let α be the bifunctor defined as the following composition.

Fin∗ ×O
⊗ idFin∗×pO−−−−−→ Fin∗ × Fin∗

−∧−
−−−→ Fin∗

• We denote by

pI : Cat∞(I)⊗ → Fin∗

pPr : PrL⊗ → Fin∗

pAlg,I : AlgO

(
Cat∞(I)

)⊗
→ Fin∗

pAlg,Pr : AlgO

(
PrL
)⊗
→ Fin∗

the canonical morphism of ∞-operads, where for pAlg,I and pAlg,Pr this is with
respect to the induced symmetric monoidal structures as in Proposition E.4.2.3
with respect to the bifunctor α.

• We denote the lax symmetric monoidal functors from Proposition 3.2.2.3 as indi-
cated below.

PrL⊗
(ΦPr

I )
⊗

−−−−→ Cat∞(I)⊗
(ΦI

I′)
⊗

−−−−→ Cat∞
(
I′
)⊗

(
ΦI

′
)⊗

−−−−→ Cat×∞

We set (ΦPr)⊗ := (ΦI)⊗ ◦ (ΦPr
I )⊗.

64



3.2. LMod and monoidality

• We denote the monomorphisms from Definition 3.2.2.4 and Remark 3.2.2.6 as
indicated below.

MonPr
O (Cat∞)⊗

(ΨPr
I )

⊗

−−−−→ MonI
O(Cat∞)⊗

(ΨI

I′)
⊗

−−−−→ MonI′

O(Cat∞)⊗

(
ΨI

′
)⊗

−−−−→ MonO(Cat∞)×

We set (ΨPr)⊗ := (ΨI)⊗ ◦ (ΨPr
I )⊗.

• We denote by
pMon : MonO(Cat∞)× → Fin∗

the canonical morphism of ∞-operads, and define pMon,I and pMon,Pr as the follow-
ing compositions.

pMon,I := pMon ◦ (Ψ
I)⊗

pMon,Pr := pMon ◦ (Ψ
Pr)⊗

• The cartesian symmetric monoidal structure Cat×∞ comes with a cartesian structure

π : Cat×∞ → Cat∞

that we will denote by π, see [HA, 2.4.1.5]. Similarly, we denote the cartesian
structure

πMon : MonO(Cat∞)× → MonO(Cat∞)

of MonO(Cat∞)× by πMon. ♦

Proposition 3.2.2.8 ([HA, 4.8.5.16 (1)]). In this proposition we will make use of No-
tation 3.2.2.7.

Let I be a collection of small∞-categories, I′ a subcollection of I, and O an∞-operad.
Then there is a commutative diagram as follows such that the horizontal functors are
equivalences

AlgO

(
PrL
)⊗

MonPr
O (Cat∞)⊗

AlgO

(
Cat∞(I)

)⊗ MonI
O(Cat∞)⊗

AlgO

(
Cat∞(I′)

)⊗ MonI′

O(Cat∞)⊗

AlgO(Cat∞)⊗ MonO(Cat∞)×

AlgO(ΦPr
I )

⊗

Θ⊗
Pr
≃

(ΨPr
I )

⊗

AlgO(ΦI

I′)
⊗

Θ⊗
I

≃

(ΨI

I′)
⊗

AlgO
(
ΦI

′
)⊗

Θ⊗
I′

≃
(
ΨI

′
)⊗

Θ⊗

≃

(3.11)

65



Chapter 3. Bialgebras and modules over them

The functor Θ⊗ can be chosen in such a way that for every object X in O there is a
commutative diagram as follows.

AlgO(Cat∞)⊗ MonO(Cat∞)×

Cat×∞

Fin∗

evX◦pr1◦ιAlg

pAlg

Θ⊗

≃

(evX)×

pMonp

(3.12)

where the functors to Cat×∞ are the symmetric monoidal forgetful functors21.
Furthermore, Θ⊗ can be chosen such that the underlying equivalence

Θ: AlgO(Cat∞)→ MonO(Cat∞)

is the equivalence from [HA, 2.4.2.5], i. e. there is a commutative diagram

AlgO(Cat∞) MonO(Cat∞)

FunFin∗

(
O⊗,Cat×∞

)

Fun
(
O⊗,Cat×∞

)
Fun

(
O⊗,Cat∞

)

Θ

π∗

(3.13)

where the vertical functors are the canonical projections or inclusions. ♥

Proof. We start by constructing Θ⊗ together with diagram (3.12).
By Proposition F.3.0.2 there is a functor πAlg making the following diagram commute

AlgO(Cat∞)⊗ MonO(Cat∞)

Fun
(
O⊗,Cat×∞

)
×Fun(O⊗,Fin∗) Fin∗

Fun
(
O⊗,Cat×∞

)
Fun

(
O⊗,Cat∞

)

πAlg

ιAlg

pr1

π∗

(3.14)

where ιAlg is as in Proposition E.4.2.3 and the unlabeled vertical functor on the right
is the inclusion. Furthermore, Proposition F.3.0.2 also shows that πAlg is a cartesian
21See Proposition E.4.2.3 (5) for the forgetful functor AlgO(Cat∞)

⊗ → Cat×∞ that is given by evalua-
tion at X and Proposition F.2.0.1 for the forgetful functor evX : MonO(Cat∞) → Cat∞ preserving
products and hence inducing a functor (evX)× : MonO(Cat∞)

× → Cat×∞.

66



3.2. LMod and monoidality

structure. Applying [HA, 2.4.1.7] we obtain a symmetric monoidal functor Θ⊗ making
the following diagram commute.

MonO(Cat∞)

AlgO(Cat∞)⊗ MonO(Cat∞)×

Fin∗

πAlg

Θ⊗

pAlg

πMon

pMon

(3.15)

Of diagram (3.12) that we want to construct we have thus constructed Θ⊗ as a functor
over Fin∗. The two forgetful functors to Cat×∞ are already given as functors over Fin∗, so
it remains to construct a filler for the small triangle at the top, considered as a diagram
over Fin∗.

So let X be an object of O. As both the forgetful functor

AlgO(Cat∞)⊗
evX◦pr1◦ιAlg
−−−−−−−→ Cat×∞

as well as the composition

AlgO(Cat∞)⊗
Θ⊗

−−→ MonO(Cat∞)×
(evX)×

−−−−→ Cat×∞
are symmetric monoidal, giving a homotopy between them as symmetric monoidal func-
tors (and hence functors over Fin∗) is by [HA, 2.4.1.7] equivalent to giving a homotopy
of weak cartesian structures between

AlgO(Cat∞)⊗
evX◦pr1◦ιAlg
−−−−−−−→ Cat×∞

π
−→ Cat∞

and the following composition.

AlgO(Cat∞)⊗
Θ⊗

−−→ MonO(Cat∞)×
(evX)×

−−−−→ Cat×∞
π
−→ Cat∞

Such a homotopy is encoded in the outer commutative diagram depicted below

MonO(Cat∞)× Cat×∞

AlgO(Cat∞)⊗ MonO(Cat∞) Cat∞

Fun
(
O⊗,Cat×∞

)
Fun

(
O⊗,Cat∞

)
Cat∞

Cat×∞

(evX)×

πMon π
Θ⊗

πAlg

pr1◦ιAlg

evX

π∗

evX

evX

π

67



Chapter 3. Bialgebras and modules over them

where the upper left commutative triangle is the one from (3.15), the upper right com-
mutative square arises from the functoriality of the construction (−)×, the middle left
commutative square is the one from (3.14), the middle lower commutative square is one
by definition, and the bottom commutative square arises from naturality of evX .

We have now constructed Θ⊗ as a functor over Fin∗ as well as diagram (3.12) for every
object X of O. Let us now consider diagram (3.13) concerning the underlying functor Θ.
The composition of the inclusion of MonO(Cat∞) ≃ MonO(Cat∞)×〈1〉 into MonO(Cat∞)×

with πMon is by definition homotopic to the identity, so we obtain from the commutative
diagram (3.15) a homotopy between Θ and the the composition

AlgO(Cat∞)→ AlgO(Cat∞)⊗
πAlg
−−→ MonO(Cat∞)

The desired commutative diagram (3.13) can now be obtained by combining this with
commutative diagram (3.14).

From this description of Θ it now follows from [HA, 2.4.2.5] that Θ is an equivalence.
Using that Θ⊗ is symmetric monoidal we can thus conclude from [HA, 2.1.3.8] that Θ⊗

is an equivalence as well.
To construct diagram (3.11), we will show the following claims for each collection of

small ∞-categories I.

(A) (ΨI)⊗ is a monomorphism.

(B) Alg(ΦI)⊗ is a monomorphism.

(C) Im(Ho(Θ⊗ ◦ AlgO(Φ
I)⊗)) is equal to Im(Ho((ΨI)⊗)).

Let us assume claims (A), (B), and (C) for the moment and deduce the statements
we have to prove.

Existence of an equivalences Θ⊗
I

together with commutative squares of the form

AlgO

(
Cat∞(I)

)⊗ MonI
O(Cat∞)⊗

AlgO(Cat∞)⊗ MonO(Cat∞)×

AlgO(ΦI)
⊗

Θ⊗
I

≃

(ΨI)
⊗

Θ⊗

≃

then follows from Proposition B.4.3.1, see also Remark B.6.0.1. That there is a com-
patibility square between Θ⊗

I′
and Θ⊗

I
follows immediately from the uniqueness part of

Proposition B.4.3.1 using that (ΨI′)⊗ is a monomorphism.
Finally, we need to construct the dashed equivalence fitting into the square depicted

at the top of the commutative diagram below, where J is the collection of all small

68



3.2. LMod and monoidality

∞-categories, and X is an object of O.

AlgO

(
PrL
)⊗

MonPr
O (Cat∞)⊗

AlgO

(
Cat∞(J)

)⊗ MonJ

O(Cat∞)⊗

Cat×∞

AlgO(ΦPr
J )

⊗

Θ⊗
Pr
≃

(ΨPr
J )

⊗

Θ⊗
J

≃

evX◦pr1◦ιAlg◦AlgO(ΦJ)
⊗

(evX)×◦(ΨJ)
⊗

(3.16)

The functor (ΦPr
J )⊗ is by definition the inclusion of the fully faithful subcategory of

Cat∞(J)⊗ spanned by objects C1 ⊕ · · · ⊕ Cn such that the ∞-category ΦJ(Ci) is pre-
sentable for each 1 ≤ i ≤ n, see Definition 3.2.2.1. It follows from the definition of
the induced functor AlgO(Φ

Pr
J )⊗ in Remark E.4.2.2 together with Proposition B.3.0.1,

Proposition B.5.1.1, Remark B.5.1.2, and Proposition B.5.3.1, that AlgO(Φ
Pr
J )⊗ is again

a fully faithful functor with essential image spanned by objects C1 ⊕ · · · ⊕ Cn such that
the underlying ∞-category (evX ◦ AlgO(Φ

J))(Ci) of Ci is presentable for each 1 ≤ i ≤ n

and object X of O22.
The functor (ΨPr

J )⊗ is by definition (see Definition 3.2.2.4) the inclusion of the fully
faithful subcategory described in the same way23, so as Θ⊗

J
is compatible with the for-

getful functors to Cat×∞ we can use Proposition B.4.3.1 to complete diagram (3.16).
We now turn towards proving (A), (B), and (C). We will simplify notation and write

Φ := ΦI and Ψ := ΨI.
Proof of (A): That Ψ⊗ is a monomorphism holds by definition, see Definition 3.2.2.4.
Proof of (B): By Remark E.4.2.2, there is a commutative diagram as follows

AlgO

(
Cat∞(I)

)⊗ Fun
(
O⊗,Cat∞(I)⊗

)
×Fun(O⊗,Fin∗) Fin∗

AlgO(Cat∞)⊗ Fun
(
O⊗,Cat×∞

)
×Fun(O⊗,Fin∗) Fin∗

AlgO(Φ)⊗

ι′Alg

(Φ⊗)
∗
×idid

ιAlg

where ιAlg and ι′Alg are as in Proposition E.4.2.3. Φ⊗ is by definition (see Definition 3.2.2.1)
a monomorphism, so

(
Φ⊗
)
∗

is a monomorphism by Proposition B.5.1.1 and then it
follows that

(
Φ⊗
)
∗
×id id is a monomorphism by Proposition B.5.3.1. As ιAlg and ι′Alg are

fully faithful by definition and hence monomorphisms by Proposition B.4.4.1, it follows
from Proposition B.1.2.1 that Alg(Φ)⊗ is a monomorphism.
22We are using here that only functors preserving inert morphisms are in the essential image of pr1 ◦ιAlg

– this implies that we only need to check the presentability condition for objects X of O rather than
all of O⊗.

23So spanned by objects C1⊕· · ·⊕Cn such that the underlying ∞-category of Ci is presentable for each
1 ≤ i ≤ n.

69



Chapter 3. Bialgebras and modules over them

Proof of (C): To describe Im(Ho(Θ⊗ ◦AlgO(Φ)
⊗)) we will go through the same steps

of (B) and identify the replete image of the respective functor at each step. We start
with Φ⊗, for which Im(Ho(Φ⊗)) is described in Definition 3.2.2.1.

Combining this with Proposition B.5.1.1 we can describe Im(Ho((Φ⊗)∗)) as follows.

(ObjI) A functor A : O⊗ → Cat×∞, considered as an object of Ho(Fun(O⊗,Cat×∞)), is
in Im(Ho((Φ⊗)∗)) if and only if the following hold.

(ObjI.1) For each object X of O⊗, if A(X) ≃ C1⊕· · ·⊕Ck then for each 1 ≤ i ≤ k

the ∞-category Ci admits all I-indexed colimits.
(ObjI.2) If β is a morphism in O⊗, and

A(β) : C1 ⊕ · · · ⊕ Ck → C
′
1 ⊕ · · · ⊕ C

′
l

lies over a morphism φ : 〈k〉 → 〈l〉 of Fin∗, then for each 1 ≤ j ≤ l the
associated functor ∏

φ(i)=j

Ci → C
′
j

preserves I-indexed colimits separately in each variable.

(MorI) A natural transformation f : A→ B of functors O⊗ → Cat×∞, considered as a
morphism of Ho(Fun(O⊗,Cat×∞)), is in Im(Ho((Φ⊗)∗)) if and only if the following
hold.

(MorI.1) A and B are in Im(Ho((Φ⊗)∗)).
(MorI.2) For every object X of O⊗ the morphism

fX : C1 ⊕ · · · ⊕ Ck ≃ A(X)→ B(X) ≃ C ′1 ⊕ · · · ⊕ C
′
l

lying over a morphism φ : 〈k〉 → 〈l〉 is such that for every 1 ≤ j ≤ l the
associated functor ∏

φ(i)=j

Ci → C
′
j

preserves I-indexed colimits separately in each variable.

Describing Im(Ho((Φ⊗)∗ ×id id)) needs little extra work, it follows from Proposi-
tion B.5.3.1 that an object or morphism of

Fun
(
O,Cat×∞

)
×Fun(O,Fin∗) Fin∗

is in Im(Ho((Φ⊗)∗×id id)) if and only if its projection to the first factor is and object or
morphism of Im(Ho((Φ⊗)∗)).

The functor ι′Alg is defined as the inclusion of the full subcategory of objects whose
projection to the first factor is a functor O⊗ → Cat∞(I)⊗ that preserves inert morphisms,
and ιAlg is defined analogously. As by Proposition 3.2.2.3 (3) a morphism in Cat∞(I)⊗

is inert if and only if Φ⊗ maps that morphism to an inert morphism in Cat×∞, we can

70



3.2. LMod and monoidality

conclude that an object or morphism of Ho(AlgO(Cat∞)⊗) is in Im(Ho(AlgO(Φ)
⊗)) if and

only if Ho(ιAlg) maps it into Im(Ho((Φ⊗)∗×id id)). This leads to the following description
of Im(Ho(AlgO(Φ)

⊗)).
We will notationally identify 〈n〉∧〈m〉 with (〈n〉◦×〈m〉)∗ and thus write non-basepoint

elements of 〈n〉 ∧ 〈m〉 as pairs (i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

(ObjII) An object A of AlgO(Cat∞)⊗〈n〉, considered as an object of Ho(AlgO(Cat∞)⊗),
is in Im(Ho(AlgO(Φ)

⊗)) if and only if the following hold.
(ObjII.1) For each k ≥ 0 and object X in O⊗

〈k〉, if

(pr1 ◦ ιAlg)(A)(X) ≃ C(1,1) ⊕ · · · ⊕ C(n,k)

then for each 1 ≤ i1 ≤ n and 1 ≤ i2 ≤ k the ∞-category C(i1,i2) admits all
I-indexed colimits.

(ObjII.2) If φ : 〈k〉 → 〈l〉 is a morphism in Fin∗ and f : X → Y a morphism in
O⊗ lying over φ, and

(pr1 ◦ ιAlg)(A)(f) : C(1,1) ⊕ · · · ⊕ C(n,k) → C ′(1,1) ⊕ · · · ⊕ C ′(n,l)

then for each 1 ≤ j1 ≤ n and 1 ≤ j2 ≤ l the associated functor
∏

φ(i)=j2

C(j1,i) → C
′
(j1,j2)

preserves I-indexed colimits separately in each variable.

(MorII) A morphism f : A→ B of AlgO(Cat∞)⊗, lying over a morphism φ : 〈n〉 → 〈m〉
in Fin∗ and considered as a morphism of Ho(AlgO(Cat∞)⊗), is in Im(Ho(AlgO(Φ)

⊗))
if and only if the following hold.

(MorII.1) A and B are in Im(Ho(AlgO(Φ)
⊗)).

(MorII.2) For every k ≥ 0 and object X in O⊗
〈k〉 the morphism

(pr1 ◦ ιAlg)(f)X : C(1,1) ⊕ · · · ⊕ C(n,k) → C
′
(1,1) ⊕ · · · ⊕ C

′
(m,k)

is such that for every 1 ≤ j1 ≤ m and 1 ≤ j2 ≤ k the associated functor
∏

φ(i)=j1

C(i,j2) → C
′
(j1,j2)

preserves I-indexed colimits separately in each variable.

We will now replace these conditions with equivalent descriptions that are more
amenable to describing what happens under the equivalence Θ⊗.

Let A ≃ A1⊕· · ·⊕An be an object of AlgO(Cat∞)⊗〈n〉, let k ≥ 0, let X ≃ X1⊕· · ·⊕Xk

be an object of O⊗
〈k〉, and let

(pr1 ◦ ιAlg)(A)(X) ≃ C(1,1) ⊕ · · · ⊕ C(n,k)

71



Chapter 3. Bialgebras and modules over them

be the usual decomposition. Let 1 ≤ i ≤ n and gi : A→ Ai be an inert morphism lying
over ρi. By Proposition E.4.2.3 (2) the morphism (pr1 ◦ ιAlg)(gi)(X) can be identified
with the inert morphism

C(1,1) ⊕ · · · ⊕ C(n,k) → C(i,1) ⊕ · · · ⊕ C(i,k)

in Cat×∞ over ρi ∧ id〈k〉. Furthermore, as Ai lies in AlgO(Cat∞)⊗〈1〉 ≃ AlgO(Cat∞) (see
Proposition E.4.2.3 (0)) and thus preserves inert morphisms, we also obtain an equiva-
lence as follows.

(pr1 ◦ ιAlg)(Ai)(X) ≃
⊕

1≤j≤k

(pr1 ◦ ιAlg)(Ai)(Xj)

It follows that condition (ObjII.1) is equivalent to the following condition.

(ObjIII.1) For each 1 ≤ i ≤ n and object X of O, the underlying ∞-category24

evX(Ai) in Cat∞ is an ∞-category that admits all I-indexed colimits.

Similarly one obtains that if f : X → Y is a morphism in O⊗ lying over φ : 〈k〉 → 〈l〉
then

(pr1 ◦ ιAlg)(A)(f) : C(1,1) ⊕ · · · ⊕ C(n,k) → C ′(1,1) ⊕ · · · ⊕ C ′(n,l)
can be identified with a sum A1(f) ⊕ · · · ⊕ An(f) in Cat×∞, and for 1 ≤ j1 ≤ n and
1 ≤ j2 ≤ l the functor ∏

φ(i)=j2

C(j1,i) → C
′
(j1,j2)

associated to (pr1 ◦ ιAlg)(A)(f) can be identified with the analogous functor associated
to

(pr1 ◦ ιAlg)(Aj1)(f) : C(j1,1) ⊕ · · · ⊕ C(j1,k) → C ′(j1,1) ⊕ · · · ⊕ C
′
(j1,l)

at index (j1, j2). It follows that condition (ObjII.2) is equivalent to the following condi-
tion.

(ObjIII.2) For each 1 ≤ i ≤ n, the O-monoidal ∞-category Ai (which we consider as
an object of AlgO(Cat∞)⊗〈1〉 ≃ AlgO(Cat∞) ≃ MonO(Cat∞)) is such that for every
morphism f : X1 ⊕ · · · ⊕ Xk → Y in O lying over φ : 〈k〉 → 〈1〉 the associated
functor ∏

1≤j≤k

evXj Ai → evY Ai

is compatible with I-indexed colimits separately in each variable.

Reformulations (ObjIII.1) and (ObjIII.2) allow us to rephrase (ObjI) as follows, by
using the definitions of Θ (given by postcomposing with π) and the monomorphism
MonI

O(Cat∞)→ MonO(Cat∞) from Definition 3.1.3.10, which we can identify with Ψ by
Remark 3.2.2.5.
24Here we consider Ai as an object of AlgO(Cat∞)⊗〈1〉 ≃ AlgO(Cat∞)

72



3.2. LMod and monoidality

(ObjIII) Let A ≃ A1 ⊕ · · · ⊕An be an object of AlgO(Cat∞)⊗〈n〉, and consider A as an
object of Ho(AlgO(Cat∞)⊗). Then A is in Im(Ho(AlgO(Φ)

⊗)) if and only if for each
1 ≤ i ≤ n, the equivalence Θ: AlgO(Cat∞) → MonO(Cat∞) maps Ai to an object
in Im(Ho(Ψ)).

Using that Θ⊗ is lax monoidal and thus maps A1 ⊕ · · · ⊕An to Θ(A1)⊕ · · · ⊕Θ(An),
as well as the definition of Ψ⊗ in Definition 3.2.2.4, we finally obtain the following
reformulation.

(ObjIV) Let A be an object Ho(AlgO(Cat∞)⊗). Then A is in Im(Ho(AlgO(Φ)
⊗)) if

and only if Ho(Θ⊗)(A) is in Im(Ho(Ψ⊗)).

This shows (C) for objects. Let us now turn towards reformulating (MorII). Let
f : A→ B be a morphism in AlgO(Cat∞)⊗, lying over a morphism φ : 〈n〉 → 〈m〉 in Fin∗,
and let X ≃ X1 ⊕ · · · ⊕ Xk be an object of O⊗

〈k〉. As (pr1 ◦ ιAlg)(A) and (pr1 ◦ ιAlg)(B)
preserve inert morphisms, we can for 1 ≤ j2 ≤ k identify the commutative diagram

(pr1 ◦ ιAlg)(A)(X) (pr1 ◦ ιAlg)(B)(X)

(pr1 ◦ ιAlg)(A)(Xj2) (pr1 ◦ ιAlg)(B)(Xj2)

(pr1◦ιAlg)(f)X

(pr1◦ιAlg)(A)(ρ
j2 ) (pr1◦ιAlg)(B)(ρj2 )

(pr1◦ιAlg)(f)Xj2

lying over
〈n〉 ∧ 〈k〉 〈m〉 ∧ 〈k〉

〈n〉 ∧ 〈1〉 〈m〉 ∧ 〈1〉

φ∧id

id∧ρj2 id∧ρj2

φ∧id

with a diagram as indicated below

C(1,1) ⊕ · · · ⊕ C(n,k) C ′(1,1) ⊕ · · · ⊕ C
′
(m,k)

C(1,j2) ⊕ · · · ⊕ C(n,j2) C ′(1,j2) ⊕ · · · ⊕ C
′
(m,j2)

and the functor ∏

φ(i)=j1

C(i,j2) → C
′
(j1,j2)

associated to the top horizontal morphism at index (j1, j2) with 1 ≤ j1 ≤ m can be
identified with the functor associated to the bottom horizontal morphism at the same
index. This implies that (MorII.2) is equivalent to the following condition.

73



Chapter 3. Bialgebras and modules over them

(MorIII.2) For every object X of O, if f is such that

(evX ◦ pr1 ◦ ιAlg)(f) : C(1,1) ⊕ · · · ⊕ C(n,1) → C ′(1,1) ⊕ · · · ⊕ C ′(m,1)
then for every 1 ≤ j ≤ m the associated functor

∏

φ(i)=j

C(i,1) → C
′
(j,1)

preserves I-indexed colimits separately in each variable.

For X an object of O, the composition evX ◦ pr1 ◦ ιAlg is by commutativity of diagram
(3.12) homotopic to the composition (evX)× ◦Θ⊗. Combining this with the definition of
Ψ (see Definition 3.2.2.4) and the reformulation of (MorII.1) made possible by (ObjIV)
we finally obtain the following.

(MorIV) Let f : A→ B be a morphism in Ho(AlgO(Cat∞)⊗). Then f is a morphism
in Im(Ho(AlgO(Φ)

⊗)) if and only if Ho(Θ⊗)(f) is in Im(Ho(Ψ⊗)).

This shows (C) and thereby ends the proof.

Remark 3.2.2.9. In this remark we will make use of Notation 3.2.2.7.
Let I be a collection of small ∞-categories, O an ∞-operad, and X and object of the

underlying category O. Diagram (3.11) constructed in Equation (3.11) can be extended
to a commutative diagram as follows

AlgO

(
PrL
)⊗

MonPr
O (Cat∞)⊗

PrL⊗

AlgO

(
Cat∞(I)

)⊗ MonI
O(Cat∞)⊗

Cat∞(I)⊗

AlgO(Cat∞)⊗ MonO(Cat∞)×

Cat×∞

Θ⊗
Pr
≃

Alg(ΦPr
I )

⊗
E

(ΨPr
I )

⊗

Θ⊗
I

≃

Alg(ΦI)
⊗

E

(ΨI)
⊗

ΨPr
I

Θ⊗

≃

E (ev⟨1⟩)
×

ΨI

where we write E as an abbreviation for evX ◦ pr1 ◦ιAlg.
We will refer to the functors

MonI
O(Cat∞)⊗ → Cat∞(I)⊗

74



3.2. LMod and monoidality

and
MonPr

O (Cat∞)⊗ → PrL⊗

as the forgetful functors and denote them by (evX)⊗. ♦

Proposition 3.2.2.10 ([HA, 4.8.5.16 (1)]). In this proposition we make use of Nota-
tion 3.2.2.7.

Let I be a collection of small ∞-categories, let I′ be a subcollection of I, and let J

be the collection of all small ∞-categories. Let O⊗ be an ∞-operad. Then the following
statements hold.

(1) The functors pMon,I and pMon,Pr are cocartesian fibrations of ∞-operads and thus
exhibit MonI

O(Cat∞)⊗ and MonPr
O (Cat∞)⊗ as symmetric monoidal ∞-categories.

(2) The functors

MonPr
O (Cat∞)⊗

(ΨPr
I )

⊗

−−−−→ MonI
O(Cat∞)⊗

(ΨI

I′)
⊗

−−−−→ MonI′

O(Cat∞)⊗

(
ΨI

′
)⊗

−−−−→ MonO(Cat∞)×

are lax symmetric monoidal with respect to the symmetric monoidal structures from
(1).

(3) A morphism in MonI
O(Cat∞)⊗ or MonPr

O (Cat∞)⊗ is inert if and only if its image
under

(
ΨI
)⊗ or

(
ΨPr)⊗ in MonO(Cat∞)× is inert.

(4) The functor (
ΨPr

J

)⊗
: MonPr

O (Cat∞)⊗ → MonJ

O(Cat∞)×

is symmetric monoidal with respect to the symmetric monoidal structure from (1).

(5) A morphism f in MonPr
O (Cat∞)⊗ is pMon,Pr-cocartesian if and only if

(
ΨPr

J

)⊗
(f) is

pMon,J-cocartesian.

(6) Let X be an object in O. The forgetful functors

(evX)⊗ : MonI
O(Cat∞)⊗ → Cat∞(I)⊗

and
(evX)⊗ : MonPr

O (Cat∞)⊗ → PrL⊗

from Remark 3.2.2.9 are symmetric monoidal. ♥

Proof. All of the statements will be shown by translating them to statements regarding
AlgO

(
Cat∞(I)

)⊗ and AlgO

(
PrL
)⊗

using Proposition 3.2.2.8. The individual statements
then all follow by combining parts of Proposition E.4.2.3 with parts of Proposition 3.2.2.3,
as indicated in the table below.

75



Chapter 3. Bialgebras and modules over them

Claim Combine Proposition E.4.2.3 with Proposition 3.2.2.3
(1) (3) (1)
(2) (7) (2)
(3) (2) and (9) (3)
(4) (8) (4)
(5) (4) and (9) (5)
(6) (5)

3.2.2.3. The symmetric monoidal structure on AlgOpPr

By Proposition 3.2.1.1 and Proposition C.2.0.3 the cocartesian fibration

qAlgOp : AlgOp→ MonAssoc(Cat∞)

preserves products (see also Remark 3.2.1.4). By [HA, 2.4.1.8] we thus obtain an induced
symmetric monoidal functor

q×
AlgOp : AlgOp× → MonAssoc(Cat∞)×

between the respective cartesian symmetric monoidal structures.
In this section we upgrade qAlgOpI and qAlgOpPr to symmetric monoidal functors in a

compatible way.

Definition 3.2.2.11 ([HA, 4.8.5.14]). Let I be a collection of small ∞-categories. We
define functors

q⊗
AlgOpI : AlgOp⊗

I
→ MonI

Assoc(Cat∞)⊗

and
q⊗
AlgOpPr

: AlgOp⊗
Pr → MonPr

Assoc(Cat∞)⊗

as pullbacks, as indicated in the following pullback diagrams

AlgOp⊗
I

AlgOp×

MonI
Assoc(Cat∞)⊗ MonAssoc(Cat∞)×

(Ψ̃I)⊗

q⊗
AlgOpI

q×
AlgOp

(ΨI)⊗

AlgOp⊗
Pr AlgOp×

MonPr
Assoc(Cat∞)⊗ MonAssoc(Cat∞)×

(Ψ̃Pr)⊗

q⊗
AlgOpPr

q×
AlgOp

(ΨPr)⊗

where the lower horizontal functors are the ones defined in Notation 3.2.2.7. ♦

76



3.2. LMod and monoidality

Remark 3.2.2.12. Passing to fibers over 〈1〉 we obtain a pullback diagram

(AlgOpI)
⊗
〈1〉 AlgOp×

〈1〉

MonI
Assoc(Cat∞)⊗〈1〉 MonAssoc(Cat∞)×〈1〉

(qAlgOpI)
⊗

⟨1⟩
(qAlgOp)

×

⟨1⟩

that can be identified using Remark 3.2.2.5 with the pullback diagram

AlgOpI AlgOp

MonI
Assoc(Cat∞) MonAssoc(Cat∞)

qAlgOpI qAlgOp

from Definition 3.1.3.11. A similar statement holds for (qAlgOpPr)
⊗
〈1〉. ♦

Proposition 3.2.2.13 ([HA, 4.8.5.16 (1)]). In this proposition we use notation from
Notation 3.2.2.7.

Let I be a collection of small∞-categories, I′ a subcollection of I, and J the collection
of all small ∞-categories.

(0) The functors (Ψ̃I)⊗ and (Ψ̃Pr)⊗ from Definition 3.2.2.11 are monomorphisms in
Cat∞, and (Ψ̃I)⊗ factors as a composition of a monomorphisms (Ψ̃I

I′)
⊗ with (Ψ̃I′)⊗.

Similarly, (Ψ̃Pr)⊗ factors as a composition of a monomorphism (Ψ̃Pr
I )⊗ with (Ψ̃I)⊗.

(1) The functors q⊗
AlgOpI and q⊗

AlgOpPr
as defined in Definition 3.2.2.11 are cocartesian

fibrations of ∞-operads.

(2) The compositions pMon,I ◦q
⊗
AlgOpI and pMon,Pr ◦q

⊗
AlgOpPr

exhibit AlgOp⊗
I

and AlgOp⊗
Pr

as symmetric monoidal ∞-categories.

(3) The morphisms of ∞-operads q⊗
AlgOpI and q⊗

AlgOpPr
are symmetric monoidal.

(4) Let f be a morphism in AlgOp⊗
I

. Then f is pMon,I ◦ q
⊗
AlgOpI-cocartesian if and only

if q⊗
AlgOpI(f) is pMon,I-cocartesian and (Ψ̃I)⊗(f) is q×

AlgOp-cocartesian. An analogous
statement holds for morphisms in AlgOp⊗

Pr.

(5) The functors (Ψ̃I
I′)

⊗ and (Ψ̃Pr
I )⊗ of Definition 3.2.2.11 are lax symmetric monoidal.

(6) Let f be a morphism in AlgOp⊗
I

. Then f is inert if and only if (Ψ̃I)⊗(f) is inert.
An analogous statement holds for morphisms in AlgOp⊗

Pr.

(7) The functor
(Ψ̃Pr

J )⊗ : AlgOp⊗
Pr → AlgOp⊗

J

of (0) is symmetric monoidal.

77



Chapter 3. Bialgebras and modules over them

(8) Let f be a morphism in AlgOp⊗
Pr. Then f is pMon,Pr ◦ q

⊗
AlgOpPr

-cocartesian if and
only if (Ψ̃Pr

J )⊗(f) is pMon,J ◦ q
⊗
AlgOpJ-cocartesian. ♥

Proof. Proof of (0): That the functors factor as indicated follows from composability of
pullback diagrams [HTT, 4.4.2.1] together with Remark 3.2.2.6. By Proposition B.5.2.1,
pullbacks of monomorphisms are again monomorphisms, so that the functors in question
are monomorphisms follows from Definition 3.2.2.4 and Remark 3.2.2.6.

Proof of (1): The functor q⊗
AlgOpI is a pullback of q×

AlgOp, which is a cocartesian fibra-
tion of ∞-operads by Proposition 3.2.1.1 and Proposition C.2.0.6. As cocartesian fibra-
tions of ∞-operads are stable under taking pullbacks along morphisms of ∞-operads25
and MonI

Assoc(Cat∞)⊗ → MonAssoc(Cat∞)× is a morphism of ∞-operads by Proposi-
tion 3.2.2.10 (2), we can conclude that q⊗

AlgOpI is also a cocartesian fibration of∞-operads,
and thus in particular a morphism of ∞-operads by [HA, 2.1.2.14].

Proof of (2): As the ∞-operad MonI
Assoc(Cat∞)⊗ is in fact a symmetric monoidal

∞-category26 by Proposition 3.2.2.10 (1), it follows27 with (1) that AlgOp⊗
I

is a symmet-
ric monoidal ∞-category as well.

Proof of (3): Follows immediately from Proposition C.1.3.1.
Proof of (4): We do the case of AlgOp⊗

I
, as the proof for AlgOp⊗

Pr is completely analo-
gous. Let f be a morphism in AlgOp⊗

I
. Because q⊗

AlgOpI maps pMon,I ◦ q
⊗
AlgOpI-cocartesian

morphisms to pMon,I-cocartesian morphisms by (3), it follows from [HTT, 2.4.1.3 (3)]
that f is pMon,I ◦ q

⊗
AlgOpI-cocartesian if and only if q⊗

AlgOpI(f) is pMon,I-cocartesian and f

is q⊗
AlgOpI-cocartesian. The claim now follows from Proposition C.1.1.1.

Proof of (6): We again only discuss the case of AlgOp⊗
I

, as the proof for AlgOp⊗
Pr is

completely analogous. In light of (4) it suffices to show that if f is a morphism of AlgOp⊗
I

lying over an inert morphism in Fin∗, then (Ψ̃I)⊗(f) is pMon ◦ q
×
AlgOp-cocartesian if and

only if (Ψ̃I)⊗(f) and q⊗
AlgOpI(f) are inert.

Combining that q×
AlgOp is a morphism of ∞-operads with [HTT, 2.4.1.3 (3)] we obtain

that (Ψ̃I)⊗(f) being pMon ◦ q
×
AlgOp-cocartesian is equivalent to (Ψ̃I)⊗(f) as well as

(
q×
AlgOp ◦

(
Ψ̃I

)⊗)
(f) ≃

((
ΨI

)⊗
◦ q⊗

AlgOpI

)
(f)

being inert. The claim now follows by applying Proposition 3.2.2.10 (3).
Proof of (5): Immediate consequence of (6).
Proof of (8): Analogous to the proof of (6), using that q×

AlgOp is even symmetric
monoidal and Proposition 3.2.2.10 (5).

Proof of (7): Immediate consequence of (8).
25This is a special case of the functoriality of cocartesian families of monoidal ∞-categories discussed

in Remark 3.1.1.3 – in this case we consider [0]-families, which are just cocartesian fibrations of
∞-operads.

26I. e. the canonical morphism of ∞-operads MonI
Assoc(Cat∞)

⊗ → Fin∗ is a cocartesian fibration.
27Cocartesian fibrations are closed under composition by [HTT, 2.4.2.3 (3)].

78



3.2. LMod and monoidality

3.2.3. LMod as a symmetric monoidal functor

In Section 3.1 we constructed a natural transformation evm : LMod → pr of functors
AlgOp → Cat∞, see Definition 3.1.3.8. It was shown in Proposition 3.2.1.3 that AlgOp
admits products and that LMod and pr preserve products. This makes evm into a mor-
phism in Fun×(AlgOp,Cat∞), the full subcategory of Fun(AlgOp,Cat∞) spanned by
the product-preserving functors. [HA, 2.4.1.8] then implies that evm can be upgraded
to a natural transformation evm

× : LMod× → pr× of symmetric monoidal functors
AlgOp× → Cat×∞.

We also investigated the behavior of evm with respect to algebras in presentable sym-
metric monoidal∞-categories as input, and showed in Proposition 3.1.3.12 that evm lifts
to a natural transformation of functors AlgOpPr → PrL.

Finally, in Section 3.2.2 we constructed symmetric monoidal structures on AlgOpPr
and PrL and upgraded the inclusion functors to AlgOp and Cat∞ to lax symmetric
monoidal functors (see Proposition 3.2.2.3 and Proposition 3.2.2.13).

The situation is depicted in the non-dashed part of the following diagram. Squares
that contain parallel arrows on opposing sides are to be interpreted as encoding two
commutative diagrams, one considering only the arrows at the top, and one only con-
sidering the arrows at the bottom, as well as a compatible homotopy between the two
natural transformations from the source corner to the target corner that one obtains by
pre-composing and post-composing.

AlgOp⊗
Pr PrL⊗

AlgOp× Cat×∞

AlgOpPr PrL

AlgOp Cat∞evm

evm

ev×m

evm

(3.17)

The vertical functors are all inclusions of the fiber over 〈1〉, the bottom square was
constructed in Proposition 3.1.3.12, and the front square can be obtained from [HA,
2.4.1.8]. To be more precise about how the above cube is to be interpreted with regards
to parallel arrows, we could also depict the cube (3.17) in the form shown below (as just a
standard commuting cube in Cat∞), using that natural transformations are equivalently

79



Chapter 3. Bialgebras and modules over them

encoded as functors out of a product with [1].

[1]×AlgOp⊗
Pr PrL⊗

[1]×AlgOp× Cat×∞

[1]×AlgOpPr PrL

[1]×AlgOp Cat∞

ev⊗m

ev×m

evm

evm

(3.18)

The goal of this section is to complete the cube as indicated by the dashed arrows, and
in such a way that evm : LMod → pr in its incarnation as a natural transformation of
functors AlgOpPr → PrL is upgraded to a natural transformation of symmetric monoidal
functors.

Proposition 3.2.3.1 ([HA, 4.8.5.16 (3) and (4)]). Let I be a collection of small ∞-
categories that includes ∆

op. Then the restriction to AlgOp⊗
I

of the natural transforma-
tion ev×

m of symmetric monoidal functors AlgOp× → Cat×∞ factors through Cat∞(I)⊗.
Analogously, the restriction to AlgOp⊗

Pr factors through PrL⊗. The situation is depicted
in the following commutative diagram.

AlgOp⊗
Pr PrL⊗

AlgOp⊗
I

Cat∞(I)⊗

AlgOp× Cat×∞

(Ψ̃Pr
I )

⊗

LMod⊗

pr⊗

(ΦPr
I )

⊗

LMod⊗

pr⊗

(Ψ̃I)
⊗ (ΦI)

⊗

LMod×

pr×

ev×m

ev⊗m

ev⊗m

(3.19)

Furthermore, the two natural transformations ev⊗
m that we obtain in this manner are

natural transformations of symmetric monoidal functors, and the underlying diagram of

80



3.2. LMod and monoidality

underlying ∞-categories of diagram (3.19) can be identified with diagram (3.10) from
Proposition 3.1.3.12. ♥

Proof. In this proof we will use Notation 3.2.2.7 as well as the notation from Defini-
tion 3.2.2.11 and Proposition 3.2.2.13.

Reformulation of the lifting problem: We first note that by Proposition 3.2.2.3 (0)
and Definition 3.2.2.1 together with Proposition B.4.4.1 and Proposition B.1.2.1 the
right vertical functors

(
ΦPr

I

)⊗ and
(
ΦI
)⊗ in diagram (3.19) are monomorphisms. In this

situation Proposition B.4.3.1 implies that the dashed lifts in the following diagram are
essentially unique if they exist.

[1]×AlgOp⊗
Pr PrL⊗

[1]×AlgOp⊗
I

Cat∞(I)⊗

[1]×AlgOp× Cat×∞

ev⊗m

id×(Ψ̃Pr
I )

⊗ (ΦPr
I )

⊗

ev⊗m

id×(Ψ̃I)
⊗ (ΦI)

⊗

ev×m

(∗)

Furthermore, Proposition B.4.3.1 also implies that these lifts exists if and only if the
following two inclusions of replete subcategories of Ho(Cat×∞) hold.

Im


Ho

(
ev×

m ◦

(
id×

(
Ψ̃I

)⊗)
)
 ⊆ Im

(
Ho
((

ΦI

)⊗)
)

Im
(

Ho
(

ev×
m ◦
(

id×(Ψ̃I)⊗
)
◦
(

id×(Ψ̃Pr
I )⊗

))
⊆ Im

(
Ho
(
(ΦI)⊗ ◦ (ΦPr

I )⊗
)))

(A)

Verification of the inclusion of replete images for fibers over Fin∗: We start by check-
ing those inclusions for objects and morphisms lying in a fiber over 〈n〉 for some n ≥ 0.
Because (Ψ̃Pr

I )⊗, (Ψ̃I)⊗, (ΦPr
I )⊗, and (ΦI)⊗ are all morphisms of ∞-operads (see Propo-

sition 3.2.2.3 (2) and Proposition 3.2.2.13 (5)), we can identify the diagram induced by
(∗) on fibers over 〈n〉 with the following diagram.

[1]×AlgOp×n
Pr PrL×n

[1]×AlgOp×n
I

Cat∞(I)×n

[1]×AlgOp×n Cat×n∞

id×(Ψ̃Pr
I )

⊗ (ΦPr
I )

⊗

id×(Ψ̃I)
⊗ (ΦI)

⊗

ev×nm

(∗∗)

By Remark 3.2.2.12 and Remark 3.2.2.2 this diagram can be identified with the n-fold
product of the lifting problem solved in Proposition 3.1.3.12, so we deduce that the

81



Chapter 3. Bialgebras and modules over them

inclusions (A) hold for objects as well as for morphisms lying over an identity morphism
in Fin∗.

Reduction of the presentable case to the other cases: Suppose for the moment that we
have shown the first inclusion of (A) for all families of small∞-categories. Given that we
already know the second inclusion on objects, the second inclusion will follow if (ΦPr

J )⊗

and (Ψ̃Pr
J )⊗ are fully faithful for J the family of all small ∞-categories. That

(
ΦPr

J

)⊗ is
fully faithful is the case by Definition 3.2.2.1, and

(
Ψ̃Pr

J

)⊗
is fully faithful combining

Proposition B.5.2.1 with Definition 3.2.2.11 and Definition 3.2.2.4.
Verification of the inclusion of replete images for morphisms: Let

Γ: A1 ⊕ · · · ⊕ An → B1 ⊕ · · · ⊕ Bm

be a morphism in AlgOp× lying over a morphism

G : C1 ⊕ · · · ⊕ Cn → D1 ⊕ · · · ⊕ Dm

in MonAssoc(Cat∞)× lying over a morphism

γ : 〈n〉 → 〈m〉

in Fin∗. Note that by Remark 3.1.3.7 we can interpret Ai as an object of Alg(Ci) and
similarly for Bj. Assume that Γ lies in the replete image of (Ψ̃I)⊗. By applying Proposi-
tion B.5.2.1, the definition of (Ψ̃I)⊗ in Definition 3.2.2.11, as well as Definition 3.2.2.4 we
can unpack this to see that this implies in particular that the underlying ∞-categories
of C1, . . . , Cn,D1, . . . ,Dm admit I-indexed colimits, that the tensor product functors
on C1, . . . , Cn,D1, . . . ,Dm are compatible with I-indexed colimits, and that for every
1 ≤ j ≤ m the functor ∏

φ(i)=j

Ci → Dj

associated to G preserves I-indexed colimits in each variable separately. Applying ev×
m

to Γ we obtain a commutative diagram as follows in Cat×∞ (see Remark 3.1.3.9).

LModA1(C1)⊕ · · · ⊕ LModAn(Cn) LModB1(D1)⊕ · · · ⊕ LModBm(Dm)

C1 ⊕ · · · ⊕ Cn C ′1 ⊕ · · · ⊕ Dm

LMod×(Γ)

ev×m(A1⊕···⊕An) ev×m(B1⊕···⊕Bm)

pr×(Γ)

What we have to show is that this diagram is in the replete image of (ΦI)⊗. What we
have already shown when considering objects and morphisms in fibers over Fin∗ already
implies that the four objects as well as the vertical morphisms are in the replete image
of (ΦI)⊗, so it only remains to show this for the horizontal morphisms. By definition
(see Definition 3.2.2.1) this means that we have to show that for every 1 ≤ j ≤ m the
two horizontal functors in the following commutative diagram associated to the diagram

82



3.2. LMod and monoidality

above preserve I-indexed colimits separately in each variable (see Remark 3.1.3.9 for the
identifications made here – in particular the functors called evm are the actual evaluation
functors).

∏
φ(i)=j LModAi(Ci) LModBj

(
Dj
)

∏
φ(i)=j Ci Dj

∏
ϕ(i)=j evm evm

The bottom horizontal functor is the same one as the functor associated to G that we
already mentioned preserving I-indexed colimits separately in each variable. We also
already know that the left vertical functor is a product of functors that preserve I-
indexed colimit, so it follows that the compositions from the top left to the bottom
right preserve I-indexed colimits separately in each variable. As the tensor product in
the monoidal ∞-category Dj is compatible with I-indexed colimits, we can now apply
[HA, 4.2.3.5] to deduce that the top horizontal functor also preserves I-indexed colimits
separately in each variable.

On showing that the induced functors are symmetric monoidal: We have now con-
structed a commutative diagram (3.19). We next need to prove that the induced func-
tors LMod⊗ and pr⊗ are symmetric monoidal28, i. e. that they preserve morphisms that
are cocartesian with respect to the canonical morphism of ∞-operads to Fin∗ (see [HA,
2.1.3.7]).

Proof that the induced functors are lax monoidal: As all solid arrows in diagram (3.19)
are lax monoidal (so preserve inert morphisms)29, and the right vertical morphisms of
that diagram reflect inert morphisms by Proposition 3.2.2.3 (3), we can already conclude
that the functors called LMod⊗ and pr⊗ preserve inert morphisms, i. e. are lax monoidal.

Reduction of what needs to be checked for symmetric monoidality: Let J be the collec-
tion of all small ∞-categories. Note that in the commutative diagram

AlgOp⊗
Pr PrL⊗

AlgOp⊗
J

Cat∞(J)⊗

(Ψ̃Pr
J )

⊗

LMod⊗

pr⊗

(ΦPr
J )

⊗

LMod⊗

pr⊗

ev⊗m

ev⊗m

(3.20)

28The∞-category of symmetric monoidal functors from one symmetric monoidal∞-category to another
one is a full subcategory of the ∞-category of functors over Fin∗ (see [HA, 2.1.3.7]), so there is no
extra condition that we need to check for evm.

29See Proposition 3.2.2.13 (5) for the left vertical functors and Proposition 3.2.2.3 (2) for the right
vertical functors. The bottom horizontal functor is symmetric monoidal by construction.

83



Chapter 3. Bialgebras and modules over them

the left vertical functor is symmetric monoidal by Proposition 3.2.2.13 (7) and the right
vertical functor reflects cocartesian morphisms with respect to the canonical morphisms
of∞-operads to Fin∗ by Proposition 3.2.2.3 (5). If we show that the two bottom horizon-
tal morphisms of ∞-operads are symmetric monoidal it will thus follow that the same
is true for the two top horizontal ones.

Taking into account Proposition E.1.1.1 it thus remains to show that the functors

LMod⊗, pr⊗ : AlgOp⊗
I
→ Cat∞(I)⊗

map pMon,I◦q
⊗
AlgOpI-cocartesian lifts of µ and ϵ (see Proposition E.1.1.1 for the definitions)

to pI-cocartesian morphisms.
Cocartesian lifts of ϵ: Denote by ∅ the unique object in (AlgOpI)

⊗
〈0〉, and let

Ẽ ′ : ∅ → A

be a pMon,I ◦ q
⊗
AlgOpI-cocartesian lift of ϵ lying over a pMon,I-cocartesian morphism30

E ′ : ∅ → C

in MonI
Assoc(Cat∞)⊗.

That E ′ is pMon,I-cocartesian implies that the functor

E : 1Cat∞(I) → C

associated to E ′ is an equivalence, so that we can identify C with the unit31 1Cat∞(I) in
MonI

Assoc(Cat∞).
By Proposition 3.2.2.13 (4) the morphism (ΨI)⊗(Ẽ ′) is q×

AlgOp-cocartesian. The com-
mutative diagram

AlgOp× AlgOp

MonAssoc(Cat∞)× MonAssoc(Cat∞)

πAlgOp

q×
AlgOp qAlgOp

πMon

where the horizontal functors are the cartesian structures is a pullback diagram by
Proposition 3.2.1.1 and Proposition F.1.0.2. Applying Proposition C.1.1.1 we conclude
that the functor

1AlgOp → A

associated to (ΨI)⊗(Ẽ ′) (where 1AlgOp is the final object in AlgOp, so the unit object in
the cartesian symmetric monoidal structure) is a qAlgOp-cocartesian lift of the monoidal
30q⊗

AlgOp
I

is symmetric monoidal by Proposition 3.2.2.13 (3).
31By Proposition 3.2.2.10 (6) the forgetful functor (ev〈1〉)

⊗ : MonI
Assoc(Cat∞)⊗ → Cat∞(I)⊗ is symmet-

ric monoidal, so the underlying ∞-category of the monoidal unit 1MonI

Assoc(Cat∞) of MonI
Assoc(Cat∞)

is given by the monoidal unit of Cat∞(I).

84



3.2. LMod and monoidality

functor32
e : [0]→ C

associated to (ΦI)⊗(E ′). The final object 1AlgOp in AlgOp can then using Remark 3.1.3.7,
Proposition 3.2.1.1, and Proposition C.2.0.3 be identified with the final object in

AlgOp[0] ≃ Alg([0])op

which is the unit object 1[0] in [0]33. That the morphism 1[0] → A is qAlgOp-cocartesian
then implies using Remark 3.1.3.7 that A can be identified as an object of

AlgOpC ≃ Alg(C)op

with e(1[0]) ≃ 1C.
Getting back to showing that LMod⊗ and pr⊗ map Ẽ ′ to a pI-cocartesian morphism,

we obtain the following commutative diagram in Cat∞(I) by applying ev⊗
m to Ẽ ′.

∅ LModA(C)

∅ C

LMod⊗(Ẽ′)

evm evm

pr⊗(Ẽ′)

It suffices to show that the associated horizontal functors as depicted in the diagram
below are equivalences.

1Cat∞(I) LModA(C)

1Cat∞(I) C

id evm

E

That E is an equivalence was already noted, and the right vertical functor evm is an
equivalence by [HA, 4.2.4.9], as A is the unit object in C.

Cocartesian lifts of µ: Let C and D be two objects in MonI
Assoc(Cat∞), let A be an

algebra in C, and let B be an algebra in D. We can use an analysis completely analogous
to the ϵ-case to describe a pMon,I◦q

⊗
AlgOpI-cocartesian lift M̃ ′ : A⊕B → A⊗IB. Let us just

note that from the lax symmetric monoidal functor MonI
Assoc(Cat∞) → MonAssoc(Cat∞)

we obtain a monoidal functor C×D → C⊗ID, and the induced functor on algebras sends
the pair (A,B) to an object A⊗I B of Alg(C ⊗I D), and it is this algebra considered as
an object in AlgOp that is the target of M̃ ′.
32The final object of MonAssoc(Cat∞) (which is also the monoidal unit with respect to the cartesian

symmetric monoidal structure) is by Proposition 3.2.2.10 (6) given by the essentially unique monoidal
structure on the ∞-category that is final in Cat∞, the discrete category [0] that has a single object
and only the identity morphism.

33In this case this is completely clear because there is only an essentially unique algebra in [0], but we
could also invoke [HA, 3.2.1.8].

85



Chapter 3. Bialgebras and modules over them

ev⊗
m applied to M̃ ′ yields a commutative diagram (after passing to the associated

functors, as before)

LModA(C)× LModB(D) LMod(A,B)(C × D)

LModA(C)⊗I LModB(D) LModA⊗IB(C ⊗I D)

C ⊗I D C ⊗I D

≃

−⊗I− LMod(−⊗I−)

evm⊗Ievm evm

id

and we have to show that the bottom and middle horizontal functors are equivalences.
This can be done by applying [HA, 4.7.3.16], and the verification of the necessary hy-
potheses is carried out in [HA, Proof of 4.8.5.16 (4)]. While our settings are slightly
different, for example our functor was constructed on an ∞-category where morphisms
of algebras have the opposite variance compared to Lurie’s∞-category, these differences
are not relevant in the proof, the most that would need to be changed for our setting is
replacing RMod by LMod.

Note that this is the step that requires the assumption that ∆
op is contained in I.

Compatibility of the constructed diagram with diagram (3.10) from Proposition 3.1.3.12:
Finally, it only remains to show that the underlying diagram of (3.19) on underlying
∞-categories can be identified with diagram (3.10) from Proposition 3.1.3.12. But this
follows from ΦI and ΦPr

I being monomorphisms together with the uniqueness part of
Proposition B.4.3.1.

3.3. Bialgebras
Let C be a symmetric monoidal category. An (associative) algebra A in C consists of a

multiplication A⊗A→ A and a unit 1C → A such that diagrams encoding associativity
and unitality commute. The notion of (coassociative) coalgebras A in C is dual to this;
instead of a multiplication we require a comultiplication A → A ⊗ A, and instead of
a unit we require a counit A → 1C, satisfying diagrams encoding coassociativity and
counitality. Instead of defining coalgebras from scratch like this we can also define them
in terms of algebras: A coalgebra in C is the same thing as an algebra in Cop.

We are often not only interested in individual algebras A in C, but the category of all
(associative) algebras in C, which we denote by AlgAssoc(C). The data of a morphism of
algebras A→ B just consists of a morphism in C from the underlying object of A to the
underlying object of B, but we require that this morphism is compatible with the respec-
tive multiplication and unit morphisms. If we want morphisms of coalgebras to similarly
be given by morphisms of underlying objects that are compatible with comultiplication
and counit, then we need to fix having passed to the opposite category by doing it a
second time, leading to the definition of the category of (coassociative) coalgebras as

coAlgAssoc(C) := AlgAssoc(Cop)op

86



3.3. Bialgebras

This is the perspective that is most suitable to extend the definition to the∞-categorical
setting.

Definition 3.3.0.1. Let α : O′⊗ → O⊗ be a morphisms of∞-operads and pC : C⊗ → O⊗

an O-monoidal ∞-category. Then we set

coAlgO′/O(C) := AlgO′/O(C
op)op

where Cop carries the O-monoidal structure described in [HA, 2.4.2.7]34. ♦

Notation 3.3.0.2. We will use similar notational shortcuts for coAlg as for Alg. In
particular, in the situation of Definition 3.3.0.1:

• If α is the identity, then we will shorten coAlgO/O(C) to coAlg /O(C).

• If O⊗ = Fin∗, then we write coAlgO′(C) instead of coAlgO′/Comm(C).

• We write coAlg(C) for coAlg/Assoc(C) or coAlgAssoc(C).

• We write coCAlg(C) for coAlgComm(C). ♦

The category AlgAssoc(C) inherits a symmetric monoidal structure from C, so that we
can form the category

BiAlgAssoc,Assoc(C) := coAlgAssoc
(
AlgAssoc(C)

)

of bialgebras in C. Unpacking the definition, a bialgebra in C consists of an object A in C
together with a multiplication, unit, comultiplication, and counit, satisfying associativity,
coassociativity, unitality, and counitality, and such that comultiplication and counit are
morphisms of algebras. In this classical setting it is very easy to see that comultiplication
and counit are morphisms of algebras if and only if multiplication and unit are morphisms
of coalgebras, so that there is a canonical isomorphism

coAlgAssoc
(
AlgAssoc(C)

)
∼= AlgAssoc

(
coAlgAssoc(C)

)

or ordinary categories, and we could have taken either side as a definition for the category
of bialgebras BiAlgAssoc,Assoc(C).

Unfortunately, the situation is not quite as easy in the setting of∞-categories. For the
case of commutative and cocommutative bialgebras in a symmetric monoidal∞-category
it is shown in [Lur18, 3.3.4] that the two possible definitions coincide. The case of either
commutative or cocommutative bialgebras is handled in [Rak20, 2.1.2]. In all these cases,
the crucial input to the proof is the fact that tensor products of commutative algebras
happen to be coproducts in the ∞-category of commutative algebras [HA, 3.2.4.7], so
the proof strategies do not generalize easily to bialgebras which are neither commutative
nor cocommutative. Luckily we will not need to use that the two possible definitions are
equivalent in this text. Instead, for us bialgebra will always mean coalgebra in algebras.
34So if the cocartesian fibration pC is classified by a functor F : O⊗ → Cat∞, then the cocartesian

fibration (Cop)⊗ → O⊗ is classified by the composite (−)op ◦ F .

87



Chapter 3. Bialgebras and modules over them

Definition 3.3.0.3. Let α : O⊗ × O′⊗ → O′′⊗ be a bifunctor of ∞-operads, and C an
O′′-monoidal ∞-category. Then we define

BiAlgO′,O(C) := coAlg/O

(
AlgO′/O′′(C)

)

where AlgO′/O′′(C) carries the O-monoidal structure of Proposition E.4.2.3, and call
BiAlgO′,O(C) the ∞-category of O′,O-bialgebras in C. ♦

Warning 3.3.0.4. In the notation BiAlgO′,O(C), the ∞-operad stated first, O′, is em-
ployed in the algebra direction, and AlgO′ is also what is applied first (i. e. innermost)
to C in our definition. ♦

Remark 3.3.0.5. Let pO : O⊗ → Fin∗ and pO′ : O′⊗ → Fin∗ be ∞-operads and C a
symmetric monoidal ∞-category.

There is a canonical bifunctor of ∞-operads

α : O⊗ ×O′⊗
(−∧−)◦(pO×pO′)
−−−−−−−−−−→ Fin∗

with respect to which we can form the ∞-category of O′,O-bialgebras as in Defini-
tion 3.3.0.3.

Note that if we let β be the canonical bifunctor of ∞-operads

β : Fin∗ ×O
′⊗

(−∧−)◦(id×pO′)
−−−−−−−−−−→ Fin∗

then α is the composition α = β ◦ (pO × id). Let AlgO′(C)′⊗ be the O-monoidal cat-
egory from Proposition E.4.2.3 with respect to α and let AlgO′(C)⊗ be the symmetric
monoidal ∞-category from Proposition E.4.2.3 with respect to β. It then follows from
Remark E.4.2.4 that there is a pullback diagram

AlgO′(C)′⊗ AlgO′(C)⊗

O⊗ Fin∗

pr2◦ιAlg pr2◦ιAlg

pO

in Cat∞, and all morphisms in the square are morphisms of∞-operads, while the vertical
morphisms are even cocartesian fibrations of ∞-operads by Proposition E.4.2.3 (3).

Passing to fiberwise opposites, applying Remark E.2.0.4, and passing to opposites
again we then obtain an induced equivalence

BiAlgO′,O(C) = coAlg/O

(
AlgO′(C)′

) ≃
−→ coAlgO

(
AlgO′(C)

)
♦

88



3.3. Bialgebras

3.3.1. Bialgebras in (co)cartesian symmetric monoidal
∞-categories

Let C be a cocartesian symmetric monoidal ∞-category35. Then if O is a reduced36

∞-operad, then [HA, 2.4.3.9] shows that the forgetful functor AlgO(C)→ C is an equiv-
alence. In other words, every object of C carries an essentially unique O-algebra struc-
ture. This implies analogous results for bialgebras of cocartesian or cartesian symmetric
monoidal ∞-categories, as the next two propositions show.

The first of the two, Proposition 3.3.1.1 can be summarized as saying that every coal-
gebra in a cocartesian symmetric monoidal ∞-category can be upgraded to a bialgebra
in an essentially unique way. The second, Proposition 3.3.1.2, instead says that any al-
gebra in a cartesian symmetric monoidal ∞-category can be upgraded to a bialgebra in
an essentially unique way.

Proposition 3.3.1.1. Let C be a cocartesian symmetric monoidal ∞-category, let O be
an∞-operad, let O′ be a reduced∞-operad, and let o be the essentially unique underlying
object of O′.

Then the following composite functor is an equivalence

BiAlgO′,O(C) ≃ coAlgO

(
AlgO′(C)

) coAlgO(evo)
−−−−−−−→ coAlgO(C)

where the first functor is the equivalence discussed in Remark 3.3.0.5 and the second
functor is induced on coalgebras by the symmetric monoidal functor evo from Proposi-
tion E.4.2.3 (5). ♥

Proof. As the functor
ev⊗

o : AlgO′(C)⊗ → C⊗

is symmetric monoidal, with underlying functor an equivalence by [HA, 2.4.3.9] (as C is
cocartesian symmetric monoidal), it follows from [HA, 2.1.3.8] that ev⊗

o is an equivalence
of symmetric monoidal∞-categories. It follows that the induced functor on O-coalgebras
is an equivalence.

Proposition 3.3.1.2. Let C be a cartesian symmetric monoidal ∞-category, let O be a
reduced∞-operad with essentially unique underlying object o, and let O′ be an∞-operad.

Then the forgetful functor

BiAlgO′,O(C) ≃ AlgO

(
AlgO′(C)op

)op evop
o−−→
(
AlgO′(C)op

)op
≃ AlgO′(C)

is an equivalence, where the first equivalence is the one from Remark 3.3.0.5. ♥

Proof. By Proposition F.3.0.2, the symmetric monoidal structure on AlgO′(C) is carte-
sian, so the symmetric monoidal structure on AlgO′(C)op is cocartesian, so that the
statement follows from [HA, 2.4.3.9].
35See [HA, 2.4.0.1] for a definition and [HA, 2.4.3] for further discussion.
36See [HA, 2.3.4.1].

89



Chapter 3. Bialgebras and modules over them

3.4. Modules over bialgebras
In Section 3.2 we upgraded LMod to a symmetric monoidal functor AlgOp⊗

Pr → PrL.
In this section we will try to better understand the functor induced on ∞-categories of
O-algebras AlgO(AlgOpPr)→ AlgO(PrL) whenO is an∞-operad. By Proposition 3.2.2.8
there is an equivalence AlgO(PrL) ≃ MonPr

O (PrL), so that this functor can be interpreted
as producing presentable monoidal∞-categories out of O-algebras in AlgOpPr in a func-
torial way.

In Section 3.4.1 we will give a description of the domain of this functor. The result can
be roughly summarized as follows: An O-algebra in AlgOpPr is given by a pair (O⊗, A)
where C is an O ⊗ Assoc-monoidal ∞-category and A is an Assoc,O-bialgebra in C.

In Section 3.4.2 we will then discuss LMod as a functor

AlgO(AlgOpPr)→ MonPr
O (Cat∞)

and describe the O-monoidal structure on an Assoc,O-bialgebra in more concrete terms.
We will thus see that this construction really implements the idea described in the
introduction to Chapter 3.

3.4.1. Algebras in AlgOp
The goal of this section is to give a description of AlgO(AlgOpPr). It will turn out

that the presentability condition plays little role in the discussion, so to illustrate the
results we will start by unpacking a bit what objects in MonFin∗(AlgOp) are. Specifically,
let us try to understand the multiplication functor induced by the active morphism
µ : 〈2〉 → 〈1〉.

So let C be a monoidal ∞-category and let A be an Assoc-algebra in C. By Re-
mark 3.1.3.7 this specifies an object of AlgOp lying over C that we denote by (C, A).

Suppose (C, A) is the underlying object of a commutative monoid in AlgOp. We want
to describe the multiplication

(C, A)× (C, A)→ (C, A)

where the product is taken in AlgOp. Proposition 3.2.1.1 and Proposition C.2.0.3 that
the product is given by (C×C, (A,A)). So the multiplication map is given by a morphism

(
C × C, (A,A)

)
→ (C, A)

in AlgOp. We can factor this morphism as indicated in the commutative triangle below
(
C, F ((A,A))

)

(
C × C, (A,A)

)

(C, A)

(idC ,f)

F̃

90



3.4. Modules over bialgebras

where F̃ is a qAlgOp-cocartesian morphism lifting a monoidal functor F⊗ : (C×C)⊗ → C⊗,
and f is a morphism of algebras A→ F ((A,A)) (see also Remark 3.1.3.7). The monoidal
functor F⊗ grants us a second tensor product functor on C, which by the Eckmann-
Hilton argument can be identified with the original one. Thus f can be identified with
a morphism of algebras ∆: A → A ⊗ A, and this provides the comultiplication of a
bialgebra structure on A.

To approach such a description more rigorously, we use that the cocartesian fibration of
∞-operads q⊗

AlgOpPr
: AlgOp⊗

Pr → MonPr
Assoc(Cat∞)⊗ (see Proposition 3.2.2.13 (1)) induces

a cocartesian fibration

AlgO(AlgOpPr)→ AlgO

(
MonPr

Assoc(Cat∞)
)

for every ∞-operad O, see Definition 3.4.1.2 and Proposition 3.4.1.3 below.
We start this section by discussing in Construction 3.4.1.1 how we can identify the

codomain of this cocartesian fibration AlgO(MonPr
Assoc(Cat∞)) with the ∞-category of

presentable O ⊗ Assoc-monoidal ∞-categories MonPr
O⊗Assoc(Cat∞).

Most of the remainder of this section will then be occupied by determining the fiber
of AlgO(qAlgOpPr) over a presentable O ⊗ Assoc-monoidal ∞-category C, and in Proposi-
tion 3.4.1.15 we will show that the fiber over C can be identified with BiAlgAssoc,O(C)

op.

Construction 3.4.1.1. Let O, O′, and O′′ be ∞-operads, α : O⊗ × O′⊗ → O′′⊗ a
bifunctor of∞-operads exhibiting O′′ as a tensor product of O and O′, and I a collection
of small∞-categories. Then there is a commutative diagram as follows, explained below.
To save space we abbreviate expressions such as MonO′(Cat∞) by MonO′ , i. e. we omit
the Cat∞ in parentheses.

MonO(MonO′)

AlgO

(
MonPr

O′

)
AlgO

(
MonI

O′

)
AlgO(MonO′)

AlgO

(
AlgO′

(
PrL
))

AlgO

(
AlgO′

(
Cat∞(I)

))
AlgO(AlgO′)

AlgO′′

(
PrL
)

AlgO′′

(
Cat∞(I)

)
AlgO′′

MonPr
O′′ MonI

O′′ MonO′′

≃

≃ ≃ ≃

≃ ≃ ≃

≃ ≃ ≃

The equivalence at the top right is the one from [HA, 2.4.2.5], i. e. is the one induced
by πMon∗. The top two squares are induced on O-algebras by the commutative dia-
gram constructed in Proposition 3.2.2.8, which is a commutative diagram of ∞-operads
by Proposition 3.2.2.10. The middle two squares are obtained from naturality of the
equivalences constructed in Proposition E.5.0.2 and Proposition E.5.0.1 as discussed in

91



Chapter 3. Bialgebras and modules over them

Remark F.3.0.4, applied to the morphisms of ∞-operads

PrL⊗ → Cat∞(I)⊗ → Cat×∞

from Proposition 3.2.2.3 (2). Finally, the commutative diagram constructed in Proposi-
tion 3.2.2.8 induces a commutative diagram on underlying ∞-categories that yields the
bottom two commutative squares. ♦

Definition 3.4.1.2. Let O be an ∞-operad and I a collection of small ∞-categories.
We define the following ∞-categories and morphisms of ∞-categories by applying AlgO

to the morphisms of ∞-operads (see Proposition 3.2.2.13 (1)) q⊗
AlgOpI and q⊗

AlgOpPr
. The

equivalences used are the ones from Construction 3.4.1.1.

BiAlgOpI
O := AlgO(AlgOpI)

BiAlgOpPr
O := AlgO(AlgOpPr)

qBiAlgOpIO : BiAlgOpI
O

AlgO(qAlgOpI)
−−−−−−−−→ AlgO

(
MonI

Assoc(Cat∞)
)
≃ MonI

O⊗Assoc(Cat∞)

qBiAlgOpPr
O
: BiAlgOpPr

O

AlgO(qAlgOpPr)−−−−−−−−−→ AlgO

(
MonPr

Assoc(Cat∞)
)
≃ MonPr

O⊗Assoc(Cat∞)

We will also write qBiAlgOpO for q
BiAlgOp∅O

and BiAlgOpO for BiAlgOp∅
O. ♦

Proposition 3.4.1.3. In the situation of Definition 3.4.1.2, the functors qBiAlgOpIO and
qBiAlgOpPr

O
are cocartesian fibrations. ♥

Proof. Combine Proposition 3.2.2.13 (1) with Proposition E.3.2.1.

We start the process of identifying the fibers of qBiAlgOpIO and qBiAlgOpPr
O

by reducing
the problem to qBiAlgOpO .

Proposition 3.4.1.4. We use Notation 3.2.2.7 in this proposition. Let I be a collection
of small ∞-categories and let O be an ∞-operad. Then there is a pullback diagram in
Cat∞ as follows.

BiAlgOpI
O BiAlgOpO

MonI
O⊗Assoc(Cat∞) MonO⊗Assoc(Cat∞)

AlgO(Ψ̃I)

q
BiAlgOpI

O
qBiAlgOpO

(ΨI)

In particular, if C is an object in MonI
O⊗Assoc(Cat∞), then we can identify the fiber

(BiAlgOpI
O)C with (BiAlgOpO)(ΨI)

⊗
(C)

, and if F : C → D is a morphism in the ∞-
category MonI

O⊗Assoc(Cat∞) we can identify the induced functor on fibers of qBiAlgOpIO
with the functor induced by

(
ΨI
)⊗

(F ) on fibers of qBiAlgOpO .
Analogous statements hold for qBiAlgOpPr

O
. ♥

92



3.4. Modules over bialgebras

Proof. We only prove the case of qBiAlgOpIO , the case of qBiAlgOpPr
O

is completely analogous.
By Definition 3.2.2.11 we have a pullback diagram

AlgOp⊗
I

AlgOp×

MonI
Assoc(Cat∞)⊗ MonAssoc(Cat∞)×

(Ψ̃I)⊗

q⊗
AlgOpI

q×
AlgOp

(ΨI)⊗

where q×
AlgOp is a cocartesian fibration of ∞-operads (see Proposition 3.2.2.13 (1)) and

(ΨI)⊗ is a morphism of ∞-operads (see Proposition 3.2.2.10 (2)). Combining Proposi-
tion E.1.3.1 and Proposition E.3.1.1 we conclude that the the top square in the following
commutative diagram is a pullback square37

AlgO(AlgOpI) AlgO(AlgOp)

AlgO

(
MonI

Assoc(Cat∞)
)

AlgO

(
MonAssoc(Cat∞)

)

MonI
O⊗Assoc(Cat∞) MonO⊗Assoc(Cat∞)

AlgO(Ψ̃I)

AlgO(qAlgOpI) AlgO(qAlgOp)

AlgO(ΨI)

≃ ≃

ΨI

where the lower commuting square is the one from Construction 3.4.1.1. This proves
the claim, as the the left and right vertical compositions are by definition qBiAlgOpIO and
qBiAlgOpO .

Before starting to analyze the fibers of qBiAlgOpO , it will be helpful to describe the
equivalences from Construction 3.4.1.1 more concretely as done in the following propo-
sition.

Proposition 3.4.1.5. Let O, O′, and O′′ be ∞-operads, and α : O⊗ × O′⊗ → O′′⊗ a
bifunctor of ∞-operads exhibiting O′′ as a tensor product of O and O′.

37The two ΨI in the diagram are different functors, the same notation only arises here because the
operad does not occur in the notation.

93



Chapter 3. Bialgebras and modules over them

Then there is a commutative diagram as follows

MonO

(
MonO′(Cat∞)

)
Fun

(
O⊗,Fun

(
O′⊗,Cat∞

))

AlgO

(
MonO′(Cat∞)

)

AlgO

(
AlgO′(Cat∞)

)
Fun

(
O⊗,Fun

(
O′⊗,Cat×∞

))

BiFunc(O,O′;Cat∞) Fun
(
O⊗ ×O′⊗,Cat×∞

)

AlgO′′(Cat∞) Fun
(
O′′⊗,Cat×∞

)

MonO′′(Cat∞) Fun
(
O′′⊗,Cat∞

)

≃

≃

≃

(π∗)∗

≃

(̂−)

≃

α∗

π∗

(̂−◦α)

where vertical functors on the left are the ones from Construction 3.4.1.1 (where we
split up the equivalence in the middle in its two steps from Proposition E.5.0.2 and
Proposition E.5.0.1) and the horizontal functors are the the compositions of the canonical
inclusions and projections. ♥

Proof. The top square is obtained from the construction of the equivalence Θ⊗ by
combining commutative diagrams (3.15) and (3.14) occurring in the proof of Propo-
sition 3.2.2.8. The two middle squares are from Proposition F.3.0.3. The bottom square
is diagram (3.13) from Proposition 3.2.2.8. Finally, the commutative rectangle on the
right is obtained from naturality of (̂−).

The cocartesian fibration qBiAlgOpO is constructed in multiple steps from the universal
cocartesian family of Assoc-monoidal ∞-categories, but ends up with MonO⊗Assoc(Cat∞)
as a codomain. The next proposition relates the universal cocartesian family of Assoc-
monoidal ∞-categories with the universal cocartesian family of Assoc ⊗ O-monoidal
∞-categories.
Proposition 3.4.1.6. Let O, O′, and O′′ be ∞-operads and α : O⊗ × O′⊗ → O′′⊗ a
bifunctor of ∞-operads exhibiting O′′ as the tensor product of O and O′. Then there is a
commutative diagram as follows such that both squares are pullback diagrams, and where
other parts of the diagram will be explained further below.

M̃onO′′(Cat∞)⊗ M̃onα(Cat∞)⊗ M̃onO(Cat∞)⊗

O′′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ ×MonO′′(Cat∞) O⊗ ×MonO(Cat∞)

pO
′′ pα pO

(3.21)

94



3.4. Modules over bialgebras

The left and right vertical functors are the universal cocartesian families of monoidal
∞-categories defined in Definition 3.1.1.4, whereas the middle vertical functor is a func-
tor we newly define here as the pullback of either the left or right square. The bottom
left horizontal functor is α× id, and the bottom right vertical functor is the the product
of idO⊗ with the following composition

O′⊗ ×MonO′′(Cat∞)→ O′⊗ ×MonO′

(
MonO(Cat∞)

)
(3.22)

→ O′⊗ × Fun
(
O′⊗,MonO(Cat∞)

) ev
−→ MonO(Cat∞)

where the first functor uses the equivalence from Proposition 3.4.1.5 interpretingO′′ as the
tensor product O′⊗O via α◦τ , where τ is the symmetry equivalence O⊗×O′⊗ ≃ O′⊗×O⊗,
and the second functor is the product of the identity and the canonical inclusion. ♥

Proof. Both pO
′′ and pO are by definition cocartesian fibrations, with pO classified by38

the composition

O⊗ ×MonO(Cat∞)→ O⊗ × Fun
(
O⊗,Cat∞

) ev
−→ Cat∞

where the first functor is the product of the identity functor and the canonical inclusion,
and similarly for pO′′ . So by naturality of the Grothendieck construction39 it suffices to
show that the composition of the left bottom horizontal functor in diagram (3.21) with
the functor the left vertical cocartesian fibration is classified by is homotopic to the
composition of the right bottom horizontal functor with the functor the right vertical
cocartesian fibration is classified by. For this consider the following three commutative
diagrams, where we will denote the various canonical inclusions by ι.

O⊗ ×O′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ × Fun
(
O′′⊗,Cat∞

)

O⊗ ×O′⊗ ×MonO′

(
MonO(Cat∞)

)
O⊗ ×O′⊗ × Fun

(
O⊗ ×O′⊗,Cat∞

)

O⊗ ×O′⊗ × Fun
(
O′⊗,MonO(Cat∞)

)
O⊗ ×O′⊗ × Fun

(
O′⊗,Fun

(
O⊗,Cat∞

))

O⊗ ×MonO(Cat∞) O⊗ × Fun
(
O⊗,Cat∞

)

Cat∞

id×id×ι

id×id×α∗

id×id×ι id×id×−̂◦τ

id×ev

id×id×ι∗

id×ev

id×ι

ev

(∗)

In the above diagram, the top square arises from Proposition 3.4.1.5 and the bottom
square uses naturality of evaluation. The next two commutative diagrams only use vari-
38See Definition 3.1.1.4.
39See [GHN17, A.32] and [Maz19b].

95



Chapter 3. Bialgebras and modules over them

ous naturalities and functorialities.

O⊗ ×O′⊗ × Fun
(
O⊗ ×O′⊗,Cat∞

)

O⊗ ×O′⊗ × Fun
(
O′⊗,Fun

(
O⊗,Cat∞

))

O⊗ × Fun
(
O⊗,Cat∞

)
Cat∞

id×id×−̂◦τ

ev

id×ev

ev

(∗∗)

O⊗ ×O′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ × Fun
(
O′′⊗,Cat∞

)

O′′⊗ ×MonO′′(Cat∞) O⊗ ×O′⊗ × Fun
(
O⊗ ×O′⊗,Cat∞

)

O′′⊗ × Fun
(
O′′⊗,Cat∞

)
Cat∞

α×id

id×id×ι

id×id×α∗

α×id

id×ι ev

ev

(∗ ∗ ∗)

The composite of the lower left (right) horizontal functor in diagram (3.21) with
the functor the left (right) vertical cocartesian fibration is classified by is precisely the
composite via the bottom left corner from the top left to the bottom right corner in
diagram (∗ ∗ ∗) (in diagram (∗)). Diagrams (∗), (∗∗), and (∗ ∗ ∗) show that these two
composites are homotopic, which proves the claim.

We next go through the steps used to construct qBiAlgOp from pAssoc and show how we
can identify qBiAlgOp with a functor obtained from pα as in Proposition 3.4.1.6. We will
use the right pullback square in (3.21) to compare constructions obtained from pα with
the intermediate steps on the way to qBiAlgOp, while using the left pullback square to
be able to describe those constructions in a way helpful to ultimately describe fibers of
qBiAlgOp as ∞-categories of bialgebras.
Definition 3.4.1.7. Let O′ and O′′ be ∞-operads and α : Assoc⊗ × O′⊗ → O′′⊗ a
bifunctor of ∞-operads that exhibits O′′ as the tensor product of Assoc and O.

Using that the right square in (3.21) is a pullback diagram we can interpret pα

from Proposition 3.4.1.6 as a cocartesian O′⊗×MonO′′(Cat∞)-family of Assoc-monoidal
∞-categories. Passing to Assoc-algebras we obtain by Proposition 3.1.2.10 a pullback,
where we will denote the∞-category on the top left and functor on the left as indicated,
and the functor on the right is the one from Definition 3.1.3.3.

A⊗ = Alg/Assoc

(
M̃onα(Cat∞)⊗

)
Alg

O′⊗ ×MonO′′(Cat∞) MonAssoc(Cat∞)

qA
qAlg

♦

96



3.4. Modules over bialgebras

Remark 3.4.1.8. Let C be an ∞-category, O an ∞-operad, and p : D⊗ → O⊗ × C a
cocartesian C-family of O-monoidal ∞-categories.

Note that the projection pr2 : O⊗ × C → C is a cocartesian fibration40, and pr2-
cocartesian morphisms are those that are (equivalent to) an identity morphism in the
first factor.

By [HTT, 2.4.2.3 (3)] and Proposition C.1.3.1 we obtain a morphism of cocartesian
fibrations over C as follows.

D⊗ O⊗ × C

C

p

pr2◦p pr2

If f : X → Y is a morphism in C, then we obtain an induced commutative square on
fibers as follows.

D⊗
X D⊗

Y

O⊗ O⊗

f!

pX pY

id

By the description of pr2-cocartesian morphisms given above the induced functor on
fibers of pr2 is the identity, and by assumption on p the two vertical functors are co-
cartesian fibrations of ∞-operads. We thus obtain a commuting triangle

D⊗
X D⊗

Y

O⊗

pX

pr2◦p pY

that by Proposition 3.1.1.1 is an O-monoidal functor. It is this O-monoidal functor that
we will refer to as the induced O-monoidal functor on fibers over f . ♦

Proposition 3.4.1.9. Assume we are in the situation of Definition 3.4.1.7, and let C
be an O′′-monoidal ∞-category. Then the fiber of qA over C (considered as an object
of MonO′′(Cat∞)) can be identified with the O′-monoidal ∞-category of Assoc-algebras41

AlgAssoc/O′′(C)⊗ from Proposition E.4.2.3.
Furthermore, if F : C → D is a O′′-monoidal functor, then the induced O′-monoidal

functor on fibers of qA fits into a commutative diagram as follows

A⊗
C A⊗

D

AlgAssoc/O′′(C)⊗ AlgAssoc/O′′(D)⊗

F!

≃ ≃

AlgAssoc/O′′ (F )⊗

40This is for example easy to see by using that it is the pullback of the functor O⊗ → ∗ along C → ∗.
41With respect to the bifunctor of ∞-operads α ◦ τ .

97



Chapter 3. Bialgebras and modules over them

where AlgAssoc/O′′(F )⊗ is the induced functor from Proposition E.4.2.3 and the vertical
equivalences are the ones from the first claim of this proposition. ♥

Proof. Consider the following commutative diagram, where the bottom square is the
induced pullback square by applying Fun(Assoc⊗,−) to the left pullback square in dia-
gram (3.21) of Proposition 3.4.1.6, and the top pullback square is the one from Defini-
tion 3.1.2.1.

A⊗

Ã⊗ := Ãlg/Assoc

(
M̃onα(Cat∞)

)
O′⊗ ×MonO′′(Cat∞)

Fun
(

Assoc⊗, M̃onα(Cat∞)⊗
)

Fun
(
Assoc⊗,Assoc⊗ ×O′⊗ ×MonO′′(Cat∞)

)

Fun
(

Assoc⊗, M̃onO′′(Cat∞)⊗
)

Fun
(
Assoc⊗,O′′⊗ ×MonO′′(Cat∞)

)

qA

prFun

pr

îdAssoc⊗×O′⊗×Mon

pα∗

(α×id)∗

pO
′′

∗

(∗)

A⊗ is by definition42 the full subcategory of Ã⊗ spanned by those objects that are
mapped by prFun to functors Assoc⊗ → M̃onα(Cat∞)⊗ that send inert morphisms to
pα-cocartesian ones. By the description of pα-cocartesian morphisms afforded by the left
pullback square in diagram (3.21) of Proposition 3.4.1.6 in combination with Proposi-
tion C.1.1.1 we can thus identify A⊗ with the full subcategory of Ã⊗ spanned by those
objects that map to functors Assoc⊗ → M̃onO′′(Cat∞)⊗ which send inert morphisms to
pO

′′-cocartesian ones. Similarly, we obtain from Proposition 3.1.2.17 that a morphism
in A⊗ is qA-cocartesian if and only if it maps to a natural transformation of functors
Assoc⊗ → M̃onO′′(Cat∞)⊗ that is pointwise pO′′-cocartesian.

Now let C be an O′′-monoidal ∞-category. Then there is a commutative cube as
follows43.

ÃlgAssoc/O′′(C)
⊗ O′⊗ × {C}

Ã⊗ O′⊗ ×MonO′′

Fun
(

Assoc⊗, C⊗
)

Fun
(

Assoc⊗,O′′⊗ × {C}
)

Fun
(

Assoc⊗, M̃onO′′

)
Fun

(
Assoc⊗,O′′⊗ ×MonO′′

)

The front square is the composite pullback diagram from (∗). The bottom square is
the pullback square obtained by applying Fun(Assoc⊗,−) to the pullback diagram of
42See Definition 3.1.2.3.
43We abbreviate M̃onO′′(Cat∞) and MonO′′(Cat∞) as M̃onO′′ and MonO′′ .

98



3.4. Modules over bialgebras

the identification of C⊗ as the fiber of pO′′ over C, see Remark 3.4.1.8. The back one
is the pullback diagram from Proposition E.4.2.3. That there is a commutative square
as indicated on the right, where the top functor is the product of the identity with the
inclusion of {C}, can be checked by unpacking the definitions and using naturality. We
obtain the induced top and left square and filler for the cube (using that the front square
is a pullback square), and it follows from [HTT, 4.4.2.1] that the top square is also a
pullback diagram.

The description of A⊗ as a full subcategory of Ã⊗ we gave above together with the
definition of AlgAssoc/O′′(C)

⊗ as a full subcategory of ÃlgAssoc/O′′(C)
⊗ in Remark E.4.2.1

and an argument very similar to the one in the proof of Proposition 3.1.2.2 show that
the dashed functor in the above diagram induces an equivalence

AlgAssoc/O′′(C)
⊗ → A⊗

on full subcategories.
The description of the functor induced on fibers by a morphism F : C → D of O′′-

monoidal ∞-categories follows from the description given above for qA-cocartesian mor-
phisms together with the fact that the O′′-monoidal functor induced by F (considered as
a morphism in MonO′′(Cat∞)) on fibers of pO′′ can by construction (see Definition 3.1.1.4)
be identified with F .
Proposition 3.4.1.10. Assume we are in the situation of Definition 3.4.1.7. Then qA
is a cocartesian MonO′′(Cat∞)-family of O′-monoidal ∞-categories. ♥

Proof. Follows immediately from the definition44 together with Proposition 3.4.1.9 and
Proposition E.4.2.3 (3).
Definition 3.4.1.11. Assume we are in the situation of Definition 3.4.1.7. We let

qA′ : A′⊗ → O′⊗ ×MonO′′(Cat∞)

be the cocartesian fibration obtained by applying the functor

coCFib
(
O′⊗ ×MonO′′(Cat∞)

)

→Fun
(
O′⊗ ×MonO′′(Cat∞),Cat∞

)

(−op)∗−−−−→Fun
(
O′⊗ ×MonO′′(Cat∞),Cat∞

)

→ coCFib
(
O′⊗ ×MonO′′(Cat∞)

)

to qA : A⊗ → O′⊗ ×MonO′′(Cat∞). ♦

Proposition 3.4.1.12. Assume we are in the situation of Definition 3.4.1.7. Then there
is a pullback diagram as follows

A′⊗ AlgOp

O′⊗ ×MonO′′(Cat∞) MonAssoc(Cat∞)

q
A′ qAlgOp

44Definition 3.1.1.2 with variant Proposition 3.1.1.1 (2).

99



Chapter 3. Bialgebras and modules over them

where the bottom functor is the composition (3.22). ♥

Proof. Follows immediately from Definition 3.4.1.11 and Definition 3.1.3.5 together with
Proposition 3.4.1.6 and naturality of the Grothendieck construction.

Proposition 3.4.1.13. Assume we are in the situation of Definition 3.4.1.7. Then the
following hold.

(1) qA′ from Definition 3.4.1.11 is again a cocartesian MonO′′(Cat∞)-family of O′-
monoidal ∞-categories.

(2) Let C be a O′′-monoidal ∞-category. Then the fiber of qA′ over C is, as an O′-
monoidal ∞-category, equivalent to (AlgAssoc/O′′(C)op)⊗, the opposite O′-monoidal
∞-category of AlgAssoc/O′′(C)⊗.

(3) Let F : C → D be a O′′-monoidal functor. Then there is a commutative square

A′⊗
C A′⊗

D

(AlgAssoc/O′′(C)op)⊗ (AlgAssoc/O′′(D)op)⊗

F!

≃ ≃

(AlgAssoc/O′′ (F )op)⊗

where the top functor is the one induced on fibers of qA′, and the vertical functors
are the equivalences from (2). ♥

Proof. Follows directly from qA being a cocartesian family of O′-monoidal ∞-categories
by Proposition 3.4.1.10 and the description of its fibers in Proposition 3.4.1.9.

Proposition 3.4.1.14. Let O′ and O′′ be ∞-operads and α : Assoc⊗ × O′⊗ → O′′⊗ a
bifunctor of ∞-operads that exhibits O′′ as the tensor product of Assoc and O.

Then there is a commutative triangle as follows such that the horizontal functor is an
equivalence

Alg/O′(A′) BiAlgOpO′

MonO′′(Cat∞)

prMonO′′ (Cat∞)

≃

qBiAlgOpO′

where the functor on the left is as in Definition 3.1.2.3 and Definition 3.1.2.1, applied
to the cocartesian family of O′-monoidal ∞-categories qA′ from Definition 3.4.1.11 and
Proposition 3.4.1.13. ♥

Proof. By naturality of the construction −× and [HA, 2.4.2.5] there is a commutative
diagram as follows

AlgO′(AlgOp) MonO′(AlgOp)

AlgO′

(
MonAssoc(Cat∞)

)
MonO′

(
MonAssoc(Cat∞)

)

≃

AlgO′(qAlgOp) MonO′(qAlgOp)

≃

100



3.4. Modules over bialgebras

with the two horizontal functors equivalences. It follows from Definition 3.4.1.2 and
Construction 3.4.1.1 that there is a commutative square

BiAlgOpO′ MonO′(AlgOp)

MonO′′(Cat∞) MonO′

(
MonAssoc(Cat∞)

)
qBiAlgOpO′

≃

MonO′(qAlgOp)

≃

where the bottom horizontal functor is the equivalence from Construction 3.4.1.1.
Thus it suffices to show that there is a commutative square as follows

Alg/O′(A′) MonO′(AlgOp)

MonO′′(Cat∞) MonO′

(
MonAssoc(Cat∞)

)
prMonO′′ (Cat∞)

≃

MonO′(qAlgOp)

≃

where the bottom horizontal functor is the equivalence from Construction 3.4.1.1.
Now we consider the following diagram45 that will be explained in detail below.

Alg/O′

(
A′
)

MonO′(AlgOp)

Ãlg/O′

(
A′
)

P

Fun
(
O′⊗,A′⊗

)
Fun

(
O′⊗,AlgOp

)

MonO′′ MonO′(MonAssoc)

Fun
(
O′⊗,O′⊗ ×MonO′′

)
Fun

(
O′⊗,MonAssoc

)

φ

ϑ

ψ

prFun

ι

The front square is Fun(O′⊗,−) applied to the pullback square from Proposition 3.4.1.12.
In particular, the front square is again a pullback square. The bottom square arises from
naturality of −̂ and the fact that êv = id. The bottom back horizontal equivalence is the
one from Construction 3.4.1.1 and Proposition 3.4.1.5. The left square is the pullback
square defining Ãlg/O′(A′), see Definition 3.1.2.1. We define the right square to be a
pullback square.

As the left and right squares in the cube are pullback diagrams, we obtain an induced
functor ϑ together with fillers for the top and back square and the cube.

The right big square arises from applying the natural transformation

MonO′(−)→ Fun(O′⊗,−)

to qAlgOp. We obtain the induced functor φ and the two commutative triangles on the
right. By definition, ι and the bottom functor from the back to the front on the right side
45We abbreviate MonO′′(Cat∞) and MonAssoc(Cat∞) as MonO′′ and MonAssoc.

101



Chapter 3. Bialgebras and modules over them

are fully faithful. As the small square is a pullback square and taking pullbacks preserves
fully faithful functors by Proposition B.5.2.1, ψ is fully faithful as well. By considering
the top triangle on the right side we then deduce that φ is also fully faithful46.

What we have to show is that there is a dashed top back horizontal functor making
the back big rectangle commute and which is an equivalence. As the front, left, and right
squares are pullback squares it follows from [HTT, 4.4.2.1] that the back lower square is a
pullback square as well. As the lower back horizontal functor is an equivalence, it follows
that ϑ is an equivalence too. It thus suffices to show that an object A of Ãlg/O′(A′) is in
the essential image of the functor from Alg/O′(A′) if and only if ϑ(A) is in the essential
image of φ (see Proposition B.4.3.1).

We first consider the essential image of φ, which consists of precisely those objects
that are mapped by ψ to an object that is in the essential image of ι i. e. is an O′-
monoid. By definition [HA, 2.4.2.1], a functor F : O′⊗ → AlgOp is an O′-monoid if and
only if for every n ≥ 0, objects Xi in O′ for every 1 ≤ i ≤ n, and inert morphisms
ri : X1 ⊕ · · · ⊕ Xn → Xi lying over ρi, the morphisms F (ri) exhibit F (X1 ⊕ · · · ⊕ Xn)
as the product of (F (Xi))1≤i≤n. By the description of products in AlgOp from Propo-
sition 3.2.1.1 and Proposition C.2.0.3 this is equivalent to the morphisms qAlgOp(F (ri))
exhibiting qAlgOp(F (X1 ⊕ · · · ⊕ Xn)) as the product of (qAlgOp(F (Xi)))1≤i≤n and F (ri)
being qAlgOp-cocartesian for every 1 ≤ i ≤ n. Thus F is in the essential image of ι if and
only if qAlgOp ◦ F is an O′-monoid and F maps inert morphisms to qAlgOp-cocartesian
morphisms. By Proposition B.5.2.1, a functor F : O′⊗ → AlgOp lies in the essential
image of ψ if and only if qAlgOp ◦F is an O′-monoid. It follows that an object A of P is in
the essential image of φ if and only if ψ(A) maps inert morphisms to qAlgOp-cocartesian
morphisms.

By definition47, an object A of Ãlg/O′(A′) is in the essential image of the inclusion from
Alg/O′(A′) if and only if prFun(A) maps inert morphisms to qA′-cocartesian morphisms.
By Proposition 3.4.1.12 and Proposition C.1.1.1 this is the case if and only if ψ(ϑ(A))
maps inert morphisms to qAlgOp-cocartesian morphisms. Thus an object A of Ãlg/O′(A′)
is in the essential image of the functor from Alg/O′(A′) if and only if ϑ(A) is in the
essential image of φ, which finishes the proof.

With Proposition 3.4.1.14 we can now finally discuss the fibers of qBiAlgOpO .

Proposition 3.4.1.15. Let I be a collection of small∞-categories, let O be an∞-operad.
Then the following hold.

(1) Let C be an Assoc ⊗ O-monoidal ∞-category that is compatible with I-indexed
colimits, and that we also consider as an object of MonI

O⊗Assoc(Cat∞). Then the
fiber of qBiAlgOpIO over C can be identified with BiAlgAssoc,O(C)

op.

46It follows immediately from Definition B.2.0.1 that functors being fully faithful satisfies the two-out-
of-three-property.

47Definition 3.1.2.3

102



3.4. Modules over bialgebras

(2) Let F : C → D be a morphism in MonI
O⊗Assoc(Cat∞). Then there is a commutative

diagram

(BiAlgOpI
O)C (BiAlgOpI

O)D

BiAlgAssoc,O(C)
op BiAlgAssoc,O(D)

op

F!

≃ ≃

BiAlgAssoc,O(F)op

where the top horizontal functor is the one induced by F on fibers of qBiAlgOpIO and
the vertical equivalences are those from (1).

Analogous statements holds for qBiAlgOpPr
O

. ♥

Proof. By Proposition 3.4.1.4 and Proposition 3.4.1.14 we can consider fibers of
prMonAssoc⊗O(Cat∞) : Alg/O(A)→ MonO⊗Assoc(Cat∞)

instead. For this we can combine Proposition 3.4.1.13 with Remark 3.1.2.18 and then
need only compare with the definition of BiAlg in Definition 3.3.0.3.

3.4.2. LMod as a functor from BiAlgOp
In this short section we discuss LMod as a functor BiAlgOpPr

O → MonPr
O (Cat∞).

Definition 3.4.2.1. Let I be a collection of small ∞-categories that includes ∆
op and

O an ∞-operad.
Applying AlgO(−) to the natural transformation of symmetric monoidal functors de-

noted by ev⊗
m : LMod⊗ → pr⊗ of Proposition 3.2.3.1 and postcomposing with the under-

lying equivalences of Proposition 3.2.2.848 we obtain natural transformations that we
will again denote by evm : LMod→ pr, as depicted in the commutative diagram below

MonPr
O⊗Assoc(Cat∞) BiAlgOpPr

O MonPr
O (Cat∞)

MonI
O⊗Assoc(Cat∞) BiAlgOpI

O MonI
O(Cat∞)

MonO⊗Assoc(Cat∞) BiAlgOpO MonO(Cat∞)

ΨPr
I

q
BiAlgOpPr

O

AlgO(Ψ̃Pr
I )

LMod

pr
ΨPr

I

ΨI

q
BiAlgOpI

O

LMod

pr
AlgO(Ψ̃I) ΨI

qBiAlgOpO

LMod

pr

evm

evm

evm

48So AlgO(PrL) ≃ MonPr
O (Cat∞) etc.

103



Chapter 3. Bialgebras and modules over them

where the functors Ψ and Ψ̃ are as in Notation 3.2.2.7 and Definition 3.2.2.11, and the
left part of the diagram is induced by the pullback squares of Definition 3.2.2.11, which
are commutative squares of ∞-operads by Proposition 3.2.2.13. ♦

Remark 3.4.2.2. By Proposition E.4.2.3 (8) the functor induced on O-algebras by a
symmetric monoidal functor can again be upgraded to a symmetric monoidal functor
with respect to the induced symmetric monoidal structures. It follows that the natural
transformations evm defined in Definition 3.4.2.1 acquire the structure of natural transfor-
mations of symmetric monoidal functors between symmetric monoidal∞-categories. ♦

Remark 3.4.2.3. Let O be an ∞-operad. Using [HA, 2.4.2.5] and the definition of the
equivalence

Θ: AlgO(Cat∞)→ MonO(Cat∞)

as in diagram (3.13) of Proposition 3.2.2.8, we can identify the functor

LMod : BiAlgOpO → MonO(Cat∞)

with the functor induced by the product-preserving functor LMod : AlgOp → Cat∞ on
O-monoids.

Let C be a symmetric monoidal∞-category, A an associative algebra in C, and consider
(C, A) as an object of AlgOp. In the introduction to Section 3.4.1 we discussed how the
multiplication morphism induced by the active morphism µ : 〈2〉 → 〈1〉 looks like for
a commutative monoid structure on (C, A). Concretely, the multiplication morphism
factors as a composition

(
C × C, (A,A)

) −̃⊗−
−−−→ (C, A⊗ A)

(id,∆)
−−−→ (C, A)

where −̃ ⊗ − is a qAlgOp-cocartesian lift of the tensor product functor −⊗− : C ×C → C
and (id,∆) is a morphism in the fiber of AlgOp over C – so in Alg(C)op – given by a
morphism of algebras ∆: A→ A⊗ A, encoding the comultiplication.

Let us now discuss the induced multiplication on LModA(C), using Remark 3.1.3.7.
The multiplication functor can be identified with the composition

LModA(C)× LModA(C)
≃
−→ LMod(A,A)(C × C)

LMod(A,A)(−⊗−)
−−−−−−−−−−→ LModA⊗A(C)

LMod∆(C)
−−−−−−→ LModA(C)

where the first functor arises from compatibility of LMod with products, the second is
induced by −̃ ⊗ −, and the last functor is given by restriction of the action along ∆.

Let now X and Y be two objects in LModA(C). Then LMod(A,A)(−⊗−) sends (X, Y )
to the left A ⊗ A-module in C whose underlying object in C is X ⊗ Y and where the
action by A⊗ A is the tensor-factor-wise one, i. e.

(A⊗ A)⊗ (X ⊗ Y ) ≃ (A⊗X)⊗ (A⊗ Y )→ X ⊗ Y (3.23)

104



3.4. Modules over bialgebras

where the first morphism uses the symmetric monoidal structure on C and the second
is the tensorwise action of A on X and Y , respectively. Finally, LMod∆(C) restricts this
action along ∆.

The unit morphism, as well as the case of∞-operads other than the commutative one
can be unpacked analogously, and hence the functor

LMod : BiAlgOpO → MonO(Cat∞)

really implements the construction sketched at the very beginning of Chapter 3. ♦

We end this section by considering the case of 1-categories, for which the constructions
discussed so far reduce to the classical ones.

Remark 3.4.2.4. Let C be a 1-category. The data of a symmetric monoidal structure on
C in the classical sense is equivalent to the the data of a symmetric monoidal structure on
C considered as an ∞-category, so there is no ambiguity when talking about symmetric
monoidal structures on C49.

So assume now that C is a symmetric monoidal 1-category. By [HA, 4.1.1.2 and 2.1.3.3]
the ∞-categories Alg(C) and CAlg(C) of associative and commutative algebras in C are
1-categories and can be identified with the usual classical 1-categories of associative and
commutative algebras in C. Let O be either the∞-operad Assoc or Comm. Then we can
also conclude that the ∞-category BiAlgAssoc,O(C) can be identified with the classical
1-category of Assoc,O-bialgebras in C.

Similarly, if A is an associative algebra in C, then by [HA, 4.2.1.3] the ∞-category
LModA(C) is a 1-category that can be identified with the usual classical 1-category of
left modules over A. The discussion in Remark 3.4.2.3 furthermore implies that if A
is an Assoc,Comm-bialgebra in C, then we can also identify the symmetric monoidal
structure on LModA(C) with the classical one that was sketched in the introduction to
Chapter 3. ♦

49The discussion in [HA, after 2.0.0.6 and condition (M2)] can be summarized as follows: The data of
a symmetric monoidal structure on C in the classical sense (up to symmetric monoidal equivalence)
is equivalent to the data of a cocartesian fibration of ∞-operads p : C⊗ → Fin∗ (up to symmetric
monoidal equivalence) such that C⊗ is a 1-category.

But if p : C⊗ → Fin∗ is any cocartesian fibration of ∞-operads with C⊗
〈1〉 ≃ C, then C⊗ is au-

tomatically a 1-category. Indeed, using that Fin∗ is a 1-category it suffices to show that for ev-
ery pair of objects X and Y of C⊗ and morphism f : p(X) → p(Y ) in Fin∗ the fiber of the map
MapC⊗(X,Y ) → MapFin∗

(p(X), p(Y )) over f is discrete. But by [HTT, 2.4.4.2], this fiber is equiv-
alent to MapC⊗

p(Y )
(f!X,Y ), which is discrete as C⊗

p(Y ) ≃ C×n is a 1-category (here n is such that
p(Y ) ∼= 〈n〉).

105



Chapter 4.

Mixed complexes
Let A be an associative k-algebra. As will be discussed in Chapter 6, the Hochschild

homology functor HHT produces out of A an object of D(k) with action by the circle
group T, so an object of D(k)BT. It will be useful to have a strict model for HHT(A), by
which we mean an object representing HHT(A) in a model category whose underlying
∞-category comes with an equivalence to D(k)BT. This can indeed by done; there is a
result of Hoyois [Hoy18], which we will discuss in more detail in Section 6.3.4.1, that
provides us with a commutative diagram as follows.

Alg
(
LModk(Ab)

)
Mixed

Alg(D(k)) D(k)BT Mixed

Standard Hochschild complex

HHT
≃

The standard Hochschild complex functor appearing in this diagram has as codomain the
model category Mixed of strict mixed complexes, which are chain complexes of k-modules
together with some extra structure that encodes the circle action. The∞-category Mixed
of mixed complexes is (equivalent to) the underlying ∞-category of Mixed, and also
equivalent to D(k)BT, as we will see in Chapter 5.

In order to be able to make sense of this, this chapter will introduce and discuss
Mixed and Mixed. We begin in Section 4.1 with reviewing chain complexes, primarily to
fix notation. In Section 4.2 we will then discuss Mixed, including the closed symmetric
monoidal structure that can be defined on it as well as the model structure. We then
turn to the corresponding∞-categories. We will collect the properties we need from D(k)
in Section 4.3. Finally, we discuss the underlying ∞-categories of the model categories
Mixed and Alg(Mixed) in Section 4.4.

4.1. Chain complexes
In this section we briefly review the 1-category of chain complexes of modules over

the commutative ring k, to fix notation and sign conventions. We refer to books like
[Wei94] for a thorough introduction to homological algebra. The book [Lod98], which
we will use as our main reference for classical Hochschild homology, also reviews chain
complexes in more detail than we do.

106



4.1. Chain complexes

4.1.1. Ch(k) as a 1-category
To fix notation we briefly review the 1-category of chain complexes of k-modules.

Definition 4.1.1.1. We denote by Ch(k) the 1-category of chain complexes of k-modules.
We use homological grading, so an object X of Ch(k) consists of k-modules Xn for every
integer n together with boundary operators ∂Xn : Xn → Xn−1 (we will often omit the
sub- and superscript when they are clear from context) satisfying ∂ ◦ ∂ = 0.

If x is an element of Xn for some integer n, then we define degCh(x) := n and call n
the (chain) degree of x.

If n is an integer, then we denote by Ch(k)≥n = Ch(k)n≤ the full subcategory of Ch(k)
that is spanned by those objects X for which Xm

∼= 0 if m < n. The full subcategories
Ch(k)≤n and Ch(k)n1≤,≤n2 are defined analogously. ♦

Definition 4.1.1.2. Let X be an object of Ch(k) and n an integer. Then we denote by
X[n] the n-fold shift of X, which is also an object of Ch(k) that is defined as follows.

(
X[n]

)
m

:= Xm−n ∂X[n]
m := (−1)n · ∂Xm−n

We can extend the construction X 7→ X[n] to an endofunctor of Ch(k) by setting
(f [n])m := fm−n for morphisms f .

Note that some authors denote what we call X[n] by X[−n], see for example [Wei94,
Translation 1.2.8]. The convention we use is chosen to be consistent with [HA, 1.1.2.7].

♦

Definition 4.1.1.3. If X is a k-module, then we will often consider X as a chain complex
of k-modules concentrated in degree 0 without comment. This is the chain complex X ′

defined as follows.

X ′
n :=

{
X if n = 0

0 otherwise

If we want to make clear we are considering X as a chain complex rather than a module
we will use X[0]. ♦

4.1.2. Ch(k) as a closed symmetric monoidal 1-category
In this short section we recall the closed symmetric monoidal structure on Ch(k), in

particular to fix signs.

Definition 4.1.2.1. We equip Ch(k) with the usual symmetric monoidal structure, de-
scribed as follows. For X and Y two objects of Ch(k) and f and g two morphisms in
Ch(k) their tensor product is given by the following formulas1.

(X ⊗ Y )n :=
⊕

i+j=n

Xi ⊗ Yj

1When we write Xi⊗Yj this refers to the tensor product in LModk(Ab), i. e. the relative tensor product
over k.

107



Chapter 4. Mixed complexes

∂X⊗Y
n (x⊗ y) := ∂X(x)⊗ y + (−1)degCh(x)x⊗ ∂Y (y)

(f ⊗ g)(x⊗ y) := f(x)⊗ g(y)

The monoidal unit is k[0], and the symmetry isomorphism is given by the isomorphism
τX,Y : X ⊗ Y → Y ⊗X that sends x⊗ y to (−1)degCh(x) degCh(y)y ⊗ x.

Ch(k) can be upgraded to a closed symmetric monoidal category, with internal homo-
morphism objects given by the following formulas.

HOMCh(k)(X, Y )n =
∏

i∈Z

HOMLModk(Ab)(Xi, Yi+n)

(
∂HOMCh(k)(X,Y )(f)

)
= ∂Y ◦ f − (−1)degCh(f)f ◦ ∂X ♦

Remark 4.1.2.2. The tensor product is compatible with the shift functors defined in
Definition 4.1.1.2; For every integer n there are isomorphisms natural in X and Y as
follows (

X[n]
)
⊗ Y

∼=
−→ (X ⊗ Y )[n]

∼=
←− X ⊗

(
Y [n]

)
(4.1)

where the first isomorphisms maps x⊗y to x⊗y, but the second isomorphism introduces
a sign by mapping x⊗ y to (−1)n degCh(x)x⊗ y. That one of the two isomorphisms must
introduce signs is related to the following compatibility: The first isomorphism in (4.1)
is equal to the composition

(
X[n]

)
⊗ Y ∼= Y ⊗

(
X[n]

)
∼= (Y ⊗X)[n] ∼= (X ⊗ Y )[n]

where the first and third isomorphism is (induced by) the symmetry isomorphism τ and
the middle isomorphism is the second one from (4.1).

The sign is easier to remember if one thinks of Y [n] as (−)[n] applied to Y . Then the
shift construction is commuted past X, and hence introduces a sign if the degree of the
element of x as well as n are both odd. ♦

4.1.3. Ch(k) as a model category
We recall the main properties of the projective model structure on Ch(k) for later use.

Fact 4.1.3.1. Ch(k) can be given the projective model structure where the weak equiva-
lences are the quasiisomorphisms and the fibrations are the levelwise surjective morphism,
see [HA, 7.1.2.8] and [Hov99, 2.3.11]. This model structure is left proper and combinato-
rial [HA, 7.1.2.8]. Furthermore, with respect to the closed symmetric monoidal structure
discussed in Section 4.1.2, this model structure is a symmetric monoidal model structure
[HA, 7.1.2.11] with cofibrant unit2 and satisfies the monoid axiom [HA, 7.1.4.3]. ♧

When we refer to the model structure on Ch(k), we will always mean the projective
model structure from Fact 4.1.3.1 – while there are other model structures on Ch(k), the
projective one is the only one we will use in this text.

2The definition of a (symmetric) monoidal model category in [HA, 4.1.7] differs slightly from the
definition in [Hov99, 4.2.6]: Lurie requires that the unit object is cofibrant, while Hovey replaces this
condition with a weaker condition. See Section 4.2.2.2 for a more detailed discussion.

108



4.1. Chain complexes

4.1.4. Homotopies in Ch(k)
In this section we record that the notion of homotopy between morphisms from a

cofibrant to a fibrant chain complex coincides with the usual notion of chain homotopy.
Proposition 4.1.4.1 ([Hov99, Between 2.3.11 and 2.3.12]). Let Y be a chain complex.
Then the operator of degree −1 on the graded k-module P := Y × Y × Y [−1] defined as

∂
(
(x, y, z)

)
:=
(
∂x, ∂y,−∂(z) + x− y

)

upgrades P into a chain complex. Furthermore the assignments x 7→ (x, x, 0) and
(x, y, z) 7→ (x, y) define morphisms of chain complexes

Y P Y × Yi p

which exhibit P as a path object for Y . ♥

Proof. The calculation

∂
(
∂
(
(x, y, z)

))
= ∂

((
∂x, ∂y,−∂(z) + x− y

))

=
(
∂(∂x), ∂(∂y),−∂

(
−∂(z) + x− y

)
+ ∂x− ∂y

)

= (0, 0, 0)

shows that P is a chain complex, and similarly simple calculations show that i and p

are morphisms of chain complexes.
It is clear that p is levelwise surjective, so p is a fibration. It thus remains to show

that i is a quasiisomorphism. For this consider r : P → Y defined by (x, y, z) 7→ x. This
is also a chain map, and r ◦ i = idY . It thus suffices to show that i ◦ r is chain homotopic
to the identity. For this consider the chain homotopy h from P to P that is defined by
(x, y, z) 7→ (0, z, 0). Then we obtain

∂
(
h
(
(x, y, z)

))
+ h
(
∂
(
(x, y, z)

))

= ∂
(
(0, z, 0)

)
+ h
((
∂x, ∂y,−∂(z) + x− y

))

= (0, ∂z,−z) +
(
0,−∂(z) + x− y, 0

)

= (0, x− y,−z)

= (x, x, 0)− (x, y, z)

= (i ◦ r − idP )
(
(x, y, z)

)

and thus h is a chain homotopy from i ◦ r to idP .
Proposition 4.1.4.2 ([Hov99, Between 2.3.11 and 2.3.12]). Let X be a cofibrant chain
complex, Y a fibrant chain complex, and f and g two morphisms X → Y in Ch(k). Then
f and g are homotopic (in the sense of model categories) if and only if there exists a
chain homotopy from f to g, i. e. there exists a morphism h of graded k-modules that
increases degree by 1 from X to Y satisfying the following relation.

∂ ◦ h+ h ◦ ∂ = f − g ♥

109



Chapter 4. Mixed complexes

Proof. By [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, left and right homotopy
define the same equivalence relations on morphisms from X to Y . Furthermore, to check
for right homotopies, we can use any path object for Y . Thus f and g are homotopic if and
only if there exists a morphism of chain complexes H : X → P such that p ◦H = f × g,
where P and p are as in Proposition 4.1.4.1. As a graded k-module, P is given by
Y ×Y ×Y [−1], so we can write H as H = h0×h1×h, where h0, h1, and h are morphisms
of graded k-modules from X to Y , where h increases degree by 1. The condition p ◦H
amounts to h0 = f and h1 = g. The remaining data of h is then only constrained by the
requirement that H be a morphism of chain complexes. This amounts to the equation

∂ ◦H = H ◦ ∂

needing to hold. The left hand side is given by

∂ ◦H = ∂ ◦ (f × g × h) =
(
(∂ ◦ f)× (∂ ◦ g)× (−∂ ◦ h+ f − g)

)

and the right hand side is given by

H ◦ ∂ = (f × g × h) ◦ ∂ =
(
(f ◦ ∂)× (g ◦ ∂)× (h ◦ ∂)

)

so, as equality in the first two factors follows automatically from f and g being morphisms
of chain complexes, this boils down to

−∂ ◦ h+ f − g = h ◦ ∂

which is equivalent to the equation from the statement.

4.1.5. Extension of scalars
While we will usually keep the commutative ring k fixed, it will sometimes be useful

to consider functoriality in k. For this we record the following statement.

Fact 4.1.5.1 ([Hov99, Page 48 and before 4.2.17 on page 114]). Let φ : k → k′ be a
morphism of commutative rings.

Then extension and restriction of scalars along φ induces a Quillen adjunction as
follows.

Ch(k) Ch(k′)
k′⊗k−

φ∗

⊣

Furthermore, k′⊗k − preserves fibrations and can be upgraded to a symmetric monoidal
functor, making the adjunction into a symmetric monoidal Quillen adjunction in the
sense of [Hov99, 4.2.16]. The right adjoint φ∗ then obtains the structure of a lax sym-
metric monoidal functor, but is in general not symmetric monoidal. ♧

110



4.2. Strict mixed complexes

4.2. Strict mixed complexes
In this section we discuss strict mixed complexes. Strict mixed complexes where in-

troduced by Kassel in [Kas87], where they are called mixed complexes. We will use the
additional adjective strict to distinguish between the model category of strict mixed
complexes Mixed and its underlying ∞-category of mixed complexes Mixed. A strict
mixed complex roughly consists of a chain complex X together with a homomorphism
dn : Xn → Xn+1 increasing degree by 1 for every integer n, and satisfying d ◦ d = 0
and ∂d + d∂ = 0, see Remark 4.2.1.4. The main examples of strict mixed complexes
arise in the setting of Hochschild homology: The standard Hochschild complex of an
associative ring carries the natural structure of a mixed complex, as will be discussed in
Section 6.3.1. This was already alluded to in the introduction of Chapter 4, and in that
context the operator d is the extra structure that encodes the circle action.

In Section 4.2.1, we will start by discussing Mixed as a closed symmetric monoidal
1-category. We will then discuss model structures on Mixed as well as Alg(Mixed) in
Section 4.2.2 and discuss their properties and how they relate to each other, for example
along the various forgetful functors. Finally, in Section 4.2.3, we will discuss the notion
of strongly homotopy linear morphisms of strict mixed complexes, which are a form
of weak morphisms between strict mixed complexes that only commute with d up to
coherent homotopy.

4.2.1. Mixed as a closed symmetric monoidal 1-category
In this section we define the 1-category of strict mixed complexes Mixed and discuss its

closed symmetric monoidal structure as well as algebra objects in Mixed. As Mixed will
be defined as the category of left modules over a cocommutative bialgebra D in Ch(k),
we start in Section 4.2.1.1 by defining the D, which then allows us to define Mixed as
a symmetric monoidal category in Section 4.2.1.2 by using the results from Section 3.4.
We will unpack the symmetric monoidal structure in Section 4.2.1.4 and discuss algebras
in Mixed in Section 4.2.1.5. The symmetric monoidal structure will then be upgraded
to a closed symmetric monoidal structure in Section 4.2.1.6. Finally, when discussing
examples in Chapter 10 it will be helpful to depict mixed complexes diagrammatically,
so we introduce the conventions we will use for this in Section 4.2.1.3. Examples of such
diagrams will also appear as Example 4.2.1.11 in Section 4.2.1.4.

4.2.1.1. The bialgebra D

Construction 4.2.1.1. Let D be the chain complex of k-modules k · {1} ⊕ k · {d}
with 1 of degree 0 and d of degree 1. In other words, D is the chain complex with zero
differentials and a copy of k generated by 1 in degree 0, and a copy of k generated by
an element we call d in degree 1.

Then D can be given a unique structure of a commutative algebra in Ch(k) such that
the element 1 in degree 0 is the unit3.

31 being the unit already pins down products x · y if one of x and y is in degree 0, and if x and y are

111



Chapter 4. Mixed complexes

Furthermore, there is a unique way to extend this structure to a commutative and
cocommutative bialgebra in Ch(k). Indeed, if ϵ : D→ k is the counit of such a bialgebra
structure, then ϵ(1) = 1 is determined by the requirement that ϵ is a morphism of
algebras, and ϵ(d) = 0 is clear for degree reasons. If ∆: D→ D⊗D is the comultiplication
of such a bialgebra structure, then again as ∆ is an algebra morphism we must have
∆(1) = 1⊗ 1. We can write ∆(d) as a · (1⊗ d) + b · (d⊗ 1) for some elements a and b of
k. But from counitality we can conclude that a and b must both be 1. Hence we must
have ∆(d) = d⊗ 1 + 1⊗ d. That ϵ and ∆ defined like this really define a commutative
and cocommutative bialgebra can easily be checked.

While we will usually just write D, we will also denote this commutative and cocommu-
tative bialgebra by Dk if we want to make the base ring explicit. It follows immediately
from the construction that if φ : k → k′ is a morphism of commutative rings, then the
symmetric monoidal functor4

k′ ⊗k − : Ch(k)→ Ch(k′)

maps Dk to Dk′ , as a commutative and cocommutative bialgebra. ♦

4.2.1.2. Definition of Mixed

We can now define the symmetric monoidal category of strict mixed complexes.

Definition 4.2.1.2. We denote by Mixed the symmetric monoidal category

Mixed := LModD
(
Ch(k)

)

and call Mixed the category of strict mixed complexes. The symmetric monoidal structure
we consider here is the one from Definition 3.4.2.1, see also Remark 3.4.2.4.

We will sometimes have reason to use strict mixed complexes whose underlying chain
complex is cofibrant with respect to the projective model structure (see Fact 4.1.3.1).
We will thus use the notation

Mixedcof := LModD

(
Ch(k)cof

)

for the full symmetric monoidal subcategory of Mixed spanned by those strict mixed
complexes whose underlying chain complex is cofibrant.

If we want to make the base ring explicit we will also use the notation Mixedk and
Mixedk,cof. ♦

Remark 4.2.1.3. Let φ : k → k′ be a morphism of commutative rings. The symmetric
monoidal functor

k′ ⊗k − : Ch(k)→ Ch(k′) (4.2)

both in degree 1 then the product is 0 for degree reasons.
4See Fact 4.1.5.1.

112



4.2. Strict mixed complexes

from Fact 4.1.5.1 induces by Definition 3.4.2.1 and Remark 3.4.2.4 a symmetric monoidal
functor as indicated at the top of the following commutative diagram.

Mixedk Mixedk′

Ch(k) Ch(k′)

k′⊗k−

evm evm

k′⊗k−

(4.3)

As (4.2) preserves cofibrant objects by Fact 4.1.5.1, the top horizontal functor restricts
to a symmetric monoidal functor from Mixedk,cof to Mixedk′,cof.

Furthermore, as the forgetful functors evm detect colimits by [HA, 4.2.3.5 (2)] and the
bottom horizontal functor in (4.3) preserves colimits by Fact 4.1.5.1, the top horizontal
functor in (4.3) preserves colimits as well. ♦

Remark 4.2.1.4. Let us unpack what an object of Mixed is. A D-module consists of
an underlying chain complex X together with a morphism µ : D ⊗ X → X of chain
complexes, the action of D on X, satisfying associativity and unitality.

Unpacking the definition of the tensor product in Ch(k) and the definition of D we
see that the data of µ corresponds to the data of morphisms of abelian groups

µ(1⊗−)n : Xn → Xn and µ(d⊗−)n : Xn → Xn+1

for every integer n. Those morphisms have to satisfy a condition corresponding to µ

being a morphism of chain complexes.
Let us first note that unitality of the action is equivalent to µ(1 ⊗ −)n being the

identity for every n, so this piece of data is redundant. If x is an element of Xn for
some n, let us write d(x) for µ(d⊗ x). Then µ being a morphism of chain complexes is
equivalent to ∂d + d∂ = 0. Finally, associativity of the action is equivalent to d ◦ d = 0.

A morphism of D-modules f : X → Y can similarly be unpacked to be a morphism of
underlying chain complexes (which we also denote by f) such that f ◦ dX = dY ◦ f .

The upshot of the above discussion is that the category of strict mixed complexes is
isomorphic to the category of chain complexes with an extra operator d that increases
degree by 1, and that satisfies the two equations ∂d + d∂ = 0 and d2 = 0. In the rest of
the text we will often switch back and forth between these two perspectives. ♦

As an example, we define a very basic family of strict mixed complexes.

Definition 4.2.1.5. Let n be an integer. Then we denote by Dn the strict mixed complex
with underlying chain complex Z · {1}⊕Z · {δ}[1] (so the same underlying chain complex
as D itself), and with d defined by d(1) = n · δ. ♦

Remark 4.2.1.6. As a D-module, D is isomorphic to D1. Also note that Dn is isomorphic
to D−n. ♦

113



Chapter 4. Mixed complexes

4.2.1.3. Diagrams depicting strict mixed complexes

Convention 4.2.1.7. It will sometimes be helpful to diagrammatically depict strict
mixed complexes for which the underlying graded abelian group is free on some basis
(bi)i∈I for a set I. In that case we will use the following conventions.

• Basis elements are represented by vertices of the diagram.

• A non-squiggly black arrow from bi to bj is used to represent the bj-coefficient of
∂(bi). More concretely, if we write ∂(bi) as a linear combination

∑
l∈I al · bl of basis

elements, with al elements of k, then the label of such a non-squiggly black arrow
will be aj. If aj = 0, then we will omit the arrow.

• d is represented completely analogously with red squiggly arrows.

• If an arrow has no label without further comment, then the the missing label is to
be interpreted as 1.

• Sometimes we will drop the signs of the labels, or the labels altogether. In these
cases we will point this out in the text. ♦

Example 4.2.1.8. The strict mixed complex Dn ⊕ Dm[1] for n and m integers can be
depicted as follows, where we use 1′ and δ′ for the basis elements of Dm.

δ′

δ 1′

1

−m

n

The sign arises from the isomorphism D⊗(Dm[1]) ∼= (D⊗Dm)[1], see Remark 4.1.2.2. ♦

Example 4.2.1.9. Let n be an integer. The following is an example of an acyclic strict
mixed complex.

δ′

1′ δ

1

−n

n

♦

114



4.2. Strict mixed complexes

4.2.1.4. The symmetric monoidal structure on Mixed

Remark 4.2.1.10. Let us unpack the symmetric monoidal structure on Mixed. By
Definition 3.4.2.1 the forgetful functor Mixed → Ch(k) is symmetric monoidal, so if X
and Y are two strict mixed complexes, then the underlying chain complex of X ⊗ Y

must be the tensor product of underlying chain complexes, and it remains to figure out
how d acts. Using Remark 3.4.2.4, this action arises from the composition

D⊗X ⊗ Y ∆⊗idX ⊗ idY−−−−−−−→ D⊗D⊗X ⊗ Y idD ⊗τD,X⊗idY
−−−−−−−−−→ D⊗X ⊗D⊗ Y µX⊗µY

−−−−→ X ⊗ Y

where ∆ is the comultiplication of D as defined in Construction 4.2.1.1, τ is the symmetry
isomorphism reviewed in Definition 4.1.2.1, and µX and µY are the action morphisms
on X and Y , respectively.

By unpacking the definitions we obtain the following.

dX⊗Y (x⊗ y) =
(
µX ⊗ µY

)
◦
(
idD ⊗ τD,X ⊗ idY

)
◦ (∆⊗ idX ⊗ idY )(d⊗ x⊗ y)

=
(
µX ⊗ µY

)
◦
(
idD ⊗ τD,X ⊗ idY

)
◦ (d⊗ 1⊗ x⊗ y + 1⊗ d⊗ x⊗ y)

=
(
µX ⊗ µY

)
◦
(

d⊗ x⊗ 1⊗ y + (−1)degCh(x)1⊗ x⊗ d⊗ y
)

= dX(x)⊗ y + (−1)degCh(x)x⊗ dY (y)

The monoidal unit of Mixed is the unique strict mixed complex with underlying chain
complex k[0]. ♦

Example 4.2.1.11. As an example, let us discuss the tensor product Dn ⊗ Dm for n
and m positive integers.

The strict mixed complex Dn ⊗Dm can be depicted as follows.

δ ⊗ δ

δ ⊗ 1 1⊗ δ

1⊗ 1

−m n

n m

Let i, j be integers such that gcd(n,m) = in + jm. Then another basis for the free
abelian group generated by δ ⊗ 1 and 1⊗ δ is given by the two elements

n

gcd(n,m)
· δ ⊗ 1 +

m

gcd(n,m)
· 1⊗ δ and j · δ ⊗ 1− i · 1⊗ δ.

115



Chapter 4. Mixed complexes

Thus we can also depict Dn ⊗Dm as follows.

δ ⊗ δ

n
gcd(n,m)

· δ ⊗ 1 + m
gcd(n,m)

· 1⊗ δ j · δ ⊗ 1− i · 1⊗ δ

1⊗ 1

− gcd(n,m)

gcd(n,m)

Thus Dn ⊗Dm is isomorphic in Mixed to Dgcd(n,m) ⊕Dgcd(n,m)[1]. ♦

4.2.1.5. Algebras in Mixed

As we will later also consider algebras in Mixed, we unpack the definition in the
following remark.

Remark 4.2.1.12. As the forgetful functor from Mixed to Ch(k) is symmetric monoidal,
every algebra in strict mixed complexes has an underlying differential graded algebra
(i. e. an algebra in Ch(k)). An algebra in Mixed then consists of a differential graded
algebra together with a strict mixed complex structure on the underlying chain complex
A, such that the unit morphism k → A and the multiplication morphism A ⊗ A → A

are morphisms of strict mixed complexes.
Making use of Remark 4.2.1.10 we can rephrase this as the requirement that d(1) = 0

and that the Leibniz rule

d(x · y) = d(x) · y + (−1)degCh(x)x · d(y)

is satisfied for every element x and y of A.
Note that the Leibniz rule for x = y = 1 implies d(1) = 2 d(1) and hence d(1) = 0, so

if the Leibniz rule holds, then this condition is redundant.
Commutative algebras in Mixed have the analogous description, they consist of a

commutative differential graded algebra together with a strict mixed complex structure
on the underlying chain complex satisfying the Leibniz rule. ♦

4.2.1.6. The closed symmetric monoidal structure on Mixed

Construction 4.2.1.13. Let X and Y be two strict mixed complexes. We can define
an operator d increasing degree by one on HOMCh(k)(X, Y ) by letting d act on f by the
following formula.

d(f) = dY ◦ f − (−1)degCh(f)f ◦ dX

By unwrapping the definitions it is straightforward to check that this definition satisfies
d ◦ d = 0 and d ◦ ∂ + ∂ ◦ d = 0 and thus defines a strict mixed complex, which we will
denote by HOMMixed(X, Y ). ♦

116



4.2. Strict mixed complexes

Proposition 4.2.1.14. Let

φ : MorCh(k)(−1 ⊗−2,−3)
∼=
−→ MorCh(k)

(
−1,HOMCh(k)(−2,−3)

)

f 7→
(
x 7→

(
y 7→ f(x⊗ y)

))

be the natural isomorphism that is part of the closed symmetric monoidal structure on
Ch(k). Then φ restricts to a natural isomorphism as follows.

MorMixed(−1 ⊗−2,−3)
∼=
−→ MorMixed

(
−1,HOMMixed(−2,−3)

)

In particular, this makes Mixed into a closed symmetric monoidal category. ♥

Proof. Let X, Y , and Z be strict mixed complexes and f : X ⊗ Y → Z a morphism of
chain complexes. The statement then follows from the following chain of equivalences.

f is a morphism of strict mixed complexes
⇐⇒ ∀x ∈ X : ∀y ∈ Y :

dZ
(
f(x⊗ y)

)
= f

(
dX(x)⊗ y

)
+ (−1)degCh(x)f(x⊗ dY (y))

⇐⇒ ∀x ∈ X : ∀y ∈ Y :

dZ(φ(f)(x)(y)) = φ(f)
(

dX(x)
)
(y) + (−1)degCh(x)φ(f)(x)

(
dY (y)

)

⇐⇒ ∀x ∈ X : ∀y ∈ Y :

dZ
(
φ(f)(x)(y)

)
− (−1)degCh(x)φ(f)(x)

(
dY (y)

)
= φ(f)

(
dX(x)

)
(y)

⇐⇒ ∀x ∈ X : d
(
φ(f)(x)

)
= φ(f)

(
dX(x)

)

⇐⇒ φ(f) is a morphism of strict mixed complexes

4.2.2. Mixed and Alg(Mixed) as model categories
In this section we construct model structures on Mixed and Alg(Mixed) and discuss

various properties that they have. We will start in Section 4.2.2.1 by reviewing a general
result by Schwede and Shipley concerning when one can lift a model structure from
a closed symmetric monoidal category with compatible model structure to a model
structure on categories of algebras or modules over an algebra. We then apply this in
Section 4.2.2.2 to Ch(k) in order to obtain a model structure on Mixed = LModD(Ch(k)).
We will also show that this model structure is again suitably compatible with the closed
symmetric monoidal structure on Mixed, so that we can further lift the model structure
from Mixed to Alg(Mixed), which we do in Section 4.2.2.3. As discussed in Section 4.2.1.5,
an algebra in Mixed consists of a chain complex that has both an algebra structure as well
as a strict mixed complex structure, satisfying that the Leibniz rule. We thus obtain two
forgetful functors on Alg(Mixed): One forgetting the strict mixed complex structure and
mapping to Alg(Ch(k)), and one forgetting the algebra structure and mapping to Mixed.

117



Chapter 4. Mixed complexes

Together with the forgetful functors from Alg(Ch(k)) and Mixed to Ch(k) they fit into a
commutative diagram, and the main result of Section 4.2.2.3 is Proposition 4.2.2.12, in
which various properties of those forgetful functors are shown. Finally, it will in practice
be helpful to have a concrete description of homotopies in the model categories Mixed
as well as Alg(Ch(k)) and Alg(Mixed), so we discuss them in Sections 4.2.2.4, 4.2.2.5
and 4.2.2.6.

4.2.2.1. Model categories of algebras and modules

In order to construct model structures on Mixed = LModD(Ch(k)) and Alg(Mixed) we
will make use of a general theorem by Schwede and Shipley that allows one to lift model
structures to categories of modules and algebras. We recall their result as Theorem 4.2.2.1
below.

Theorem 4.2.2.1 ([SS00, Theorem 4.1]). Let C be a combinatorial model category with
a closed symmetric monoidal structure such that the tensor product functor is a Quillen
bifunctor (i. e. the pushout product axiom is satisfied) and satisfying the monoid axiom
(see [SS00, 3.3]).

Then there is a combinatorial model structure on Alg(C) such that the following
statements hold.

(1) The adjunction
FreeAlg : C ⇄ Alg(C) :eva

where FreeAlg is the free algebra functor and eva is the forgetful functor, is a Quillen
adjunction.

(2) Alg(C) is cofibrantly generated with the set of generating (acyclic) cofibrations given
by application of FreeAlg to the set of generating (acyclic) cofibrations of C.

(3) eva preserves and reflects weak equivalences and fibrations.

(4) If the unit of C is cofibrant, then eva preserves cofibrant objects and cofibrations
between cofibrant objects.

Let A be an algebra in C. Then there is a combinatorial model structure on LModA(C)
such that the following statements hold.

(5) The adjunction
FreeLModA : C ⇄ LModA(C) :evm

where FreeLModA is the functor sending an object X to the free A-module A ⊗ X
and evm is the forgetful functor, is a Quillen adjunction.

(6) LModA(C) is cofibrantly generated with set of generating (acyclic) cofibrations given
by application of FreeLModA to the set of generating (acyclic) cofibrations of C.

(7) evm preserves and reflects weak equivalences and fibrations.

118



4.2. Strict mixed complexes

(8) If the underlying object of A is cofibrant in C, then evm preserves cofibrations. ♥

Proof. Construction of the model structures: By definition (see [HTT, A.2.6.1]), a com-
binatorial model category has presentable underlying category, so in particular every
object is small (see [HTT, A.1.1.2]). Furthermore, combinatorial model categories are by
definition also cofibrantly generated, so all the conditions to applying [SS00, 4.1] are sat-
isfied. We thus obtain the existence of cofibrantly generated model structures on Alg(C)
and LModA(C). Let us now turn to the various properties of these model structures that
we claimed.

Proof of claims (1), (2), (3), (5), (6), and (7): See the proof of [SS00, 4.1] as well as
[SS00, 2.3 and the description right before 2.3].

Proof of (4): Part of the statement of [SS00, 4.1 (3)].
Proof that the model structures are combinatorial: It remains to show that Alg(C) and

LModA(C) are presentable. We refer to [HTT, A.1.1.2] for a definition of presentable
categories. That the two categories are cocomplete is already part of them being model
categories, and as the forgetful functors to C are faithful it is also clear that the mor-
phisms sets are small. It thus suffices to show that the two categories are accessible5;
condition [HTT, A.1.1.2 (2)] then follows directly from definition and [HTT, A.1.1.2 (3)]
follows from [AR94, 2.2 (3) and 1.16]. See also [HTT, 5.5.1.1 and 5.5.0.1].

But both Alg(C) and LModA(C) are categories of algebras over an accessible monad
on C6, so they are again accessible by [AR94, 2.78].

Proof of claim (8): evm preserves colimits7, so to show that evm preserves cofibrations
it suffices to show that evm preserves generating cofibrations. So let i : X → Y be a
cofibration in C. We claim that evm(FreeLModA(i)) = idA ⊗ i is again a cofibration. But
this follows from −⊗− being a Quillen bifunctor8.

4.2.2.2. The model structure on Mixed

The general result Theorem 4.2.2.1 allows us to define a combinatorial model structure
on Mixed that is lifted from the projective model structure on Ch(k) – all prerequisites
to apply Theorem 4.2.2.1 are covered by Fact 4.1.3.1.

Definition 4.2.2.2. We equip Mixed = LModD(Ch(k)) with the combinatorial model
structure from Theorem 4.2.2.1 that is lifted from the projective model structure on
Ch(k). ♦

5See [AR94, 2.2 (1)] for a definition. An object is called κ-presentable (presentable) in [AR94, 1.13]
precisely if it is called κ-compact (small) in [HTT, A.1.1.1]. Thus (keeping in mind we already
know that the categories in question are cocomplete), [AR94, 2.2 (1)] asks for existence of a regular
cardinal κ and a small set of κ-compact objects such that every object can be obtained as a κ-filtered
colimit of objects from that set.

6The proof of [SS00, 4.1] uses this fact, so see there for more details.
7Because we assume that the symmetric monoidal structure on C is closed, the tensor product preserves

colimits separately in each variable, so we can apply [HA, 4.2.3.5].
8See [Hov99, 4.2.1] for a definition. We apply the property to the cofibrations 0 → A and i, and use

that the morphism (0→ A)□ i can be identified with idA ⊗ i.

119



Chapter 4. Mixed complexes

Proposition 4.2.2.3. Let φ : k → k′ be a morphism of commutative rings.
Then the extension of scalars functor

k′ ⊗k − : Mixedk → Mixedk′

from Remark 4.2.1.3 preserves cofibrations as well as weak equivalences between objects
with cofibrant underlying chain complex. ♥

Proof. We first show that the functor preserves cofibrations. As it preserves colimits
by Remark 4.2.1.3, it suffices to show that the functor preserves generating cofibrations.
But this follows immediately from compatibility with the free module functors by Propo-
sition E.7.4.1 in combination with

k′ ⊗k − : Ch(k)→ Ch(k′) (∗)

preserving cofibrations by Fact 4.1.5.1.
That the functor preserves weak equivalences between objects with cofibrant underly-

ing chain complex follows directly from the forgetful functors evm detecting weak equiv-
alences, the diagram (4.3) in Remark 4.2.1.3 commuting, and (∗) preserving weak equiv-
alences between cofibrant objects by Fact 4.1.5.1.

Proposition 4.2.2.4. The underlying chain complex of D is cofibrant. ♥

Proof. Follows from [Hov99, 2.3.6].

So we have now obtained a model structure on Mixed. We also already discussed
a closed symmetric monoidal structure on Mixed, see Proposition 4.2.1.14. We would
like to show that these to structures are in fact compatible and make Mixed into a
symmetric monoidal model structure. However, there are slightly different definitions of
what properties a monoidal model structure needs to satisfy, and not all are true in this
case. What all definitions require is that the tensor product is a Quillen bifunctor. As
explained in [SS00, 3.2] and [Hov99, below 4.2.6], this does not quite suffice to obtain an
induced monoidal structure on the homotopy category, a condition on the unit object
is also necessary. This is because the derived tensor product is formed by tensoring
cofibrant replacements of the two objects one wants to tensor. If the unit object is not
cofibrant, there is no guarantee that the derived tensor product with the unit object
is weakly equivalent to the original object. One condition to guarantee that this is
nevertheless the case is given in [Hov99, 4.2.6] as part of Hovey’s definition of monoidal
model structures. This condition is always satisfied when the unit is in fact cofibrant,
and Lurie requires this more restrictive condition for monoidal model categories [HA,
Start of 4.1.7].

The unit object in Mixed is Z (see Remark 4.2.1.10), which is unfortunately not cofi-
brant (see Proposition 4.2.2.5 directly below), so we can not directly apply some of the
result concerning monoidal model categories proven in [HA], like the result on rectifica-
tion of algebras [HA, 4.1.8.4]. However, Hovey’s condition is satisfied, and we will be
able to work around the obstacles to deducing the analogous result to [HA, 4.1.8] in
Proposition 4.4.2.3 in Section 4.4.2.

120



4.2. Strict mixed complexes

Proposition 4.2.2.5. The unit object Z of Mixed (see Remark 4.2.1.10) is not cofibrant
with respect to the model structure from Definition 4.2.2.2. ♥

Proof. Consider the counit ϵ : D → Z. This is a morphism of mixed complexes, and
also a fibration in Mixed as it is levelwise surjective and evm detects fibrations by Theo-
rem 4.2.2.1 (7). If Z were cofibrant in Mixed, then there would have to exist a section of
ϵ as strict mixed complexes. However, the unique section in Ch(k) is not a morphism of
strict mixed complexes, as d(1) = d 6= 0 in D.

Proposition 4.2.2.6. The model structure on Mixed from Definition 4.2.2.2 is a sym-
metric monoidal model structure (in the sense of [Hov99, 4.2.6]) with respect to the closed
symmetric monoidal structure from Definition 4.2.1.2 and Proposition 4.2.1.14. ♥

Proof. Proof that − ⊗ − is a Quillen bifunctor: Let f : W → X be a cofibration and
p : Y → Z a fibration in Mixed. By [Hov99, 4.2.2] if suffices to show that the induced
morphism

HOMMixed(X, Y )→ HOMMixed(X,Z)×HOMMixed(W,Z) HOMMixed(W,Y )

is a fibration in Mixed, and acyclic if f or p is acyclic. But this follows immediately
from Ch(k) having the corresponding property by Fact 4.1.3.1 and [Hov99, 4.2.2], in
combination with evm preserving and detecting fibrations and weak equivalences by The-
orem 4.2.2.1 (7), preserving cofibrations by Theorem 4.2.2.1 (8) and Proposition 4.2.2.4,
and mapping HOMMixed to HOMCh(k) by Construction 4.2.1.13.

Proof of [Hov99, 4.2.6 (2)]: We have to show that if 0→ Zcof f
−→ Z is a factorization in

Mixed of 0→ Z into a cofibration followed by an acyclic fibration, then tensoring f with
the identity of any cofibrant object on either side yields a weak equivalence. By Proposi-
tion 4.2.2.4 and Theorem 4.2.2.1 (7) and (8), the forgetful functor evm : Mixed → Ch(k)
preserves weak equivalences as well as cofibrations, and also detects weak equivalences.
Furthermore, evm is also symmetric monoidal.

Hence it suffices to show that for a cofibrant chain complex X it holds that

evm(Zcof)⊗X
evm(f)⊗idX
−−−−−−−→ evm(Z)⊗X

is a weak equivalence in Ch(k). But note that while Z is not cofibrant an an object in
Mixed, it is cofibrant as a chain complex. Hence evm(Zcof)

evm(f)
−−−−→ evm(Z) = Z is a weak

equivalence between cofibrant objects. As Ch(k) is a symmetric monoidal model cate-
gory, −⊗X preserves acyclic cofibrations, and hence sends weak equivalences between
cofibrant objects to weak equivalences (see [Hov99, 1.1.12]), so the claim follows.

We next show that Mixed satisfies the monoid axiom. Definitions of the monoid axiom
can be found in [SS00, 3.3] and [HA, 4.1.8.1], however these two definitions are stated
in a slightly different way, so we briefly discuss them first in the next remark.

Remark 4.2.2.7. Let C be a combinatorial model category that is equipped with a
symmetric monoidal structure.

121



Chapter 4. Mixed complexes

Let U be the subclass of morphisms of C that are of the form idX ⊗i, with X an object
in C and i an acyclic cofibration. Let U be the weakly saturated class of morphisms
generated by U9. Let Ũ be the subclass of morphisms of C that can be obtained as a
transfinite composition of pushouts of morphisms in U . Finally, let Ũ ′ be the subclass
of morphisms of C that are retracts of morphisms in Ũ .

Then [SS00, 3.3] asks that all morphisms in Ũ are weak equivalences, and [HA, 4.1.8.1]
asks that all morphisms in U are weak equivalences.

From the definitions it is clear that Ũ ′ is contained in U . On the other hand, [HTT,
A.1.2.8] implies that U is contained in Ũ ′. As weak equivalences are closed under retracts,
Ũ is contained in the class of weak equivalences if and only if Ũ ′ = U is, so definitions
[SS00, 3.3] and [HA, 4.1.8.1] are equivalent. ♦

Proposition 4.2.2.8. The symmetric monoidal model category10 Mixed satisfies the
monoid axiom. ♥

Proof. In this proof we use the following notation. If S is a class of morphisms in some
monoidal category C, then we denote by C ⊗ S the class of all morphisms of the form
idX ⊗s where X is an object of C and s is an element of S. We denote by S the weakly
saturated class of morphisms generated by S in the sense of [HTT, A.1.2.2].

Denote by W the class of weak equivalences of Ch(k), and by I a set of generating
acyclic cofibrations of Ch(k). We also define FreeMixed to be FreeLModD , the left adjoint
to the forgetful functor evm : Mixed→ Ch(k).

What we have to show is that Mixed⊗ {acyclic cofibrations in Mixed} is contained in
the class of weak equivalences of Mixed, which by Theorem 4.2.2.1 (8) is equivalent to
showing that evm(Mixed⊗ {acyclic cofibrations in Mixed}) is contained in W .

This will follow from the following easy claims.

(1) Mixed⊗ {acyclic cofibrations in Mixed} = Mixed⊗ FreeMixed(I)

(2) evm

(
Mixed⊗ FreeMixed(I)

)
⊆ evm

(
Mixed⊗ FreeMixed(I)

)

(3) evm

(
Mixed⊗ FreeMixed(I)

)
⊆ Ch(k)⊗ {acyclic cofibrations in Ch(k)}

(4) Ch(k)⊗ {acyclic cofibrations in Ch(k)} ⊆ W

Proof of claim (1): The class of acyclic cofibrations in Mixed is by Theorem 4.2.2.1 (6)
equal to FreeMixed(I). As the tensor product functor on Mixed preserves colimits in each
variable the claim follows.

Proof of claim (2): Follows from evm preserving colimits.

9See [HTT, A.1.2.2] for a definition. This is smallest subclass of morphisms of C containing U that is
closed under taking pushouts along morphisms of C, transfinite compositions, and retracts.

10In the sense of [Hov99, 4.2.6].

122



4.2. Strict mixed complexes

Proof of claim (3): Let i be a generating acyclic cofibration of Ch(k) and X a strict
mixed complex. Then we have

evm

(
idX ⊗FreeMixed(i)

)
∼= idX⊗D ⊗ i

where we use that evm is symmetric monoidal, so the claim follows.
Proof of claim (4): True as Ch(k) satisfies the monoid axiom, see Fact 4.1.3.1.

4.2.2.3. The model structure on Alg(Mixed)

We can now put together the various results regarding the model structure on Mixed
and apply Theorem 4.2.2.1 in order to obtain a combinatorial model structure on
Alg(Mixed).

Proposition 4.2.2.9. There is a combinatorial model structure on Alg(Mixed) as well
as Alg(Ch(k)) with the properties listed in Theorem 4.2.2.1. ♥

Proof. By Definition 4.2.2.2 the model structure on Mixed is combinatorial, by Propo-
sition 4.2.1.14 there is a closed symmetric monoidal structure on Mixed, by Proposi-
tion 4.2.2.6 the model structure satisfies the pushout product axiom, and by Propo-
sition 4.2.2.8 the monoid axiom is satisfied. Ch(k) has all these properties as well by
Fact 4.1.3.1. We can thus apply Theorem 4.2.2.1.

We end this section by discussing the various forgetful functors, and show some prop-
erties that they have that will be useful later.

Notation 4.2.2.10. There is a commutative diagram of forgetful functors as follows.

Alg(Mixed)

Mixed Alg(Ch(k))

Ch(k)

evMixed
a Alg(evm)

evm eva

(4.4)

To be able to distinguish the two forgetful functors from categories of algebras to their
underlying categories, we give the forgetful functor Alg(Mixed)→ Mixed an extra super-
script Mixed.

The functors evMixed
a , evm, and eva all have left adjoints according to Theorem 4.2.2.1.

We denote

• the left adjoint to evMixed
a by FreeAlg(Mixed)

Mixed .

• the left adjoint to evm by FreeMixed.

• the left adjoint to eva by FreeAlg. ♦

123



Chapter 4. Mixed complexes

Proposition 4.2.2.11. The commutative square

Alg(Mixed) Mixed

Alg
(
Ch(k)

)
Ch(k)

evMixed
a

Alg(evm) evm

eva

from Notation 4.2.2.10 is left adjointable11, i. e. the push-pull transformation

FreeAlg ◦ evm → Alg(evm) ◦ FreeAlg(Mixed)
Mixed

is a natural isomorphism. ♥

Proof. As the symmetric monoidal structures on Mixed and Ch(k) are compatible with
colimits12, and evm is symmetric monoidal and preserves colimits13, this is a special case
of Proposition E.7.2.2 (2).

We can now collect some properties of the various forgetful functors.

Proposition 4.2.2.12. The following table summarizes what kind of morphisms or
constructions the various forgetful functors from Notation 4.2.2.10 preserve (marked
with a P) or detect (marked with a D).

Functor isos14 w. e.15 fib16 cofib17 cofib’18 lim sifted colim colim
evMixed

a D D D D D
Alg(evm) D D D P P D D D

evm D D D P P D D D
eva D D D P D D

All properties that make use of a model structure are to be understood with respect to
the model structures from Fact 4.1.3.1, Definition 4.2.2.2, and Proposition 4.2.2.9. ♥

Proof. Weak equivalences and fibrations: That evMixed
a , evm, and eva detect weak equiva-

lences and fibrations is Theorem 4.2.2.1 (3) and (7). From commutativity of the diagram
(4.4) we obtain the same for Alg(evm).

11See [HTT, 7.3.1.1] for a definition.
12As both symmetric monoidal categories are closed symmetric monoidal, see Definition 4.1.2.1 and

Proposition 4.2.1.14.
13See for example [HA, 4.2.3.5].
14Isomorphisms.
15Weak equivalences.
16Fibrations.
17Cofibrations.
18Cofibrant objects and cofibrations between cofibrant objects.

124



4.2. Strict mixed complexes

Limits and sifted colimits: That limits and colimits in module categories19 are calcu-
lated on underlying objects is a standard categorical fact, see for example [HA, 4.2.3.3
and 4.2.3.5]. Similarly, it is standard that limits and sifted colimits20 of algebras are cal-
culated on underlying objects, see for example [HA, 3.2.2.5] and [HA, 3.2.3.1]. Again, as
the three other functors detect limits and sifted colimits, this also follows for Alg(evm).

Isomorphisms: That evMixed
a , evm, and eva are conservative, i. e. detect isomorphisms,

is standard, and then it again follows that Alg(evm) is conservative as well. However,
we could also deduce this from all four functors detecting sifted colimits, as detecting
isomorphisms is equivalent to detecting [0]-colimits.

Colimits: That evm detects colimits was already mentioned above. As evm is also
symmetric monoidal, it then follows from Proposition E.7.3.1 that Alg(evm) preserves
colimits as well. As Alg(evm) is conservative, this implies that Alg(evm) even detects
colimits.

Cofibrations and cofibrations between cofibrant objects: It follows from Theorem 4.2.2.1
(8) in combination with D being cofibrant in Ch(k) by Proposition 4.2.2.4 that evm pre-
serves cofibrations. It follows from Theorem 4.2.2.1 (4) in combination with the monoidal
unit of Ch(k) being cofibrant by Fact 4.1.3.1 that eva preserves cofibrant objects and
cofibrations between cofibrant objects.

It remains to show that Alg(evm) preserves cofibrations. As we already showed that
Alg(evm) preserves colimits, it suffices to show that Alg(evm) maps generating cofibra-
tions to cofibrations. Generating cofibrations of Alg(Mixed) are by Theorem 4.2.2.1 (2)
and (6) morphisms of the form FreeAlg(Mixed)

Mixed (FreeMixed(i)) with i a (generating) cofibra-
tion in Ch(k). By Proposition 4.2.2.11 there is a natural isomorphism as follows.

Alg(evm) ◦ FreeAlg(Mixed)
Mixed ◦ FreeMixed ∼= FreeAlg ◦ evm ◦ FreeMixed

As FreeAlg and FreeMixed preserve cofibrations as left Quillen functors21 and evm was
already shown to preserve cofibrations, the claim follows.

Proposition 4.2.2.13. Let φ : k → k′ be a morphism of commutative rings.
Then the extension of scalars functor

k′ ⊗k − : Alg(Mixedk)→ Alg(Mixedk′)

that is induced on algebras by the symmetric monoidal functor k′⊗k− : Mixedk → Mixedk′
from Remark 4.2.1.3 preserves colimits and cofibrations. ♥

Proof. The extension of scalars functor

k′ ⊗k − : Mixedk → Mixedk′
19This is true for categories of modules in a monoidal category whose tensor product functor preserves

colimits in each variable separately, which is the case for Ch(k), as it is a closed symmetric monoidal
category.

20This again requires the assumption that the tensor product preserves sifted colimits in each variable
separately, which is the case for both Ch(k) and Mixed.

21See Theorem 4.2.2.1 (1) and (5).

125



Chapter 4. Mixed complexes

is by Remark 4.2.1.3 symmetric monoidal and preserves colimits. As the tensor product
functors of Mixedk and Mixedk′ also preserve colimits in each variable separately by
Proposition 4.2.2.6 we can apply Proposition E.7.3.1 to conclude that the induced functor

k′ ⊗k − : Alg(Mixedk)→ Alg(Mixedk′)

preserves colimits.
To show that this functor also preserves cofibrations it now suffices to show that it

maps generating cofibrations to cofibrations. So let i : X → Y be a cofibration in Mixedk.
We have to show that

k′ ⊗k FreeAlg(Mixedk)
Mixedk (i)

is a cofibration in Alg(Mixedk′). But by Proposition E.7.2.2 we can identify this morphism
with

FreeAlg(Mixedk′ )
Mixedk′ (k′ ⊗k i)

which is a cofibration as FreeAlg(Mixedk′ )
Mixedk′ is a left Quillen functor by Theorem 4.2.2.1 (5)

and
k′ ⊗k − : Mixedk → Mixedk′

preserves cofibrations by Proposition 4.2.2.3.

4.2.2.4. Homotopies in Mixed

In this section we describe homotopies in Mixed, continuing from and proceeding
analogously to Section 4.1.4.

Proposition 4.2.2.14. Let Y be a strict mixed complex. Then defining an operator d
that increases degree by one on P from Proposition 4.1.4.1 as

d
(
(x, y, z)

)
:= (dx, d y,− d z)

upgrades P to a strict mixed complex. Furthermore, the morphisms i and p that were
defined in Proposition 4.1.4.1 are compatible with this strict mixed structure, exhibiting
P as a path object for Y in Mixed. ♥

Proof. It is clear that d as defined in the statement is k-linear and increases degree by
1. Let (x, y, z) be an element in P . Then the short calculation

d
(

d
(
(x, y, z)

))
= d

(
(dx, d y,− d z)

)
=
(
d(dx), d(d y), d(d z)

)
= (0, 0, 0)

shows that d squares to zero, and the following calculation shows that d ◦ ∂ + ∂ ◦ d = 0,
so that P indeed becomes a strict mixed complex.

(d ◦ ∂ + ∂ ◦ d)
(
(x, y, z)

)

= d
((
∂x, ∂y,−∂(z) + x− y

))
+ ∂
(
(dx, d y,− d z)

)

126



4.2. Strict mixed complexes

=
(

d
(
∂(x)

)
, d
(
∂(y)

)
,− d

(
−∂(z) + x− y

))

+
(
∂
(
d(x)

)
, ∂
(
d(y)

)
,−∂

(
− d(z)

)
+ dx− d y

)

=
(

d
(
∂(x)

)
+ ∂
(
d(x)

)
, d
(
∂(y)

)
+ ∂
(
d(y)

)
,

d
(
∂(z)

)
− d(x) + d(y) + ∂

(
d(z)

)
+ d(x)− d(y)

)

= (0, 0, 0)

It is clear that i and p are compatible with d, making them into morphisms in Mixed.
As the forgetful functor evm : Mixed → Ch(k) detects weak equivalences and fibrations
by Proposition 4.2.2.12, it now follows from Proposition 4.1.4.1 that i and p exhibit P
as a path object for Y .

Proposition 4.2.2.15. Let X be a cofibrant and Y a fibrant object in Mixed, with
respect to the model structure of Definition 4.2.2.2, and f and g two morphisms X → Y

in Mixed. Then f and g are homotopic if and only if there exists a chain homotopy of
strict mixed complexes h from f to g, by which we mean a chain homotopy h from f to
g in the sense of Proposition 4.1.4.2 satisfying additionally22

h
(
d(x)

)
= − d

(
h(x)

)
(4.5)

for all elements x of X. ♥

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the left and right
homotopy relations coincide, and the right homotopy relation can be tested using any
path object for Y . For this we use the path object P from Proposition 4.2.2.14.

Arguing completely analogously to the proof of Proposition 4.1.4.2, we see that f and
g are homotopic as morphisms of strict mixed complexes if and only if there exists a
morphism of strict mixed complexes H = f × g × h : X → P . That H is a morphism of
chain complexes amounts, just like in Proposition 4.1.4.2, to

∂ ◦ h+ h ◦ ∂ = f − g

but this time H needs to additionally commute with d, so for x an element of X the
following equality must hold.

(
f
(
d(x)

)
, g
(
d(x)

)
, h
(
d(x)

))
= d

((
f(x), g(x), h(x)

))
(∗)

The right hand side is given by

d
((
f(x), g(x), h(x)

))
=
(

d
(
f(x)

)
, d
(
g(x)

)
,− d

(
h(x)

))

so as f and g are morphisms of strict mixed complexes we can conclude that equality
(∗) is equivalent to the following equation.

h
(
d(x)

)
= − d

(
h(x)

)

22To remember the sign, note that both d and h have odd degree, so commuting them should be
expected to introduce a sign.

127



Chapter 4. Mixed complexes

4.2.2.5. Homotopies in Alg(Ch(k))

In this section we describe homotopies in Alg(Ch(k)). The statements of the first two
propositions, concerning an appropriate path object and a concrete description of the
resulting homotopies, are completely analogous to the propositions in Sections 4.1.4
and 4.2.2.4. However, this section has an additional helpful result that reduces the
amount of data that needs to be specified and the amount of properties that need to be
checked to construct homotopies out of differential graded algebras whose underlying
Z-graded k-algebra is free.

Proposition 4.2.2.16. Let Y be a differential graded k-algebra. Then defining a multi-
plication on the chain complex P that was defined in Proposition 4.1.4.1 as

(x, y, z) ·
(
x′, y′, z′

)
:=
(
xx′, yy′, zy′ + (−1)degCh(x)xz′

)

upgrades P to a differential graded k-algebra with unit (1, 1, 0). Furthermore, the mor-
phisms i and p that were defined in Proposition 4.1.4.1 are compatible with this multi-
plicative structure, exhibiting P as a path object for Y in Alg(Ch(k)). ♥

Proof. It is clear that (1, 1, 0) is a unit for the multiplication that was defined in the
statement, and that multiplication is k-linear in both factors. For associativity we carry
out the following calculations.

(
(x, y, z) ·

(
x′, y′, z′

))
·
(
x′′, y′′, z′′

)

=
(
xx′, yy′, zy′ + (−1)degCh(x)xz′

)
·
(
x′′, y′′, z′′

)

=
(
xx′x′′, yy′y′′, zy′y′′ + (−1)degCh(x)xz′y′′ + (−1)degCh(x)+degCh(x

′)xx′z′′
)

(x, y, z) ·
((
x′, y′, z′

)
·
(
x′′, y′′, z′′

))

= (x, y, z) ·
(
x′x′′, y′y′′, z′y′′ + (−1)degCh(x

′)x′z′′
)

=
(
xx′x′′, yy′y′′, zy′y′′ + (−1)degCh(x)xz′y′′ + (−1)degCh(x)+degCh(x

′)xx′z′′
)

The next calculations show that the Leibniz rule is also satisfied, making P into a
differential graded algebra.

∂
(
(x, y, z) ·

(
x′, y′, z′

))

= ∂

((
xx′, yy′, zy′ + (−1)degCh(x)xz′

))

=

(
∂
(
xx′
)
, ∂
(
yy′
)
,−∂

(
zy′ + (−1)degCh(x)xz′

)
+ xx′ − yy′

)

128



4.2. Strict mixed complexes

=
(
∂(x)x′ + (−1)degCh(x)x∂

(
x′
)
, ∂(y)y′ + (−1)degCh(x)y∂

(
y′
)
,

−∂(z)y′ − (−1)degCh(x)+1z∂(y′)− (−1)degCh(x)∂(x)z′ − x∂(z′) + xx′ − yy′
)

∂
(
(x, y, z)

)
·
(
x′, y′, z′

)
+ (−1)degCh(x)(x, y, z) · ∂

((
x′, y′, z′

))

=
(
∂(x), ∂(y),−∂(z) + x− y

)
·
(
x′, y′, z′

)

+ (−1)degCh(x)(x, y, z) ·
(
∂
(
x′
)
, ∂
(
y′
)
,−∂

(
z′
)
+ x′ − y′

)

=
(
∂(x)x′, ∂(y)y′,−∂(z)y′ + xy′ − yy′ − (−1)degCh(x)∂(x)z′

)

+ (−1)degCh(x)
(
x∂
(
x′
)
, y∂
(
y′
)
,

z∂(y′)− (−1)degCh(x)x∂(z′) + (−1)degCh(x)xx′ − (−1)degCh(x)xy′
)

=
(
∂(x)x′ + (−1)degCh(x)x∂

(
x′
)
, ∂(y)y′ + (−1)degCh(x)y∂

(
y′
)
,

−∂(z)y′ + xy′ − yy′ − (−1)degCh(x)∂(x)z′ + (−1)degCh(x)z∂(y′)− x∂(z′) + xx′ − xy′
)

=
(
∂(x)x′ + (−1)degCh(x)x∂

(
x′
)
, ∂(y)y′ + (−1)degCh(x)y∂

(
y′
)
,

−∂(z)y′ + (−1)degCh(x)z∂(y′)− (−1)degCh(x)∂(x)z′ − x∂(z′) + xx′ − yy′
)

It is immediate from the formula for multiplication on P that the the morphisms of
chain complexes i : Y → P and p : P → Y × Y from Proposition 4.1.4.1 become mor-
phisms of differential graded algebras. As weak equivalences and fibrations in Alg(Ch(k))
are detected by the forgetful functor to Ch(k) by Proposition 4.2.2.12, it now follows from
Proposition 4.1.4.1 that i and p exhibit P as a path object for Y . We remark that a
more conceptual approach to constructing this path object is described in [SS00, Section
Chain complexes on pages 503 and 504], though there are some differences in signs.

Proposition 4.2.2.17. Let X be a cofibrant and Y a fibrant object in Alg(Ch(k)), with
respect to the model structure of Proposition 4.2.2.9, and f and g two morphisms X → Y

in Alg(Ch(k)). Then f and g are homotopic if and only if there exists a chain homotopy
of differential graded k-algebras h from f to g, by which we mean a chain homotopy h
from f to g in the sense of Proposition 4.1.4.2 satisfying additionally

h
(
x · x′

)
= h(x)g

(
x′
)
+ (−1)degCh(x)f(x)h

(
x′
)

(4.6)

for all elements x and x′ of X. ♥

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the left and right
homotopy relations coincide, and the right homotopy relation can be tested using any
path object for Y . For this we use the path object P from Proposition 4.2.2.16.

Arguing completely analogously to the proof of Proposition 4.1.4.2, we see that f and
g are homotopic as morphisms of differential graded algebras if and only if there exists a

129



Chapter 4. Mixed complexes

morphism of differential graded algebras H = f ×g×h : X → P . That H is a morphism
of chain complexes amounts, just like in Proposition 4.1.4.2, to

∂ ◦ h+ h ◦ ∂ = f − g

but this time H needs to additionally preserve the unit, which is equivalent to h(1) = 0,
and the multiplication, so for x and x′ elements of X the following equality must hold.

(
f(x · x′), g(x · x′), h(x · x′)

)
=
(
f(x), g(x), h(x)

)
·
(
f(x′), g(x′), h(x′)

)
(∗)

The right hand side is given by
(
f(x), g(x), h(x)

)
·
(
f(x′), g(x′), h(x′)

)

=
(
f(x) · f(x′), g(x) · g(x′), h(x)g(x′) + (−1)degCh(x)f(x)h(x′)

)

so as f and g are multiplicative we conclude that equality (∗) is equivalent to the
following equation.

h(x · x′) = h(x)g(x′) + (−1)degCh(x)f(x)h(x′)

Finally, note that this equation holding for x = x′ = 1 implies that h(1) = 2h(1) and
hence h(1) = 0.

The following proposition will sometimes be helpful in defining homotopies of differ-
ential graded k-algebras.

Proposition 4.2.2.18. Let X and Y be objects in Alg(Ch(k)), and assume that the
underlying Z-graded k-algebra of X is free on a Z-graded subset Z of X.

Let f and g be morphisms of differential graded algebras from X to Y and h a map
from Z to Y that increases degree by 1. Then there is a unique extension of h to a
morphism of Z-graded k-modules of degree 1 from X to Y such that

h
(
x · x′

)
= h(x)g

(
x′
)
+ (−1)degCh(x)f(x)h

(
x′
)

(4.7)

holds for all elements x and x′ of X. That unique extension is given by defining h on
the basis given by words in Z by

h(z1 · · · zl) :=
∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl) (4.8)

for l ≥ 0 and z1, . . . , zl ∈ Z, and then extending k-linearly.
Furthermore, such an extension h satisfies

∂ ◦ h+ h ◦ ∂ = f − g (4.9)

if and only if this holds on elements of Z. ♥

130



4.2. Strict mixed complexes

Proof. We first show uniqueness of the extension. As h must be k-linear, it suffices to
show that the h is already uniquely given on words in Z. This we do by induction on
the word length. By the Leibniz rule (4.7), h must map 1 to 0 (use x = x′ = 1), so
h is uniquely determined on words in Z of length 0. It is also uniquely determined on
elements of Z themselves, as we prescribe the value on those elements. The induction
step then follows directly from (4.7).

Now define h as in (4.8). It is clear from the definition that this definition extends the
prescribed valued on Z. To verify that (4.7) holds we first note that both sides of the
equation are k-linear in both x and x′, so that it suffices to check this on a k-basis of
X. So let w = z1 · · · zl and w′ = z′1 · · · z

′
l′ be words in Z. Then the following calculation

shows that (4.7) is satisfied.

h
(
w · w′

)

=
∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g
(
zi+1 · · · zl · w

′
)

+
∑

1≤i≤l′

(−1)degCh(w) · (−1)
∑

1≤j≤i−1 degCh(z′j) · f
(
w · z′1 · · · z

′
i−1

)
· h
(
z′i
)
· g
(
z′i+1 · · · z

′
l′

)

=


∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl)


 · g

(
w′
)

+ (−1)degCh(w) · f(w)·
 ∑

1≤i≤l′

(−1)
∑

1≤j≤i−1 degCh(z′j) · f
(
z′1 · · · z

′
i−1

)
· h
(
z′i
)
· g
(
z′i+1 · · · z

′
l′

)



= h(w) · g
(
w′
)
+ (−1)degCh(w) · f(w) · h

(
w′
)

It remains to show the assertion concerning (4.9). That if equality holds in general,
then it also holds on Z is clear. So assume that (4.9) holds on Z. As both sides of the
equation are k-linear it again suffices to show (4.9) on the k-basis given by words in Z.
We show this by induction on the word length. For the element 1 (i. e. the unique word
of length 0) we obtain h(1) = 0 and ∂(1) = 0 from the respective Leibniz rules, and the
right hand side of (4.9) is zero as well as f(1) = 1 = g(1). On words of length 1, i. e.
elements of Z, the equation (4.9) holds by assumption. So now let w be an element of
X on which (4.9) holds, and z an element of Z. Then the following calculation shows
that (4.9) also holds for w · z, thereby finishing the proof.

∂
(
h(w · z)

)
+ h
(
∂(w · z)

)

We first apply the Leibniz rule twice, for both h and ∂.

= ∂
(
h(w) · g(z) + (−1)degCh(w) · f(w) · h(z)

)

+ h
(
∂(w) · z + (−1)degCh(w) · w · ∂(z)

)

131



Chapter 4. Mixed complexes

= ∂
(
h(w)

)
· g(z) + (−1)degCh(w)+1h(w) · ∂

(
g(z)

)

+ (−1)degCh(w) · ∂
(
f(w)

)
· h(z) + (−1)degCh(w) · (−1)degCh(w) · f(w) · ∂

(
h(z)

)

+ h
(
∂(w)

)
· g(z) + (−1)degCh(w)−1 · f

(
∂(w)

)
· h(z)

+ (−1)degCh(w) · h(w) · g
(
∂(z)

)
+ (−1)degCh(w) · (−1)degCh(w) · f(w) · h

(
∂(z)

)

Next we reorder the summands.
= ∂

(
h(w)

)
· g(z) + h

(
∂(w)

)
· g(z)

+ (−1)degCh(w)+1h(w) · ∂
(
g(z)

)
+ (−1)degCh(w) · h(w) · g

(
∂(z)

)

+ (−1)degCh(w) · ∂
(
f(w)

)
· h(z) + (−1)degCh(w)−1 · f

(
∂(w)

)
· h(z)

+ (−1)degCh(w) · (−1)degCh(w) · f(w) · ∂
(
h(z)

)

+ (−1)degCh(w) · (−1)degCh(w) · f(w) · h∂
(
(z)
)

=
(
∂
(
h(w)

)
+ h
(
∂(w)

))
· g(z)

+ (−1)degCh(w)h(w) ·
(
−∂
(
g(z)

)
+ g
(
∂(z)

))

+ (−1)degCh(w) ·
(
∂
(
f(w)

)
− f

(
∂(w)

))

+ f(w) ·
(
∂
(
h(z)

)
+ h∂

(
(z)
))

Now we can apply the induction hypothesis, and that f and g are morphisms of chain
complexes.

=
(
f(w)− g(w)

)
· g(z) + f(w) ·

(
f(z)− g(z)

)

= f(w) · g(z)− g(w) · g(z) + f(w) · f(z)− f(w) · g(z)

= f(w · z)− g(w · z)

4.2.2.6. Homotopies in Alg(Mixed)

Now we turn to homotopies of algebras in strict mixed complexes. This results in
this section are analogous to those in the preceding Section 4.2.2.5, and obtained by
combining those results with those from Section 4.2.2.4.

Proposition 4.2.2.19. Let Y be an object in Alg(Mixed). Then the strict mixed structure
defined in Proposition 4.2.2.14 on the chain complex P from Proposition 4.1.4.1 satisfies
the Leibniz rule with respect to the multiplication from Proposition 4.2.2.16, upgrading
P to an object in Alg(Mixed). Furthermore, the morphisms i and p exhibit P as a path
object for Y in Alg(Mixed). ♥

Proof. Let (x, y, z) and (x′, y′, z′) be two elements of P . Then the following calculation
shows that d satisfies the Leibniz rule.

d
(
(x, y, z) ·

(
x′, y′, z′

))

= d
((

x · x′, y · y′, z · y′ + (−1)degCh(x) · x · z′
))

132



4.2. Strict mixed complexes

=

(
d
(
x · x′

)
, d
(
y · y′

)
,− d

(
z · y′ + (−1)degCh(x) · x · z′

))

=
(

d(x) · x′ + (−1)degCh(x) · x · d
(
x′
)
, d(y) · y′ + (−1)degCh(y) · y · d

(
y′
)
,

− d(z) · y′ − (−1)degCh(z) · z · d
(
y′
)

− (−1)degCh(x) · d(x) · z′ − (−1)degCh(x) · (−1)degCh(x) · x · d
(
z′
))

=
(

d(x) · x′, d(y) · y′,− d(z) · y′ − (−1)degCh(x) · d(x) · z′
)

+
(
(−1)degCh(x) · x · d

(
x′
)
, (−1)degCh(y) · y · d

(
y′
)
,

− (−1)degCh(z) · z · d
(
y′
)
− (−1)degCh(x) · (−1)degCh(x) · x · d

(
z′
))

=
(

d(x) · x′, d(y) · y′,
(
− d(z)

)
· y′ + (−1)degCh(dx) · d(x) · z′

)

+
(
(−1)degCh(x) · x · d

(
x′
)
, (−1)degCh(x) · y · d

(
y′
)
,

+ (−1)degCh(x) · z · d
(
y′
)
+ (−1)degCh(x) · (−1)degCh(x) · x ·

(
− d
(
z′
)))

=
(
d(x), d(y),− d(z)

)
·
(
x′, y′, z′

)
+ (−1)degCh(x) · (x, y, z) ·

(
d
(
x′
)
, d
(
y′
)
,− d

(
z′
))

= d
(
(x, y, z)

)
·
(
x′, y′, z′

)
+ (−1)degCh(x) · (x, y, z) · d

((
x′, y′, z′

))

This upgrades P to an object in Alg(Mixed). As i and p are compatible with both
the strict mixed structure by Proposition 4.2.2.14 and the multiplicative structure by
Proposition 4.2.2.16 we can conclude that i and p also lift to morphisms in Alg(Mixed).
As weak equivalences and fibrations in Alg(Mixed) are detected by the forgetful functor
to Ch(k) by Proposition 4.2.2.12, it now follows from Proposition 4.1.4.1 that i and p

exhibit P as a path object for Y .

Proposition 4.2.2.20. Let X be a cofibrant and Y a fibrant object in Alg(Mixed), with
respect to the model structure of Proposition 4.2.2.9, and f and g two morphisms X → Y

in Alg(Mixed). Then f and g are homotopic if and only if there exists a chain homotopy
of algebras of strict mixed complexes h from f to g, by which we mean a chain homotopy
h from f to g in the sense of Proposition 4.1.4.2 that is simultaneously a chain homotopy
of differential graded algebras from f to g in the sense of Proposition 4.2.2.17 and a chain
homotopy of strict mixed complexes from f to g in the sense of Proposition 4.2.2.15. ♥

Proof. Note that by [Hov99, 1.2.6], as X is cofibrant and Y is fibrant, the left and right
homotopy relations coincide, and the right homotopy relation can be tested using any
path object for Y . For this we use the path object P from Proposition 4.2.2.19.

Arguing completely analogously to the proof of Proposition 4.1.4.2, we see that f
and g are homotopic as morphisms of algebras in strict mixed complexes if and only if
there exists a morphism of algebras in strict mixed complexes H = f × g × h : X → P .
While an object in Alg(Mixed) is more than a chain complex that is equipped with
both a strict mixed and an algebra structure, as d needs to additionally satisfy the

133



Chapter 4. Mixed complexes

Leibniz rule, morphisms of algebras in strict mixed complexes are just morphisms of chain
complexes that are compatible with both multiplication and the strict mixed structure.
Thus the claim now follows directly by combining the proofs of Propositions 4.2.2.15
and 4.2.2.17.

The following proposition is an analogue of Proposition 4.2.2.18 and will sometimes
be helpful when trying to define a chain homotopy of algebras in strict mixed complexes.

Proposition 4.2.2.21. Let X and Y be objects in Alg(Mixed), and let Z be a Z-graded
subset of X. Assume that Z is disjoint from dZ and that the underlying Z-graded k-
algebra of X is free on Z ∪ dZ.

Let f and g be morphisms of algebras of strict mixed complexes from X to Y , and h
a map from Z to Y that increases degree by 1. Then there is a unique extension of h to
a morphism of Z-graded k-modules of degree 1 from X to Y such that

h
(
x · x′

)
= h(x)g

(
x′
)
+ (−1)degCh(x)f(x)h

(
x′
)

(4.10)

and
h
(
d(x)

)
= − d

(
h(x)

)
(4.11)

holds for all elements x and x′ of X. That unique extension is given by first extending
h to Z ∪ dZ via

h(d z) := − d
(
h(z)

)
(4.12)

for z an element of Z, and then defining h on the basis given by words in Z and dZ by

h(z1 · · · zl) :=
∑

1≤i≤l

(−1)
∑

1≤j≤i−1 degCh(zj) · f(z1 · · · zi−1) · h(zi) · g(zi+1 · · · zl) (4.13)

for l ≥ 0 and z1, . . . , zl ∈ Z ∪ dZ, and then extending k-linearly.
Furthermore, such an extension h satisfies

∂ ◦ h+ h ◦ ∂ = f − g (4.14)

if and only if this holds on elements of Z. ♥

Proof. We first show uniqueness of the extension. By (4.11) the extension to Z ∪ dZ as
in (4.12) is uniquely determined, and then uniqueness of the extension from Z ∪ dZ to
X follows from Proposition 4.2.2.18.

Now define h as in (4.12) and (4.13). Then h is extended from Z ∪ dZ as in Proposi-
tion 4.2.2.18, so Proposition 4.2.2.18 show that (4.10) holds. To show that (4.11) holds,
we start by noting that (4.11) holds on elements of Z ∪ dZ. For elements of Z this is by
construction, and for dZ this is shown by the following small calculation, where z ∈ Z.

h
(
d(d z)

)
= h(0) = 0 = d

(
d
(
h(z)

))
= − d

(
h
(
d(z)

))

As both sides of (4.11) are k-linear, it suffices to show (4.11) on the k-basis given by
words in Z ∪ dZ. By what we just argued (4.11) holds on words of length 1, and as

134



4.2. Strict mixed complexes

d(1) = 0 and h(1) = 0 by the respective Leibniz rules we also have that (4.11) holds for
words of length 0. We now show that (4.11) holds for words of length greater than 1 by
induction. So let z and z′ be elements of Z such that (4.11) holds on them. Then we have
to show that (4.11) also holds for z ·z′, which we do with the following calculation, using
the Leibniz rule for d as well as the Leibniz rule for h (i. e. (4.10)), which we already
showed.

h
(

d
(
z · z′

))

= h
(

d(z) · z′ + (−1)degCh(z)z · d
(
z′
))

= h
(
d(z)

)
· g
(
z′
)
+ (−1)degCh(d(z)) · f

(
d(z)

)
· h
(
z′
)

+ (−1)degCh(z) · h(z) · g
(

d
(
z′
))

+ (−1)degCh(z) · (−1)degCh(z) · f(z) · h
(

d
(
z′
))

= − d
(
h(z)

)
· g
(
z′
)
− (−1)degCh(z) d

(
f(z)

)
· h
(
z′
)

− (−1)degCh(h(z))h(z) · d
(
g
(
z′
))
− (−1)degCh(z) · (−1)degCh(z)f(z) · d

(
h
(
z′
))

= − d
(
h(z)

)
· g
(
z′
)
− (−1)degCh(h(z))h(z) · d

(
g
(
z′
))

− (−1)degCh(z) d
(
f(z)

)
· h
(
z′
)
− (−1)degCh(z) · (−1)degCh(z)f(z) · d

(
h
(
z′
))

= − d
(
h(z) · g

(
z′
))
− (−1)degCh(z) · d

(
f(z) · h

(
z′
))

= − d
(
h(z) · g

(
z′
)
+ (−1)degCh(z)f(z) · h

(
z′
))

= − d
(
h
(
z · z′

))

It remains to show the assertion concerning (4.14). So assume that (4.14) holds on
elements of Z. Then we first show that (4.14) also holds on elements of dZ. Indeed,
the following calculation verifies (4.14) for d z if z is an element of Z, where we use the
compatibility of all the involved morphisms and operators with d.

∂
(
h(d z)

)
+ h
(
∂(d z)

)
= −∂

(
d
(
h(z)

))
− h
(

d
(
∂(z)

))
= d

(
∂
(
h(z)

))
+ d
(
h
(
∂(z)

))

= d
(
(∂ ◦ h+ h ◦ ∂)(z)

)
= d

(
f(z)− g(z)

)

= f
(
d(z)

)
− g
(
d(z)

)

Now that we know that (4.14) is satisfied on all of Z ∪ dZ it immediately follows from
Proposition 4.2.2.18 that (4.14) already holds on all of Z.

4.2.3. Strongly homotopy linear morphisms of strict mixed
complexes

Let X and Y be strict mixed complexes and f : X → Y a morphism of the underlying
chain complexes. We might then want to lift f to a morphism of strict mixed complexes,

135



Chapter 4. Mixed complexes

which is possible if and only if f commutes with the differential d, or equivalently if
f ◦ d − d ◦ f is zero. In practice it may however happen that f only commutes with d

up to homotopy rather than strictly. In this case f ◦ d− d ◦ f is nullhomotopic, but not
zero, and we could record this by letting f (1) be a nullhomotopy23 of f ◦ d − d ◦ f . We
can now ask whether this additional data f (1) commutes with d. Again, this may only
be the case up to a homotopy f (2). If we keep going in this manner we arrive at the
notion of a strongly homotopy linear morphism of strict mixed complexes. We will give
a full definition in Section 4.2.3.1.

To relate the notion of strongly homotopy linear morphisms with the homotopy theory
of strict mixed complexes as developed in Section 4.2.2, we are then going to show in
Section 4.2.3.2 that a strongly homotopy linear morphism f : X → Y corresponds to a
(strict) morphism f strict : X → Y shl of strict mixed complexes, where Y shl is a thickened
version of Y coming with a quasiisomorphism of strict mixed complexes Y → Y shl. We
can thus interpret the strongly homotopy linear morphism f as encoding a zigzag as
depicted below.

X Y shl Y

f

f strict ≃

4.2.3.1. Definition of strongly homotopy linear morphisms

Below we record the definition of strongly homotopy linear morphisms that was
sketched in the introduction to Section 4.2.3.

Definition 4.2.3.1 ([Kas87, 2.2] and [Lod98, 2.5.14]). Let X and Y be strict mixed
complexes. A strongly homotopy linear morphism from X to Y consists of morphisms
of graded k-modules f (i) : X → Y of degree 2i for all i ≥ 0, satisfying

∂ ◦ f (i) − f (i) ◦ ∂ = f (i−1) ◦ d− d ◦ f (i−1) (4.15)

where we set f (−1) = 0. Note that the condition for i = 0 implies that ∂ ◦ f (0) = f (0) ◦ ∂,
so that f (0) is a morphism of chain complexes. ♦

Remark 4.2.3.2. We can compose strongly homotopy linear morphisms with (strict)
morphisms of strict mixed complexes. To be more concrete, let X and Y be strict mixed
complexes, g(•) : X → Y a strongly homotopy linear morphism, and f : X ′ → X and
h : Y → Y ′ morphisms of strict mixed complexes. Then we make the following definition.

(hgf)(i) := h ◦ g(i) ◦ f for i ≥ 0

This defines a strongly homotopy linear morphism hgf from X ′ to Y ′, whose underlying
morphism of chain complexes is the composition of underlying morphisms of chain com-
plexes. That hgf really is a strongly homotopy linear morphism can be easily checked
23As f ◦ d − d ◦ f is a morphism of odd degree, this would take the form ∂f (1) − f (1)∂ = fd − df ,

compare with Definition 4.1.2.1.

136



4.2. Strict mixed complexes

using that f and h commute with both ∂ and d, as seen below.

∂(hgf)(i) − (hgf)(i)∂ = ∂hg(i)f − hg(i)f∂

= h
(
∂g(i) − g(i)∂

)
f

= h
(
g(i−1)d− dg(i−1)

)
f

= hg(i−1)fd− dhg(i−1)f

= (hgf)(i−1)d− d(hgf)(i−1) ♦

4.2.3.2. Strongly homotopy linear morphisms as zigzags

We begin this section with the construction of the strict mixed complex Y shl that was
mentioned in the introduction to Section 4.2.3, before explaining how to reinterpret a
strongly homotopy linear morphism f : X → Y as a morphism of strict mixed complexes
f strict : X → Y shl.

Definition 4.2.3.3. Let Y be a strict mixed complex. Then define Y shl to be the Z-
graded k-module

Y shl
n :=

∏

m≥0

Y [−m]

so that Y shl
n =

∏
m≥n Ym for any integer n. We furthermore define operators ∂ and d of

degrees −1 and 1 on Y shl as follows, where (yn, yn+1, . . .) is an element of Y shl
n and e. g.

∂(yn, yn+1, . . .)m refers to the Ym-component of Y shl
n−1.

∂(yn, yn+1, . . .)n−1+i :=





∂(yn) if i = 0

−∂(yn+i) if i > 0 is odd
∂(yn+i)− yn−1+i if i > 0 is even

d(yn, yn+1, . . .)n+1+i :=
{
− d(yn+i) if i ≥ 0 is odd
d(yn+i) + yn+1+i if i ≥ 0 is even

The special case for i = 0 in the formula for ∂ can be avoided by declaring yn−1 to be 0.
Finally, we let ιshlY : Y → Y shl be the morphism of Z-graded k-modules that is given

by ιshlY (y) := (y, 0, 0, . . .) for every element y of Y . ♦

Remark 4.2.3.4. The following diagram24 depicts how one can think of Y shl. The
picture only shows part of Y shl, which continues towards the right, top, and bottom, but

24This diagram uses some of the pictorial elements from Convention 4.2.1.7, but is only meant to
help with intuition rather than as a precise depiction of an isomorphism class of strict mixed com-
plexes. For example Y shl is the product of the rows, whereas interpreting the picture while following
Convention 4.2.1.7 too closely would suggest taking the sum.

137



Chapter 4. Mixed complexes

not towards the left.

Yn+1 Yn+2 Yn+3 Yn+4 Yn+5

Yn Yn+1 Yn+2 Yn+3 Yn+4

Yn−1 Yn Yn+1 Yn+2 Yn+3

∂ −∂
− id ∂ −∂

− id ∂

∂

d
id

− d

−∂
− id

d

∂

id
− d

−∂
− id

d

∂d id
− d d

id
− d d

♦

Proposition 4.2.3.5. Let Y be a strict mixed complex and Y shl as in Definition 4.2.3.3.
Then ∂ and d as defined in Definition 4.2.3.3 define a strict mixed complex structure on
Y shl which makes ιshlY : Y → Y shl into a quasiisomorphism of strict mixed complexes. ♥

Proof. We begin by showing that ∂ and d upgrade Y shl to a strict mixed complex. It
is easiest to convince oneself of this by considering the diagram in Remark 4.2.3.4, but
we also provide a proof by unpacking the formulas. So let (yn, yn+1, . . .) be an element
of Y shl

n . Then we obtain the following calculations, first for odd i and then for even i25,
showing that ∂ squares to zero.

∂
(
∂
(
(yn, yn+1, . . .)

))
n−2+i

(assuming i is odd)

= −∂
(
∂
(
(yn, yn+1, . . .)

)
n−1+i

)

= −∂
(
−∂(yn+i)

)

= ∂
(
∂(yn+i)

)

= 0

∂
(
∂
(
(yn, yn+1, . . .)

))
n−2+i

(assuming i is even)

= ∂
(
∂
(
(yn, yn+1, . . .)

)
n−1+i

)
− ∂
(
(yn, yn+1, . . .)

)
n−2+i

= ∂
(
∂(yn+i)− yn−1+i

)
+ ∂(yn−1+i)

= 0− ∂(yn−1+i) + ∂(yn−1+i)

= 0

The proof that d squares to 0 is completely analogous. Similarly, the following calculation
shows ∂d + d∂ = 0.

(
(∂d + d∂)

(
(yn, yn+1, . . .)

))
n+i

(assuming i is odd)

25In the case of i = 0 we set yn−1 = 0 so that we can use the same formulas as for even i > 0.

138



4.2. Strict mixed complexes

= −∂
(

d
(
(yn, yn+1, . . .)

)
n+1+i

)
− d
(
∂
(
(yn, yn+1, . . .)

)
n−1+i

)

= ∂
(
d(yn+i)

)
+ d
(
∂(yn+i)

)

= (∂d + d∂)(yn+i)
= 0
(
(∂d + d∂)

(
(yn, yn+1, . . .)

))
n+i

(assuming i is even)

= ∂
(

d
(
(yn, yn+1, . . .)

)
n+1+i

)
− d
(
(yn, yn+1, . . .)

)
n+i

+ d
(
∂
(
(yn, yn+1, . . .)

)
n−1+i

)
+ ∂
(
(yn, yn+1, . . .)

)
n+i

= ∂
(
d(yn+i) + yn+1+i

)
+ d(yn−1+i)

+ d
(
∂(yn+i)− yn−1+i

)
− ∂(yn+1+i)

= (∂d + d∂)(yn+i) + ∂(yn+1+i) + d(yn−1+i)

− d(yn−1+i)− ∂(yn+1+i)

= 0

It remains to show that ιshlY : Y → Y shl is a morphism of strict mixed complexes as well
as a quasiisomorphism. That ιshlY is compatible with the boundary operator and differ-
ential is clear from the formulas. It thus remains to show that it is a quasiisomorphism.
For this, let Y shl,i for i ≥ 1 be the sub-Z-graded k-module of Y shl given by the factor
Y [−(2i− 1)]× Y [−2i]. If we let Y shl,0 be the first factor of Y shl, i. e. Y shl,0 = Y , then we
obtain a product decomposition

Y shl ∼=
∏

i≥0

Y shl,i

as Z-graded k-modules. It is immediate from the formulas for the boundary operator
that each Y shl,i is closed under ∂, making this also product decomposition considered
as chain complexes. As ιshlY is the inclusion of the first factor it thus remains to show
that for each i ≥ 1 the chain complex Y shl,i is acyclic. To do so, we define a contracting
homotopy as follows.

h : Y shl,i
n = Yn+2i−1 ⊕ Yn+2i → Y

shl,i
n+1 = Yn+2i ⊕ Yn+2i+1

(yn+2i−1, yn+2i) 7→ (−yn+2i, 0)

The following calculations shows that h is a contracting homotopy of Y shl,i, where
(yn+2i−1, yn+2i) is an element of Y shl,i

n .

(∂h+ h∂)
(
(yn+2i−1, yn+2i)

)

= ∂
(
(−yn+2i, 0)

)
+ h
((
−∂(yn+2i−1), ∂(yn+2i)− yn+2i−1

))

=
(
−∂(−yn+2i), 0− (−yn+2i)

)
+
(
−∂(yn+2i) + yn+2i−1, 0

)

=
(
∂(yn+2i)− ∂(yn+2i) + yn+2i−1, yn+2i

)

139



Chapter 4. Mixed complexes

= (yn+2i−1, yn+2i)

The following diagram depicts the situation for i = 1 diagrammatically as in Re-
mark 4.2.3.4, with the contracting homotopy h indicated with the dashed blue arrow.

Yn+2 Yn+3

Yn+1 Yn+2

Yn Yn+1

−∂
− id

∂

−∂
− id

∂

− id

− id

The proof of Proposition 4.2.3.5 shows that ιshlY has a retraction given by the projection
to the first factor, but only as chain complexes. While the projection to the first factor is
not compatible with the differential, it can however be upgraded to a strongly homotopy
linear morphism, as we will explain next.

Proposition 4.2.3.6. Let Y be a strict mixed complex. Define (pshlY )(i) for each i ≥ 0 to
be the morphisms of Z-graded k-modules from Y shl to Y of degree 2i that is the projection
to the 2i-th factor, i. e. is defined as follows.

(pshlY )(i)n : Y shl
n → Yn, (yn, yn+1, yn+2, . . .) 7→ yn+2i

Then this makes pshlY into a strongly homotopy linear morphism from Y shl to Y . Further-
more, the underlying morphism of chain complexes of pshlY is a quasiisomorphism. ♥

Proof. That (pshlY )(0) is a morphism of chain complexes is clear. As (pshlY )(0) is a left
inverse of ιshlY , it also follows immediately from ιshlY being a quasiisomorphism by Propo-
sition 4.2.3.5 that (pshlY )(0) is a quasiisomorphism as well.

It remains to show that the compatibility relations required of (pshlY )(i) for i ≥ 0 in
order to make pshlY into a strongly homotopy linear morphism are satisfied. So let i ≥ 1
be an integer and (yn, yn+1, . . .) an element of Y shl

n . Then the following calculations show
the claim.

(
∂ ◦ (pshlY )(i) − (pshlY )(i) ◦ ∂

)(
(yn, yn+1, yn+2, . . .)

)

= ∂(yn+2i)− ∂
(
(yn, yn+1, yn+2, . . .)

)
n−1+2i

= ∂(yn+2i)−
(
∂(yn+2i)− yn−1+2i

)

= yn−1+2i

(
(pshlY )(i−1) ◦ d− d ◦ (pshlY )(i−1)

)(
(yn, yn+1, yn+2, . . .)

)

140



4.2. Strict mixed complexes

= d
(
(yn, yn+1, yn+2, . . .)

)
n+1+2i−2

− d(yn+2i−2)

=
(
d(yn+2i−2) + yn+1+2i−2

)
− d(yn+2i−2)

= yn+1+2i−2 = yn−1+2i

The relevance of Y shl and pshlY stems from the fact that pshlY is the universal strongly
homotopy linear morphism to Y ; we show next that any other strongly homotopy mor-
phism with codomain Y factors uniquely as the composition of a (strict) morphism of
strict mixed complexes to Y shl with pshlY .

Proposition 4.2.3.7. Let X and Y be strict mixed complexes and f : Y → Y a strongly
homotopy linear morphism. Then there is a unique morphism of strict mixed complexes
g : X → Y shl such that f = pshlY ◦ g

26. ♥

Proof. We first show existence. Define a morphism of Z-graded k-modules g as

g : X → Y shl =
∏

m≥0

Y [−m]

g(x)n+2i = f (i)(x)

g(x)n+2i+1 =
(
f (i)d− df (i)

)
(x) =

(
∂f (i+1) − f (i+1)∂

)
(x)

for i ≥ 0 and x elements of Xn, and where g(x)n+m refers to the component in Yn+m. As(
pshlY

)(i) is projection to the 2i-th factor, it is clear that f is the composition pshlY ◦ g, so
it only remains to show that g is a morphism of strict mixed complexes. This is proven
by the following calculations, where i ≥ 0 and x is an element of Xn.

(∂g − g∂)(x)n−1+2i

= ∂
(
g(x)

)
n−1+2i

− f (i)
(
∂(x)

)

= ∂
(
g(x)n+2i

)
− g(x)n−1+2i − f

(i)
(
∂(x)

)

= ∂
(
f (i)(x)

)
−
(
∂f (i) − f (i)∂

)
(x)− f (i)

(
∂(x)

)

= 0

This shows what is needed for g to be a morphism of chain complexes for only the even
components, now we check the odd components.

(∂g − g∂)(x)n+2i

= −∂
(
g(x)n+2i+1

)
−
(
∂f (i+1) − f (i+1)∂

)(
∂(x)

)

= −∂

((
∂f (i+1) − f (i+1)∂

)
(x)

)
−
(
∂f (i+1) − f (i+1)∂

)(
∂(x)

)

=
(
−∂∂f (i+1) + ∂f (i+1)∂ − ∂f (i+1)∂ + f (i+1)∂∂

)
(x)

26See Remark 4.2.3.2 for the composition of a strongly homotopy linear morphism with a morphism of
strict mixed complexes.

141



Chapter 4. Mixed complexes

= 0

Next we verify that g commutes with d, beginning with the even components.
(dg − gd)(x)n+1+2i

= d
(
g(x)n+2i

)
+ g(x)n+1+2i − f

(i)
(
d(x)

)

= d
(
f (i)(x)

)
+
(
f (i)d− df (i)

)
(x)− f (i)

(
d(x)

)

= 0

Finally, we check compatibility with d on odd components.
(dg − gd)(x)n+2+2i

= − d
(
g(x)n+1+2i

)
−
(
f (i)d− df (i)

)(
d(x)

)

= − d
((

f (i)d− df (i)
)
(x)

)
−
(
f (i)d− df (i)

)(
d(x)

)

=
(
−df (i)d + ddf (i) − f (i)dd + df (i)d

)
(x)

= 0

This shows existence. It remains to show that such a lift g is already uniquely deter-
mined by f . So let g : X → Y shl be any morphism of strict mixed complexes such that
f = pshlY ◦ g. We can immediately read off that the even components must be given by

g(x)n+2i = f (i)(x) for n ∈ Z, i ≥ 0 and x ∈ Xn.

So now let x be an element of Xn and i ≥ 0. Then the following calculation, using that
g is a morphism of chain complexes, shows that g(x)n+2i+1 is also already determined
by f .

g(x)n+2i+1

= ∂
(
g(x)n+2i+2

)
−

(
∂
(
g(x)n+2i+2

)
− g(x)n+2i+1

)

= ∂
(
g(x)n+2i+2

)
− ∂
(
g(x)

)
n+2i+1

= ∂
(
g(x)n+2i+2

)
− g
(
∂(x)

)
n−1+2i+2

= ∂
(
f (i+1)(x)

)
− f (i+1)

(
∂(x)

)

Definition 4.2.3.8. Let X and Y be strict mixed complexes and f : X → Y a strongly
homotopy linear morphism. Then we denote by f strict the unique morphism of strict
mixed complexes X → Y shl lifting f as in Proposition 4.2.3.7. The assignment f 7→ f strict

defines a bijection from the set of strongly homotopy linear morphisms X → Y to the
set of morphisms of strict mixed complexes X → Y shl. ♦

142



4.3. The derived category of k

4.3. The derived category of k
The derived category of k is an∞-category D(k) that can be constructed by inverting

the quasiisomorphisms in the category Ch(k) of chain complexes of (ordinary) k-modules.
In this section we discuss D(k) and record the main properties that we will need later –
most of them are proven in various places in [HA].

We begin in Section 4.3.1 by proving some useful statements concerning semiadditive
∞-categories, which we will need in Section 4.3.2, where we will collect the main prop-
erties of D(k). We finish this section with Section 4.3.4, where we state some properties
of the truncation functors on D(k) that we will need in Chapter 5.

4.3.1. Semiadditive ∞-categories
In this section we prove some small helpful results regarding semiadditive∞-categories

that we will need in Section 4.3.2.

Proposition 4.3.1.1. Let C⊗ be a symmetric monoidal ∞-category such that the un-
derlying ∞-category C is semiadditive ∞-category27. Then C⊗ is cartesian if and only if
it is cocartesian. ♥

Proof. The property of symmetric monoidal structures being (co)cartesian is defined in
[HA, 2.4.0.1]. The symmetric monoidal structure C⊗ is cartesian if the unit object 1C is
final and if for every pair of objects X and Y of C the morphisms

X ≃ X ⊗ 1C ← X ⊗ Y → 1C ⊗ Y ≃ Y

induced by the essentially unique morphisms X → 1C and Y → 1C exhibit X ⊗ Y as a
product of X and Y .

Analogously, for C⊗ being cocartesian the unit object must be initial, and the analo-
gously defined morphisms

X ≃ X ⊗ 1C → X ⊗ Y ← 1C ⊗ Y ≃ Y

must exhibit X ⊗ Y as a coproduct of X and Y .
As C is assumed to be semiadditive, every initial object is automatically final as well,

and every final object is automatically initial, which shows equivalence of the first part
of the respective definitions. For the second part, let X and Y be two objects of C. Note
that the compositions

X ⊗ 1C → X ⊗ Y → X ⊗ 1C

27By this we mean that C admits finite products and finite coproducts and has the following two
properties. Firstly, the (essentially unique) morphism from an initial object to a final object must be
an equivalence (i. e. C has zero objects). Secondly, for any two objects X and Y of C the morphism

X ∐ Y

[
id 0
0 id

]

−−−−−→ X × Y

must be an equivalence (i. e. C has biproducts).

143



Chapter 4. Mixed complexes

and
1C ⊗ Y → X ⊗ Y → 1C ⊗ Y

are, by functoriality of the tensor product, homotopic to the identity. Functoriality also
implies that the following square commutes

X ⊗ 1C X ⊗ Y

1C ⊗ 1C 1C ⊗ Y

which shows that the composition

X ⊗ 1C → X ⊗ Y → 1C ⊗ Y

and analogously
1C ⊗ Y → X ⊗ Y → X ⊗ 1C

are zero morphisms. We can conclude that the following triangle commutes.

X ∐ Y X × Y

X ⊗ Y

[
id 0
0 id

]

The second condition for C⊗ being (co)cartesian is that the morphism on the right (left)
is an equivalence for every X and Y . As the horizontal morphism is an equivalence by
virtue of C being semiadditive, it follows that those two conditions are equivalent.

Proposition 4.3.1.2. Let C be a semiadditive ∞-category, let D be an ∞-category
admitting finite products, and let F1 and F2 be two functors

F1, F2 : C → CMon(D)

such that F1 preserves products.
Denote the forgetful functor CMon(D)→ D by V and assume that V ◦F1 is naturally

equivalent to V ◦ F2. Then there is also a natural equivalence between F1 and F2. ♥

Proof. As D has finite products we can upgrade D to a symmetric monoidal∞-category
with respect to the cartesian symmetric monoidal structure D× (see [HA, 2.4.1.5]). Ap-
plying [HA, 2.4.1.5 (5) and 2.4.2.5] we obtain an equivalence of ∞-categories

CMon(D) ≃ CAlg(D)

which is compatible with the respective forgetful functors to D. Denote the composite
of Fi with this equivalence by F ′

i . It suffices to show that F ′
1 is naturally equivalent to

F ′
2.

144



4.3. The derived category of k

Note that as V detects products by Proposition F.2.0.1 the equivalence V ◦F1 ≃ V ◦F2

and F1 preserving products implies that F2 preserves products as well. Hence both F ′
1

and F ′
2 preserve products too, so they induce symmetric monoidal functors as follows

(see [HA, 2.4.1.8]).
F ′
i
×
: C× → CAlg(D)×

We obtain the following commutative diagram for i = 1 and i = 2

CAlg(C) CAlg
(
CAlg(D)

)

C CAlg(D)

UC

CAlg(F ′
i )

UCAlg(D)

F ′
i

where the vertical functors are the forgetful functors forgetting the “outer” algebra struc-
ture. By Proposition 4.3.1.1, the cartesian symmetric monoidal structure C× is also co-
cartesian, so it follows from [HA, 2.4.3.9] that UC is an equivalence. It thus suffices to
show that UCAlg(D) ◦ CAlg(F ′

1) ≃ UCAlg(D) ◦ CAlg(F ′
2).

The symmetric monoidal structure on CAlg(D) used in forming CAlg
(
CAlg(D)

)
in the

above diagram is the cartesian one CAlg(D)×. There is also a symmetric monoidal struc-
ture induced by D× on CAlg(D), which we denote by CAlg(D)⊗, see Proposition E.4.2.3
and Proposition E.6.0.1. By Proposition F.3.0.2 in combination with [HA, 2.4.1.7] and
[HA, 2.4.2.5], there is a symmetric monoidal equivalence CAlg(D)⊗ ≃ CAlg(D)× whose
underlying functor of ∞-categories is the identity. We can thus replace CAlg(D)× im-
plicitly used in CAlg

(
CAlg(D)

)
with CAlg(D)⊗.

By Proposition E.6.0.1 there is then a natural equivalence between UCAlg(D) and
CAlg(UD), where UD : CAlg(D)→ D is the forgetful functor. We obtain

UCAlg(D) ◦ CAlg(F ′
i ) ≃ CAlg(UD) ◦ CAlg(F ′

i ) ≃ CAlg
(
UD ◦ F

′
i

)
≃ CAlg(V ◦ Fi)

so as V ◦ F1 ≃ V ◦ F2 by assumption we conclude

UCAlg(D) ◦ CAlg(F ′
2) ≃ UCAlg(D) ◦ CAlg(F ′

2)

which is what we needed to show.

4.3.2. Properties of D(k)

Proposition 4.3.2.1. The following hold.

(1) D(k) is28 the presentable symmetric monoidal∞-category underlying the combina-
torial and symmetric monoidal model category Ch(k) carrying the projective model
structure from Fact 4.1.3.1.

28We will take this as the definition for D(k), but will also also point out in the proof below why other
possible definitions used in [HA] are equivalent.

145



Chapter 4. Mixed complexes

We will denote the symmetric monoidal functor Ch(k)cof → D(k) by γ. We will also some-
times denote the composition of γ with the cofibrant replacement functor Ch(k)→ Ch(k)cof
by γ again29.

(2) D(k) is stable.

(3) γ : Ch(k)cof → D(k) preserves coproducts.

(4) There are natural equivalences for every integer n as follows30.

γ(−)[n] ≃ γ
(
−[n]

)

From now on we will write k for γ(k).
(5) There is a natural isomorphism of functors Ch(k)cof → Ab as follows.

HomHo(D(k))
(
k[n], γ(−)

)
∼= Hn(−)

(6) Let Ch(k)′≥0 and Ch(k)′≤0 be the full subcategories of Ch(k) spanned by the chain
complexes whose homology is concentrated in non-negative and non-positive, re-
spectively, degree. Let D(k)≥0 be the essential image of the restriction of γ to(
Ch(k)

)′
≥0

, and analogously for D(k)≤0. Then the pair
(
D(k)≥0,D(k)≤0

)
deter-

mines a t-structure on D(k).
Furthermore, D(k)≥0 is also the essential image of Ch(k)≥0 from Definition 4.1.1.1
and D(k)≤0 is the essential image of Ch(k)≤0.

(7) There is a symmetric monoidal equivalence preserving the respective t-structures
between D(k) and the ∞-category of k-modules in spectra LModk(Sp) (where the
tensor product is the tensor product over k, see [HA, 4.5], and the t-structure is
defined in [HA, 7.1.1.10 and 7.1.1.13]).

(8) The t-structure on D(k) is compatible with the symmetric monoidal structure in
the sense of [HA, 2.2.1.3].

(9) There is a commutative diagram

LModk(Ab) Ch(k)

D(k)♥ D(k)

(−)[0]

γ

of ∞-categories, where D(k)♥ = D(k)≥0 ∩D(k)≤0 is the heart of D(k), see [HA,
1.2.1.11], and the lower horizontal functor the inclusion.
Furthermore, the dashed functor is an equivalence. We can thus identify the heart
of D(k) with LModk(Ab). ♥

29Note that the restriction of this functor to Ch(k)cof is homotopic to the original functor γ.
30See Definition 4.1.1.2 for a definition of the shift in Ch(k) and [HA, 1.1.2.7] for a definition of the

shift in the stable ∞-category D(k).

146



4.3. The derived category of k

Proof. Proof of Claim (1): The projective model structure on chain complexes with the
required properties was discussed in Fact 4.1.3.1. For the construction of D(k) as the
symmetric monoidal ∞-category underlying Ch(k) see [HA, 7.1.2.12]. The proof that
D(k) is presentable symmetric monoidal can be found in the proof of [HA, 7.1.2.13].

Finally, let us note that different ways of constructing D(k) are used in [HA]. They
are however all equivalent by [HA, 7.1.2.9] and [HA, 1.3.5.15]31, so there is no problem
in using results concerning D(k) from different places in [HA].

Proof of Claim (2): This is [HA, 1.3.5.9].
Proof of Claim (3): By (1) and [HA, 1.3.4.25 and 1.3.4.24] this follows from the fact

that coproducts of cofibrant chain complexes are already homotopy coproducts32.
Proof of Claim (4): We start by proving that γ(k[n]) ∼= γ(k)[n]. First note that as k is

projective as a k-module, the chain complexes k[n] are cofibrant in the projective model
structure by [Hov99, 2.3.6]. Now consider the following pushout diagram of cofibrant
objects in Ch(k)

k[n] Dn+1(k)

0 k[n+ 1]

where Dn+1(k) is the chain complex with Dn+1(k)m = k if m = n or m = n + 1 and
Dn+1(k)m = 0 otherwise, and with differential from degree n+1 to degree n the identity,
and where the morphisms k[n] → Dn+1(k) and Dn+1(k) → k[n + 1] are the obvious
inclusion and projection. The morphism k[n]→ Dn+1(k) is a cofibration33, so it follows
from [HTT, A.2.4.4, variant (i)] that this diagram is a homotopy pushout diagram in
Ch(k). Applying [HA, 1.3.4.24] and using that Dn+1(k) is acyclic we can conclude that
for every integer n there is a pushout diagram in D(k) of the following form.

γ
(
k[n]

)
0

0 γ
(
k[n+ 1]

)

Using that γ(k)[0] = γ(k) = γ(k[0]) it now follows that γ(k[n]) ∼= γ(k)[n] by inducting
up and down34 from 0.

The general statement now follows by combining that by Remark 4.1.2.2 there is a
natural isomorphism

−[n] ∼= (k ⊗−)[n] ∼= k[n]⊗−

31The construction of D(A) considered in [HA, 1.3.5] applies to the case A = LModk(Ab) (the category
of ordinary k-modules), as LModk(Ab) is a Grothendieck abelian category in the sense of [HA,
1.3.5.1].

32Unpacking the projective model structure (see [HTT, A.2.8.2]) on Fun(J,Ch(k)) for a discrete category
J one can easily see that such a functor is cofibrant if and only if it is pointwise cofibrant.

33It is even one of the generating cofibrations discussed in [Hov99, 2.3.3 and 2.3.11].
34The downwards induction uses that D(k) is stable.

147



Chapter 4. Mixed complexes

of endofunctors of Ch(k)cof and that as the tensor product functor of D(k) preserves col-
imits in each variable separately, there is also such a natural equivalence of endofunctors
of D(k), with the fact that γ is symmetric monoidal.

Proof of Claim (5): We start by showing that the compositions of the two functors with
the forgetful functor Ab → Set are naturally equivalent. Applying Proposition A.1.0.1
to Ch(k), we obtain a natural isomorphism as follows.

MorHoD(k)

(
γ(−), γ(−)

)
∼= MorHoCh(k)(−,−)

A standard calculation using left homotopies (see [Hov99, 1.2.4 in combination with 1.2.6
and 1.2.10]) shows that35

MorHoCh(k)
(
k[n],−

)
∼= Hn(−) (4.16)

so that we have obtained a natural equivalence between the respective compositions with
the forgetful functor Ab→ Set. This forgetful functor factors as the composition of the
forgetful functors Ab→ CMon(Set) and CMon(Set)→ Set. As Ab→ CMon(Set) is the
inclusion of a full subcategory, it suffices to show that the two functors in question are
naturally equivalent as functors to CMon(Set).

For this we apply Proposition 4.3.1.2. The category Ch(k)cof is semiadditive (coprod-
ucts of cofibrant objects are again cofibrant by [Hov99, 1.1.11]) and Set admits finite
products, so it remains to show that Hn(−) as a functor Ch(k)cof → CMon(Set) preserve
products. The forgetful functor from commutative monoids to sets detects products (see
Proposition F.2.0.1), so it suffices to show that Hn(−) preserves products as a functor
into Set. But this is clear, as direct sums in Ch(k) are formed levelwise, and direct sums
are both limits as well as colimits, so are compatible with forming kernels and cokernels.

Proof of Claim (6): The first part is [HA, 1.3.5.16 and 1.3.5.21]. The second part
follows immediately from the observation that every chain complex with homology con-
centrated in nonnegative or nonpositive degrees is quasiisomorphic to a chain complex
itself concentrated in those degrees, by truncating.

Proof of Claim (7): By [HA, 7.1.2.13] there is an equivalence

θ : D(k)→ LModk(Sp)

of symmetric monoidal ∞-categories. It remains to show that θ is compatible with the
respective t-structures.

As a monoidal equivalence, θ preserves monoidal units, so θ(k) ≃ k, which implies
that there is a sequence of natural isomorphism for n ≥ 2 of functors D(k) → Set as
follows.

Hn(−)

35The main point is that a cylinder object for k[n] is given by k[n] ∐ k[n]
i0∐i1−−−→ C

s
−→ k[n] where on

underlying graded abelian groups i0 ∐ i1 is the inclusion into k[n]⊕ k[n]⊕ k[n+1], and where ∂Cn+1

sends 1 to (1, 0) − (0, 1). One also needs to use that every object of Ch(k) is fibrant, and then the
rest is unpacking the definition.

148



4.3. The derived category of k

Using Claim (5).
∼= MorHoD(k)

(
k[n],−

)

Applying Ho θ.
∼= MorHoLModk(Sp)

(
k[n], θ(−)

)

Using that the functor Free : Sp → LModk(Sp) is left adjoint to the forgetful functor.
See [HA, 4.2.4.8] and [HTT, 5.2.2.9].

∼= MorHo Sp
(
S[n], θ(−)

)
∼= π0

(
MapSp

(
S[n], θ(−)

))

Using that n ≥ 0.
∼= πn

(
MapSp

(
S, θ(−)

))

Using the adjunction Σ∞ ⊣ Ω∞
∗ .

∼= πn

(
MapS∗

(
S0,Ω∞

∗ θ(−)
))
∼= πn

(
Ω∞

∗ θ(−)
)

Using [HA, 1.4.3.8].
∼= πn

(
θ(−)

)

By using that H∗ and π∗ are both compatible with shifts36, we can conclude37 that
Hn(−) ∼= πn(θ(−)) for every integer n, which implies that θ is compatible with the
respective t-structures on D(k) and LModk(Sp) as follows directly from their respective
definitions.

Proof of Claim (8): The t-structure on LModk(Sp) is compatible with the symmetric
monoidal structure by [HA, 7.1.3.10], so this also holds for D(k) by Claim (7).

Proof of Claim (9): Every chain complex concentrated in degree 0 has obviously van-
ishing homology outside of degree 0, so γ ◦ (−)[0] factors through the full subcategory
D(k)♥ of D(k).

The induced functor is essentially surjective by the second part of (6). If two mor-
phisms f and g in LModk(Ab) map to homotopic morphisms, then they induce the same
morphisms on HomHo(D(k))(k[0],−), so by (5) H0(f [0]) = H0(g[0]), and hence f = g.
Thus Ho(LModk(Ab))→ Ho(D(k)♥) is faithful. Finally, let X and Y be k-modules and
f : γ(X[0])→ γ(Y [0]) a morphism in Ho(D(k)). There is a zigzag of quasiisomorphisms

X[0] ∼= (τ≤0 ◦ τ≥0)(X
cof)← τ≥0(X[0]cof)→ X[0]cof

in Ch(k). As Y [0] is fibrant we can by Proposition A.1.0.1 and [Hov99, 1.2.10 (iii)] find
a morphism f : Xcof → Y [0] representing f , i. e. the composite

γ(X[0]) ≃ γ
(
(τ≤0 ◦ τ≥0)(X

cof)
)

≃
←− γ

(
τ≥0(X[0]cof)

)
≃
−→ γ

(
X[0]cof

) γ(f)
−−−→ γ

(
Y [0]

)

36For π∗ this is by definition, see [HA, 1.2.1.11], for H∗ this follows from Claim (5) and (4)
37A priori this is only a natural bijection – which is also all we need, as an abelian group is isomorphic to 0

if and only if its underlying set consists of a single element – but one can also apply Proposition 4.3.1.2
to deduce that this bijection in fact preserves the group structure.

149



Chapter 4. Mixed complexes

where the first two morphisms are obtained by applying γ to the above zigzag, is ho-
motopic to a representative of f . But it is easy to see that f can be strictly lifted to a
morphism from X[0], as Y [0] is concentrated in degree 0. This shows that the functor
Ho(LModk(Ab))→ Ho(D(k)♥) is full.

As the∞-category D(k)♥ is a 1-category by [HA, 1.2.1.12], this shows that the functor
LModk(Ab)→ D(k)♥ is an equivalence.

Remark 4.3.2.2. Let φ : k → k′ be a morphism of commutative rings. Then the sym-
metric monoidal functor

k′ ⊗k − : Ch(k)cof → Ch(k′)cof

from Fact 4.1.5.1 preserves weak equivalences and so induces by [HA, 4.1.7.4] a commu-
tative diagram of symmetric monoidal functors as follows.

Ch(k)cof Ch(k′)cof

D(k) D(k′)

k′⊗k−

γ γ

k′⊗k−

Furthermore, it follows from Fact 4.1.5.1 using [HA, 1.3.4.27] that the functor

k′ ⊗k − : D(k)→ D(k′) (4.17)

is left adjoint to the functor
φ∗ : D(k′)→ D(k)

that is induced by the composition

Ch(k′)cof φ∗

−→ Ch(k) (−)cof
−−−→ Ch(k)cof

where the second functor is the cofibrant replacement functor. In particular, functor
(4.17) preserves small colimits.

As k′ ⊗k − is a symmetric monoidal functor, we can use [HA, 7.3.2.7] to upgrade the
adjunction k′ ⊗k − ⊣ φ

∗ to an adjunction38

D(k)⊗ D(k′)⊗

Fin∗

(k′⊗k−)
⊗

(φ∗)⊗

⊣

relative to Fin∗ in the sense of [HA, 7.3.2.3], and such that (φ∗)⊗ is lax symmetric
monoidal. ♦

38The functors to Fin∗ are to be the canonical cocartesian fibrations of ∞-operads.

150



4.3. The derived category of k

4.3.3. Homology
Homology is a very important invariant of chain complexes, and for D(k) as well. In

this section we will discuss how the different definitions are compatible, as well as some
properties that we will need.

Definition 4.3.3.1 ([HA, 1.2.1.11]). Let n be an integer. We define a functor

Hn : D(k)→ LModk(Ab)

to be the composition

D(k)
(−)[−n]
−−−−→ D(k)

τ≥0◦τ≤0
−−−−→ D(k)♥ ≃ LModk(Ab)

where the equivalence is the one from Proposition 4.3.2.1 (9). ♦

Proposition 4.3.3.2. Let n be an integer. Then there is a commutative diagram

Ch(k)

LModk(Ab)

D(k)

γ

Hn

Hn

in Cat∞. ♥

Proof. We need to show that Hn ◦ γ and Hn are naturally isomorphic.
Denote by φ the equivalence LModk(Ab) → D(k)♥ from Proposition 4.3.2.1 (9)

and assume we have already shown the claim for n = 0. Then we can deduce the
claim for general n using Proposition 4.3.2.1 (4), as we obtain equivalences of functors
Ch(k)→ LModk(Ab) as follows.

Hn ◦ γ

= φ−1 ◦ τ≥0 ◦ τ≤0 ◦ (−)[−n] ◦ γ
∼= φ−1 ◦ τ≥0 ◦ τ≤0 ◦ γ ◦ (−)[−n]
∼= H0 ◦ γ ◦ (−)[−n]
∼= H0 ◦ (−)[−n]
∼= Hn

We now turn to the case n = 0. Consider the natural transformations of endofunctors
of Ch(k)

idCh(k) → τ≤0 ← τ≥0 ◦ τ≤0 (4.18)
where τ≤0 and τ≥0 refer to the truncation functors for chain complexes. The endofunctor
τ≥0 ◦ τ≤0 factors over the inclusion of chain complexes that are concentrated in degree 0,
so it suffices to show the following.

151



Chapter 4. Mixed complexes

(1) The precompositions of H0 : Ch(k) → LModk(Ab) with the two natural transfor-
mations in (4.18) are natural isomorphisms.

(2) The precompositions of H0 ◦ γ : Ch(k) → LModk(Ab) with the two natural trans-
formations in (4.18) are natural isomorphisms.

(3) The precompositions of H0 and H0 ◦ γ with the inclusion of chain complexes con-
centrated in degree 0 are naturally isomorphic.

Proof of (1): Clear.
Proof of (2): We only consider the first natural transformation, the other case is similar.

We need to show that the natural transformation

τ≥0 ◦ τ≤0 ◦ γ ◦ idCh(k) → τ≥0 ◦ τ≤0 ◦ γ ◦ τ≤0

is a natural equivalence. Let X be a chain complex, and let f be the natural morphism
X → τ≤0X. Then f is an isomorphism in homology in non-positive degrees, while τ≤0X

has homology concentrated in non-positive degrees, so the homotopy fiber hofib(f) has
homology concentrated in positive degrees. We obtain a pullback diagram

γ
(
hofib(f)

)
γ(X)

0 γ
(
τ≤0X

)

in D(k), with γ
(
hofib(f)

)
lying in D(k)≥1. Applying τ≤0 : D(k) → D(k) we obtain a

pullback diagram
0 τ≤0

(
γ(X)

)

0 τ≤0

(
γ
(
τ≤0X

))

in D(k), which, as D(k) is stable, is also a pushout diagram, from which it follows that

τ≤0

(
γ(X)

)
→ τ≤0

(
γ
(
τ≤0X

))

is an equivalence. The claim follows.
Proof of (3): What we need to show is that H0 ◦ (−)[0] and H0 ◦γ ◦ (−)[0] are naturally

isomorphic as functors from LModk(Ab) to LModk(Ab).
H0 ◦ (−)[0] is naturally isomorphic to the identity functor right from the definition.

For H0 ◦γ ◦ (−)[0] we can apply Proposition 4.3.2.1 (9) to obtain equivalences as follows.

H0 ◦ γ ◦ (−)[0]

≃
(
φ−1 ◦ τ≥0 ◦ τ≤0

)
◦

((
D(k)♥ → D(k)

)
◦ φ

)

152



4.3. The derived category of k

≃ φ−1 ◦ idD(k)♡ ◦ φ

≃ φ−1 ◦ φ

≃ idLModk(Ab)

Proposition 4.3.3.3. Let n be an integer. Then there is a commutative diagram

LModk(Ab)

D(k)

Ab

evm

Hn

HomHo(D(k))(k[n],−)

in Cat∞. ♥

Proof. By [HA, 1.3.4.1] it suffices to show that there is a homotopy

evm ◦ Hn ◦ γ ≃ HomHo(D(k))
(
k[n], γ(−)

)

of functors D(k) → Ab. The former functor is by Proposition 4.3.3.2 homotopic to the
composition

Ch(k) Hn−→ LModk(Ab) evm−−→ Ab (∗)
and the latter functor is by Proposition 4.3.2.1 (5) homotopic to the functor

Ch(k) Hn−→ Ab

which is by definition the same as the composition (∗).

Notation 4.3.3.4. Let n be an integer. In light of Proposition 4.3.3.3 we will also denote
the functor

HomHo(D(k))
(
k[n],−

)
: D(k)→ Ab

by Hn. However, if it is not clear from context that we mean this functor, then usage of the
notation Hn should be understood to refer to the functor with image in LModk(Ab). ♦

Proposition 4.3.3.5. Let n be an integer. The functor

Hn : D(k)→ LModk(Ab)

preserves products and coproducts. ♥

Proof. As the forgetful functor evm : LModk(Ab) → Ab detects limits and colimits, it
suffices to show that the functor

Hn : D(k)→ Ab

153



Chapter 4. Mixed complexes

preserves products and coproducts.
We start by showing that it preserves products. As the forgetful functor Ab → Set

preserves products, it suffices to show that the functor D(k)→ Set

MorHo(D(k))
(
k[n],−

)
∼= π0

(
MapD(k)

(
k[n],−

))
: D(k)→ Set

preserves products, but this is clear as both MapD(k)

(
k[n],−

)
and π0 preserve products.

For coproducts we use the commutative diagram constructed in Proposition 4.3.2.1
(5) that is depicted below.

Ch(k)cof

Ab

D(k)

Hn

γ

Hn

As every object of D(k) is represented by a cofibrant chain complex (by definition) and
γ preserves coproducts39 it suffices to show that the functor Hn on chain complexes
preserves coproducts, which is a classical exercise in homological algebra40.

Remark 4.3.3.6. The functor

HomHo(D(k))(k,−) : Ho
(
D(k)

)
→ Ab

is by [Nee01, 1.1.10] homological in the sense of [Nee01, 1.1.7]. As the forgetful functor
from LModk(Ab) to Ab detects exact sequences, it follows from Proposition 4.3.3.3 that
the functor

H0 : Ho
(
D(k)

)
→ LModk(Ab)

is an homological functor as well.
Any cofiber sequence

X
f
−→ Y

g
−→ Z

h
−→ X[1]

in D(k) thus induces a long exact sequence

· · ·
H0(−h[−1])
−−−−−−−→ H0(X)

H0(f)
−−−→ H0(Y )

H0(g)
−−−→ H0(Z)

H0(h)
−−−→ H0(X[1])

H0(−f [1])
−−−−−−→ · · ·

in LModk(Ab) that we can identify with a long exact sequence

· · · → H1(Z)→ H0(X)
H0(f)
−−−→ H0(Y )

H0(g)
−−−→ H0(Z)

H0(h)
−−−→ H−1(X)→ · · · ♦

39Coproducts of cofibrant objects are homotopy coproducts, then use [HA, 1.3.4.25 and 1.3.4.24].
40See for example [Rot08, Exercise 6.9]. One way to show this is as follows. One first considers finite

coproducts, which are biproducts, so one can for example use additivity. Arbitrary coproducts can
be written as filtered colimits of their finite subcoproducts (this is true also for ∞-categories by
[HTT, Special case of the proof of 4.2.3.11] but can of course also be shown in a more elementary
way for our application), so it then suffices to show that filtered colimits in LModk(Ab) are exact,
which is done in [Wei94, Theorem 2.6.15].

154



4.3. The derived category of k

Proposition 4.3.3.7. Let X be an object of D(k) so that Hn(X) is a free k-module with
basis41 {bi : k[n]→ X}i∈In for every integer n.

Then the morphism ∐

n∈Z,i∈In

k[n]

∐
n∈Z,i∈In

bi
−−−−−−−→ X

is an equivalence in D(k). ♥

Proof. Represent X by a chain complex. Unpacking and using the natural equivalence
from Proposition 4.3.2.1 (5) and Proposition 4.3.3.2 we obtain that the morphism in
question is represented by a quasiisomorphism of chain complexes and is thus an equiv-
alence.

Proposition 4.3.3.8. Let n be an integer, I a small ∞-category, and F : I → D(k) a
functor.

Assume that F (I) lies in D(k)≥n for every object I of I. Then the canonical morphism

colim
I

Hn

(
F (•)

)
→ Hn

(
colim

I
F

)

is an isomorphism.
Analogously, if F (I) lies in D(k)≤n for every object I of I, then the canonical morphism

Hn

(
lim
I
F

)
→ lim

I
Hn

(
F (•)

)

is an isomorphism. ♥

Proof. It suffices to consider the case n = 0. By [HA, 1.2.1.6], the colimit of F is
again in D(k)≥0 in the first case and in D(k)≤0 in the second case, and thus forms the
colimit in that full subcategory by [HTT, 1.2.13.7]. The statement now follows from
the fact that τ≤0 : D(k)≥0 → D(k)♥ is left adjoint and thus preserves colimits and
τ≥0 : D(k)≤0 → D(k)♥ is a right adjoint and thus preserves limits.

4.3.4. Properties of the truncation functors
Let n be an integer. The categories D(k)≥n and D(k)≤n defined as in [HA, 1.2.1.4]

with respect to the t-structure discussed in Proposition 4.3.2.1 are the full subcategories
of objects X with Hm(X) ∼= 0 for m < n and m > n, respectively. By [HA, 1.2.1.6 and
1.2.1.7] we obtain adjunctions

D(k) D(k)≤n
τ≤n

ι≤n

⊣

and
D(k)≥n D(k)

ι≥n

τ≥n

⊣

41Such a morphism bi represents an element in Hn(X) via Proposition 4.3.3.3.

155



Chapter 4. Mixed complexes

with ι≤n and ι≥n the inclusions of the respective full subcategories.
We will sometimes omit ι≤n and ι≥n from the notation and consider τ≤n and τ≥n as

endofunctors of D(k).
As the t-structure on D(k) is compatible with the symmetric monoidal structure, we

get more, as the following proposition records.

Proposition 4.3.4.1. The following list of statements hold.

(1) D(k)≥0 inherits a symmetric monoidal structure from D(k).

(2) The adjunction ι≥0 ⊣ τ≥0 can be upgraded to an adjunction ι⊗≥0 ⊣ τ⊗≥0 of lax
monoidal functors relative to Fin∗ (in the sense of [HA, 7.3.2.3]).

(3) The lax monoidal functor ι⊗≥0 is symmetric monoidal.

(4) For n ≥ 0, the full subcategory
(
D(k)≥0

)
≤n

inherits a symmetric monoidal structure
from D(k)≥0.

(5) The adjunction τ≤n ⊣ ι≥0,≤n, where ι≥0,≤n :
(
D(k)≥0

)
≤n
→ D(k)≥0 is the inclusion,

can be upgraded to an adjunction τ⊗≤n ⊣ ι
⊗
≥0,≤n of lax monoidal functors relative to

N(Fin∗).

(6) The lax monoidal functor τ⊗≤n : D(k)⊗≥0 →
(
D(k)≥0

)⊗
≤n

is symmetric monoidal.

Let O⊗ be an ∞-operad. Then the following statements hold as well.

(7) The adjunction ι⊗≥0 ⊣ τ
⊗
≥0 induces an adjunction

AlgO

(
D(k)≥0

)
AlgO

(
D(k)

)AlgO(ι≥0)

AlgO(τ≥0)

⊣

and AlgO

(
ι≥0

)
is fully faithful with essential image spanned by those O-algebras A

in D(k) such that for every object X of O, the underlying object evX(A) of A lies
in D(k)≥0.

(8) The adjunction τ⊗≤n ⊣ ι
⊗
≥0,≤n induces an adjunction

AlgO

(
D(k)≥0

)
AlgO

((
D(k)≥0

)
≤n

)AlgO(τ≤n)

AlgO(ι≥0,≤n)

⊣

and AlgO

(
ι≥0,≤n

)
is fully faithful with essential image spanned by those O-algebras

A in D(k)≥0 such that for every object X of O, the underlying object evX(A) of A
lies in

(
D(k)≥0

)
≤n

. ♥

156



4.4. The ∞-category of mixed complexes

Proof. By Proposition 4.3.2.1, the t-structure on D(k) is compatible with with the sym-
metric monoidal structure in the sense of [HA, 2.2.1.3], so the statements (1), (2), and (3)
follow from [HA, 2.2.1.1], and the statements (4), (5), and (6) follow from [HA, 2.2.1.10
and 2.2.1.9].

That we obtain induced adjunctions on algebras as in (7) and (8) now follows from
Proposition E.3.3.1, see also [HA, 2.2.1.5]. Finally, that the functors induced on algebra
categories by the inclusions are again fully faithful as well as the descriptions of the
essential images follow from Proposition E.3.5.1.

We also record the following for later use.

Proposition 4.3.4.2 ([HA, 1.2.1.6]). Let n be an integer.
Then D(k)≤n is closed under small limits and coproducts. In particular, D(k)≤n admits

all small limits and finite biproducts and ι≤n preserves them.
Analogously, D(k)≥n is closed under small colimits and finite products. In particular,

D(k)≤n admits all small colimits and finite biproducts and ι≥n preserves them. ♥

Proof. The closure properties for limits and colimits are [HA, 1.2.1.6] and closure under
finite biproducts follows from the definition using that Hm(−) commutes with finite
biproducts.

The rest of the claims now follow from the closure claims by [HTT, 1.2.13.7]

4.4. The ∞-category of mixed complexes
In Notation 4.2.2.10 we constructed a commutative diagram of forgetful functors as

follows.
Alg(Mixed)

Mixed Alg(Ch(k))

Ch(k)

evMixed
a Alg(evm)

evm eva

(4.19)

All four functors preserve weak equivalences by Proposition 4.2.2.12 so we obtain a
commutative diagram on underlying ∞-categories. For this, let us use the following
notation.

Notation 4.4.0.1. Denote by WCh, WAlg, WMixed and WAlg(Mixed) the classes of weak
equivalences in Ch(k), Alg(Ch(k)), Mixed, and Alg(Mixed), respectively, where we use the
weak equivalences from the model structures defined in Fact 4.1.3.1, Definition 4.2.2.2,
and Proposition 4.2.2.9.

In contexts in which we only consider a full subcategory of those model categories,
we will use the same notation for the class of weak equivalences between objects in that
subcategory. ♦

157



Chapter 4. Mixed complexes

Diagram (4.19) now induces a commutative diagram of ∞-categories as follows.

Alg(Mixed)[W−1
Alg(Mixed)]

Mixed[W−1
Mixed] Alg(Ch(k))[W−1

Alg]

Ch(k)[W−1
Ch ]

evMixed
a

′ Alg(evm)′

ev′m ev′a

(4.20)

Ch(k)[W−1
Ch ] can be identified with the derived category, D(k)42. The canonical symmetric

monoidal functor γ : Ch(k)cof → D(k) induces a functor on commutative and cocommu-
tative bialgebras, so we can apply it to the cofibrant commutative and cocommutative
bialgebra D (see Construction 4.2.1.1 and Proposition 4.2.2.4) to obtain a commutative
and cocommutative bialgebra γ(D) in D(k).

Notation 4.4.0.2. We will denote the object γ(D) of BiAlgComm,Comm(D(k)) by D (or
Dk if we want to make k explicit).

By the results of Section 3.4 we obtain an induced symmetric monoidal structure on
LModD

(
D(k)

)
. We will denote this symmetric monoidal∞-category by Mixed, or, if we

want to make the base ring k explicit, by Mixedk. ♦

We can construct from the symmetric monoidal∞-category D(k) and cocommutative
bialgebra D in D(k) the following commutative diagram that is analogous to (4.19).

Alg(Mixed)

Mixed Alg
(
D(k)

)

D(k)

eva Alg(evm)

evm eva

(4.21)

The goal of this section is to show that diagram (4.21) can be identified with diagram
(4.20).

For algebras, there is a relevant result: For a monoidal model category A with certain
properties, [HA, 4.1.8.4] shows that there is an equivalence

Alg(A)cof[W ′−1]
≃
−→ Alg

(
Acof[W−1]

)

where W and W ′ are the respective classes of weak equivalences. The reason only the
full subcategory of cofibrant objects is considered is that we want the tensor product to
42By Proposition 4.3.2.1 (1) D(k) ≃ Ch(k)cof[W−1], but the inclusion of Ch(k)cof into Ch(k) and the

cofibrant replacement functor induce mutually inverse equivalences after inverting weak equivalences,
see [HA, 1.3.4.16] and Proposition A.3.2.1.

158



4.4. The ∞-category of mixed complexes

be automatically derived. The pushout product axiom ensures that the tensor product
of two cofibrant objects is again cofibrant, so the tensor product restricts to the full
subcategory of cofibrant objects. A monoidal category also needs a unit object, so in
order to ensure that the subcategory is again a monoidal category, Lurie requires that
the unit object in A is cofibrant. Unfortunately, this does not hold for the monoidal
model category Mixed = LModD(Ch(k)) that we considered above43, so we can not
directly apply Lurie’s result. However, we proved that Mixed satisfies the monoid axiom
(Proposition 4.2.2.8), which ensures that even though the unit object is not cofibrant,
tensoring with it nevertheless results in the correct derived tensor product. Another
(related) viewpoint would be to note that the tensor product in Mixed = LModD(Ch(k))
is calculated on the underlying chain complexes, and in Ch(k) the unit object is cofibrant.
This will open the possibility of nevertheless proving a result similar to [HA, 4.1.8.4] for
our situation.

We will start in Section 4.4.1 by constructing a comparison natural transformation
from diagram (4.20) to diagram (4.21), and then show that the comparison functors are
equivalences in Section 4.4.2. Finally, in the very short Section 4.4.3 we show that Mixed
is a stable∞-category, and in the also short section Section 4.4.4 we discuss how strongly
homotopy linear morphisms of strict mixed complexes induce morphisms in Mixed.

4.4.1. Construction of comparison functors
In this section we will construct a comparison natural transformation from diagram

(4.20) to diagram (4.21).

Construction 4.4.1.1. By Fact 4.1.3.1, the subcategory Ch(k)cof inherits a symmetric
monoidal structure from Ch(k). As the underlying chain complex of D is cofibrant by
Proposition 4.2.2.4, we can view D as an object of BiAlgAssoc,Comm(Ch(k)cof). By Propo-
sition 3.4.1.15 we can thus consider the pair (Ch(k)cof,D) as an object of BiAlgOpComm.

The symmetric monoidal functor γ : Ch(k)cof → D(k) is a morphism in the∞-category
MonComm(Cat∞). Denote by γ a qBiAlgOpComm-cocartesian lift of γ with source (Ch(k)cof,D).
By Proposition 3.4.1.15 we can identify the codomain of the morphism γ with the bial-
gebra BiAlgAssoc,Comm(γ)(D), which we also denote by D.

Applying the natural transformation evm : LMod→ pr of functors from BiAlgOpComm
to MonComm(Cat∞) from Definition 3.4.2.1 we obtain a commutative diagram of sym-
metric monoidal ∞-categories as follows.

LModD
(
Ch(k)cof

)⊗ LModD
(
D(k)

)⊗

(
Ch(k)cof

)⊗
D(k)⊗

ev⊗m

LModD(γ)⊗

ev⊗m

γ⊗

43See the discussion in Section 4.2.2.2.

159



Chapter 4. Mixed complexes

Applying the natural transformation

eva : Alg(−)→ −×Fin∗ {〈1〉}

we obtain the following commutative cube.

Alg
(

LModD

(
Ch(k)cof

))
Alg
(

LModD
(
D(k)

))

LModD

(
Ch(k)cof

)
LModD

(
D(k)

)

Alg
(

Ch(k)cof
)

Alg
(
D(k)

)

Ch(k)cof D(k)

where the horizontal functors are all induced by γ, and the left and right squares are
made up of the various forgetful functors. ♦

Notation 4.4.1.2. We will also denote by γMixed the functor

Mixedcof = LModD

(
Ch(k)cof

) LModD(γ)
−−−−−−→ LModD

(
D(k)

)
= Mixed

induced by γ. ♦

Remark 4.4.1.3. Let φ : k → k′ be a morphism of commutative rings.
Then the symmetric monoidal and weak-equivalence preserving functor

k′ ⊗k − : Ch(k)cof → Ch(k′)cof

from Fact 4.1.5.1 maps by Construction 4.2.1.1 Dk to Dk′ and thus induces a transfor-
mation from the cube constructed in Construction 4.4.1.1 with respect to k to the same
cube with respect to k′ (i. e. a four-dimensional hypercube). In particular, there is an
induced commutative diagram of symmetric monoidal functors as follows.

Mixedk,cof Mixedk′,cof

Mixedk Mixedk′

k′⊗k−

γMixed γMixed

k′⊗k−

See also Remark 4.2.1.3, Proposition 4.2.2.3, and Remark 4.3.2.2. ♦

Proposition 4.4.1.4. The functors

γ : Ch(k)cof → D(k)

γMixed : Mixedcof →Mixed

160



4.4. The ∞-category of mixed complexes

Alg(γ) : Alg
(

Ch(k)cof
)
→ Alg

(
D(k)

)

Alg(γMixed) : Alg(Mixedcof)→ Alg(Mixed)

all map the respective weak equivalences to equivalences.
In particular, the commutative cube constructed in Construction 4.4.1.1 induces a

commutative cube as follows.

Alg(Mixedcof)[W
−1
Alg(Mixed)] Alg(Mixed)

Mixedcof[W
−1
Mixed] Mixed

Alg
(

Ch(k)cof
)
[W−1

Alg] Alg
(
D(k)

)

Ch(k)cof[W−1
Ch ] D(k)

where the horizontal functors are all induced by γ and the functors on the left and right
sides are (induced by) the various forgetful functors. ♥

Proof. The following discussion refers to the cube constructed in Construction 4.4.1.1.
Note that by Proposition 4.2.2.12 all the functors on the left side preserve weak equiva-
lences, so that we obtain a commutative square as claimed after inverting the respective
classes of weak equivalences. It remains to show that the horizontal functors map weak
equivalences to equivalences.

The two functors eva on the right detect equivalences by [HA, 3.2.2.6], and by [HA,
4.2.3.3] the left vertical functor evm on the right side also detects equivalences. It follows
that equivalences on the right side are detected in D(k), so it suffices to show that the
compositions from the four categories on the left side to D(k) map weak equivalences to
equivalences. But as all functors (or compositions) to Ch(k)cof preserve weak equivalences
as already mentioned, it actually suffices to show that γ : Ch(k)cof → D(k) maps weak
equivalences to equivalences. But this is true by definition, see Proposition 4.3.2.1 (1).

The commutative cube from Proposition 4.4.1.4 is pretty close to being a comparison
natural transformation from diagram (4.20) to diagram (4.21). However, the left side is
not quite given as (4.20) as we are only considering cofibrant underlying chain complexes.
The next proposition shows that this does not make a difference.

Construction 4.4.1.5. We obtain a commutative cube completely analogous to the
one constructed in Construction 4.4.1.1 from the symmetric monoidal inclusion functor
Ch(k)cof → Ch(k). Using Proposition 4.2.2.12 we obtain the following induced commuta-

161



Chapter 4. Mixed complexes

tive cube

Alg(Mixedcof)[W
−1
Alg(Mixed)] Alg(Mixed)[W−1

Alg(Mixed)]

Mixedcof[W
−1
Mixed] Mixed[W−1

Mixed]

Alg
(

Ch(k)cof
)
[W−1

Alg] Alg
(
Ch(k)

)
[W−1

Alg]

Ch(k)cof[W−1
Ch ] Ch(k)[W−1

Ch ]

where the horizontal functors are induced by the inclusion Ch(k)cof → Ch(k) and the
functors on the left and right are the various forgetful functors. ♦

Construction 4.4.1.6. By Proposition 4.2.2.12 the cofibrant objects in

Alg(Mixed), Mixed, Alg
(
Ch(k)

)
, and Ch(k)

all have cofibrant underlying chain complex44. We thus obtain a commutative cube as
follows

Alg(Mixed)cof
[W−1

Alg(Mixed)] Alg(Mixedcof)[W
−1
Alg(Mixed)]

Mixedcof[W−1
Mixed] Mixedcof[W

−1
Mixed]

Alg
(
Ch(k)

)cof
[W−1

Alg] Alg
(

Ch(k)cof
)
[W−1

Alg]

Ch(k)cof[W−1
Ch ] Ch(k)cof[W−1

Ch ]

where the horizontal functors are induced by the inclusions and the functors on the left
and right are the various forgetful functors. ♦

Proposition 4.4.1.7. The horizontal functors in the commutative cubes of Construc-
tion 4.4.1.5 and Construction 4.4.1.6 are equivalences. ♥

Proof. The proof is very similar for the eight functors, so we only discuss the functor

Mixedcof[W−1
Mixed]→ Mixed[W−1

Mixed]

as the example case.
As already mentioned in Construction 4.4.1.6, by Proposition 4.2.2.12 the forgetful

functor evm from Mixed to Ch(k) preserves cofibrant objects, so the cofibrant replacement
functor of Mixed lands in Mixedcof. Let

ι : Mixedcof → Mixed
44While evMixed

a was not shown in Proposition 4.2.2.12 to preserve cofibrant objects, this is not a problem,
as both Alg(evm) and eva preserve cofibrant objects by Proposition 4.2.2.12, so their composition
does so too.

162



4.4. The ∞-category of mixed complexes

be the inclusion functor and

−cof : Mixed→ Mixedcof

the cofibrant replacement functor. The compositions ι◦−cof and−cof◦ι come with natural
transformations to the identity functors that are pointwise weak equivalences. As both
ι and −cof preserve weak equivalences, we obtain induced functors after inverting weak
equivalences, and by Proposition A.3.2.1 the natural transformations just mentioned
become natural equivalences. Thus the functor induced by ι,

Mixedcof[W−1
Mixed]→ Mixed[W−1

Mixed]

is an equivalence.

Definition 4.4.1.8. By composing the cube from Proposition 4.4.1.4 with the inverse
of the cube from Construction 4.4.1.5 (where the horizontal functors are equivalences by
Proposition 4.4.1.7), we obtain the following commutative cube.

Alg(Mixed)[W−1
Alg(Mixed)] Alg(Mixed)

Mixed[W−1
Mixed] Mixed

Alg
(
Ch(k)

)
[W−1

Alg] Alg
(
D(k)

)

Ch(k)[W−1
Ch ] D(k)

The horizontal functors are induced by the composition of the respective cofibrant re-
placement functors and γ, and the other functors are (induced by) the various forgetful
functors. ♦

4.4.2. The comparison functors are equivalences
In this section we show that the horizontal functors in the cube of Definition 4.4.1.8

are all equivalences.

Proposition 4.4.2.1 ([HA, 4.1.8.4]). The functor

Alg
(
Ch(k)

)
[W−1

Alg]→ Alg
(
D(k)

)

from Definition 4.4.1.8 is an equivalence. ♥

Proof. By Proposition 4.4.1.7 it suffices to show that the related functor

Alg
(
Ch(k)

)cof
[W−1

Alg]→ Alg
(
D(k)

)

induced by γ is an equivalence.

163



Chapter 4. Mixed complexes

By Fact 4.1.3.1 Ch(k) is a combinatorial symmetric monoidal model category with
cofibrant unit object, satisfies the monoid axiom, is left proper, and the class of cofi-
brations is generated by cofibrations between cofibrant objects45. The statement thus
follows from [HA, 4.1.8.4, variant (B)].

Proposition 4.4.2.2 ([HA, 4.3.3.17]). The functor

Mixed[W−1
Mixed]→Mixed

from Definition 4.4.1.8 is an equivalence. ♥

Proof. The proof is very similar to the proof of Proposition 4.4.2.1. Again it suffices by
Proposition 4.4.1.7 to show that the functor

LModD
(
Ch(k)

)cof
[W−1

Mixed]→ LModD
(
D(k)

)

is an equivalence.
By Fact 4.1.3.1 Ch(k) is a combinatorial monoidal model category with cofibrant unit

object, and by Proposition 4.2.2.4 D is cofibrant. The statement thus follows from [HA,
4.3.3.17].

We now come to the last functor from Definition 4.4.1.8 that we still need to prove
is an equivalence. As mentioned in the introduction to Section 4.4, we will not be able
to merely cite an appropriate result from [HA], as the unit of Mixed is not cofibrant.
We explain in more detail in Remark 4.4.2.4 below how the condition of the unit being
cofibrant is used in the proof of [HA, 4.1.8.4].

Proposition 4.4.2.3. The functor

Alg(Mixed)[W−1
Alg(Mixed)]→ Alg(Mixed)

from Definition 4.4.1.8 is an equivalence. ♥

Proof. This proof will follow the proof of [HA, 4.1.8.4] closely. As in Proposition 4.4.2.1
and Proposition 4.4.2.2 it suffices by Proposition 4.4.1.7 to show that the functor

Alg
(

LModD
(
Ch(k)

))cof
[W−1

Alg(Mixed)]→ Alg
(

LModD
(
D(k)

))

which we will call γAlg(Mixed) in this proof, is an equivalence.
By Proposition 4.4.1.4 and Construction 4.4.1.6 there is a commutative square

Alg
(

LModD
(
Ch(k)

))cof
[W−1

Alg(Mixed)] Alg
(

LModD
(
D(k)

))

LModD
(
Ch(k)

)
[W−1

Mixed] LModD
(
D(k)

)
evMixed

a

′

γAlg(Mixed)

eva

γMixed

45For this last bit see the description of the generating cofibrations in [Hov99, 2.3.11 and 2.3.3] in
combination with the description of cofibrant objects in [Hov99, 2.3.6].

164



4.4. The ∞-category of mixed complexes

where the horizontal functors are induced by γ, and evMixed
a

′ is induced by evMixed
a . Propo-

sition 4.4.2.2 shows that γMixed is an equivalence.
Like the proof of [HA, 4.1.8.4], we will apply [HA, 4.7.3.16] to show that γAlg(Mixed) is

an equivalence. For this it suffices to verify the following.

(1) eva has a left adjoint, which we will call FreeAlg(Mixed)
Mixed .

(2) Alg
(

LModD
(
D(k)

))
admits geometric realizations of simplicial objects.

(3) eva preserves geometric realizations of simplicial objects.

(4) eva is conservative.

(1’) evMixed
a

′ has a left adjoint, which we will call FreeAlg(Mixed)
Mixed

′
.

(2’) Alg
(

LModD
(
Ch(k)

))cof
[W−1

Alg(Mixed)] admits geometric realizations of simplicial ob-
jects.

(3’) evMixed
a

′ preserves geometric realizations of simplicial objects.

(4’) evMixed
a

′ is conservative.

(5) The push-pull natural transformation46

FreeAlg(Mixed)
Mixed ◦ γMixed → γAlg(Mixed) ◦ FreeAlg(Mixed)

Mixed
′

is a natural equivalence.

Proof of claim (2) and (3): By Proposition 4.3.2.1 (1) D(k) is presentable symmetric
monoidal ∞-category, so by the discussions leading to Definition 3.4.2.1, LModD(D(k))
is also a presentable symmetric monoidal ∞-category. The claims now follow from [HA,
3.2.3.1] and Proposition E.2.0.2.

Proof of claim (1): Follows from Proposition E.7.2.1, again using that LModD(D(k))
is presentable symmetric monoidal.

Proof of claim (4): This is [HA, 3.2.2.6].
Proof of claim (2’): By Proposition 4.2.2.9 the model structure on Alg(LModD

(
Ch(k)

)
)

is combinatorial, so it follows from [HA, 1.3.4.22] that Alg(LModD
(
Ch(k)

)
)cof[W−1

Alg(Mixed)]
is presentable and hence in particular admits geometric realizations of simplicial objects.

Proof of claim (3’): This is the part of the proof where we need to do something
differently than the proof of [HA, 4.1.8.4], as this is the point where the unit being
cofibrant is used – see Remark 4.4.2.4 below for more details.
46See [HTT, Beginning of 7.3.1].

165



Chapter 4. Mixed complexes

Consider the commutative diagram

Alg
(
LModD(Ch(k))

)cof
[W−1

Alg(Mixed)]

LModD(Ch(k))[W−1
Mixed] Alg(Ch(k))[W−1

Alg]

Ch(k)[W−1
Ch ]

evMixed
a

′ Alg(evm)′

ev′m ev′a

that already appeared above as diagram (4.20)47. As the diagram commutes, it suffices
to show the following three claims.

(a) The functor ev′
m in the above diagram detects geometric realizations of simplicial

objects48.

(b) The functor Alg(evm)
′ in the above diagram preserves geometric realizations of

simplicial objects.

(c) The functor ev′
a in the above diagram preserves geometric realizations of simplicial

objects.

Proof of claim (a): By Definition 4.4.1.8, Proposition 4.4.2.2, and Proposition 4.3.2.1
(1), we can identify the functor ev′

m in question with the functor

evm : LModD
(
D(k)

)
→ D(k)

which, as D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1), detects
small colimits by [HA, 4.2.3.5 (2)].

Proof of claim (b): By [HA, 1.3.4.24 and 1.3.4.25], it suffices to show that the functor

Alg(evm) : Alg
(
LModD(Ch(k))

)
→ Alg(Ch(k))

preserves homotopy colimits. Homotopy colimits can be calculated by taking the colimit
of a cofibrant replacement of the diagram with respect to the projective model structure
on diagram categories, see [HTT, A.2.8]. As Alg(evm) preserves ordinary colimits and
weak equivalences by Proposition 4.2.2.12 it hence suffices to show that

Alg(evm)∗ : Fun
(
∆

op,Alg
(
LModD(Ch(k))

))
→ Fun

(
∆

op,Alg(Ch(k))
)

preserves generating cofibrations. But this follows from their description [HTT, A.2.8.5]
and the fact that Alg(V ) preserves colimits and cofibrations by Proposition 4.2.2.12.
47With the tiny difference that we added a −cof at the top, but by Proposition 4.4.1.7 this doesn’t

matter anyway.
48In other words it detects ∆

op-indexed colimits.

166



4.4. The ∞-category of mixed complexes

Proof of claim (c): By Definition 4.4.1.8, Proposition 4.4.2.1, and Proposition 4.3.2.1
(1), we can identify the functor ev′

a in question with the functor

eva : Alg
(
D(k)

)
→ D(k)

which, as D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1), preserves
sifted colimits by [HA, 3.2.3.1].

Proof of claim (4’): It suffices to show that the induced functor on homotopy categories
is conservative, i. e. reflects isomorphisms. By Proposition A.1.0.1 we can identify that
functor with the functor induced by

evMixed
a : Alg

(
LModD

(
Ch(k)

))
→ LModD

(
Ch(k)

)

on homotopy categories of the model categories, i. e.

HoWAlg(Mixed)

(
Alg
(

LModD
(
Ch(k)

)))
→ HoWMixed

(
LModD

(
Ch(k)

))

which is conservative by the classical constructions for homotopy categories49, as evMixed
a

detects weak equivalences by Proposition 4.2.2.12.
Proof of claims (1’) and (5): We consider the symmetric monoidal functor

LModD(γ)
⊗ : LModD

(
Ch(k)cof

)⊗
→ LModD

(
D(k)

)⊗

from Construction 4.4.1.1. We want to show that the underlying functor preserves co-
products and that both LModD

(
Ch(k)cof

)
and LModD

(
D(k)

)
admit coproducts and have

tensor product functors that preserve coproducts in each variable separately.
That LModD(D(k)) is a presentable symmetric monoidal ∞-category was already

mentioned above.
As the forgetful functor evm from LModD

(
Ch(k)

)
to Ch(k) preserves colimits by Propo-

sition 4.2.2.12, we can conclude that the subcategory LModD
(
Ch(k)cof

)
is closed under

coproducts50 and hence admits coproducts, which are calculated in LModD
(
Ch(k)

)
(see

[HTT, 1.2.13.7]). As evm detects colimits and is symmetric monoidal, and the tensor
product in Ch(k) is compatible with colimits51 we can conclude that the tensor product
of LModD

(
Ch(k)cof

)
preserves coproducts in each variable separately.

Finally, we show that the functor LModD(γ) preserves coproducts. To see this, note
that as argued in the proof of claim (a), the functor

evm : LModD
(
D(k)

)
→ D(k)

detects small colimits, and as by the discussion above the forgetful functor

LModD

(
Ch(k)cof

)
→ Ch(k)cof

49See [Hov99, 1.2].
50Cofibrant objects in a model category are closed under coproducts, which can be checked using the

lifting property that defines cofibrations, see [Hov99, 1.1.10].
51As the symmetric monoidal structure is closed by Definition 4.1.2.1.

167



Chapter 4. Mixed complexes

preserves coproducts, it suffices to show that the functor

γ : Ch(k)cof → D(k)

preserves coproducts, which is true by Proposition 4.3.2.1 (3).
We have now verified that LModD(γ)

⊗ satisfies the assumptions of variant (2) of
Proposition E.7.2.2. We thus obtain a left adjoint

FreeAlg(Mixed)
Mixed : LModD

(
Ch(k)cof

)
→ Alg

(
LModD

(
Ch(k)cof

))

to the forgetful functor evMixed
a , which can be identified with a restriction of the functor

of the same name defined in Notation 4.2.2.10. More crucially, Proposition E.7.2.2 shows
that the push-pull transformation

FreeAlg(Mixed)
Mixed ◦ LModD(γ)→ Alg

(
LModD(γ)

)
◦ FreeAlg(Mixed)

Mixed

is an equivalence.
The functor

evMixed
a : Alg

(
LModD

(
Ch(k)cof

))
→ LModD

(
Ch(k)cof

)

preserves weak equivalences by Proposition 4.2.2.12. We next show that the functor

FreeAlg(Mixed)
Mixed : LModD

(
Ch(k)cof

)
→ Alg

(
LModD

(
Ch(k)cof

))

also preserves weak equivalences. As the functor

Alg(evm) : Alg
(

LModD

(
Ch(k)cof

))
→ Alg

(
Ch(k)cof

)

detects weak equivalences by Proposition 4.2.2.12, it suffices to check that the composi-
tion preserves weak equivalences. This composition is by Proposition 4.2.2.11 naturally
isomorphic to the composition of

evm : LModD

(
Ch(k)cof

)
→ Ch(k)cof

with FreeAlg. But by Proposition 4.2.2.12, evm preserves weak equivalences, and FreeAlg
preserves weak equivalences between cofibrant objects as a left Quillen functor.

As evMixed
a and FreeAlg(Mixed)

Mixed preserve weak equivalences, they induce functors on the
∞-categories obtained by inverting weak equivalences. Additionally, unit and counit of
the adjunction induce unit and counit of an adjunction as follows52

LModD
(
Ch(k)cof

)
[W−1

Mixed] Alg
(

LModD
(
Ch(k)cof

))
[W−1

Alg(Mixed)]
FreeAlg(Mixed)

Mixed
′

evMixed
a

′

52See the universal property of inverting morphisms in ∞-categories in [HA, 1.3.4.1].

168



4.4. The ∞-category of mixed complexes

where we think of adjunctions in terms of units and counits as in Proposition D.2.1.1.
In the non-dashed commutative square

Alg
(

LModD
(
Ch(k)

)cof)
[W−1

Alg(Mixed)] Alg
(

LModD
(
D(k)

))

LModD
(
Ch(k)cof

)
[W−1

Mixed] LModD
(
D(k)

)
evMixed

a

′

γAlg(Mixed)

eva

γMixed

FreeAlg(Mixed)
Mixed

′
FreeAlg(Mixed)

Mixed
(∗)

from Proposition 4.4.1.4, there is thus an induced left adjoint of evMixed
a

′ as indicated.
Furthermore, as unit and counit of the adjunction on the left are induced by the unit and
counit of the adjunction FreeAlg(Mixed)

Mixed ⊣ evMixed
a , we can identify the push-pull transforma-

tion associated to the square with the natural transformation induced by the push-pull
transformation

FreeAlg(Mixed)
Mixed ◦ LModD(γ)→ Alg

(
LModD(γ)

)
◦ FreeAlg(Mixed)

Mixed

by passing from LModD
(
Ch(k)cof

)
to LModD

(
Ch(k)cof

)
[W−1

Mixed]. As the latter is a natural
equivalence, it follow that the push-pull transformation associated to diagram (∗) is also
a natural equivalence.

Finally, the functor

evMixed
a

′
: Alg

(
LModD

(
Ch(k)

)cof)
[W−1

Alg(Mixed)]→ LModD

(
Ch(k)cof

)
[W−1

Mixed]

discussed so far is by Proposition 4.4.1.7 equivalent to the functor

evMixed
a

′
: Alg

(
LModD

(
Ch(k)

))cof
[W−1

Alg(Mixed)]→ LModD
(
Ch(k)

)
[W−1

Mixed]

so this proves claims (1’) and (5).

Remark 4.4.2.4. While the statement [HA, 4.1.8.4] is formulated in such a way as
to require the unit object to be cofibrant, thereby preventing us from using the result
directly to show Proposition 4.4.2.3, let us remark on where this is used in the proof.

The main step in proving [HA, 4.1.8.4] is the lemma [HA, 4.1.8.13], which shows that
if C is a monoidal model category satisfying certain assumptions and J is a small sifted
category, then the forgetful functor eva : Alg(C) → C preserves J-indexed homotopy
colimits.

The proof proceeds by showing that every projectively cofibrant object A of the functor
category Fun(J,Alg(C)) is a retract of a certain transfinite composition with favorable
properties53. What needs to be shown is that (eva)∗(A) is good, an ad hoc property used
in the proof, which is shown by transfinite induction.

The induction start needs that (eva)∗(const1C) is good. The argument in [HA, (3) on
page 500] shows that every constant functor whose value is a cofibrant object in C is
53See [HA, End of page 500 and start of page 501].

169



Chapter 4. Mixed complexes

good, so if one assumes that the unit 1C is cofibrant in C, then this proves the induction
start. Combining [HA, (3) on page 500] with the definition of good objects [HA, Middle
of page 499] one sees that a constant functor J → C is actually good if and only if the
constant value is cofibrant in C.

So if C = Mixed, where the unit is not cofibrant by Proposition 4.2.2.5, then the
induction start fails, so eva preserving homotopy colimits needs to be proven in a different
way than [HA, 4.1.8.13]. ♦

4.4.3. Mixed is stable
In this section we show that Mixed is a stable ∞-category.

Proposition 4.4.3.1. The ∞-category Mixed is stable54. ♥

Proof. The statement follows by combining that D(k) is stable by Proposition 4.3.2.1
(2) with Mixed admitting all small limits and colimits by [HA, 4.2.3.3 (1) and 4.2.3.5
(1)] and evm : Mixed→ D(k) detecting small colimits and limits as well as equivalences
by [HA, 4.2.3.3 (2) and 4.2.3.5 (2)].

4.4.4. Strongly homotopy linear morphisms
In Section 4.2.3 we introduced the notion of strongly homotopy linear morphisms

between strict mixed complexes. In this short section we discuss how they induce mor-
phisms in the ∞-category of mixed complexes.

Construction 4.4.4.1. Let X and Y be strict mixed complexes with cofibrant underly-
ing chain complexes, and f : X → Y a strongly homotopy linear morphism. Recall from
Proposition 4.2.3.7 and Definition 4.2.3.8 that f lifts to a morphism f strict : X → Y shl

of strict mixed complexes, and from Proposition 4.2.3.5 that Y shl comes with a quasiiso-
morphism of strict mixed complexes ιshlY : Y → Y shl.

We can’t directly apply γMixed to f strict, as Y shl might not have cofibrant underlying
chain complex55. However we obtain a commutative diagram

Xcof (
Y shl)cof Y cof

X Y shl Y

(f strict)
cof

(ιshl
Y )

cof

f strict ιshl
Y

(∗)

in Mixed, where the vertical morphisms are the cofibrant replacements in Mixed, and by
Proposition 4.2.2.12 all strict mixed complexes except possibly Y shl in this diagram have
54See [HA, 1.1.1.9] for a definition.
55This problem is related to the fact that Y shl involves an infinite product (rather than an infinite

coproduct, which would not be a problem).

170



4.4. The ∞-category of mixed complexes

cofibrant underlying chain complex. We can thus apply γstrict to the part of the diagram
not involving Y shl.

γMixed
(
Xcof) γMixed

((
Y shl)cof) γMixed

(
Y cof)

γMixed(X) γMixed(Y )

≃

γMixed

(
(f strict)

cof
)

≃

γMixed

(
(ιshl
Y )

cof
)

≃

γMixed(f)

(4.22)

As the vertical morphisms in diagram (∗) as well as
(
ιshlY

)cof are quasiisomorphisms,
the corresponding morphisms in diagram (4.22) are equivalences. We can thus form the
composition from X to Y , yielding a morphism in Mixed that we will denote by γMixed(f)
and call the morphism in Mixed induced by f . ♦

Remark 4.4.4.2. Let X and Y be strict mixed complexes with cofibrant underlying
chain complex, and let f : X → Y be a strongly homotopy linear quasiisomorphism56.
Then the induced morphism γMixed(f) : γMixed(X)→ γMixed(Y ) is an equivalence. Indeed,
considering diagram (4.22) in Construction 4.4.4.1, it is enough to show that f strict is a
quasiisomorphism. As the underlying morphism of chain complexes of f is by definition
the composition of f strict with the underlying morphism of chain complexes of pshlY , which
is a quasiisomorphism by Proposition 4.2.3.6, this follows from the underlying morphism
of chain complexes of f being a quasiisomorphism. ♦

56By this we mean a strongly homotopy linear morphism whose underlying morphism of chain complexes
is a quasiisomorphism.

171



Chapter 5.

Mixed complexes and circle actions
In Section 6.2.1 we will see that Hochschild homology carries a natural action by the

circle group T, i. e. Hochschild homology forms a functor

HHT : Alg
(
D(k)

)
→ D(k)BT = Fun(BT, k)

where BT can be thought of as the ∞-groupoid with one object ∗ and AutBT(∗) ≃ T,
where T can be defined as

{
z ∈ C

∣∣ |z| = 1
}

. We will define T properly in Section 5.2.1
and BT in Section 5.3.

For calculations it will be helpful to have model categories available that represent
the involved ∞-categories. We have seen in Section 4.3.2 that D(k) is the underly-
ing ∞-category of Ch(k) with the projective model structure. By [HA, 4.1.8.4], the
model structure on Alg(Ch(k)) discussed in Theorem 4.2.2.1 has Alg

(
D(k)

)
as underly-

ing ∞-category. This takes care of the domain of HHT. How about the codomain?
If BT were a 1-category, then we could apply [HA, 1.3.4.25], which would then imply

that Fun(BT,D(k)) is the underlying ∞-category of the injective or projective model
structure on Fun(BT,Ch(k)). This is however not the case – BT is a 2-category, but
not a 1-category. We must thus proceed differently.

In Section 5.2 we will define a cocommutative bialgebra k ⊠ T in D(k), and in Sec-
tion 5.3 we will show that there is a symmetric monoidal equivalence

D(k)BT ≃ LModk⊠T
(
D(k)

)

where D(k)BT carries the pointwise symmetric monoidal structure and LModk⊠T
(
D(k)

)

the one from Definition 3.4.2.1.
By [HA, 4.3.3.17] the model category LModA(Ch(k)), with model structure as in Theo-

rem 4.2.2.1, has LModk⊠T(D(k)) as its underlying∞-category if A is a differential graded
algebra with cofibrant underlying complex and such that γ(A) ≃ k ⊠ T as associative
algebras.

We will show in Section 5.1 that the differential graded algebra D defined in Construc-
tion 4.2.1.1 represents k ⊠ T as an associative algebra. In fact, we show more – D even
represents k⊠ T as an associative and coassociative bialgebra. There is thus a monoidal
(though not symmetric monoidal!) equivalence as follows.

D(k)BT ≃ LModk⊠T
(
D(k)

)
≃ LModD

(
D(k)

)
= Mixed

172



5.1. Formality of certain E∞,E1-bialgebras

Let us end by briefly going over the contents of the individual sections. We will start
in Section 5.1 by showing a formality statement for commutative and coassociative
bialgebras in D(k) with homology isomorphic to the homology of D and k ⊠ T. We
will actually define T and k ⊠ T in Section 5.2, and then use the result of Section 5.1
to conclude in Section 5.2.4 that D ≃ k ⊠ T as bialgebras. We show that there are
symmetric monoidal equivalences of the form Fun(BG, C) ≃ LMod1C⊠G(C) for presentable
∞-categories C and grouplike associative monoids G in S in Section 5.3. Finally, we put
everything together to obtain the monoidal equivalence D(k)BT ≃Mixed in Section 5.4.

5.1. Formality of certain E∞,E1-bialgebras
In this section we show that any two commutative and coassociative bialgebras in

D(k) with homology concentrated in degrees 0 and 1, where it is k, are equivalent as
commutative and coassociative bialgebras.

Let us summarize the strategy used to prove this, which was suggested by Achim
Krause. Let R be a commutative and coassociative bialgebra with homology as described.
Then it suffices to construct another such commutative and coassociative bialgebra inde-
pendently of R and construct an equivalence between that commutative bialgebra and
R.

How could we go about to construct a morphism of commutative bialgebras? Or more
generally, of algebras or coalgebras over some ∞-operad? There is one class of algebras
where is easy to define morphisms out of, the free algebras, using that the free algebra
functor is left adjoint to the forgetful functor. Analogously, it is easy to define morphisms
of coalgebras into cofree algebras. While these concepts are in principle dual to each other,
(by passing to opposite ∞-categories), it is in practice easier to work with free algebras
than with cofree coalgebras. This is because the theory of free algebras works particularly
well when the tensor products are compatible with colimits, see [HA, 3.1.3.5], which is
usually the case in the kind of examples that we are interested in. Analogously, we would
want the tensor products to be compatible with limits in order to obtain a good theory
of cofree coalgebras, but this is usually not the case in examples of interest.

The discussion so far points us towards trying to find some kind of free resolution of the
commutative and coassociative bialgebra R. Unfortunately, free commutative algebras
are not quite as easy to describe as free associative algebras1, as imposing commutativity
requires taking certain (homotopy) orbits of actions by the symmetric groups Σn. Com-
mutative algebras being more difficult to deal with in some respects is also reflected in
the following fact. Let C be a reasonably nice symmetric monoidal model category that
one finds in nature. Then it is often the case that Alg(C) inherits a nice model structure
from C such that its underlying ∞-category is the ∞-category of algebras in the under-
lying∞-category of C. However it is unreasonable to expect the analogous statement to

1[HA, 3.1.3.13] offers a description of free commutative and free associative algebras. We discuss
the special case of associative algebras in Proposition E.7.2.1, and will unpack the statement for
commutative algebras in the proof of Proposition 5.1.5.3.

173



Chapter 5. Mixed complexes and circle actions

hold for commutative algebras, which has to do with Σn orbits of the action of Σn on
X⊗n not necessarily being homotopy orbits2.

So we would prefer to work with free associative algebras. To do so, we dualize the
problem: R is dualizable in the symmetric monoidal ∞-category D(k), and the functor
mapping a dualizable object to its dual,

(−)∨ : (D(k)fd)
op → D(k)fd

is symmetric monoidal equivalence and thus induces an equivalence

BiAlgComm,Assoc
(
D(k)fd

)
= coAlg

(
CAlg

(
D(k)fd

))
≃ Alg

(
coCAlg

(
D(k)fd

))op

so that it actually suffices to show that R∨ is formal.
To do so we will define a diagram

B2 k B4 k

A1 A2 A3 A4 . . .

B3 k

(5.1)

in Alg
(

coCAlg
(
D(k)

))
such that each square is a pushout square and the colimit

of A1 → A2 → . . . has homology isomorphic to H∗(R
∨). Furthermore, every Bn as

well as A1 will be free as an associative algebra on the underlying pointed object in
coCAlg(D(k)).

2The relevant compatibility result for associative algebras is [HA, 4.1.8.4], and for commutative alge-
bras [HA, 4.5.4.7]. The assumptions necessary for the result on associative algebras are mild enough
to usually hold in examples one is interested in. The assumptions made for commutative algebras
however include that every cofibration must be a power cofibration (see [HA, 4.5.4.2]). This is a
strong condition that one can not expect to hold in general for otherwise nice examples found in
nature. For example Ch(k) with the projective model structure (see Fact 4.1.3.1) does not in general
have this property. The chain complex k[0] is cofibrant, so we would need k[0] to be power cofibrant.
Let n > 1 and let X be the chain complex concentrated in degrees 0 and 1 with X0 = X1 = k⊕n,
with ∂X1 = id, and with Σn acting by permutation, and let Y be the chain complex concentrated
in degrees 0 and 1 with Y0 = Y1 = k, with ∂Y1 = id, and with Σn acting trivially. There is an Σn-
equivariant chain morphism f : X → Y that maps a tuple (a1, . . . , an) to

∑
1≤i≤n ai. This morphism

is an acyclic fibration in the projective model structure on Ch(k)B Σn . Let φ : k[0] ∼= k[0]⊗n → Y

be the inclusion (i. e. the identity in level 0). If k[0] were power cofibrant, then it would need to be
possible to lift φ in a Σn-equivariant manner to a chain morphism φ : k[0]→ X. Suppose φ is such
a lift. Let φ(1) = (a1, . . . , an). That φ is Σn equivariant implies that a := a1 = · · · = an. We must
then have

1 = φ(1) = f(φ)(1) = f
(
(a, . . . , a)

)
= n · a

in k, so n must be invertible in k. But there are many interesting commutative rings that do not
contain Q.

174



5.1. Formality of certain E∞,E1-bialgebras

It will then be possible to define a morphism A1 → R∨ that is surjective on homology,
so that it suffices to show that this morphism can be lifted inductively to each An.
As k is a zero object in Alg(coCAlg

(
D(k)

)
) (this will be shown in Remark 5.1.2.9),

this amounts to showing that the composites Bn → An−1 → R∨ are nullhomotopic in
Alg(coCAlg

(
D(k)

)
). Using freeness, dualizing again, and calculations that exploit the

homology of R∨, it will actually be possible to show that in fact any morphism Bn → R∨

in Alg
(

coCAlg
(
D(k)

))
is nullhomotopic.

We now briefly summarize the content of the individual subsections. We start in
Section 5.1.1 by discussing dualizable objects in symmetric monoidal ∞-categories and
the symmetric monoidal duality functor. In Section 5.1.2 we will then construct diagram
(5.1). In order to show that any two morphism Bn → R∨ are homotopic as discussed
above, we will need a formality statement for certain associative algebras, which we show
in Section 5.1.3, and of commutative algebras like R as commutative algebras in D(k),
which we will show in Section 5.1.5. As the case of commutative algebras involves arguing
about orbits of actions of Σn, there is also a short Section 5.1.4 discussing the relationship
of orbits of group actions in D(k) with group homology. The result regarding mapping
spaces that we discussed above will then be shown in Section 5.1.6, and everything will be
put together in Section 5.1.7 to show formality of R as a commutative and coassociative
bialgebra in D(k).

The subsections do not all depend on all the previous ones. The following diagram
shows the dependencies.

Section 5.1.1 Section 5.1.2 Section 5.1.4 Section 5.1.3

Section 5.1.5

Section 5.1.6

Section 5.1.7

5.1.1. Duality
In this section we discuss the notion of dualizable objects in symmetric monoidal

∞-categories, and we mostly follow [HA, 4.6.1], [HA, 5.2.1 and 5.2.2], and [Lur18, 3.2].
We start by recalling the definition of dualizable objects.

Definition 5.1.1.1 ([HA, 4.6.1.7, see also 4.6.1.12]). Let C be a symmetric monoidal
∞-category and let C be an object of C. The object C is called dualizable if there exists
an object B of C and morphisms c : 1C → C ⊗ B and e : B ⊗ C → 1 such that the
composites

C ≃ 1C ⊗ C
c⊗idC−−−→ C ⊗ B ⊗ C

idC ⊗e
−−−→ C ⊗ 1C ≃ C

175



Chapter 5. Mixed complexes and circle actions

and
B ≃ B ⊗ 1C

idB ⊗c
−−−→ B ⊗ C ⊗ B

e⊗idB−−−→ 1C ⊗ B ≃ B

are homotopic to the identity.
In this case, we call B the dual of C, and write B = C∨; by [HA, 4.6.1.6 and 4.6.1.10]

C∨ as well as c and e are essentially uniquely determined by C. We will also call C
together with B, c, e, and homotopies as above a duality datum.

We let Cfd be the full subcategory of C spanned by the dualizable objects. ♦

Remark 5.1.1.2. It follows easily from the definition that if C and C ′ are dualizable
objects in a symmetric monoidal ∞-category C, with c and e as in Definition 5.1.1.1
exhibiting C∨ as the dual of C and similarly c′ and e′ exhibiting C ′∨ as a dual of C ′,
then the compositions

1C ≃ 1C ⊗ 1C
c⊗c′
−−→ C ⊗ C∨ ⊗ C ′ ⊗ C ′∨ idC ⊗τ⊗idC′∨

−−−−−−−−→
(
C ⊗ C ′

)
⊗
(
C∨ ⊗ C ′∨

)

and
(
C∨ ⊗ C ′∨

)
⊗
(
C ⊗ C ′

) idC∨ ⊗τ⊗idC′
−−−−−−−−→ C∨ ⊗ C ⊗ C ′∨ ⊗ C ′ e⊗e′

−−→ 1C ⊗ 1C ≃ 1C

exhibit C∨⊗C ′∨ as a dual of C⊗C ′, where τ is the symmetry equivalence and 1C ≃ 1C⊗1C

is the unitality equivalence. In particular the tensor product of two dualizable objects
is again dualizable. Furthermore, 1C is dualizable with dual 1C, so it follows from [HA,
2.2.1.2] that Cfd inherits a symmetric monoidal structure from C such that the inclusion
can be upgraded to a symmetric monoidal functor. ♦

It is easy to see from the definition that if C is dualizable with dual C∨, then C∨ is
again dualizable with dual C∨∨ ≃ C. It is also clear from the definition that a symmetric
monoidal functor F : C → D maps Cfd to Dfd and so restricts to a symmetric monoidal
functor F : Cfd → Dfd. In fact, the following is true.
Fact 5.1.1.3 ([Lur18, 3.2.4]). Let C be a symmetric monoidal ∞-category. Then the
assignment C 7→ C∨ sending an object of C to a dual can be upgraded to an equivalence
of symmetric monoidal ∞-categories

(−)∨ : (Cfd)
op → Cfd

with inverse ((−)∨)op.
Furthermore, this equivalence is compatible with symmetric monoidal functors in the

following sense. Let F : C → D be a symmetric monoidal functor. Then there is a
commutative diagram of symmetric monoidal functors as follows.

(Cfd)
op Cfd

(Dfd)
op Dfd

(−)∨

F op F

(−)∨

♧

176



5.1. Formality of certain E∞,E1-bialgebras

Remark 5.1.1.4. While the part of the statement of Fact 5.1.1.3 about compatibility
with symmetric monoidal functors is not stated explicitly in [Lur18, 3.2.4]3, this becomes
clear by going though every step of the proof. In this remark we provide some pointers
to the relevant parts of the proof of [Lur18, 3.2.4] as well as the relevant material in [HA,
5.2.1 and 5.2.2] that is relevant for checking this.

First, as F maps dualizable objects to dualizable objects, it suffices to consider the
case in which every object in C and D is dualizable.

Then the construction of the pairing of∞-categories λ = pr1 : (C×C)×C C/1C
→ C×C,

as well as its upgrade to a pairing of symmetric monoidal ∞-categories, is compatible
with F . Furthermore, the description of left and right universal objects in (C×C)×C C/1C

from the proof of [Lur18, 3.2.4] together with the fact that F preserves duality data
implies that the morphism of pairings of ∞-categories induced by F is left and right
representable (see [HA, 5.2.1.16]). The symmetric monoidal functor (−)∨ for C is con-
structed in [HA, 5.2.2.25] as a lax symmetric monoidal functor – it is the left duality
functor D⊗

λ that uses that λ is left representable. It is shown in [Lur18, 3.2.4] that this
functor is actually symmetric monoidal, but as symmetric monoidal functors form a full
subcategory of lax symmetric monoidal functors [HA, 2.1.3.7] it suffices to consider these
functors as lax symmetric monoidal functors when discussing compatibility with F .

So one only needs to check that the construction of the lax symmetric monoidal left
duality functors of left representable pairings of symmetric monoidal ∞-categories are
compatible with left representable morphisms of left representable pairings of symmetric
monoidal∞-categories. The lax symmetric monoidal functor D⊗

λ for C is constructed as
the composition of the inverse of a symmetric monoidal equivalence φC : (C

0
λ)

op → Cop

with the lax monoidal inclusion ιC : (C
0
λ)

op → (Cλ)
op and a symmetric monoidal functor

ψC : (Cλ)
op → C, so it suffices to check that each of those is suitably compatible with F .

The inclusion ιC is defined in [HA, 5.2.1.28], and can be upgraded to a lax symmetric
monoidal functor by the discussion in [HA, 5.2.2.25] together with [HA, 2.2.1.9]. That
it is compatible with F follows from the definition together with ι⊗D being fully faithful
and [HA, 5.2.1.17].

The symmetric monoidal equivalence φC is the composition of ιC with the functor con-
structed in [HA, 5.2.1.29]. It is clear from definition that this latter functor is compatible
with F .

Finally, ψC arises from the counit of an adjunction as discussed in [HA, 5.2.2.24] and
is thus compatible with F . ♦

Remark 5.1.1.5. Let us give some hints regarding the opposite of the dualization func-
tor being its inverse. Let us – as in Remark 5.1.1.4 – reduce to the case where every object
of C is dualizable. The duality functor discussed so far, in particular in Remark 5.1.1.4
starts with the pairing of ∞-categories λ = pr1 :M = (C × C) ×C C/1C

→ C × C that is
both left and right representable. This pairing can be upgraded to a pairing of symmetric
monoidal ∞-categories λ⊗, and then left representability of λ is used to construct a lax

3Functoriality is however used and alluded to with [Lur18, 3.2.6].

177



Chapter 5. Mixed complexes and circle actions

symmetric monoidal morphism of pairings of symmetric monoidal ∞-categories

TwArr(C)⊗ M⊗

C⊗ ×Fin∗ (C
op)⊗ C⊗ ×Fin∗ C

⊗

λ⊗

idC⊗×D
⊗
λ

where the bottom functor is on the second factor precisely the lax symmetric monoidal
left duality functor that we are interested in and called (−)∨. See [HA, 5.2.2.25] and also
Remark 5.1.1.4.

Now the important point is that the underlying morphism of pairings of∞-categories
is right representable. If we assume this for the moment, then we can use functoriality
of right duality functors (which can be shown completely analogously to the case of left
duality functors sketched in Remark 5.1.1.4) to obtain a commutative diagram

C⊗ C⊗

(Cop)⊗ C⊗

id

(Dop
λ )

⊗
id

D
′⊗
λ

where the top horizontal functor is the right duality functor of TwArr(C)⊗, which can be
identified with the identity. This shows that the opposite of the right duality functor of
λ (which is symmetric monoidal by analogous considerations as the left duality functor)
is an inverse to the left duality functor, as symmetric monoidal functors.

Next, there is a commutative diagram as follows.

(
(C × C)×C C/1C

)⊗ (
(C × C)×C C/1C

)⊗

C⊗ ×Fin∗ C
⊗

C⊗ ×Fin∗ C
⊗ C⊗ ×Fin∗ C

⊗

τ ′

pr⊗1

pr⊗1

τ⊗

id

where τ ′ maps a tuple (C,D,C⊗D → 1) to (D,C,D⊗C ≃ C⊗D → 1), where we use
the symmetry equivalence of C, and τ swaps the two factors. As pr⊗1 was a pairing of
symmetric monoidal∞-categories with left representable underlying pairing, one can see
that the composition on the right is a pairing of symmetric monoidal∞-categories with
right representable underlying pairing, and the right duality functor can be identified
with the left duality functor of pr⊗1 . Furthermore, it follows from the description of left
and right universal objects in [Lur18, 3.2.4] that the morphism of pairings encoded in
the diagram is right representable. By functoriality of right duality functors we thus

178



5.1. Formality of certain E∞,E1-bialgebras

obtain a commutative diagram of symmetric monoidal functors

(Cop)⊗ C⊗

(Cop)⊗ C⊗

D
′⊗
λ

id id

D
⊗
λ

that shows that D⊗
λ ≃ D′⊗

λ as lax symmetric monoidal (and hence also as symmetric
monoidal) functors. As we previously obtained an equivalence (D′op

λ )⊗ ≃ (D−1
λ )⊗, this

shows that (Dop
λ )⊗ ≃ (D−1

λ )⊗.
Finally, let us say a few words on why, given a perfect4 pairing of ∞-categories5

λ :M→ C ×D, the morphism of pairings

TwArr(C) M

C × (Cop) C × D

λ

idC×Dλ

constructed in [HA, 5.2.2.24 and 5.2.2.25] is right representable, which means that the
top horizontal functor needs to preserve right universal objects, see [HA, 5.2.1.13 and
5.2.1.8]. To start, we first see that by unwrapping the definition6 we have to show that
the composition of two morphisms of pairings of ∞-categories as depicted in the follow
diagram preserves right universal objects.

TwArr0λ(C) TwArrλ(C) M

C × C0λ
op

C × Copλ C × D

λ

Unpacking the definition using [HA, 5.2.1.24] and in particular [HA, 5.2.1.28] we see
that we can describe objects of Copλ as tuples (Cr, D, ϕ), with Cr an object of Cop, D an
object of D, and ϕ a morphism D → Dλ(Cr) in D. The fiber in TwArrλ(C) of a pair
(Cl, (Cr, D, ϕ)) in C × Copλ can be identified with MapC(Cl, Cr). An object in TwArrλ(C)
that is given by a morphism f : Cl → Cr as just described is then mapped to the object
in M described as follows. As λ is left representable, there is a left universal object Mr

over Cr inM, lying over (Cr,Dλ(Cr)). A λ-cartesian lift of the morphism (f, ϕ) is then
a morphism Ml →Mr in M where Ml lies over (Cl, D). f is mapped to this object Ml.

By definition (see [HA, 5.2.1.28]) C0λ
op is the full subcategory of Copλ spanned by those

tuples where ϕ is an equivalence, and the left square in the above commutative diagram
is a pullback. One can then see that an object in TwArr0λ(C) is right universal precisely

4See [HA, 5.2.1.20 and 5.2.1.22].
5Of which the λ we discussed so far is an example by the proof of [Lur18, 3.2.4].
6See [HA, 5.2.2.24 and 5.2.2.25] and also Remark 5.1.1.4.

179



Chapter 5. Mixed complexes and circle actions

if the associated morphism f : Cl → Cr as before is an equivalence. This then implies
that (f, ϕ) will be an equivalence, so the λ-cartesian lift Ml →Mr is also an equivalence,
and hence Ml is left universal, as Mr is so by assumption. But as λ is perfect, this means
that Ml is also right universal, see [HA, 5.2.1.22]. ♦

We make a bit more explicit how (−)∨ applies to morphisms in the following remark.

Remark 5.1.1.6. Let f : C → D be a morphism of dualizable objects in a symmetric
monoidal∞-category C. Then the functor (−)∨ from Fact 5.1.1.3 sends f to a morphism
f∨ : D∨ → C∨. Unpacking the definitions7, one can see that this morphism fits into a
commutative diagram as follows

D∨ C∨

D∨ ⊗ 1C 1C ⊗ C
∨

D∨ ⊗ C ⊗ C∨ D∨ ⊗D ⊗ C∨

f∨

≃ ≃

id⊗c

id⊗f⊗id

e⊗id

where the top two vertical equivalences are the unitality equivalences of C, the morphism
c takes part in a duality datum for C, and e takes part in a duality datum for D. ♦

Applying Fact 5.1.1.3 to the symmetric monoidal functor γ : Ch(k)cof → D(k) (see
Proposition 4.3.2.1) we obtain the following.

Corollary 5.1.1.7. There is a commutative diagram of symmetric monoidal functors
as follows

(
Ch(k)coffd

)op Ch(k)coffd

(
D(k)fd

)op
D(k)fd

(−)∨

γop γ

(−)∨

and both horizontal functors are equivalences. ♥

Example 5.1.1.8. Consider the commutative and cocommutative bialgebra D in Ch(k)
from Construction 4.2.1.1. Its underlying chain complex is k · {1} ⊕ k · {d} with 1 in
degree 0 and d in degree 1. This chain complex is dualizable with dual8 k · {1}⊕k · {d∨}
with 1 in degree 0 and d∨ in degree −1.

By Fact 5.1.1.3 the commutative and cocommutative bialgebra structure on D induces
again a commutative and cocommutative bialgebra structure on D∨, with unit the basis
element we called 1 in degree 0 (see Remark 5.1.1.6). The rest of the bialgebra structure
is then already uniquely determined just as in Construction 4.2.1.1, with in particular
∆(d∨) = 1⊗ d∨ + d∨ ⊗ 1. ♦

7See in particular [Lur18, 3.2.4] and [HA, 5.2.1.9].
8A duality datum is given by defining e by e(1⊗ 1) = 1 = e(d∨ ⊗ d) and c by c(1) = d⊗ d∨ + 1⊗ 1.

180



5.1. Formality of certain E∞,E1-bialgebras

As (−)∨ is a symmetric monoidal equivalence, it induces an equivalence that converts
algebras into coalgebras and vice versa, as we note next.
Remark 5.1.1.9. Let C be a symmetric monoidal ∞-category and O and O′ two
∞-operads. Note that the symmetric monoidal duality functor

(−)∨ : (Cfd)
op → Cfd

from Fact 5.1.1.3 induces a symmetric monoidal equivalence

BiAlgO,O′(Cfd) ≃AlgO′

(
AlgO(Cfd)

op)op
(−)∨

−−−→AlgO′

(
AlgO

(
Copfd
)op)op

≃ AlgO′

(
coAlgO(Cfd)

)op
♦

5.1.2. Construction of a resolution
The goal of this section is to construct diagram (5.1) that was discussed in the intro-

duction to Section 5.1, and we refer to there for motivation. We will construct such a
diagram in Alg(coCAlg(Ch(k))) first and then show that its image in Alg(coCAlg(D(k)))
has the required properties. While we are still discussing algebras and coalgebras in the
symmetric monoidal 1-category Ch(k), one should keep in mind that, as explained in
Section 3.3, there is a canonical isomorphism

Alg
(

coCAlg
(
Ch(k)

))
∼= coCAlg

(
Alg
(
Ch(k)

))
= BiAlgAssoc,Comm

(
Ch(k)

)

so we will be justified in identifying these categories and talking about objects as cocom-
mutative bialgebras.

Let us now briefly go over the content of the subsections. In order to make it easier
to talk about certain differential graded algebras that have free underlying Z-graded
k-algebras, we start in Section 5.1.2.1 by introducing some convenient notation. We will
then begin the actual construction of diagram (5.1) in Section 5.1.2.2 by constructing a
sequence of cocommutative bialgebras

A0 → A1 → A2 → . . .

in Ch(k). Section 5.1.2.3 will then be devoted to calculating the homology of colimnAn.
In Section 5.1.2.4 we will construct pushout diagrams

Bn Bn

An−1 An

of cocommutative bialgebras in Ch(k). The cocommutative bialgebra Bn itself is not
isomorphic to k, but maps to a cocommutative bialgebra in D(k) that is equivalent to k,
as we will see in Section 5.1.2.5. We then combine the previous results in Section 5.1.2.6
to describe the induced diagram (5.1) in Alg

(
coCAlg

(
D(k)

))
and show that it has the

required properties. Finally, in Section 5.1.2.7 we describe A1 and Bn as free associative
algebras on underlying pointed cocommutative coalgebras.

181



Chapter 5. Mixed complexes and circle actions

5.1.2.1. Notation for freely generated differential graded algebras

In this short section we introduce some notation for differential graded algebras whose
underlying Z-graded k-algebra is free associative.
Notation 5.1.2.1. Let X be a set and let9 degCh(x) be an integer for every element x
of X. Then we can form a Z-graded k-module with basis X as follows.

k ·X :=
⊕

x∈X

k[degCh(x)]

We will denote the free associative Z-graded k-algebra generated by k ·X by

FreeAssoc(X)

and if X = { x1, x2, . . . } then we will often write

FreeAssoc(x1, x2, . . .) = FreeAssoc(X)

instead. A basis of FreeAssoc(X) is given by elements of the form xi1 · · · xin for n ≥ 010

with xij elements of X for 1 ≤ j ≤ n.
We can make FreeAssoc(X) into an associative differential graded algebra by furnishing

it with the zero boundary operator. But we will sometimes want to define associative
differential graded algebras that have a free underlying Z-graded k-algebra, but do have
nontrivial boundaries. So assume that for every element x of X we are given an element
f(x) of FreeAssoc(X)degCh(x)−1. Then we use the notation

FreeAssoc(X
∣∣ ∂(x) = f(x)

)

for the differential graded k-algebra with underlying Z-graded k-algebra FreeAssoc(X)
and boundary operator (uniquely) extended by k-linearity and the Leibniz rule from the
prescription ∂(x) = f(x) for every element x of X. This does not in general actually
define a differential graded algebra, as in general there is no reason for the boundary
operator to square to 0, so if we use this notation we will need to check that ∂(∂(x)) = 0
for every element x of X.

Sometimes we will omit ∂(x) in this notation for some elements x of X, in which case
this is to be interpreted as ∂(x) = 0. ♦

5.1.2.2. Construction of A as a directed colimit

In this section we construct a sequence of cocommutative bialgebras

A0 → A1 → A2 → . . .

in Ch(k) and describe its colimit.
9Ultimately we want to define differential graded algebras generated by X, and in this differential

graded algebra the chain degree of an element x of X will of course be exactly what we (prematurely,
to avoid introducing more temporary notation) call degCh(x) here, making this notation in the end
compatible with the notation in Definition 4.1.1.1.

10If n = 0 we interpret the product as 1.

182



5.1. Formality of certain E∞,E1-bialgebras

Construction 5.1.2.2. We will construct a cocommutative bialgebra in chain com-
plexes An for every integer n ≥ 0. Using Notation 5.1.2.1, we define the underlying
differential graded k-algebra of An as

An := FreeAssoc


y1, . . . , yn

∣∣∣∣∣∣
∂(yk) =

∑

i+j=k

yiyj




where degCh(k)(yi) = −1 and where the sum should of course be interpreted to only be
taken over those i and j for which yi and yj are defined11. For this to actually define a
differential graded algebra structure the definition of ∂ needs to satisfy ∂

(
∂(yl)

)
= 0 for

any 1 ≤ l ≤ n, which is the case as the following basic calculation shows.

∂
(
∂(yl)

)
= ∂


∑

i+j=l

yiyj




=
∑

i+j=l

∂(yi)yj −
∑

i+j=l

yi∂(yj)

=
∑

i+j+k=l

yiyjyk −
∑

i+j+k=l

yiyjyk = 0

We next define a cocommutative coalgebra structure on An. As the underlying graded
k-algebra of An is free, we can define the counit ϵ : An → k as well as the comultiplication
∆: An → An ⊗ An to be the morphisms of graded k-algebras determined by

ϵ(yk) = 0

∆(yk) = 1⊗ yk + yk ⊗ 1

for 1 ≤ k ≤ n. By definition comultiplication and counit are morphisms of algebras, so if
this defines a cocommutative coalgebra structure in Ch(k), then this will make An into
a cocommutative bialgebra in Ch(k) as claimed.

As counit and unit of the presumptive coalgebra structure are morphisms of algebras,
it suffices to check compatibility of ϵ and ∆ with ∂, coassociativity, counitality, and co-
commutativity on multiplicative generators. For example for the comultiplication being
a morphism of chain complexes we can calculate

∆
(
∂(yk)

)
= ∆


∑

i+j=k

yiyj




=
∑

i+j=k

(1⊗ yi + yi ⊗ 1) ·
(
1⊗ yj + yj ⊗ 1

)

=
∑

i+j=k

1⊗ yiyj − yj ⊗ yi + yi ⊗ yj + yiyj ⊗ 1

11So in particular, ∂(y1) = 0 and ∂(y2) = y21 .

183



Chapter 5. Mixed complexes and circle actions

=
∑

i+j=k

1⊗ yiyj + yiyj ⊗ 1

= ∂(1⊗ yk + yk ⊗ 1)

= ∂(∆(yk))

and as another example the following calculation verifies coassociativity.

(id⊗∆)
(
∆(yk)

)
= 1⊗ 1⊗ yk + 1⊗ yk ⊗ 1 + yk ⊗ 1⊗ 1 = (∆⊗ id)

(
∆(yk)

)

Compatibility of ϵ with ∂, counitality, and cocommutativity are similarly immediate.
We can completely analogously define a cocommutative bialgebra A in Ch(k) as

A := FreeAssoc


y1, y2, . . .

∣∣∣∣∣∣
∂(yk) =

∑

i+j=k

yiyj




with counitality and comultiplication defined exactly as for An. ♦

Remark 5.1.2.3. There is a commutative diagram of cocommutative bialgebras in Ch(k)
as follows

A0 A1 A2 · · ·

A

where all morphisms are the obvious inclusions. This diagram exhibits A as the colimit of
the directed system of inclusions in the top row, as can be seen using that directed colim-
its of cocommutative bialgebras in Ch(k) are calculated on underlying chain complexes
by [HA, 3.2.2.5] and [HA, 3.2.3.1] in combination with [HTT, 5.5.8.3]. ♦

5.1.2.3. Homology of A

As described in the introduction to Section 5.1 we will later construct a morphism from
the object in Alg(coCAlg(D(k))) represented by A to R∨, the dual of a commutative
bialgebra in D(k) with prescribed homology. From the construction it will be clear that
the induced morphism on homology is surjective, and we will want to conclude that the
morphism is an equivalence, or equivalently that the induced morphism on homology is
an isomorphism. In order to do this we should calculate the homology of A, which we
do in this section.

Proposition 5.1.2.4. The chain complex A constructed in Construction 5.1.2.2 has
homology

Hn(A) ∼=

{
k if n = 0 or n = −1

0 otherwise

and the unit 1 of A and y1 are representatives of elements forming a basis of H0(A) and
H1(A). ♥

184



5.1. Formality of certain E∞,E1-bialgebras

Proof. A is freely generated as a Z-graded k-module by words in the multiplicative
generators yi, i. e. by elements of the form

yi1 · · · yin

with n ≥ 0 (for n = 0 we interpret the product as 1) and ij elements of Z≥1. For
m ≥ 0, let A(m) be the sub Z-graded k-module generated by elements of this form with∑n

j=1 ij = m. It follows directly from the definitions that A(m) is in fact a subcomplex
of A, and that furthermore

A ∼=
⊕

m≥0

A(m)

in Ch(k).
Note that A(0) and A(1) are both concentrated in a single degree and of rank 1, with

A(0) having a basis formed by 1 in degree 0 and A(1) having a basis formed by y1 in
degree −1. To finish the proof it thus suffices to show that A(m) is acyclic for m > 1.

For this, we fix m > 1 and define a chain homotopy h on A(m) by extending k-linearly
from the following definition on the basis.

h(yi1 · · · yin) =

{
yi2+1yi3 · · · yin if n > 1 and i1 = 1

0 otherwise

We can now check that h is indeed a contracting homotopy by checking on basis elements.
For this we distinguish three cases. First, the only basis element for which n ≤ 1 is ym,
and for it we have the following calculation.

(∂h+ h∂)(ym) = ∂(0) + h


 ∑

i+j=m

yiyj


 = ym

Next, for those basis elements for which n > 1 and i1 = 1, we obtain the following.

(∂h+ h∂)(y1yi2 · · · yin)

= ∂(yi2+1 · · · yin) + h


−y1


 ∑

k+l=i2

ykylyi3 · · · yin


+ y1yi2∂(yi3 · · · yin)




=


 ∑

k+l=i2+1

ykylyi3 · · · yin


− yi2+1∂(yi3 · · · yin)

−


 ∑

k+l=i2

yk+1ylyi3 · · · yin


+ yi2+1∂(yi3 · · · yin)

185



Chapter 5. Mixed complexes and circle actions

= y1yi2 · · · yin +


 ∑

k+l=i2

yk+1ylyi3 · · · yin


− yi2+1∂(yi3 · · · yin)

−


 ∑

k+l=i2

yk+1ylyi3 · · · yin


+ yi2+1∂(yi3 · · · yin)

= y1yi2 · · · yin

Finally, for the other basis elements, i. e. those with n > 1 and i1 6= 1, we have the
following calculation.

(∂h+ h∂)(yi1yi2 · · · yin)

= h





 ∑

k+l=i1

ykylyi2 · · · yin


− yi1∂(yi2 · · · yin)




= yi1−1+1yi2 · · · yin +
∑

k+l=i1,k>1

0 + 0

= yi1yi2 · · · yin

5.1.2.4. Construction of An+1 from An

In order to be able to lift a morphism from An−1 to a morphism from An, we will
describe An as a pushout of An−1 in this section. We start by constructing the relevant
commutative square, and show that this square is a pushout square at the end of this
section.

Construction 5.1.2.5. Let n ≥ 1. Using Notation 5.1.2.1 we define a morphism of
differential graded algebras as

Bn = FreeAssoc
(
y
n

)
→ FreeAssoc

(
y
n
, yn

∣∣∣ ∂(yn) = y
n

)
= Bn

with degCh(yn) = −1 and degCh(yn) = −2.
We can upgrade this morphism of differential graded k-algebras to a morphism of co-

commutative bialgebras in Ch(k), by defining counit ϵ and comultiplication ∆ as follows
on the multiplicative basis.

ϵ(yn) = 0

ϵ
(
y
n

)
= 0

∆(yn) = 1⊗ yn + yn ⊗ 1

∆
(
y
n

)
= 1⊗ y

n
+ y

n
⊗ 1

186



5.1. Formality of certain E∞,E1-bialgebras

Checking that ϵ and ∆ are compatible with ∂ as well as coassociativity, counitality, and
cocommutativity are similar to Construction 5.1.2.2.

We can define a morphism of differential graded algebras

Bn → An

by sending yn to yn and y
n

to ∂(yn). It is easy to check that this is also compatible with
the coalgebra structure, making this a morphism of cocommutative coalgebras.

Finally, the restriction to Bn factors through An−1, so that we obtain a commutative
diagram

Bn Bn

An−1 An

(5.2)

in Alg(coCAlg(Ch(k))). ♦

In order to show that (5.2) is a pushout square, we will need to two preliminary results
that allow us to detect colimits in Alg(coCAlg(Ch(k))) on underlying algebras in Ch(k).

Proposition 5.1.2.6. Let C be a symmetric monoidal ∞-category and let O be a re-
duced12 ∞-operad with o the essentially unique object in the underlying ∞-category O.
Assume that C is cocomplete and the tensor product preserves colimits separately in each
variable.

Then coAlgO(C) is cocomplete and the induced symmetric monoidal structure on
coAlgO(C) is also compatible with colimits. ♥

Proof. coAlgO(C) is cocomplete by [HA, 3.2.2.5]. Furthermore, the forgetful functor

evo : coAlgO(C)→ C

is symmetric monoidal by Proposition E.4.2.3, conservative by [HA, 3.2.2.6] and pre-
serves colimits by [HA, 3.2.2.5]. It thus follows that the symmetric monoidal structure
on coAlgO′(C) is also compatible with colimits.

Proposition 5.1.2.7. Let C be a symmetric monoidal ∞-category and let O and O′ be
∞-operads. Assume that O′ is reduced and let o be the essentially unique object in O′.

Then the forgetful functor

AlgO(evo) : AlgO

(
coAlgO′(C)

)
→ AlgO(C) (5.3)

is conservative, i. e. reflects equivalences.
Assume additionally that C is cocomplete and the tensor product preserves colimits

separately in each variable. Then AlgO(evo) preserves colimits. In particular, also being
conservative, AlgO(evo) detects colimits. ♥

12See [HA, 2.3.4.1] for a definition.

187



Chapter 5. Mixed complexes and circle actions

Proof. The symmetric monoidal forgetful functor13

evo : coAlgO′(C)→ C

is by [HA, 3.2.2.6] conservative and preserves colimits by [HA, 3.2.2.5]. It thus follows
from Proposition E.3.4.1 and Proposition E.7.3.114 that the forgetful functor (5.3) is also
conservative and colimit-preserving, and hence detects colimits.

Proposition 5.1.2.8. The commutative square (5.2) constructed in Construction 5.1.2.5
is a pushout diagram in Alg

(
coCAlg(Ch(k))

)
♥

Proof. It follows from Proposition 5.1.2.715 that the forgetful functor from cocommuta-
tive bialgebras to underlying algebras

Alg
(
ev〈1〉

)
: Alg

(
coCAlg(Ch(k))

)
→ Alg

(
Ch(k)

)

detects colimits. It thus suffices to show that the underlying square of differential graded
k-algebras is a pushout square.

The functor from chain complexes of k-modules to Z-graded k-modules is conservative,
symmetric monoidal, and preserves colimits. It thus follows from Proposition E.3.4.1
and Proposition E.7.3.1 just as in the proof of Proposition 5.1.2.7 that the forgetful
functor from differential graded k-algebras to Z-graded k-algebras detects colimits, so it
actually suffices to show that the underlying commutative square of Z-graded k-algebras
is a pushout square.

There is a pushout diagram of Z-graded k-modules

0 k · { yn }

k ·
{
y
n

}
k ·
{
y
n
, yn

}

where all morphisms are the obvious inclusions, which induces the pushout diagram of
Z-graded k-algebras at the top of the following commutative diagram

k FreeAssoc(yn)

FreeAssoc
(
y
n

)
FreeAssoc

(
y
n
, yn

)

FreeAssoc(y1, . . . , yn−1) FreeAssoc(y1, . . . , yn)

13See Proposition E.4.2.3.
14coAlgO′(C) is cocomplete and its symmetric monoidal structure is compatible with colimits by Propo-

sition 5.1.2.6.
15The tensor product of Ch(k) preserves colimits in each variable separately as the symmetric monoidal

structure is closed by Definition 4.1.2.1.

188



5.1. Formality of certain E∞,E1-bialgebras

where all morphisms are the obvious inclusions. We have to show that the bottom square
is a pushout square. As the top square is a pushout square, it suffices to show that the
big outer square is a pushout.

But the big outer square is FreeAssoc applied to the following pushout diagram of
Z-graded k-modules

0 k · { yn }

k · { y1, . . . , yn−1 } k · { y1, . . . , yn }

and is thus a pushout diagram.

5.1.2.5. Identification of Bn up to quasiisomorphism

In this section we show that the cocommutative bialgebras Bn defined in Construc-
tion 5.1.2.5 are quasiisomorphic to k. We start by remarking that k is a zero object in
Alg(coCAlg(Ch(k))).

Remark 5.1.2.9. Let C be a cocomplete and complete symmetric monoidal∞-category
such that the tensor product is compatible with colimits in each variable. By [HA,
3.2.2.4 and 3.2.3.1], coCAlg(C) is complete and cocomplete, and the induced symmetric
monoidal structure is again compatible with colimits by Proposition 5.1.2.6. Another
application of [HA, 3.2.2.4 and 3.2.3.1] yields that Alg

(
coCAlg(C)

)
is complete and co-

complete.
By [HA, 3.2.1.8], an initial object is given by the monoidal unit. We want to show

that this object is also final and thus a zero object in Alg
(
coCAlg(C)

)
. As the forgetful

functor
eva : Alg

(
coCAlg(C)

)
→ coCAlg(C)

detects limits by [HA, 3.2.2.4] and is also symmetric monoidal by Proposition E.4.2.3,
it suffices to show that the monoidal unit is a final object in coCAlg(C), which again
follows from [HA, 3.2.1.8] (and passing to opposite categories twice). ♦

Proposition 5.1.2.10. Let n ≥ 1. The unique morphism in Alg(coCAlg(Ch(k))) from
the monoidal unit k (see Remark 5.1.2.9) to Bn is a quasi-isomorphism. ♥

Proof. The forgetful functor Alg(ev〈1〉) is symmetric monoidal and detects colimits by
Proposition 5.1.2.7. By [HA, 3.2.1.8] it thus suffices to show that the unique morphism
in Alg(Ch(k)) from the monoidal unit k to FreeAlg(B′

n) is a quasiisomorphism, where B′
n

is the chain complex which as a Z-graded k-module is k ·
{
y
n
, yn

}
, with degCh(yn) = −1

and degCh(yn) = −2, and with boundary operator defined by ∂(yn) = y
n
.

But the left adjoint FreeAlg to the forgetful functor eva preserves initial objects, so
this morphism is FreeAlg applied to the unique morphism of chain complexes 0→ B′

n.

189



Chapter 5. Mixed complexes and circle actions

By Proposition E.7.2.1 we can thus identify k → FreeAlg(B′
n) with the following

inclusion of the summand indexed by 0

k = B′⊗0
n →

⊕

i≥0

B′⊗i
n

As the tensor product of a contractible chain complex with another chain complex is
again contractible it hence suffices to show that B′

n is contractible, which is clear.

5.1.2.6. The resolution in D(k)

In this section we describe the image of the constructions discussed in Section 5.1.2.2
and Section 5.1.2.4 under the symmetric monoidal functor γ : Ch(k)cof → D(k). The
important point is that the pushout diagram (5.2) is in fact a homotopy pushout and
thus mapped under γ to a pushout in Alg(coCAlg(D(k))), and likewise for the colimit
of A0 → A1 → A2 → . . . .

Proposition 5.1.2.11. The underlying differential graded k-algebras of An and A from
Construction 5.1.2.2 and of Bn and Bn from Construction 5.1.2.5 are cofibrant. Fur-
thermore the pushout square (see Construction 5.1.2.5 and Proposition 5.1.2.8)

Bn Bn

An−1 An

is a homotopy pushout in Alg(Ch(k)) and the colimit of the directed system (see Re-
mark 5.1.2.3)

A0 → A1 → A2 → . . .

is a homotopy colimit in Alg(Ch(k)). ♥

Proof. For the cofibrancy statements it suffices to show that A0 and Bn (for n ≥ 1) are
cofibrant and that the morphisms Bn → Bn are generating cofibrations. The former is
the case as A0

∼= FreeAlg(0) and Bn
∼= FreeAlg(k · { y

n
}), and the chain complexes 0 and

k · {y
n
} are cofibrant. The latter is the case as the morphism in question is isomorphic

to FreeAlg applied to a generating cofibration in Ch(k), see [Hov99, 2.3.3], Fact 4.1.3.1,
and Theorem 4.2.2.1 (2).

That the pushout square is a homotopy pushout now follows from [HTT, A.2.4.4], and
that the directed colimit is a homotopy colimit follows from [HTT, A.2.9.24 (i)]16.

Notation 5.1.2.12. Recall from Proposition 4.3.2.1 that we denote the symmetric
monoidal functor from Ch(k)cof to D(k) by γ.
16The reference shows that the diagram is cofibrant in the projective model structure on Fun(Z≥0,Ch(k))

if and only if A0 is cofibrant and An → An+1 is a cofibration for every n ≥ 0.

190



5.1. Formality of certain E∞,E1-bialgebras

Let O and O′ be ∞-operads. Then we denote the induced functor on O-algebras of
O′-coalgebras as follows.

γO
′

O : AlgO

(
coAlgO′

(
Ch(k)cof

))
→ AlgO

(
coAlgO′

(
D(k)

))
♦

Remark 5.1.2.13. As all involved objects have cofibrant underlying chain complexes by
Proposition 5.1.2.11 in combination with Proposition 4.2.2.12, the commutative squares
and directed system constructed in Construction 5.1.2.5 and Remark 5.1.2.3 are mapped
by γComm

Assoc to commutative diagrams in Alg(coCAlg(D(k))). ♦

Corollary 5.1.2.14. For n ≥ 1, the commutative square

γComm
Assoc (Bn) γComm

Assoc (Bn)

γComm
Assoc (An−1) γComm

Assoc (An)

in Alg(coCAlg(D(k)))) is a pushout diagram and the morphisms

γComm
Assoc (An)→ γComm

Assoc (A)

exhibit γComm
Assoc (A) as a colimit of

γComm
Assoc (A0)→ γComm

Assoc (A1)→ γComm
Assoc (A2)→ . . .

in Alg(coCAlg(D(k))). ♥

Proof. As D(k) is presentable symmetric monoidal by Proposition 4.3.2.1, it suffices
by Proposition 5.1.2.7 to show that the underlying diagrams in Alg(D(k)) are colimit
diagrams.

By Proposition 5.1.2.11 the diagrams of differential graded algebras are pointwise
cofibrant (not just with cofibrant underlying chain complexes) as well as homotopy
colimit diagrams, so the claim follows from combining this with Proposition 4.4.2.1 and
[HA, 1.3.4.24].

5.1.2.7. Free generation of certain associative algebras

In order to be able work with morphisms out of γE∞
E0

(Bn), we will show in this section
that γE∞

E0
(Bn) is the free associative algebra on an object in AlgE0

(
coCAlg(D(k))

)
.

We start by constructing the morphism that exhibits γE∞
E0

(Bn) as a free associative
algebra.

Construction 5.1.2.15. Let n ≥ 1. We define B′
n to be the sub Z-graded k-module of

Bn (see Construction 5.1.2.5) generated by 1 and y
n
. Note that B′

n is closed under ∂ as
well as ∆, and the unique morphism k → Bn in Alg(coCAlg(Ch(k))) (see Remark 5.1.2.9)
factors over B′

n.

191



Chapter 5. Mixed complexes and circle actions

We can thus consider B′
n as an object of coCAlg(Ch(k))k/. The underlying chain

complexes of B′
n and Bn are cofibrant by [Hov99, 2.3.6], so we can consider the inclusion

of B′
n into Bn as a morphism in coCAlg(Ch(k)cof)k/.

By [HA, 2.1.3.10] there is an equivalence of ∞-categories

AlgE0

(
coCAlg

(
Ch(k)cof

))
≃
−→ coCAlg

(
Ch(k)cof

)
k/

under which we can consider the inclusion

B′
n → Bn (5.4)

as a morphism in AlgE0
(coAlgE∞

(Ch(k)cof)).
Completely analogously we define A′

1 to be the sub Z-graded k-module of A1 (see
Construction 5.1.2.2) spanned by 1 and y1 and consider the inclusion A′

1 → A1 as a
morphism in AlgE0

(coAlgE∞
(Ch(k)cof)). ♦

Remark 5.1.2.16. By [HA, 2.1.3.9] there is a unique morphism of ∞-operads

E⊗
0 → Assoc⊗

which can be interpreted as follows. Let C be a symmetric monoidal ∞-category. Then
the induced forgetful functor

AlgAssoc(C)→ AlgE0
(C) ≃ C1C/

(where the equivalence is the one from [HA, 2.1.3.10]) sends an associative algebra A to
the unit morphism 1C → A. ♦

Notation 5.1.2.17. By [HA, 3.1.3.5]17, the forgetful functor

AlgAssoc

(
coCAlg

(
D(k)

))
→ AlgE0

(
coCAlg

(
D(k)

))

from Remark 5.1.2.16 has a left adjoint that we will denote as follows.

FreeAlg(coCAlg)Alg
E0

(coCAlg) : AlgE0

(
coCAlg

(
D(k)

))
→ AlgAssoc

(
coCAlg

(
D(k)

))

We use the analogous notation FreeAlgAlg
E0

for the left adjoint of the forgetful functor
AlgAssoc(D(k))→ AlgE0

(D(k)). ♦

Proposition 5.1.2.18. In this proposition we use Notation 5.1.2.12.
Let n ≥ 1. The morphism

γE∞
E0

(
B′
n

)
→ γE∞

E0
(Bn)

induced by the inclusion (5.4) in AlgE0

(
coCAlg(D(k))

)
induces a morphism

FreeAlg(coCAlg)Alg
E0

(coCAlg)

(
γE∞
E0

(
B′
n

))
→ γE∞

Assoc(Bn) (5.5)

17Using Proposition 5.1.2.6 and Proposition 4.3.2.1 (1).

192



5.1. Formality of certain E∞,E1-bialgebras

in Alg
(
coAlgE∞

(D(k))
)
. This morphism is an equivalence.

The analogously defined morphism

FreeAlg(coCAlg)Alg
E0

(coCAlg)

(
γE∞
E0

(
A′

1

))
→ γE∞

Assoc(A1)

is also an equivalence. ♥

Proof. We only discuss the case of Bn, as the case of A1 is completely analogous.
By Proposition 5.1.2.7 the functor

Alg
(
ev〈1〉

)
: Alg

(
coCAlg(D(k))

)
→ Alg

(
D(k)

)

is conservative, so it suffices to show that the underlying morphism in Alg(D(k)) of (5.5)
is an equivalence.

The functor ev〈1〉 : coCAlg(D(k)) → D(k) is symmetric monoidal and preserves col-
imits18, so we can apply Proposition E.7.2.2 to conclude that the underlying morphism
in Alg(D(k)) of morphism (5.5) is the morphism19

FreeAlgAlg
E0

(
γE0(B

′
n)
)
→ γAssoc(Bn)

adjoint to the morphism γE0(B
′
n)→ γE0(Bn).

Now consider the subcomplex B′′
n of B′

n generated as a free Z-graded k-module by y
n
.

This complex is cofibrant and the morphism B′′
n → B′

n in Ch(k)cof exhibits B′
n as the

free E0-algebra generated by B′′
n, see Proposition E.7.2.1.

The symmetric monoidal functor γ : Ch(k) → D(k) preserves coproducts by Propo-
sition 4.3.2.1 (3) so by Proposition E.7.2.2 variant (3) we can identify γE0(B

′
n) with

FreeAlgE0
(
γ(B′′

n)
)
, and the equivalence

FreeAlgE0
(
γ(B′′

n)
) ≃
−→ γE0(B

′
n)

is adjoint to the inclusion γ(B′′
n)→ γ(B′

n). Using composability of adjoints [HTT, 5.2.2.6]
we can identify FreeAlgAlg

E0
◦ FreeAlgE0 with FreeAlg, and under this identification the mor-

phism
FreeAlg

(
γ(B′′

n)
)
≃ FreeAlgAlg

E0

(
γE0(B

′
n)
)
→ γAssoc(Bn) (5.6)

which we need to show is an equivalence, is adjoint to the inclusion γ(B′′
n)→ γ(Bn). We

finish by invoking Proposition E.7.2.2 again, this time variant (2) (using that γ preserves
coproducts by Proposition 4.3.2.1 (3)), and noting that B′′

n → Bn indeed exhibits Bn as
the free differential graded algebra generated by B′′

n by definition.
18See the proof of Proposition 5.1.2.6.
19We are also using that the various functors induced by γ are compatible with the forgetful functors

here, to e. g. identify the underlying associative algebra of γE∞

Assoc(Bn) with γAssoc(Bn).

193



Chapter 5. Mixed complexes and circle actions

5.1.3. Formality of certain associative algebras
Let C be a monoidal ∞-category and C an associative algebra in C. By [HA, 3.2.1.8]

(see also [HA, 3.2.1.4]) C is an initial object in Alg/Assoc(C) if and only if the unit
morphism 1C → C is an equivalence. In this section we show that this is the case if and
only if there exists any equivalence 1C ≃ C in C. In particular, this implies that any two
associative algebras in C whose underlying objects in C are equivalent to 1C are already
equivalent as associative algebras.

Notation 5.1.3.1. Let C be a monoidal ∞-category and 1 a unit of C. We will use the
following notation in this section.

As part of the monoidal structure on C, there are equivalences, natural in X,

λ1,X : 1⊗X
≃
−→ X

and
ρX,1 : X ⊗ 1

≃
−→ X

for 1 any unit object in C and X any object in C, called the left unitor and right unitor,
respectively.

The reason why we let 1 be part of the notation is that we will consider morphisms
between two unit objects that might not (a priori) be equivalences, so it will be important
to distinguish them. ♦

Proposition 5.1.3.2. Let C be a monoidal ∞-category, let 1 be a unit object in C, and
f and g two endomorphisms of 1. Then f ◦ g and g ◦ f are homotopic. ♥

Proof. Two morphisms in an∞-category are homotopic if and only if their images in the
homotopy category are equal. It thus suffices to show that the monoid structure induced
by composition on π0(MapC(1,1)) = MorHo(C)(1,1) is commutative.

Note that the monoidal structure on the ∞-category C induces the structure of an
ordinary monoidal category on the homotopy category Ho(C), see [HA, 4.1.1.12]. We can
define a binary operation ⋆ on MorHo(C)(1,1) by letting f ⋆g for f and g in MorHo(C)(1,1)
be given by conjugating f ⊗ g with the left unitor λ1,1 as depicted below.

1 1⊗ 1

1 1⊗ 1

f⋆g f⊗g

λ1,1

∼=

λ1,1

∼=

Naturality of λ1,− immediately implies that id1 is a left unit for the binary operation ⋆.
We could similarly define ⋆′ using the right unitor ρ1,1, for which id1 would be a right
unit. As the composition

1
λ−1
1,1
−−→ 1⊗ 1

ρ1,1
−−→ 1

194



5.1. Formality of certain E∞,E1-bialgebras

is the identity20, so ⋆ = ⋆′, and hence we can conclude that id1 is a two-sided unit for
the binary operation ⋆ on MorHo(C)(1,1).

As (f⊗g)◦(h⊗i) = (f ◦h)⊗(g◦i) in MorHo(C)(1,1) by functoriality of the tensor prod-
uct for f , g, h, and i endomorphisms of 1, we have (f ⋆g)◦(h⋆i) = (f ◦h)⋆(g◦i) and can
thus apply the Eckmann-Hilton argument to conclude that composition is commutative
in MorHo(C)(1,1).

Proposition 5.1.3.3. Let C be a monoidal∞-category and R an Assoc-algebra in C such
that the underlying object in C is a monoidal unit. Let 1 be another, fixed, unit object.
Then the unit morphism ι : 1C → R, that is part of the data of R as an Assoc-algebra, is
an equivalence. ♥

Proof. As part of the data of R as an Assoc-algebra there is also a multiplication mor-
phism µ : R ⊗ R → R, as well as a commutative diagram exhibiting (part of) unitality
for R, depicted in the top half of the following diagram.

R 1⊗R R⊗R R

R R

idR

idR

≃

λ1,R

≃ λ1,R

ι⊗idR µ

≃λR,R

φ

ψ

The morphisms φ and ψ are defined as the induced morphisms that make the diagrams
commute.

There is also a commutative diagram by naturality of ρ−,R as follows.

1 R

1⊗R R⊗R

ι

≃ρ1,R

ι⊗idR

≃ ρR,R

Thus ι is an equivalence if and only if ι ⊗ idR is, which is an equivalence if and only
if φ is. But for φ we already have a left inverse ψ, i. e. ψ ◦ φ is homotopic to idR. It
follows from Proposition 5.1.3.2 that φ ◦ ψ is then also homotopic to idR, so φ is an
equivalence.

5.1.4. Group homology
Let G be a (discrete) group. The goal of this section is to discuss how to calculate

orbits of G-objects in D(k) and discuss the relation to classical notions. The category of
20In [Mac98, VII.1] this is required as an axiom for the definition of monoidal categories, but Kelly

showed in [Kel64, Theorems 6 and 7] that this in fact follows from the now usual list of axioms.

195



Chapter 5. Mixed complexes and circle actions

G-objects in D(k) is defined as

D(k)BG := Fun
(
BG,D(k)

)

where BG is the 1-groupoid with a single object ∗ and AutBG := G. If F : BG→ D(k)
is a functor that we think of as an object in D(k) with G-action, then we will often not
distinguish notationally between F and F (∗).

Let X be a G-object in D(k). Then the G-orbits XG of X is the colimit of X considered
as a functor BG→ D(k).

We want to relate the construction of orbits of G-objects in D(k) to classical notions
of homological algebra. To start we note that by [HA, 1.3.4.25] every G-object in D(k) is
represented by a G-object in Ch(k) that is cofibrant in the projective model structure on
Fun(BG,Ch(k)). Let X be a G-object in Ch(k) with cofibrant underlying chain complex.
We can then apply [HA, 1.3.4.24] to conclude that γ(X)G ≃ hocolimBGX.

The category of G-objects in Ch(k) can be identified with Ch(kG), where kG is the
group ring of G over k, see [Wei94, Section 6.1]. This isomorphism of categories is
compatible with the respective forgetful functors to Ch(k), from which it immediately
follows that the respective weak equivalences and projective fibrations coincide21, so that
this is even an equivalence of combinatorial model categories.

The colimit functor Fun(BG,Ch(k)) → Ch(k) is a left Quillen functor that is left
adjoint to the functor const, the homotopy colimit functor is its derived functor. Un-
der the equivalence Fun(BG,Ch(k)) ∼= Ch(kG), the functor const corresponds to the
restriction of scalars functor Ch(k) → Ch(kG) that is induced by restriction along the
ring homomorphism kG→ k that maps every element of G to 1. The left adjoint of this
functor is given by extension of scalars, so k ⊗kG −, see also the discussion in [Wei94,
Exercise 6.1.1 2 and Lemma 6.1.1].

The upshot is the following: If X is is a G-object in Ch(k), then there is an equivalence

γ(X)G ≃ γ
(
k ⊗L

kG X
′
)

where on the right we take the derived tensor product and X ′ is the object in Ch(kG)
associated to X.

The homology k-modules of this derived tensor product is by definition given by Tor,
and this particular case this is what is called the group homology of G with coefficients
in X (or X ′), and denoted by H∗(G;X), see [Wei94, Definition 6.1.2 and Exercise 6.1.2].
We can summarize the discussion as follows, using Proposition 4.3.3.2.

Proposition 5.1.4.1. Let G be a discrete group and X a G-object in Ch(k). Then there
are isomorphisms

Hi

(
γ(X)G

)
∼= TorkGi (k,X ′) ∼= Hi(G;X)

21For the projective model structure on Fun(BG,Ch(k)), which we take with respect to the projective
model structure on Ch(k), see [HTT, A.2.8.2], and for the projective model structure on Ch(kG) see
Fact 4.1.3.1 – while we did not specifically mention it there, the assumption that the ring over which
we take chain complexes is commutative is unnecessary for merely obtaining a combinatorial model
category (commutativity is needed if we want to talk about the symmetric monoidal structure).

196



5.1. Formality of certain E∞,E1-bialgebras

for every integer i, where X ′ is the kG-chain complex associated to X under the isomor-
phism discussed above. These isomorphisms are natural in X. ♥

We can conclude the following from this.
Proposition 5.1.4.2. Let G be a discrete group and X a G-object in D(k). Assume
that n is an integer such that the homology of X vanishes in degrees below n. Then the
homology of XG also vanishes below degree n, and Hn(XG) ∼= Hn(X)G. ♥

Proof. One way to prove this is to use represent X by a G-object in Ch(k) concentrated
in degrees n and above, and then the statement follows from Proposition 5.1.4.1.

Another way would be to note that D(k)≥n is by [HA, 1.2.1.6] closed under colimits,
from which it follows that the homology vanishes below degree n, and use Proposi-
tion 4.3.3.8 for homology in degree n.

5.1.5. Formality of certain commutative algebras
The goal of Section 5.1 is to show that any two commutative bialgebras in D(k)

whose homology is concentrated in degrees 0 and 1, where it is isomorphic to k, are
equivalent. As a stepping stone we show in this section the analogous and significantly
easier statement for commutative algebras, so forgetting the coalgebra structure.

We start in the following construction by constructing a comparison morphism from
a “standard” commutative algebra with the prescribed homology (that the homology is
the correct one will be shown below in Proposition 5.1.5.3). We will later show that this
morphism is an equivalence of commutative algebras.
Construction 5.1.5.1. LetR be an object of CAlg(D(k)) and ϑ : ev〈1〉(R)

≃
−→ k⊕k[n] an

equivalence for some n > 0. Note that this equivalence is not assumed to have anything
to do with the algebra structure on R, this is only an assumption on the equivalence
class of the underlying object in D(k) of R.

As the underlying object of R is in (D(k)≥0)≤n we can by Proposition 4.3.4.1 (7) and
(8) consider R as an object of CAlg((D(k)≥0)≤n).

Denote the inclusions that are part of k⊕ k[n] being a coproduct by ι0 : k → k⊕ k[n]
and ιn : k[n]→ k ⊕ k[n], and let g : k[n]→ ev〈1〉(R) be g := ϑ−1 ◦ ιn.

By [HA, 1.2.1.6], [HTT, 1.2.13.7], Proposition 4.3.2.1 (1), and [HA, 3.1.3.5], the for-
getful functor

ev〈1〉 : CAlg
(
D(k)≥0

)
→ D(k)≥0

admits a left adjoint FreeCAlg
D(k)≥0

. We thus obtain an induced map of commutative algebras
in D(k)≥0

f ′ : FreeCAlg
D(k)≥0

(
k[n]

)
→ R

that is adjoint to g.
Note that as the inclusion ι≥0 : D(k)≥0 → D(k) is symmetric monoidal (Proposi-

tion 4.3.4.1 (3)) and also preserves colimits ([HA, 1.2.1.6] with [HTT, 1.2.13.7]), we can
use Proposition E.7.2.2 to identify CAlg

(
ι≥0

)
(f ′) with the morphism

f ′′ : FreeCAlg
D(k)

(
k[n]

)
→ R

197



Chapter 5. Mixed complexes and circle actions

that is adjoint to g.
Finally, as R lies in CAlg((D(k)≥0)≤n), the morphism f ′ is by Proposition 4.3.4.1 (8)

adjoint to a morphism

f : CAlg
(
τ≤n
)(

FreeCAlg
D(k)≥0

(
k[n]

))
→ R

of commutative algebras in (D(k)≥0)≤n. ♦

The equivalence ϑ−1 : k ⊕ k[n]
≃
−→ ev〈1〉(R) in Construction 5.1.5.1 could be anything

on the summand k. However, we already have a candidate morphism k → ev〈1〉(R) –
the unit morphism of the commutative algebra structure of R. In the next proposition
we show that we can replace ϑ−1 on the first summand by the unit morphism without
losing the property of being an equivalence.

Proposition 5.1.5.2. In the situation of Construction 5.1.5.1, the morphism

ι∐ g : k ⊕ k[n]→ ev〈1〉(R)

is an equivalence in D(k), where ι is the unit morphism of the algebra structure on R. ♥

Proof. It suffices to show that the composition ϑ ◦ (ι ∐ g) is an equivalence. Using the
definition of g we can write this morphism as

k ⊕ k[n]



ι′ 0
ι′′ idk[n]




−−−−−−−−→ k ⊕ k[n]

for some morphisms ι′ : k → k and ι′′ : k → k[n]. It thus suffices to show that ι′ is an
equivalence, as then

[
ι′−1 0
−ι′′ι′−1 idk[n]

]

will be an inverse.
While we do not need this, we note that ι′′ must actually be nullhomotopic, as

π0

(
MapD(k)

(
k, k[n]

))
∼= H0(k[n]) ∼= 0

by Proposition 4.3.2.1 (5) and (4).
Applying the natural transformation idD(k) → ι≤0 ◦ τ≤0 (see Section 4.3.4) we obtain

198



5.1. Formality of certain E∞,E1-bialgebras

a commuting diagram as follows22

k k ⊕ k[n] k

τ(k) τ
(
k ⊕ k[n]

)
τ(k)⊕ τ

(
k[n]

)
τ(k)

τ
(
ev〈1〉(R)

)

ϑ◦ι

ι′

pr0

τ(ϑ◦ι)

τ(ι)

τ(pr0)×τ(prn) pr0

τ(ϑ)

in D(k) where the morphisms pr0 and prn are the projections onto the first and second
factor, respectively.

We have to show that ι′ is an equivalence. As k is in D(k)≤0, the leftmost and rightmost
vertical morphisms are equivalences. It thus suffices to show that the composite from
left to right in the middle row is an equivalence.

As a left adjoint τ≤0 preserves colimits and hence finite biproducts, and ι≤0 preserves
finite biproducts as well by Proposition 4.3.4.2. Thus the morphism

ι≤0τ≤0(pr0)× ι≤0τ≤0(prn)

in the middle is an equivalence. The morphism pr0 on the right (in the middle row) is an
equivalence as τ≤0(k[n]) ≃ 023. As ϑ is an equivalence, ι≤0τ≤0(ϑ) is also an equivalence.

It thus remains to show that ι≤0τ≤0(ι) is an equivalence. As we have already seen
that domain and codomain of this morphism is equivalent to k and hence in D(k)≥0,
this morphism is equivalent to ι≥0τ≥0ι≤0τ≤0(ι), which by [HA, 1.2.1.10] can be identified
with ι≥0ι≥0,≤0τ≤0τ≥0(ι). As all four involved functors are lax symmetric monoidal by
Proposition 4.3.4.1, this is the unit morphism of a commutative algebra in D(k) whose
underlying object is equivalent to k. We can thus apply Proposition 5.1.3.3 to conclude
that ι≤0τ≤0(ι) is an equivalence.

Before we can show that the morphism f from Construction 5.1.5.1 is an equivalence,
we need to determine the homology of FreeCAlg

D(k) (k[n]) in low degrees. We do this in the

22To save space we write τ instead of ι≤0τ≤0.
23This can be easily seen using the fiber sequence

ι≥1τ≥1(k[n])→ k[n]→ ι≤0τ≤0(k[n])

from [HA, 1.2.1.8] in which the first morphism is an equivalence as k[n] lies in D(k)≥1.

199



Chapter 5. Mixed complexes and circle actions

following proposition, where we actually calculate the homology in a wider range than
would be necessary in this section – the calculations in the extra degrees will be used in
later sections.

Proposition 5.1.5.3. Let n ≥ 1 and let

φ : k[n]→ ev〈1〉

(
FreeCAlg

D(k) (k[n])
)

be the morphism in D(k) exhibiting FreeCAlg
D(k) (k[n]) as the free commutative algebra gen-

erated by k[n] and let
i : k → ev〈1〉

(
FreeCAlg

D(k) (k[n])
)

be the unit morphism.
Then the following holds for the homology of FreeCAlg

D(k) (k[n]).

Hi

(
FreeCAlg

D(k) (k[n])
)
∼=





0 if i < 0

k if i = 0

0 if 0 < i < n

k if i = n

0 if n < i < 2n

k if i = 2n and n is even
k/(2) if i = 2n and n is odd

Furthermore, a basis of the homology in degrees 0 and n is given by i and φ, i. e.
i∐φ : k⊕k[n]→ FreeCAlg

D(k) (k[n]) induces an isomorphism on homology in degrees smaller
than 2n. ♥

Proof. Using [HA, 3.1.3.13] and unpacking the definition of the relevant ∞-groupoids
P(m) for O⊗ = Comm⊗24 we obtain that there is an equivalence25

ev〈1〉

(
FreeCAlg

D(k)

(
k[n]

))
≃
∐

m≥0

(
k[n]⊗m

)
Σm
≃ k ∐ k[n]∐

∐

m≥2

(
k[n]⊗m

)
Σm

in D(k) and under this equivalence the unit morphism and the morphism φ exhibiting
it as the free commutative algebra generated by k[n] are the inclusions of the summands
indexed by 0 and 1, respectively.

By Proposition 4.3.3.5 Hi preserves coproducts, so it suffices to show the following.

(1) Hi((k[n]
⊗m)Σm)

∼= 0 for m ≥ 2 and i < nm.

(2) H2n((k[n]
⊗2)Σ2)

∼= k if n is even and H2n((k[n]
⊗2)Σ2)

∼= k/(2) if n is odd.
24We get an equivalence of ∞-groupoids P(m) ≃ BΣm, where BΣm is the 1-groupoid with a single

object and the symmetric group on m elements as automorphism group.
25The subscript Σm denotes a (homotopy) orbit, i. e. a colimit of a functor from BΣm.

200



5.1. Formality of certain E∞,E1-bialgebras

Proof of Claim (1): Note that if m ≥ 2 then k[n]⊗m ≃ k[nm] has homology concen-
trated in degree nm and is hence in D(k)≥nm. As D(k)≥nm is stable under colimits in
D(k) (see [HA, 1.2.1.6]) we can conclude that (k[n]⊗m)Σm is also in D(k)≥nm and hence
has vanishing homology in degrees smaller than nm.

Proof of Claim (2): Going through [HA, 3.1.3.13] and [HA, 3.1.3.9] to identify the
action of Σ2 on k[n] ⊗ k[n], we see that the nontrivial element acts via the symmetry
equivalence that is part of the structure of D(k) as a symmetric monoidal ∞-category,
and which is induced by the symmetry isomorphism of the symmetric monoidal structure
on Ch(k), see Proposition 4.3.2.1 (1) and Definition 4.1.2.1. We can thus represent the
Σ2-object k[n]⊗ k[n] in D(k) by the Σ2-object k[n]⊗ k[n] in Ch(k) where the non-trivial
element acts via the symmetry isomorphism. There is an isomorphism k[n]⊗k[n] ∼= k[2n]
mapping 1⊗ 1 to 1, and we obtain an induced Σ2-action on k[2n]. If n is odd, then the
non-trivial element of Σ2 acts as − id, which reflects the fact that if x is an element in
odd degree of a commutative differential graded algebra, then we have x2 = −x2. If n is
even, then the non-trivial element acts as id.

The claim now follows from Proposition 5.1.4.2.

Proposition 5.1.5.4. In the situation of Construction 5.1.5.1, the morphism f is an
equivalence.

In particular, if R′ is another commutative algebra in D(k) such that the underly-
ing objects ev〈1〉(R

′) and ev〈1〉(R) are equivalent, then R and R′ are also equivalent as
commutative algebras. ♥

Proof. The adjoint f of f ′ is by definition given by the composition

CAlg
(
τ≤n
)(

FreeCAlg
D(k)≥0

(
k[n]

)) CAlg(τ≤n)(f ′)
−−−−−−−−−→ CAlg

(
τ≤n
)(

CAlg
(
ι≥0,≤n

)
(R)
)
→ R

where the second morphism the the counit of the adjunction CAlg
(
τ≤n
)
⊣ CAlg

(
ι≥0,≤n

)
.

This counit is homotopic to the identity by construction26, so it suffices to show that
CAlg

(
τ≤n
)
(f ′) is an equivalence. As ι≥0,≤n and ι≥0 are fully faithful and hence conser-

vative, and ev〈1〉 is also conservative [HA, 3.2.2.6], it suffices to show that
(
ι≥0 ◦ ι≥0,≤n ◦ ev〈1〉 ◦ CAlg

(
τ≤n
))(

f ′
)

≃
(
ι≥0 ◦ ι≥0,≤n ◦ τ≤n ◦ ev〈1〉

)(
f ′
)

≃
(
ι≤n ◦ τ≤n ◦ ι≥0 ◦ ev〈1〉

)(
f ′
)

≃
(
ι≤n ◦ τ≤n ◦ ev〈1〉 ◦ CAlg

(
ι≥0

))(
f ′
)

≃
(
ι≤n ◦ τ≤n ◦ ev〈1〉

)(
f ′′
)

is an equivalence.
Recall from Construction 5.1.5.1 that

f ′′ : FreeCAlg
D(k)

(
k[n]

)
→ R

26See [HA, 1.2.1.5] and [HTT, 5.2.7.6, 5.2.7.7, and 5.2.7.8].

201



Chapter 5. Mixed complexes and circle actions

is the morphism in CAlg(D(k)) adjoint to g. There is thus a commutative diagram

k[n]

ev〈1〉

(
FreeCAlg

D(k)

(
k[n]

))
ev〈1〉(R)

φ
g

ev⟨1⟩(f ′′)

where φ exhibits FreeCAlg
D(k)

(
k[n]

)
as the free commutative algebra generated by k[n]. If

we let i be the unit morphism of FreeCAlg
D(k)

(
k[n]

)
and ι the unit morphism of R, then

f ′′ ◦ i ≃ ι as f ′′ is a morphism of commutative algebras. We can thus extend this
commutative diagram to a commutative diagram as follows.

k ⊕ k[n]

ev〈1〉

(
FreeCAlg

D(k)

(
k[n]

))
ev〈1〉(R)

i∐φ ι∐g

ev⟨1⟩(f ′′)

The morphism on the right is an equivalence by Proposition 5.1.5.2. We have to show
that τ≤n of the bottom morphism is an equivalence, so it suffices to show that τ≤n of the
left morphism is an equivalence. But this follows from Proposition 5.1.5.3.

5.1.6. Identification of some mapping spaces
As explained in the introduction to Section 5.1, it will be important for us to show

that

π0

(
MapAlg(coCAlg(D(k)))

(
γComm

Assoc (Bn), R
∨
))

is trivial for certain commutative bialgebras R. We saw in Section 5.1.2.7 that γComm
Assoc (Bn)

is free on the pointed cocommutative algebra γComm
E0

(B′
n), so we are led to consider path

components of mapping spaces in AlgE0

(
coCAlg(D(k))

)
≃ coCAlg(D(k))k/, and after

dualizing of mapping spaces in CAlg(D(k))/k.
This section concerns the steps needed to show that the sets of path components of

such mapping spaces that are of interest to us are indeed trivial. In Section 5.1.6.1 we
will show that the relevant mapping spaces in CAlg(D(k))/k can be calculated as the
mapping spaces between the underlying objects in CAlg(D(k)). In Section 5.1.6.3 we will
then show that π0 of the relevant mapping spaces in CAlg(D(k)) are trivial. In order to
do so, we will need to construct a commutative algebra with prescribed homology. We
will define such a commutative algebra as a pushout of free commutative algebras and
show that its homology has the required description in Section 5.1.6.2.

202



5.1. Formality of certain E∞,E1-bialgebras

5.1.6.1. Identification of a mapping space in an overcategory

In this section we show that, under certain assumptions, mapping spaces in the
∞-category CAlg(D(k))/k are equivalent to the mapping spaces between the respective
underlying objects in CAlg(D(k)).

Proposition 5.1.6.1. Let R → k and S → k be objects of CAlg(D(k))/k, and assume
that there is an equivalence τ≤0(ev〈1〉(R)) ≃ k in D(k).

Then the map induced by the canonical forgetful functor on mapping spaces

MapCAlg(D(k))
/k

(R, S)→ MapCAlg(D(k))(R, S)

is an equivalence. ♥

Proof. By (the dual of) Proposition D.1.3.2 there is a pullback diagram

MapCAlg(D(k))
/k

(R, S) {R→ k}

MapCAlg(D(k))(R, S) MapCAlg(D(k))(R, k)(S→k)∗

in S, where the left vertical map is the one induced by the forgetful functor. It thus
suffices to prove that MapCAlg(D(k))(R, k) is contractible.
k as well as the underlying object ev〈1〉(R) of R are in D(k)≥0

27, so using that by
Proposition 4.3.4.1 (7) CAlg(ι≥0) is fully faithful with essential image spanned by those
commutative algebras whose underlying object is in D(k)≥0, it suffices to show that

MapCAlg(D(k)≥0)(R, k) ≃ MapCAlg(D(k))(R, k)

is contractible.
As k actually lies in

(
D(k)≥0

)
≤0

we can use the adjunction CAlg(τ≤0) ⊣ CAlg(ι≥0,≤0)

with fully faithful right adjoint discussed in Proposition 4.3.4.1 (8) to obtain equivalences

MapCAlg(D(k)≥0)(R, k)

≃ Map
CAlg

(
(D(k)≥0)≤0

)(CAlg(τ≤0)(R), k
)

≃ MapCAlg(D(k))
(
CAlg(ι≤0)CAlg(τ≤0)(R), k

)

27By [HA, 1.2.1.8] there is a cofiber sequence

ι≥0τ≥0R→ R→ ι≤−1τ≤−1R

and
τ≤−1R ≃ τ≤−1τ≤0R ≃ τ≤−1k ≃ 0

so ι≥0τ≥0R ≃ R is in D(k)≥0.

203



Chapter 5. Mixed complexes and circle actions

By assumption the underlying object
(
ev〈1〉 ◦ CAlg(ι≤0) ◦ CAlg(τ≤0)

)
(R) ≃

(
ι≤0 ◦ τ≤0 ◦ ev〈1〉

)
(R)

of CAlg(ι≤0)CAlg(τ≤0)(R) is equivalent to k, so by Proposition 5.1.3.3 the unit mor-
phism k → CAlg(ι≤0)CAlg(τ≤0)(R) is an equivalence. [HA, 3.2.1.9] then implies that
CAlg(ι≤0)CAlg(τ≤0)(R) is an initial object of CAlg(D(k)), so the mapping space

MapCAlg(D(k))
(
CAlg(ι≤0)CAlg(τ≤0)(R), k

)

is contractible.

5.1.6.2. The homology of a pushout of commutative algebras

Let n > 0 be an integer, and let R be a commutative algebra in D(k) with homology
concentrated in degree 0 and n, where it is isomorphic to k. In Section 5.1.6.3 we want
to show that the mapping space in CAlg(D(k)) from R to another commutative algebra
S with certain restrictions on its homology is contractible. To do so, we construct a
commutative algebra for which it is easier to calculate mapping spaces out of, and such
that its homology is isomorphic to that of R in degrees smaller than or equal to 2n. We
can start with the free commutative algebra generated by one generator in degree n. We
calculated the homology in the relevant degrees in Proposition 5.1.5.3, and it is already
nearly as we want, except that the homology might not vanish in degree 2n, where it
is generated by a single element. To divide out that unwanted element we can form a
pushout over the free commutative algebra with a generator in degree 2n.

We will start by carrying out this construction in Construction 5.1.6.2, and then
spend the remainder of this section proving that the homology is as we require in Propo-
sition 5.1.6.3. One way to do this calculation would be to use the Tor spectral sequence,
see [HA, 7.2.1.19], but we have opted for a more direct approach with a concrete resolu-
tion that suffices in order to calculate the homology groups in the necessary degrees.

Construction 5.1.6.2. Let n > 0 be an integer. In Proposition 5.1.5.3 we showed that
H2n(FreeCAlg

D(k) (k[n]))
∼= k if n is even and H2n(FreeCAlg

D(k) (k[n]))
∼= k/(2) if n is odd. In both

cases, this k-module can be generated by a single element. Let

f ′ : k[2n]→ ev〈1〉

(
FreeCAlg

D(k) (k[n])
)

be a morphism in D(k) representing a generator28 of H2n(FreeCAlg
D(k) (k[n])). We obtain an

induced morphism
f : FreeCAlg

D(k) (k[2n])→ FreeCAlg
D(k) (k[n])

in CAlg(D(k)) that is adjoint to f ′.
28If 2 is invertible in k and n is odd, then we have k/(2) ∼= 0, which is of course still generated by a

single element 0, so we can carry out this construction also in this case, even though the construction
is not really necessary for applications. However, we would like to avoid special handling of this one
case.

204



5.1. Formality of certain E∞,E1-bialgebras

The zero morphism k[2n]→ k similarly induces a morphism of commutative algebras
p : FreeCAlg

D(k) (k[2n])→ k.
Define P to be the pushout in CAlg(D(k)) as in the following diagram.

FreeCAlg
D(k) (k[2n]) k

FreeCAlg
D(k) (k[n]) P

p

f i

j

We will use the notation P , f , p, i, and j elsewhere where we explicitly refer to this
construction. ♦

Proposition 5.1.6.3. Let n > 0 be an integer. For P as in Construction 5.1.6.2, the
following holds for the homology of P .

Hi(P ) ∼=





0 if i < 0

k if i = 0

0 if 0 < i < n

k if i = n

0 if n < i ≤ 2n

Furthermore, the morphism j : FreeCAlg
D(k) (k[n]) → P from Construction 5.1.6.2 induces

an isomorphism on Hi for i < 2n. ♥

Proof. To improve readability in the formulas we will use the following shorthand nota-
tion in this proof. We write F2n for FreeCAlg

D(k) (k[2n]) and Fn for FreeCAlg
D(k) (k[n]). Further-

more, we will omit writing forgetful functors and will instead always make explicit in
which ∞-category objects and morphisms are considered. We will also use the notation
from Construction 5.1.6.2.

The strategy of this calculation is as follows. By construction P is a pushout of commu-
tative algebras, so by Proposition E.8.0.5 can be calculated as a relative tensor product.
We thus resolve k as a left-F2n-module in a manner that suffices to extract the homology
groups we are interested in from the long exact sequences in homology that we obtain.

Let g : k[2n] → F2n be the morphism in D(k) that exhibits F2n as the free com-
mutative algebra generated by k[2n]. We first consider the following composition in
LModF2n(D(k))

F2n[2n] F2n ⊗ k[2n] F2n ⊗ F2n F2n k
≃

g′

idF2n ⊗g µ p (∗)

205



Chapter 5. Mixed complexes and circle actions

where µ is the multiplication, g′ is defined as the composition indicated in the diagram,
and F2n acts on F2n ⊗ F2n and F2n ⊗ k[2n] via the the left tensor factor, and on k via
p29.

We claim that the composition pg′ from F2n[2n] to k in (∗) is nullhomotopic as a
morphism in LModF2n(D(k)). In fact, every morphism of F2n-algebras F2n[2n] → k is
nullhomotopic, as we have by [HA, 4.2.4.6] an equivalence

MapLModF2n (D(k))

(
F2n[2n], k

)
≃ MapD(k)

(
k[2n], k

)

which is contractible as k[2n] is concentrated in degree 2n > 0 and k is concentrated in
degree 0.

The nullhomotopy of g′ induces a morphism in LModF2n(D(k)) from the cofiber of g′
to k and a commutative triangle as in the following diagram

F2n[2n] F2n C

k

g′ φ

p
ψ (∗∗)

where the top row is a cofiber sequence.
Note that the forgetful functor evm : LModF2n(D(k)) → D(k) preserves colimits by

[HA, 4.2.3.5]. Using the long exact homology sequence for the cofiber sequence in D(k)
underlying the one from (∗∗), together with the calculation of the lower homology groups
29Here are some more details on obtaining these morphisms as morphisms in LModF2n(D(k)).

There is a commutative diagram in CAlg(D(k))

F2n ⊗ F2n

F2n F2n k

µ

idF2n

idF2n
⊗1

p

where idF2n ⊗1 is the composition F2n ≃ F2n ⊗ k with the identity tensor the unit of F2n – this is
the inclusion of the first summand of the coproduct F2n ⊗ F2n ≃ F2n ∐ F2n in CAlg(D(k)).

We can now forget down to associative algebras and then use the section Alg(D(k))→ LMod(D(k))
from [HA, 4.2.1.17] that carries an algebra to the underlying object as a module over the algebra
itself. We can then restrict the actions to obtain a commutative diagram of F2n-modules. This
constructs the morphisms µ and p in (∗). See also Construction E.8.0.4 for more details for this kind
of construction.

The morphism
k[2n]

1⊗g
−−→ F2n ⊗ F2n

in D(k) is adjoint to a morphism of left-F2n-modules F2n ⊗ k[2n] → F2n ⊗ F2n (here F2n ⊗ k[2n]
is the free left-F2n-module generated by k[2n], see [HA, 4.2.4]). The morphism of D(k) underlying
this morphism is then by definition given by the composition

F2n ⊗ k[2n]
idF2n

⊗1⊗g
−−−−−−−→ F2n ⊗ F2n ⊗ F2n

µ⊗idF2n−−−−−→ F2n ⊗ F2n

which is homotopic to idF2n
⊗ g.

206



5.1. Formality of certain E∞,E1-bialgebras

of F2n from Proposition 5.1.5.3, we obtain that φ induces an isomorphism

k ∼= H0(F2n)
H0(φ)
−−−→ H0(C)

and that for i < 4n with i 6= 0 the homology group Hi(C) is zero30. As H0(p) is an
isomorphism (p underlies a morphism of commutative algebras and hence preserves the
unit morphism) it follows that H0(ψ) must be an isomorphism as well.

We now take the fiber of ψ to we obtain another cofiber sequence of left-F2n-modules
in D(k) as follows.

D
θ
−→ C

ψ
−→ k (∗ ∗ ∗)

Again using the long exact sequence in homology we can conclude that Hi(D) ∼= 0 for
i < 4n.

Let us now get back to what we actually need to do, calculate the homology of P
in low degrees. As D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1),
we can apply Proposition E.8.0.5, which tells us that P is equivalent to the relative
tensor product31 Fn ⊗F2n k, where we consider Fn and k as right and left modules over
F2n, which is considered as an associative algebra in CAlg(D(k)). The forgetful functor
evm : CAlg(D(k)) → D(k) is symmetric monoidal and preserves ∆

op-indexed colimits
by [HA, 3.2.3.2]. We can thus apply Proposition E.8.0.1 to conclude that the underlying
object of Fn⊗F2n k in D(k) is equivalent to the relative tensor product Fn⊗F2n k, where
we consider F2n as just an associative algebra in D(k).

Tensoring cofiber sequence (∗ ∗ ∗) with the right-F2n-module Fn we obtain by [HA,
4.4.2.15] a cofiber sequence in D(k) as follows.

Fn ⊗F2n D
id⊗idθ−−−−→ Fn ⊗F2n C

id⊗idψ−−−−→ Fn ⊗F2n k

As Hi(P ) ∼= Hi(Fn⊗F2n k) for any integer i, we can use the long exact homology sequence
associated to the above cofiber sequence to evaluate the homology groups of P . As
remarked before, D lies in D(k)≥4n, and as Fn and F2n are both in D(k)≥0 and taking
colimits can only increase connectivity [HA, 1.2.1.6], it follows that

Fn ⊗F2n D ≃
∣∣Fn ⊗ F⊗•

2n D
∣∣

is an object of D(k)≥4n as well32.
30The only nonzero homology groups of F2n[2n] and F2n in degrees smaller than 4n are H0(F2n) ∼= k,

H2n(F2n[2n]), and H2n(F2n), so the only thing that needs to be done is check that H2n(g
′) is an

isomorphism. By Proposition 5.1.5.3 the homology group H2n(F2n[2n]) has a basis represented by
the morphism k[2n]

1⊗idk[2n]
−−−−−−→ F2n⊗k[2n]. Composing this morphism with g′ we obtain by definition

the morphism
µ ◦ (idF2n

⊗g) ◦
(
1⊗ idk[2n]

)
≃ µ ◦ (1⊗ g) ≃ g

which also by Proposition 5.1.5.3 forms a basis of H2n(F2n).
31See Construction E.8.0.4 for an explanation of the relevant module structures.
32See [HA, 4.4.2.8] for this description of the relative tensor product. That the bar construction really

looks like this in the individual levels follows from unpacking the definition [HA, 4.4.2.7].

207



Chapter 5. Mixed complexes and circle actions

We can thus conclude that for i ≤ 2n the morphism idFn ⊗idF2nψ induces an isomor-
phism as follows.

Hi(Fn ⊗F2n C)
∼=
−→ Hi(Fn ⊗F2n k)

∼= Hi(P )

To evaluate the homology groups of Fn ⊗F2n C we can use the long exact homology
sequence associated to the cofiber sequence

Fn ⊗F2n F2n[2n]
idFn⊗idF2n

g′

−−−−−−−→ Fn ⊗F2n F2n

idFn⊗idF2n
φ

−−−−−−−→ Fn ⊗F2n C

which we obtain by applying Fn ⊗F2n − to the cofiber sequence in the top row of (∗∗).
Using unitality of the relative tensor product [HA, 4.4.3.16] we can identify this cofiber
sequence with the top row in the following commutative diagram33 in D(k)

Fn[2n] ≃ Fn ⊗ k[2n] Fn Fn ⊗F2n C

P Fn ⊗F2n k

µ′◦(idFn⊗(f◦g)) λ

j idFn⊗idF2n
ψ

≃

where f and j are as in Construction 5.1.6.2, µ′ is the multiplication morphism for Fn,
and λ is a newly introduced name. It thus suffices to show that Hi(λ) is an isomorphism
for i < 2n and that additionally H2n(Fn ⊗F2n C)

∼= 0.
In the range we are interested in Fn[2n] has only homology in degree 2n (see Proposi-

tion 5.1.5.3), so that it immediately follows using the long exact sequence in homology
that Hi(λ) is an isomorphism for i < 2n, and the statements for the homology of P in
this range now follow from the calculation of the homology in low degrees of Fn, see
Proposition 5.1.5.3.

It remains to show that H2n(Fn ⊗F2n C)
∼= 0. By the long exact sequence in homol-

ogy we have to show for this that µ′ ◦
(
idFn ⊗ (f ◦ g)

)
induces a surjection on H2n.

Let ι : k → Fn be the unit morphism. Then by Proposition 5.1.5.3 there is an iso-
morphism H2n(Fn ⊗ k[2n]) ∼= k, and this homology group has a basis formed by by
(ι⊗ idk[2n]) ◦ η, where η : k[2n] ≃ k⊗ k[2n] is the unitality equivalence of D(k). Compos-
ing with µ′ ◦

(
idFn ⊗ (f ◦ g)

)
we obtain34

µ′ ◦
(
idFn ⊗ (f ◦ g)

)
◦
(
ι⊗ idk[2n]

)
◦ η

≃ µ′ ◦
(
ι⊗ (f ◦ g)

)
◦ η

≃ f ◦ g

≃ f ′

which by definition is a generator of H2n(Fn).
33The identification of the top left morphism arises from unpacking the definitions. For j fitting into

the commutative diagram, note that the composition F2n
φ
−→ C

ψ
−→ k is by definition homotopic to

p, and then use the identification of the pushout diagram from Construction 5.1.6.2 with the one
from Proposition E.8.0.5.

34The last step is by definition, see Construction 5.1.6.2.

208



5.1. Formality of certain E∞,E1-bialgebras

5.1.6.3. On a mapping space of commutative algebras

In this section we show that a mapping space relevant in Section 5.1.7 has only a
single path component.
Proposition 5.1.6.4. Let n > 0 be an integer. Let R and S be commutative algebras in
D(k), and assume that the homology of R is concentrated in degrees 0 and n, where it
is isomorphic to k, that the homology of S is concentrated in degrees i with 0 ≤ i ≤ 2n,
and that Hn(S) ∼= 0.

Then
π0

(
MapCAlg(D(k))(R, S)

)
∼= ∗ (5.7)

So up to homotopy, there is a unique morphism of commutative algebras R→ S. ♥

Proof. Consider the commutative algebra P constructed in Construction 5.1.6.2. Propo-
sition 5.1.6.3 implies that τ≤2n(P ) has the same homology as R. As the homology is free
(as a Z-graded k-module) it follows from Proposition 4.3.3.7 that τ≤2n(P ) and R are
equivalent as objects of D(k). It then follows from Proposition 5.1.5.4 that τ≤2n(P ) and
R are even equivalent as commutative algebras in D(k).

We thus obtain an equivalence as follows.

MapCAlg(D(k))(R, S) ≃ MapCAlg(D(k))

(
τ≤2n(P ), S

)

τ≤2n(P ) and S both lie in (CAlg(D(k))≥0)≤2n by Proposition 4.3.4.1 (7) and (8), and as
the inclusion is fully faithful we obtain another equivalence as follows.

≃ Map(CAlg(D(k))≥0)≤2n

(
τ≤2n(P ), S

)

We can now continue with the adjunction from Proposition 4.3.4.1 (8).

≃ MapCAlg(D(k))≥0
(P, S)

Finally, we use that CAlg(ι≥0) is fully faithful and obtain the following equivalence.

≃ MapCAlg(D(k))(P, S)

As P was defined as a pushout in CAlg(D(k)), we obtain a pullback diagram in S

(using notation from Construction 5.1.6.2) as follows.

MapCAlg(D(k))(P, S) MapCAlg(D(k))

(
FreeCAlg

D(k) (k[n]), S
)

MapCAlg(D(k))(k, S) MapCAlg(D(k))

(
FreeCAlg

D(k) (k[2n]), S
)

j∗

i∗ f∗

p∗

k is initial as a commutative algebra by [HA, 3.2.1.9], so MapCAlg(D(k))(k, S) is con-
tractible. This implies that35

MapCAlg(P, S)
j∗

−→ MapCAlg

(
FreeCAlg

D(k) (k[n]), S
)

f∗

−→ MapCAlg

(
FreeCAlg

D(k) (k[2n]), S
)

35We shorten CAlg(D(k)) as CAlg.

209



Chapter 5. Mixed complexes and circle actions

is a homotopy fiber sequence of which we can take the long exact sequence of homotopy
groups. To show that π0

(
MapCAlg(D(k))(P, S)

)
∼= ∗ it then suffices to show that both

π0

(
MapCAlg(D(k))

(
FreeCAlg

D(k) (k[n]), S
))

and
π1

(
MapCAlg(D(k))

(
FreeCAlg

D(k) (k[2n]), S
))

are trivial.
We can use the adjunction FreeCAlg

D(k) ⊣ ev〈1〉 to rewrite these homotopy groups as
follows.

π0

(
MapCAlg(D(k))

(
FreeCAlg

D(k) (k[n]), S
))
∼=π0

(
k[n], ev〈1〉(S)

)
∼= Hn(S) ∼= 0

π1

(
MapCAlg(D(k))

(
FreeCAlg

D(k) (k[2n]), S
))
∼=π1

(
k[2n], ev〈1〉(S)

)

∼=π0
(
k[2n+ 1], ev〈1〉(S)

)
∼= H2n+1(S) ∼= 0

5.1.7. Formality of certain E∞,E1-bialgebras
In this section we finally put together the various results from sections Sections 5.1.1,

5.1.2, 5.1.3, 5.1.4, 5.1.5 and 5.1.6 and show formality of commutative bialgebras with
homology concentrated in degrees 0 and 1, where it is isomorphic to k.

Proposition 5.1.7.1. Let R be on object of BiAlgComm,Assoc(D(k)) such that

Hi(R) ∼=

{
k for i = 0 and i = 1

0 otherwise

Then the underlying object of R in D(k) is dualizable36.
Let furthermore37 f1 : γ

Comm
Assoc (A1)→ R∨ be a morphism in Alg(coCAlg(D(k))) where A1

is as in Construction 5.1.2.238, and R∨ is the dual of R, see Remark 5.1.1.9. Then f1 can
be extended to a morphism γComm

Assoc (A)→ R∨, where A is as in Construction 5.1.2.2. ♥

Proof. That the underlying object of R is dualizable follows immediately from the as-
sumptions on the homology together with the formality statement Proposition 4.3.3.7,
see also Example 5.1.1.8.

By Corollary 5.1.2.14 the morphisms γComm
Assoc (An) → γComm

Assoc (A) exhibit γComm
Assoc (A) as a

colimit of
γComm

Assoc (A1)→ γComm
Assoc (A2)→ γComm

Assoc (A3)→ . . .

36See Definition 5.1.1.1.
37Recall Notation 5.1.2.12.
38A1 is cofibrant as a chain complex by Proposition 5.1.2.11 Proposition 4.2.2.12.

210



5.1. Formality of certain E∞,E1-bialgebras

in Alg(coCAlg(D(k))). It hence suffices to prove inductively that given an integer n > 1
and a morphism fn−1 : γ

Comm
Assoc (An−1) → R∨ there exists an extension to a morphism

fn : γ
Comm
Assoc (An) → R∨. Also by Corollary 5.1.2.14, it suffices for this to construct a

commutative square
γComm

Assoc (Bn) γComm
Assoc (Bn)

γComm
Assoc (An−1) R∨

fn−1

in Alg(coCAlg(D(k))), where the morphism on the left and top are the ones constructed
in Construction 5.1.2.5. Proposition 5.1.2.10 and Remark 5.1.2.9 imply that γComm

Assoc (Bn)
is a zero object in Alg(coCAlg(D(k))), so there is an essentially unique morphism
γComm

Assoc (Bn)→ R∨ we can fill in on the right.
What remains is to construct a homotopy between the two possible composites from

γComm
Assoc (Bn) to R∨ in the diagram. For this it suffices to show that any two morphisms

from γComm
Assoc (Bn) to R∨ are homotopic, i. e. that

π0

(
MapAlg(coCAlg(D(k)))

(
γComm

Assoc (Bn), R
∨
))
∼= ∗

In Proposition 5.1.2.18 it was shown that

γComm
Assoc (Bn) ≃ FreeAlg(coCAlg)Alg

E0
(coCAlg)

(
γComm
E0

(B′
n)
)

where γComm
E0

(B′
n) is an object in

AlgE0

(
coCAlg

(
D(k)

))

with underlying object equivalent to k⊕k[−2], see Construction 5.1.2.15. We thus obtain
an isomorphism as follows.

π0

(
MapAlg(coCAlg(D(k)))

(
γComm

Assoc (Bn), R
∨
))

∼= π0

(
MapAlg

E0(coCAlg(D(k)))

(
γComm
E0

(B′
n), R

∨
))

By [HA, 2.1.3.10], the ∞-category of E0-algebras in a monoidal ∞-category C can be
identified with C1C/, so applying this and dualizing (see Fact 5.1.1.3), we obtain the
following isomorphisms.

π0

(
MapAlg

E0(coCAlg(D(k)))

(
γComm
E0

(B′
n), R

∨
))

∼= π0

(
MapcoCAlg(D(k))k/

(
γComm(B′

n), R
∨
))

211



Chapter 5. Mixed complexes and circle actions

∼= π0

(
Map(CAlg(D(k)))

/k

(
R, γComm(B′

n)
∨
))

By the assumptions on R, the truncation τ≤0(R) has homology groups concentrated
in degree 0 and H0(R) is free of rank 1. Using Proposition 4.3.3.7 we can thus apply
Proposition 5.1.6.1 to obtain the following isomorphism.

π0

(
Map(CAlg(D(k)))

/k

(
R, γComm(B′

n)
∨
))

∼= π0

(
MapCAlg(D(k))

(
R, γComm(B′

n)
∨
))

As the dual of k[l] is k[−l], the underlying object in D(k) of γComm(B′
n)

∨ is equivalent
to k ⊕ k[2]. Now we can apply Proposition 5.1.6.4 to conclude that this set has exactly
one element.

Proposition 5.1.7.2. Let R be on object of BiAlgComm,Assoc(D(k)) such that

Hi(R) ∼=

{
k for i = 0 and i = 1

0 otherwise

and let g : k[1] → R be a morphism in D(k) representing a basis of H1(R). Let x be an
element of k. Then there exists a morphism39

φ : R→ γ(A)∨

in BiAlgComm,Assoc(D(k)) that induces an isomorphism on H0 and is such that H1(φ)
maps the element represented by g to x · y∨1 (see Proposition 5.1.2.4). ♥

Proof. Consider the commutative algebra γ(A′
1)

∨. (see Construction 5.1.2.15 for a def-
inition of A′

1). The underlying object of γ(A′
1) in D(k) is by definition equivalent to

k ⊕ k[−1], so

Hi

(
γ(A′

1)
∨
)
∼=

{
k for i = 0 and i = 1

0 otherwise

with the homology group in degree 1 generated by y∨1 .
Define a morphism φ′′

1 : FreeCAlg
D(k)≥0

(k[1])→ γ(A′
1)

∨ such that composing the morphism
k[1] → FreeCAlg

D(k) (k[1]) exhibiting FreeCAlg
D(k) (k[1]) as the free commutative algebra gener-

ated by k[1] with φ′′
1 represents the element x · y∨1 in H1(γ(A

′
1)

∨). As a morphism of
commutative algebras, the unit morphisms must be preserved, so φ′′

1 induces an isomor-
phism on H0 by Proposition 5.1.3.3.

We obtain an induced morphism

φ′
1 : R ≃ CAlg(τ≤1)

(
FreeCAlg

D(k)≥0
(k[1])

) CAlg(τ≤1)(φ′′
1)

−−−−−−−−−→ CAlg(τ≤1)
(
γ(A′

1)
∨
)
≃ γ(A′

1)
∨

39For a definition of A, see Construction 5.1.2.2. For the duality functor see Fact 5.1.1.3.

212



5.1. Formality of certain E∞,E1-bialgebras

where the first equivalence is the one from Proposition 5.1.5.440 and the second equiva-
lence is the one arising from γ(A′

1)
∨ already being concentrated in degrees 0 and 1. φ′

1

then induces an isomorphism on H0 and satisfies H1(φ
′
1)(g) = x · y∨1 .

Applying [HA, 2.1.3.10] and Proposition 5.1.6.1 we can upgrade φ′
1 to a morphism in

BiAlgComm,E0
(D(k)). Next, applying Proposition 5.1.2.18 and dualizing, we can lift this

morphism to a morphism
φ1 : R→ γ(A1)

∨

in BiAlgComm,Assoc(D(k)) such that the triangle

R γ(A1)
∨

γ(A′
1)

∨

φ1

φ′
1

of underlying morphisms of commutative algebras commutes, with the vertical morphism
being the dual of γ applied to the inclusion A′

1 → A1. Applying Proposition 5.1.7.1 (and
dualizing twice), we can further lift φ1 to a morphism φ that fits into a commuting
triangle in BiAlgComm,Assoc(D(k)) as follows.

R γ(A)∨

γ(A1)
∨

φ

φ1

By Proposition 5.1.2.4 (and dualizing) the homology of γ(A)∨ is k in degrees 0 and 1
and 0 in other degrees, and a basis is formed by 1∨ in degree 0 and by y∨1 in degree 1. As
the inclusion A′

1 → A sends 1 to 1 and y1 to y1, it follows that the induced morphisms
Hi(γ(A)

∨)→ Hi(γ(A
′
1)

∨) send 1∨ to 1∨ and y∨1 to y∨1 and are thus in particular isomor-
phisms. That φ satisfies the required properties now follows from this together with the
description of φ′

1 discussed above.

Proposition 5.1.7.3. Let R and S be objects in BiAlgComm,Assoc(D(k)) such that

Hi(R) ∼=

{
k for i = 0 and i = 1

0 otherwise

and

Hi(S) ∼=

{
k for i = 0 and i = 1

0 otherwise

40We choose this equivalence to be such that the morphism k[1] → FreeCAlg
D(k)(k[1]) exhibiting

FreeCAlg
D(k)(k[1]) as the free commutative algebra generated by k[1] composed with the equivalence

is homotopic to g.

213



Chapter 5. Mixed complexes and circle actions

and let {gR} and {gS} be a basis of H1(R) and H1(S), respectively. Let x be an element
of k.

Then there exists a morphism
φ : R→ S

in BiAlgComm,Assoc(D(k)) such that H0(φ) is an isomorphism and H1(φ)(gR) = x · gS.
In particular, φ is an equivalence if and only if x is a invertible in k. ♥

Proof. By Proposition 5.1.7.2 we can construct morphisms

R γ(A)∨ S
φR φS

in BiAlgComm,Assoc(D(k)) such that both φR and φS induce an isomorphism on H0 and

H1(φR)(gR) = x · y∨1 and H1(φS)(gS) = y∨1

It follows from Proposition 5.1.2.4 and [HA, 3.2.2.6] that φS is an equivalence and φR
is an equivalence if and only if x is invertible. We now define φ as the composition
(φS)

−1 ◦ φR.

5.2. The k-linear circle as an E∞,E1-bialgebra
The goal of this section is to define the circle group T as well as its k-linear version

k⊠T as commutative and cocommutative bialgebras, for T in S, and for k⊠T in D(k).
T will be defined in Section 5.2.1. We will then discuss the linearization functor

k ⊠ − : S → D(k) in Section 5.2.2, and apply it to define k ⊠ T in the very short
Section 5.2.3.

5.2.1. The circle group
Let W be the class of weak equivalences in the model structure on sSet discussed in

[Hov99, Chapter 3] and [HTT, After A.2.7.3] – these are the morphisms whose geometric
realization is a homotopy equivalence of topological spaces. The infinity category of
spaces S can then be defined by inverting those weak equivalences of simplicial sets, so
as

S := sSet[W−1]

see [HTT, 1.2.16.1] in combination with [HA, 1.3.4.20]. The canonical functor sSet→ S

preserves finite products, as finite products in sSet are automatically homotopy prod-
ucts41. The functor Sing : Top → sSet also preserves products as a right adjoint, so
that the composition Top → S also preserves finite products. Giving both involved
41As the geometric realization functor |−| : sSet→ Top is the left adjoint of a Quillen equivalence, this

follows from every object in sSet being cofibrant, |−| preserving products [Hov99, 3.1.8], and every
object in Top being fibrant.

214



5.2. The k-linear circle as an E∞,E1-bialgebra

∞-categories the cartesian symmetric monoidal structure [HA, 2.4.1] upgrades this func-
tor to a symmetric monoidal functor, and so induces an (again symmetric monoidal)
functor of ∞-categories of commutative algebras CAlg(Top)→ CAlg(S). This allows us
to construct commutative algebras in S by giving an explicit commutative topological
monoid, which we will use in the following construction.

Construction 5.2.1.1. We let the circle group T refer to the object in CAlg(S) ob-
tained by applying the above functor CAlg(Top) → CAlg(S) to the (multiplicative)
commutative submonoid

{
z ∈ C

∣∣ |z| = 1
}

of C.
Note that every commutative topological monoid can be upgraded to a commutative

and cocommutative topological bimonoid, with comultiplication given by the diagonal
map. This phenomenon is in fact more general, as we saw in Proposition 3.3.1.2 that any
commutative algebra in a cartesian symmetric monoidal ∞-category can be upgraded
in an essentially unique way to a commutative and cocommutative bialgebra.

In particular, we can upgrade T in an essentially unique way to an E∞,E∞-bialgebra
in spaces. ♦

5.2.2. The linearization functor
In Section 5.2.1 we considered S as a symmetric monoidal∞-category via the cartesian

symmetric monoidal structure. There is also a different way of defining the symmetric
monoidal structure on S, as we discuss in the following remark.

Remark 5.2.2.1. The ∞-category S is the unit object in PrL by [HA, 4.8.1.20], and
hence can be upgraded to a presentable symmetric monoidal ∞-category that is initial
in CAlg(PrL) by [HA, 3.2.1.9] in combination with [HA, 4.8.1.9 and 4.8.1.15].

To show that the so obtained symmetric monoidal structure is equivalent to the carte-
sian symmetric monoidal structure, it suffices in light of [HA, 4.8.1.12] to show that the
product functor S×S→ S preserves colimits separately in each variable, which is shown
in [HTT, 6.1.3.14]. ♦

The characterization of S as an initial object in CAlg(PrL) allows the following defini-
tion.

Definition 5.2.2.2. Let C be a presentable symmetric monoidal ∞-category. Then we
obtain an essentially unique colimit preserving symmetric monoidal functor that we
denote as follows.

1C ⊠− : S→ C

As D(k) is a presentable symmetric monoidal ∞-category by Proposition 4.3.2.1 (1),
we hence obtain a colimit preserving symmetric monoidal functor

k ⊠− : S→ D(k)

that we sometimes call the k-linearization functor. ♦

215



Chapter 5. Mixed complexes and circle actions

Remark 5.2.2.3. Let φ : k → k′ be a morphism of commutative rings. Then universality
of the functors defined in Definition 5.2.2.2 imply that we obtain a commuting triangle

S

D(k) D(k′)

k⊠− k′⊠−

k′⊗k−

where k′ ⊗k − is the colimit-preserving symmetric monoidal functor discussed in Re-
mark 4.3.2.2. ♦

Let X be an object of S. In Section 4.3.3 we discussed the homology functors Hn on
D(k), which we could thus apply to k ⊠X. In the rest of this section we show that this
is compatible with the classical notions of homology of spaces. We begin by reviewing
the definition of homology of simplicial sets.

Construction 5.2.2.4. We construct a functor

k · − : sSet→ Ch(k)

as follows. There is a functor, which we also call k ·−, from Set to LModk(Ab) that maps
a set X to the free k-module on the basis X. This functor induces a functor as follows.

sSet ∼= Fun(∆op, Set) (k·−)∗−−−→ Fun
(
∆

op,LModk(Ab)
)

The functor k · − : sSet → Ch(k) is then to be the composition of this functor with
the functor

C : Fun
(
∆

op,LModk(Ab)
)
→ Ch(k)

that maps a functor F to the chain complex C(F ) for which C(F )n := F ([n]) and
∂
C(F )
n :=

∑n
i=0 F (δi). ♦

Classically, one defines homology for simplicial sets X with coefficients in the commu-
tative ring k as Hn(X, k) := Hn(k ·X). For topological spaces one then defines homology
as the homology of their singular simplicial set.

What we would like to show is that there is a commutative diagram

sSet Ch(k)

LModk(Ab)

S D(k)

k·−

γ

Hn

k⊠−

Hn

where the left vertical functor is the canonical one. That there is a filler for the right
triangle was shown in Proposition 4.3.3.2. It thus remains to show that there is a filler
for the left square. The strategy will be to use that colimit-preserving functors out of

216



5.2. The k-linear circle as an E∞,E1-bialgebra

S are determined by their value on the one-point-space ∗. So we will show that k · −
induces a colimit-preserving functor on underlying ∞-categories that maps ∗ to k. This
functor will then by definition fit into such a commutative square but also be homotopic
to k ⊠−.

Proposition 5.2.2.5. The functor

k · − : sSet→ Ch(k)

from Construction 5.2.2.4 preserves weak equivalences as well as cofibrations, where sSet
carries the model structure discussed in [Hov99, Chapter 3] and [HTT, After A.2.7.3],
and Ch(k) carries the projective model structure from Fact 4.1.3.1. ♥

Proof. Weak equivalences in sSet are those maps whose geometric realization is a homo-
topy equivalence of spaces, and that singular homology maps homotopy equivalences to
isomorphisms is classical42.

Now let f : X → Y be a cofibration in sSet, i. e. the map of sets fn : Xn → Yn is
injective for every n ≥ 0. To show that k · f is a cofibration we have by [Hov99, 2.3.9]
to show that k · f is a levelwise split injection and that k · f has cofibrant cokernel.

But the morphism (k · f)n is a morphism of free k-modules induced by an injection
among the basis sets, so is a split injection. The cokernel can then be identified with a
chain complex that is concentrated in nonnegative degrees and that in level n ≥ 0 is
given by the free k-module with basis Yn \ fn(Xn). Thus the cokernel of k · f is cofibrant
by [Hov99, 2.3.6].

Definition 5.2.2.6. By Proposition 5.2.2.5 the functor k · − from Construction 5.2.2.4
induces a functor

k · − : sSetcof → Ch(k)cof

preserving weak equivalences and thus a functor on underlying ∞-categories43

S ≃ sSet[W−1]→ Ch(k)cof[W ′−1] ≃ D(k)

that we also call k · −.
By construction this functor comes with a commutative square

sSet Ch(k)cof

S D(k)

k·−

γ

k·−

(5.8)

of ∞-categories, where the left vertical functor is the canonical one. ♦

42For a discussion in a textbook see for example [Bre93, 16.5]
43W is to be the class of weak equivalences in sSet and W ′ the class of weak equivalences in Ch(k).

217



Chapter 5. Mixed complexes and circle actions

Proposition 5.2.2.7. The functor

k · − : sSet→ Ch(k)

from Construction 5.2.2.4 preserves small colimits. ♥

Proof. Colimits in both sSet as well as Ch(k) are calculated levelwise. The statement
thus boils down to the functor k · − : Set → LModk(Ab) preserving colimits. But this
functor is left adjoint to the forgetful functor.

Proposition 5.2.2.8. The functor

k · − : S→ D(k)

from Definition 5.2.2.6 preserves small colimits. ♥

Proof. By Fact 4.1.3.1 and [HTT, After A.2.7.3] sSet and Ch(k) are combinatorial model
categories. Furthermore, by Proposition 5.2.2.7, [HTT, 5.5.2.9]44, and Proposition 5.2.2.5,
the functor

k · − : sSet→ Ch(k)

is a left Quillen functor between combinatorial model categories.
The claim thus follows from [HA, 1.3.4.26].

Proposition 5.2.2.9. The functors k · − from Definition 5.2.2.6 and k ⊠− from Defi-
nition 5.2.2.2 are homotopic as functors of infinity categories from S to D(k). ♥

Proof. k ⊠ − preserves small colimits by definition and k · − by Proposition 5.2.2.8.
Then [HTT, 5.1.5.6] implies that it suffices to check that k ⊠ ∗ ≃ k · ∗, where ∗ is the
one-point-space.

As k ⊠ − is by definition symmetric monoidal, it maps the monoidal unit ∗ of S to
the monoidal unit k of D(k).

As γ : Ch(k)cof → D(k) is also symmetric monoidal it thus suffices to show that the
chain complex45 k · ∗ is quasiisomorphic to k[0]. But it can easily be seen from the
definition that k · ∗ is the chain complex46

· · · ← 0← k
0
←− k

id
←− k

0
←− k

id
←− · · ·

and the obvious inclusion of k[0] is a quasiisomorphism.

We can now put everything together and summarize the previous results as follows.
44As both sSet and Ch(k) have combinatorial model structures they are presentable.
45Here ∗ is the simplicial set ∆op → Set that is constant with value ∗. As pointed out in the introduction

to Section 5.2.1, the canonical functor sSet → S preserves finite products, so this simplicial set ∗
maps to the space ∗ in S.

46The leftmost k is in level 0.

218



5.2. The k-linear circle as an E∞,E1-bialgebra

Proposition 5.2.2.10. There is a commutative diagram

sSet Ch(k)

LModk(Ab)

S D(k)

k·−

γ

Hn

k⊠−

Hn

where the left vertical functor is the canonical one. ♥

Proof. For the left commutative square combine Proposition 5.2.2.9 with the commuta-
tive square (5.8) from Definition 5.2.2.6. The right commutative triangle was constructed
in Proposition 4.3.3.2.

5.2.3. Definition of the k-linear circle
We can now define the k-linear circle as a bialgebra in D(k).

Definition 5.2.3.1. The k-linear circle is the E∞,E∞-bialgebra k ⊠ T in D(k). ♦

5.2.4. Formality of the k-linear circle as an E∞,E1-bialgebra
In this section we apply the main result of Section 5.1, Proposition 5.1.7.3, to the

commutative bialgebra k⊠T that we defined in Section 5.2.3. We start by recording the
homology of k ⊠ T.

Proposition 5.2.4.1. The following holds for the homology of k ⊠ T as defined in
Definition 5.2.3.1.

Hi(T⊠ k) ∼=

{
k for i = 0 and i = 1

0 otherwise

♥

Proof. By Proposition 5.2.2.10 and using the definition of T in Construction 5.2.1.1 there
is an isomorphism

H∗(k ⊠ T) ∼= H∗

({
z ∈ C

∣∣ |z| = 1
}
; k
)
∼= H∗

(
S1; k

)

where on the right we have the usual singular homology of the topological 1-sphere with
coefficients in k.

We can now put all the work of Section 5.1 to use to obtain an equivalence of com-
mutative bialgebras between k ⊠ T and D.

219



Chapter 5. Mixed complexes and circle actions

Proposition 5.2.4.2. Let g be a basis element of H1(k ⊠ T). Then there exists an
equivalence47

φ : D→ k ⊠ T

in BiAlgComm,Assoc(D(k)) that sends the element d of H1(D) to the element g in H1(k ⊠ T).
♥

Proof. Follows directly from Proposition 5.2.4.1 and Proposition 5.1.7.3.

From Proposition 5.2.4.2 we obtain an equivalence D ≃ k ⊠ T as commutative bial-
gebras. This equivalence is however not canonically determined – not even the induced
isomorphism on homology is, it depends on the choice of a element g of H1(k ⊠ T) that
forms a basis. If g0 is one element that forms a basis, then the set of all elements forming
a basis is given by the products x · g0 where x is an invertible element of k. So which
element should we choose?

We can reduce the indeterminacy by varying the ground ring. It follows from Construc-
tion 4.2.1.1, Remark 4.3.2.2, and Remark 5.2.2.3 that an equivalence of commutative
bialgebras DZ ≃ Z ⊠ T in D(Z) induces an equivalence of commutative bialgebras as
follows

Dk ≃ k ⊗Z DZ ≃ k ⊗Z Z⊠ T ≃ k ⊠ T

where the first equivalence is the one obtained from combining Construction 4.2.1.1 with
Remark 4.3.2.2, the middle equivalence arises from applying k ⊗ Z− to the equivalence
DZ ≃ Z⊠ T, and the last equivalence is the one from Remark 5.2.2.3. By choosing this
equivalence for k, we have thus reduced the indeterminacy of the isomorphism on H1 to
choosing one of the two generators of H1(Z⊠ T) ∼= Z.

So which generator of H1(Z ⊠ T) should we choose? We will in Section 6.1.1 define
a 1-category Λ and call functors from Λ

op into an ∞-category cyclic objects in that
∞-category. We will consider two relevant constructions on cyclic objects. We will define
a functor

|−|Mixed : Fun
(
Λ

op,Ch(k)cof
)
→ Mixedcof = LModD(Chcof)

in Section 6.3.1.2 and a functor

|−| : Fun
(
Λ

op,D(k)
)
→ D(k)BT

in Section 6.1.3. Note that there are automorphisms of D and T that introduce a sign.
For D we can describe this automorphism by d 7→ −d, and the automorphism of T is
given by z 7→ z−1. These reflect choices that are made when defining the two functors
we just mentioned – for example for |−|Mixed there is no intrinsic reason to define d the
way it is done rather than adding an extra sign. But in any case, there are choices that
have been made for both |−|Mixed and |−|.

47See Notation 4.4.0.2 and Construction 4.2.1.1 for a definition of D and Definition 5.2.3.1 for a definition
of k ⊠ T.

220



5.2. The k-linear circle as an E∞,E1-bialgebra

The result [Hoy18, 2.3] can now be phrased as follows: There is a generator of H1(Z⊠T)
such that the following diagram commutes

Fun
(
Λ

op,Ch(k)cof
)

LModD(Chcof)

Fun
(
Λ

op,D(k)
)

D(k)BT LModk⊠T
(
D(k)

)
LModD

(
D(k)

)

|−|Mixed

γ∗ γMixed

|−| ≃ ≃

(5.9)

where the middle bottom horizontal equivalence is one we will construct in Section 5.3,
the right bottom horizontal equivalence is the one induced by the equivalence D ≃ k⊠T
arising as discussed above from the choice of generator of H1(Z ⊠ T), and γMixed is the
functor Mixedcof →Mixed from Notation 4.4.1.2. We thus make the following convention.

Convention 5.2.4.3. From now on, when we refer to the equivalence of commutative
bialgebras in D(k)

D ≃
−→ k ⊠ T

then this is to be the equivalence that arises in the manner discussed above from the
generator of H1(Z⊠ T) that is such that there is a commutative diagram (5.9). ♦

Remark 5.2.4.4. The equivalence of bialgebras from Convention 5.2.4.3 induces via
the functor LMod from Definition 3.4.2.1 an equivalence of monoidal ∞-categories

LModk⊠T
(
D(k)

)
≃ LModD

(
D(k)

)

that is compatible with the forgetful functors to D(k).
Furthermore, if φ : k → k′ is a morphism of commutative rings, then there is a com-

mutative diagram48

LModk⊠T LModDk
(
D(k)

)

D(k)

D(k′)

LModk′⊠T LModDk′
(
D(k)

)

≃

k′⊗k−

evm

k′⊗k−

evm

k′⊗k−

≃

evm evm

48There is also supposed to be a filler for the outer diagram that is compatible with the forgetful
functors, i. e. this is a three-dimensional diagram that we are looking at from the top.

221



Chapter 5. Mixed complexes and circle actions

of monoidal functors, where the horizontal equivalences are the ones just mentioned and
the vertical functors are induced by the symmetric monoidal functor

k′ ⊗k − : D(k)→ D(k′)

from Remark 4.3.2.2. ♦

5.3. Group actions and modules over group rings
Let G be a grouplike49 associative monoid in S. One important class of examples is

supplied by pointed spaces X by taking the loop space ΩX, which has a multiplication
arising from composition of loops. The details of this construction are discussed in [HA,
Introduction to 5.2.6], where a functor

β1 : S∗ → Mongp
Assoc(S)

is constructed that implements this idea. It turns out that there are no other examples,
and that the restriction of β1 to the full subcategory S≥1

∗ of S∗ spanned by the path
connected spaces is an equivalence

β1 : S
≥1
∗

≃
−→ Mongp

Assoc(S)

as shown in [HA, 5.2.6.10]. The inverse functor of this equivalence will be called B. If
we interpret BG as an ∞-groupoid, then BG has (up to equivalence) a unique object,
and that object’s automorphism space is equivalent to ΩBG ≃ G.

Now if C is an ∞-category, then we can consider the ∞-category of objects with
G-action in C, which is defined as50 follows.

CBG := Fun(BG, C)

If C carries a symmetric monoidal structure, then CBG can be given the induced pointwise
symmetric monoidal structure.

On the other hand, if C is presentable symmetric monoidal, then we can form out of
the Assoc-algebra51 G in S the Assoc-algebra 1C⊠G in C (see Remark 5.2.2.1), and hence
consider the ∞-category LMod1C⊠G(C) of left-1C ⊠ G-modules in C. In fact, G can be
upgraded essentially uniquely to an object in BiAlgAssoc,Comm(S) by Proposition 3.3.1.2,
with comultiplication given by the diagonal map G idG× idG−−−−−→ G×G. We hence also obtain
an Assoc,Comm-bialgebra structure on 1C⊠G, and thus an induced symmetric monoidal
structure on LMod1C⊠G(C) by Definition 3.4.2.1.
49See [HA, 5.2.6.2] for a definition.
50See for example [HA, 6.1.6.2] for this definition.
51By [HA, 2.4.2.5] the ∞-categories of Assoc-monoids in S and Assoc-algebras in S are equivalent, as

the symmetric monoidal structure on S is cartesian (see Remark 5.2.2.1).

222



5.3. Group actions and modules over group rings

Let us remark that the diagonal map is also used behind the scenes when defining the
pointwise symmetric monoidal structure on CBG – the pointwise tensor product of two
functors F and G can be written as the composition

BG idBG×idBG−−−−−−−→ BG× BG F×G
−−−→ C × C

−⊗−
−−−→ C

and the diagonal functor of BG can on automorphism spaces be identified with the
diagonal map of G.

We can now ask the question whether CBG and LMod1C⊠G(C) are equivalent as sym-
metric monoidal∞-categories, which Proposition 5.3.0.8, which is the goal of this section,
will answer affirmatively.

As technical input we need to start by discussing compatibility of the tensor prod-
uct of PrL (see [HA, 4.8.1.15]) with functor categories. We will need two natural com-
parison functors, one for presentable symmetric monoidal ∞-categories, and one for
presentable ∞-categories, but we will show in Proposition 5.3.0.4 that these construc-
tions are compatible with the forgetful functor CAlg(PrL)→ PrL. We will then show in
Proposition 5.3.0.6 that these comparison functors are equivalences.

Construction 5.3.0.1. Let C and D be presentable symmetric monoidal ∞-categories
and I and J small ∞-categories. By [HA, 4.8.1.9] we can interpret C and D as objects
in CAlg(PrL).

The symmetric monoidal structure on PrL induces a symmetric monoidal structure
on CAlg(PrL) such that the forgetful functor ev〈1〉 can be upgraded to a symmetric
monoidal functor (see [HA, 3.2.4.4]). By [HA, 3.2.4.10] this symmetric monoidal structure
is cocartesian.

The functor categories Fun(I, C) and Fun(J ,D) and Fun(I × J , C ⊗ D) can be
given the induced pointwise symmetric monoidal structures (see [HA, 2.1.3.4]). By [HTT,
5.5.3.6] the underlying ∞-categories are presentable again and as both the tensor prod-
ucts as well as colimits are calculated pointwise (see [HTT, 5.1.2.3]), the tensor products
again preserve colimits pointwise in each variable 52.

Let ιC : C → C⊗D and ιD : C → C⊗D be the two morphisms in CAlg(PrL) exhibiting
C ⊗ D as a coproduct of C and D. Using that Fun(I, C)⊗ Fun(J ,D) is a coproduct of
52To be precise (considering the case of Fun(I, C)): The pointwise symmetric monoidal structure comes

with symmetric monoidal evaluation functors for every object I of I. This means we have commu-
tative diagrams as follows

Fun(I, C)× Fun(I, C) Fun(I, C)

C × C C

−⊗−

evI×evI evI

−⊗−

where the horizontal functors are the respective tensor product functors. The left vertical functor
preserves colimits in each component, and the bottom horizontal functor preserves colimits separately
in each variable by assumption. It follows that the composition from top left to the bottom right
along the top right preserves colimits separately in each variable, and as this is the case for every
object I in I, it follows that this is also the case for the top horizontal functor.

223



Chapter 5. Mixed complexes and circle actions

Fun(I, C) and Fun(J ,D) in CAlg(PrL) we can then define a morphism φ
I,J
C,D in CAlg(PrL)

as follows.

φ
I,J
C,D : Fun(I, C)⊗ Fun(J ,D)

(ιC◦−◦pr1)∐(ιD◦−◦pr2)
−−−−−−−−−−−−−−→ Fun(I × J , C ⊗ D) ♦

We next construct a functor of presentable ∞-categories very analogous to φI,J
C,D (and

with the same name, which will be justified by Proposition 5.3.0.4), where we however
do not consider any symmetric monoidal structures.

Construction 5.3.0.2. Let C and D be presentable ∞-categories and I and J small
∞-categories.

Consider the following diagram, which will be explained below.

Fun(I, C)× Fun(J ,D) Fun(I × J , C × D)

Fun(I, C)⊗ Fun(J ,D) Fun(I × J , C ⊗ D)

ψ′

−×−

ψ∗

φ
I,J
C,D

(5.10)

First, as already mentioned in Construction 5.3.0.1 are by [HTT, 5.5.3.6] the various
functor categories appearing in the diagram diagram representable again. ψ′ is to be the
functor exhibiting Fun(I, C)⊗Fun(J ,D) as the tensor product in PrL of Fun(I, C) and
Fun(J ,D), and likewise ψ is to be the functor exhibiting C ⊗D as the tensor product53.
We claim that the composite from the top left over the top right to the bottom right
preserves colimits in each variable separately. For this it suffices by [HTT, 5.1.2.3] to
check that the composition with ev(I,J) preserves colimits in each variable separately for
every object I of I and J of J . But as there is a commutative diagram

Fun(I, C)× Fun(J ,D) Fun(I × J , C × D) Fun(I × J , C ⊗ D)

C × D C × D C ⊗ D

−×−

evI×evJ

ψ∗

ev(I,J) ev(I,J)

id ψ

this follows from evI and evJ preserving colimits by [HTT, 5.1.2.3] and ψ by definition
preserving colimits separately in each variable.

It now follows from the universal property54 of the tensor product in PrL that there is
an essentially unique way to complete (5.10) to a commutative diagram with a colimit
preserving dashed functor φI,J

C,D . ♦

Remark 5.3.0.3. The functors φ from Construction 5.3.0.2 are compatible with col-
imit preserving functors of presentable ∞-categories and functors of the indexing ∞-
categories as we will argue now. Let f : I ′ → I and g : J ′ → J be functors of small
53Again see [HA, 4.8.1.2, 4.8.1.3, 4.8.1.4, and 4.8.1.15].
54See [HA, 4.8.1.2, 4.8.1.3, 4.8.1.4, and 4.8.1.15].

224



5.3. Group actions and modules over group rings

∞-categories and F : C → C ′ and G : D → D′ colimit preserving functors between pre-
sentable ∞-categories.

Then consider the following diagram

CI ×DJ (C × D)I×J

C ′I
′
×D′J ′

(C ′ ×D′)I
′×J ′

CI ⊗DJ (C ⊗ D)I×J

C ′I
′
⊗D′J ′

(C ′ ⊗D′)I
′×J ′

(F◦−◦f)×(G◦−◦g)

−×−

(F×G)◦−◦(f×g)

−×−

(F◦−◦f)⊗(G◦−◦g)

φ
I,J
C,D

(F⊗G)◦−◦(f⊗g)

φ
I,J

C′,D′

where the vertical functors are (induced) by the various canonical functors exhibiting
a presentable ∞-category as a tensor product in PrL. The top, left, and right sides
commute by the respective naturalities, and the front and back commute by construction.
The claim we want to show is that there is an essentially unique filler for the bottom
side and the cube. But this follows immediately from the universal property of the back
left vertical functor using the fact that all functors on the bottom preserve colimits.

The functors φ from Construction 5.3.0.1 satisfy an analogous naturality property,
which one can deduce directly from the definition using the universal property of co-
products. ♦

The next proposition justifies the overloading of notation in Construction 5.3.0.1 and
Construction 5.3.0.2.

Proposition 5.3.0.4. Let C and D be presentable symmetric monoidal ∞-categories
and I and J small ∞-categories.

As the forgetful functor ev〈1〉 : CAlg(PrL) → PrL is symmetric monoidal, we can
identify the underlying presentable∞-categories of the domain and codomain of φI,J

C,D from
Construction 5.3.0.1 with the domain and codomain of φI,J

C,D from Construction 5.3.0.2.
Under this identification there is an essentially unique homotopy of morphisms in

PrL between the underlying functor of φI,J
C,D from Construction 5.3.0.1 and φ

I,J
C,D from

Construction 5.3.0.2. ♥

Proof. Let φI,J
C,D be the underlying functor of the symmetric monoidal functor defined in

Construction 5.3.0.1. By the universal property of the tensor product in PrL it suffices
to show that φI,J

C,D fits into a commutative diagram as depicted in (5.10).

225



Chapter 5. Mixed complexes and circle actions

For this we ponder the following commutative diagram in Cat∞55.

CI ×DJ CI ⊗DJ (C ⊗ D)I×J

(C ⊗ D)I×J × (C ⊗ D)I×J
(C ⊗ D)I×J ⊗ (C ⊗ D)I×J

(C × D)I×J (
(C ⊗ D)× (C ⊗ D)

)I×J

(
(C × ∗)× (∗ × D)

)I×J (
(C × D)× (C × D)

)I×J
(C × D)I×J

ψ′

− × −

(
ιC ◦ − ◦ pr1

)
×

(
ιD ◦ − ◦ pr2

)

ϕ
I,J
C,D

(
ιC ◦ − ◦ pr1

)
⊗

(
ιD ◦ − ◦ pr2

)

ψ′′

− × −

− ⊗ −

(ιC × ιD)∗

≃

id

(− ⊗ −)∗

(id × 1 × 1 × id)∗ (− ⊗ −)∗

(ψ × ψ)∗

ψ∗

The composite outer diagram is the one that we are after. All the morphisms ψ with some
decoration are to be the canonical morphisms exhibiting some presentable ∞-category
as a tensor product in PrL (one could also say: these are the functors arising from lax
symmetric monoidality of the inclusion of PrL into Cat∞), and 1: ∗ → C is to be the
unit morphism of the commutative algebra C in PrL, i. e. the functor with image 1C, and
similarly for 1: ∗ → D. The morphisms ιC and ιD are to be as in Construction 5.3.0.1.
Finally, the functors − ⊗ − are the internal tensor product functors of the various
symmetric monoidal ∞-categories.

Let us now explain how the individual pieces of the above diagram arise. The top right
triangle uses that the tensor product functor is the coproduct id∐ id in CAlg(PrL). The
top left square arises from naturality of the functors denoted by ψ with a decoration – the
functor on the right is in fact defined as the essentially unique colimit preserving functor
fitting into a square like this. In the middle square below the two already discussed ones
we can (again56) identify the composition of the top two functors with the tensor product
functor of (C ⊗ D)I×J , and then commutativity of the square arises from the definition
of the symmetric monoidal structure on (C ⊗ D)I×J as the pointwise one. The square
on the right arises from ψ : C ×D → C ⊗D being a symmetric monoidal functor, which
55To save space we write e. g. Fun(I, C) as CI .
56One can think of it like this: The lax symmetric monoidal inclusion of PrL into Cat∞ induces a functor

on commutative algebras, which is why a presentable symmetric monoidal∞-category E comes with
a commutative triangle

E × E

E

E ⊗ E

−⊗−

−⊗−

where the left vertical functor is the canonical one exhibiting E ⊗ E as a tensor product in PrL and
where both functors − ⊗ − can be thought of as “the tensor product functor” – the one on the
bottom encodes that colimits are preserved in each variable separately.

226



5.3. Group actions and modules over group rings

is the case because the functor CAlg(PrL)→ CAlg(Cat∞) induced by the lax symmetric
monoidal inclusion of PrL into Cat∞ is again lax symmetric monoidal, see [HA, 4.8.1.4]
and Proposition E.4.2.3 (7). The upper square on the left comes from functoriality of
taking products of functors. The irregularly shaped square at the very bottom arises from
unitality of the tensor product functors on C and D and the fact that the tensor product
on C × D is defined componentwise. Finally, the bottom left square is constructed from
the definitions of ιC and ιD. For example for ιC, the unit morphism 1: ∗ → C induces a
colimit preserving functor 1: 1PrL ≃ S → C and we then obtain the dashed functor in
the following diagram.

C C ⊗ D

C × ∗ C × D

C × S C ⊗ S

ιC

≃

id×1

id×1

ψ

ψ′′′′

id×1

The dotted functor ιC is then defined as the composition along the outside of the diagram,
i. e. making the outer diagram commute, which obviously also implies that there also
exists a filler for the top square.

Notation 5.3.0.5. Given ∞-categories C, C ′ and D, with C and C ′ admitting all small
colimits, we write Funcolim(C,D) for the full subcategory of Fun(C,D) spanned by the
colimit-preserving functors. We write Funcolim× colim(C × C ′,D) for the full subcategory
of Fun(C × C ′,D) of functors preserving colimits in each variable separately. ♦

Proposition 5.3.0.6. In both the situation of Construction 5.3.0.1 as well as the situa-
tion of Construction 5.3.0.2 is the functor φI,J

C,D an equivalence of presentable (symmetric
monoidal) ∞-categories. ♥

Proof. This proof will follow ideas of [HA, Proof of 4.8.1.15].
By [HA, 2.1.3.8] is a symmetric monoidal functor is equivalence of symmetric monoidal

∞-categories if and only if the underlying functor of ∞-categories is an equivalence. In
light of Proposition 5.3.0.4 it thus suffices to discuss the case of Construction 5.3.0.2.

By [HTT, 5.5.1.1, 5.4.2.7, 5.5.4.2, and 5.5.4.15] any presentable ∞-category is equiv-
alent to a localization S−1 Fun(K, S) for some small ∞-category K and small set of
morphisms S in Fun(K, S). It will thus suffice to show the following claims.

(1) φ
I,J
S,S is an equivalence for all small ∞-categories I and J .

(2) Suppose φI,J
C,D is an equivalence for fixed presentable ∞-categories C and D, but

arbitrary small ∞-categories I and J . Then φ
I,J
Fun(I′,C),Fun(J ′,D) is an equivalence

for all small ∞-categories I ′, J ′, I, and J .

227



Chapter 5. Mixed complexes and circle actions

(3) Suppose φI,J
C,D is an equivalence for fixed presentable ∞-categories C and D and

all small ∞-categories I and J . Let S be a small set of morphisms of C. Then
φ
I,J
S−1C,D is also an equivalence.

(4) Suppose φI,J
C,D is an equivalence for fixed presentable ∞-categories C and D and

small ∞-categories I and J . Then φ
J ,I
D,C is an equivalence as well.

Proof of claim (1): It suffices to show that the composition

θ : Fun(I, S)× Fun(J , S) −×−
−−−→ Fun(I × J , S× S)

ψ∗
−→ Fun(I × J , S⊗ S)

exhibits Fun(I ×J , S⊗S) as the tensor product of Fun(I, S) and Fun(J , S) in PrL, i. e.
we have to show that for any ∞-category E admitting all colimits the induced functor

Funcolim(Fun(I × J , S⊗ S), E
) θ∗

−→ Funcolim× colim(Fun(I, S)× Fun(J , S), E
)

is an equivalence.
Using that mapping spaces in products of∞-categories are the products of the respec-

tive mapping spaces we obtain the following commutative diagram of ∞-categories.

Iop × J op (I × J )op

P(Iop)× P(J op) P
(
(I × J )op

)

Fun(I, S)× Fun(J , S) Fun(I × J , S)

Fun(I × J , S× S) Fun(I × J , S⊗ S)

≃

−×−
θ

ψ∗

(−×−)∗

where the two top vertical functors are (products of) Yoneda embeddings [HTT, 5.1.3],
the top horizontal one is the canonical equivalence witnessing that −op preserves prod-
ucts, and −×− : S⊗S→ S is the tensor product of the cartesian presentable symmetric
monoidal structure on S, see Remark 5.2.2.1.

By applying Fun(−, E) and passing to appropriate full subcategories we obtain a
commutative diagram

Fun(Iop × J op, E) Fun
(
(I × J )op, E

)

Funcolim× colim(P(Iop)× P(J op), E
)

Funcolim
(
P
(
(I × I)op

)
, E
)

Funcolim(Fun(I × J , S⊗ S), E
)

≃

((−×−)∗)
∗

θ∗

228



5.3. Group actions and modules over group rings

The top horizontal functor is an equivalence as it is induced by one. The top left and
right vertical functors are equivalences by [HTT, 5.1.5.6]57. Finally, the bottom right
vertical functor is an equivalence because it is induced by the equivalence S ⊗ S → S

(see [HA, 4.8.1.20]). It follow that θ∗ is an equivalence as well.
Proof of claim (2): Let C and D be as in the claim and I, I ′, J , J ′ small∞-categories.

We have to show that φI,J
Fun(I′,C),Fun(J ′,D) is an equivalence. For this, consider the following

diagram where the unlabeled functors are induced by the unit and counit of the product-
Fun-adjunction and symmetry equivalences, and the functors ψ, ψ′, ψ′′, and ψ′′′ are the
various functors exhibiting a presentable ∞-category as a tensor product in PrL.

CI×I′
×DJ×J ′

CI×I′
⊗DJ×J ′

(
CI

′
)I
×
(
DJ ′

)J (
CI

′
)I
⊗
(
DJ ′

)J

(
CI

′
×DJ ′

)I×J (
CI

′
⊗DJ ′

)I×J

(
(C × D)I

′×J ′
)I×J (

(C ⊗ D)I
′×J ′

)I×J

(C × D)I×I′×J×J ′

(C ⊗ D)I×I′×J×J ′

ψ′′

≃

−×−

≃

φ
I×I′,J×J ′

C,D

ψ′′′

−×− ϕ
I,J

CI
′
,DJ′

ψ′
∗

(−×−)∗

(
φ
I′,J ′

C,D

)

∗

(ψ∗)∗

≃ ≃

ψ∗

The two middle squares commute by definition of ϕI,J

CI′
,DJ ′ and φI′,J ′

C,D , and the top and left
square arise from respective naturalities. As the left rectangle on the left commutes we
obtain from the universal property of ψ′′ that the colimit preserving vertical composite
on the right must be homotopic to φ

I×I′,J×J ′

C,D . That ϕI,J

CI′
,DJ ′ is an equivalence now

follows from all other functors in the commuting right long rectangle being equivalences.
Proof of claim (3): Let C, D, I, J , and S be as in the statement of the claim. We

will write S for the strongly saturated collection of morphisms of C generated by S, see
[HTT, 5.5.4.5 and 5.5.4.7]. By [HTT, 5.5.4.15] S−1C ≃ (S)−1C is again presentable, so
φ
I,J
S−1C,D is defined. We have to show that it is an equivalence.
Before we do so we need to discuss how localizations commute with tensor products

in PrL and with Fun(K,−) for small ∞-categories K.
57For the top left functor, note that by passing to adjoints Funcolim × colim(

P(Iop)× P(J op), E
)

is
equivalent to Funcolim

(
P(Iop),Funcolim(P(J op), E)

)
, and now one can apply [HTT, 5.1.5.6] twice

and then pass back to adjoints again.

229



Chapter 5. Mixed complexes and circle actions

For interaction with tensor products we note the following, which is taken from the
proof of [HA, 4.8.1.15]. Let E and F be any presentable ∞-categories, and T a strongly
saturated class of small generation of morphisms of E . Let W be the collection of mor-
phisms of the form s⊗ idF in E ⊗F for any s in S and object F of F . Then W is of small
generation, as shown in [HA, Proof of 4.8.1.15]. Now consider the following diagram

T−1E × F E × F E ⊗ F

T−1E ⊗ F W−1(E ⊗ F)

where the top left horizontal functor is induced by the inclusion T−1E → E , the top right
horizontal functor and the left vertical functor are the canonical functors exhibiting the
respective targets as tensor products in PrL, and the right vertical functor is the localiza-
tion functor. W−1(E ⊗ F) is representable by [HTT, 5.5.4.15], and the composite functor
from the top left to the bottom right preserves colimits in each variable separately58. We
hence obtain the induced dashed colimit preserving functor that is an equivalence by
[HA, Proof of 4.8.1.15].

We now turn to the interaction of localizations with taking functor categories. For this,
let E be a presentable ∞-category, K a small ∞-category, and T a strongly saturated
class of morphisms of E of small generation. Let L : E → T−1E be the localization
functor. Then by Proposition D.2.2.1 and Fun(K,−) preserving fully faithful functors
by Proposition B.3.0.1 it follows that the induced functor

L∗ : Fun(K, E)→ Fun
(
K, T−1E

)

is a localization functor again. Furthermore, Fun(K, T−1E) is presentable again by [HTT,
5.5.3.6]. Let W be the class of morphisms in Fun(K, E) that are pointwise in T . By com-
bining [HTT, 5.5.4.15], [HTT, 5.5.4.2], and Proposition A.3.2.1 we see that W consists
precisely of those morphisms that are mapped to equivalences by L∗. It then follows
from [HTT, 5.5.4.2] that there is a canonical equivalence

Fun
(
K, T−1E

)
≃ W−1 Fun(K, E)

that is compatible with the localization functors.
We now return to showing that φI,J

S−1C,D is an equivalence. Let T be the strongly
generated class of morphisms in Fun(I, C)⊗Fun(J ,D) that is generated by morphisms
of the form η ⊗ idG for any object G in Fun(J ,D) and any morphism η in Fun(I, C)
such that η(I) is in S for all objects I of I. Let W be the strongly generated class of
morphisms in Fun(I × J , C ⊗ D) that is generated by those morphisms for which for
every object I of I and J of J the evaluation at (I, J) is equivalent to a morphism of
the form s⊗ idD for s in S and D and object of D.
58One can see this using that by [HTT, 5.2.7.5] a diagram p : K▷ → T−1E is a colimit if and only

if the induced morphism from the colimit taken in E to the cone object, colim p|K
→ p(∞), is a

T -equivalence.

230



5.3. Group actions and modules over group rings

Consider the following commutative diagram

T−1
(
CI ⊗DJ

)

CI ⊗DJ
(
S−1C

)I
⊗DJ

(C ⊗ D)I×J (
S−1C ⊗ D

)I×J

W−1
(
(C ⊗ D)I×J

)

≃

φ
I,J
C,D

L∗⊗id∗

φ
I,J

S−1C,D

(L⊗id)∗

≃

where L denotes the localization functor C → S−1C, the middle square arises from
naturality of the functors φ with respect to the colimit preserving functor L (see Re-
mark 5.3.0.3), and the top and bottom triangles use the compatibility of the tensor
product and functor categories with localization as discussed above, with the top and
bottom functors being the respective localization functors.

By assumption φ
I,J
C,D is an equivalence, and it is clear from the definitions that the

strongly saturated classes of morphisms T and W correspond under this equivalence, i. e.
φ
I,J
C,D (T ) = W . It then follows from [HTT, 5.5.4.20] that φI,J

S−1C,D is also an equivalence.
Proof of claim (4): One can show in a manner analogous to Remark 5.3.0.3 that there

is a commutative diagram

CI ⊗DJ (C ⊗ D)I×J

DJ ⊗ CI (D ⊗ C)J×I

φ
I,J
C,D

τ ≃ τ ′∗≃

φ
J ,I
D,C

where τ and τ ′ are the symmetry equivalences of the symmetric monoidal structure on
PrL. The claim immediately follows from this.

The proof of Proposition 5.3.0.8 below is also sketched in [Rak20, 2.2.9]. We need a
small prerequisite before stating the result.

Proposition 5.3.0.7. Let C be a symmetric monoidal∞-category, O an∞-operad, and
O′ a reduced ∞-operad59. Then the unit of the induced symmetric monoidal structure
on BiAlgO,O′(C) is a final object. ♥

59See [HA, 2.3.4.1] for a definition.

231



Chapter 5. Mixed complexes and circle actions

Proof. By definition there is an equivalence as follows.

BiAlgO,O′(C) ≃ AlgO′

(
AlgO(C)

op
)op

The unit is an initial object in AlgO′

(
AlgO(C)

op
)

by [HA, 3.2.1.8] and hence final in
BiAlgO,O′(C).

Proposition 5.3.0.8 ([Rak20, 2.2.9]). Let C be a presentable symmetric monoidal
∞-category and G an object in Mongp

Assoc(S). Consider G as a cocommutative bialge-
bra in S, and give 1C ⊠G the induced cocommutative bialgebra structure, as discussed in
the introduction to Section 5.3.

Then there is a commutative diagram of presentable symmetric monoidal∞-categories
and colimit preserving symmetric monoidal functors60 as follows

CBG LMod1C⊠G(C)

C

≃

ΨGC

ev∗ evm
(5.11)

where CBG carries the pointwise symmetric monoidal structure discussed in the introduc-
tion to Section 5.3 and LMod1C⊠G(C) the one from Definition 3.4.2.1. As indicated in
the diagram, ΨG

C is an equivalence of presentable symmetric monoidal ∞-categories.
Furthermore, these equivalences can be chosen in such a way as to be compatible with

morphisms f : G → H in Mongp
Assoc(S) and F : C → D in CAlg(PrL), in the sense that

for such f and F there is a commutative diagram in CAlg(PrL) as follows.

CBH LMod1C⊠H(C)

DBG LMod1C⊠G(D)

C

D

ΨHC

F◦−◦B f

ev∗

LMod1C⊠f (F )

evm

ΨGD

ev∗ evm

F

(5.12)

♥

60In other words, a commutative diagram in CAlg(PrL).

232



5.3. Group actions and modules over group rings

Remark 5.3.0.9. In the situation of Proposition 5.3.0.8, let f : G → ∗ be the essen-
tially unique morphism of grouplike associative monoids in S. The induced morphism
of cocommutative bialgebras in C given by 1C ⊠ f : 1C ⊠ G → 1C ⊠ ∗ ≃ 1C is also the
essentially unique one, see Proposition 5.3.0.7.

Then there is a commutative diagram by Proposition 5.3.0.8 as follows

C

CB ∗ LMod1C
(C)

CBG LMod1C⊠G(C)

ev∗

Ψ∗
C

(B f)∗

evm

LMod1C⊠f (C)

ΨGC

Note that the functors ev∗ and evm are equivalences61, and we can interpret the com-
posites from the top to the bottom left and bottom right as the functors that map an
object of C to that same object equipped with the trivial action by G. ♦

Proof of Proposition 5.3.0.8. We start by noting that ignoring the horizontal functors,
the rest of diagrams (5.11) and (5.12) are indeed diagrams in CAlg(PrL). The∞-category
CBG with the pointwise symmetric monoidal structure is indeed presentable symmetric
monoidal, as is explained in Construction 5.3.0.1. That LMod1C⊠G(C) is presentable
symmetric monoidal is by construction, see Definition 3.4.2.1 and the propositions refer-
enced there. (F ◦−◦B f) : Fun(BH, C)→ Fun(BG,D) can be upgraded to a symmetric
monoidal functor and preserves colimits as both the symmetric monoidal structure as
well as colimits are pointwise. Similarly, the evaluation functor ev∗ is symmetric monoidal
and preserves colimits. LMod1C⊠f (F ) as well as evm are symmetric monoidal and colimit
preserving by construction, see Definition 3.4.2.1. Finally, the left and right squares in
(5.12) arise from naturality of the respective evaluation functors.

The commutative triangle we have to construct will be given as the composite outer
triangle in a commutative diagram in CAlg(PrL) as indicated below; we will individually
construct each part together with the relevant compatibility with respect to f : G→ H

61See [HA, 4.2.4.9] for evm being an equivalence.

233



Chapter 5. Mixed complexes and circle actions

and F : C → D.

CBG C ⊗ SBG C ⊗ LModG(S) LMod1C⊠G(C)

C ⊗ S

C

ev∗

ΨGC

≃ ≃

idC⊗ev∗

≃

idC⊗evm

evm

≃ ρC

(5.13)

The tensor product is the tensor product induced on CAlg(PrL) by the tensor product
of presentable ∞-categories62. The bottom vertical equivalence ρC is the right unitor,
using that S is the monoidal unit in PrL (see [HA, 4.8.1.20]).

Construction of the left square: The square arises as the composite outer square in
the following commutative diagram in CAlg(PrL).

CBG (C ⊗ S)∗×BG C∗ ⊗ SBG C ⊗ SBG

C C ⊗ S C ⊗ S C ⊗ S

ev∗ ev(∗,∗)

ρC◦−◦(pr2)
−1

φ
∗,BG
C,S

ev∗ ⊗ ev∗

ev∗ ⊗ id
SBG

idC⊗ev∗

ρC idC⊗S idC⊗S

Here, the left square is induced by the unitality equivalences pr2 : ∗ ×BG → BG (in
Cat∞) and ρC : C⊗S→ C (in CAlg(PrL)), which is clearly compatible with f and F . The
equivalence φ∗,BG

C,S is the one from Construction 5.3.0.1, and the middle square as well as
the commutative cube for compatibility with f and F can be constructed directly using
the definition and the universal property of coproducts in CAlg(PrL). Finally, the right
square arises directly from functoriality of the tensor product of CAlg(PrL), and ev∗ is
clearly an equivalence.

Construction of the right square: This square arises as the composite outer square
obtained by combining the following two commutative diagrams in CAlg(PrL).

C ⊗ LModG(S) LMod1C
(C)⊗ LModG(S) LMod1C⊗G(C ⊗ S)

C ⊗ S C ⊗ S C ⊗ S

idC⊗evm

evm⊗id

evm⊗evm

≃

evm

idC⊗S id

62See [HA, 4.8.1.15]

234



5.3. Group actions and modules over group rings

LMod1C⊗G(C ⊗ S) LMod1C⊠G(C)

C ⊗ S C

evm

LMod1C⊗G(ρC)

evm

ρC

The left square of the first diagram arises from functoriality of the tensor product, and
evm is an equivalence by [HA, 4.2.4.9 and 2.1.3.8]. Compatibility with f and F follows
from evm being a natural transformation, see Definition 3.4.2.1. The right square of
the first diagram as well as its compatibility with f and F is the one arising from
evm : LMod→ pr being a natural transformation of symmetric monoidal functors

LMod : BiAlgOpPr
Comm → CAlg(PrL)

by Remark 3.4.2.2. Finally, the second diagram as well as its compatibility with f and
F arises from the naturality of the right unitor ρ and evm. That there is an equivalence
ρC(1C ⊗G) ≃ 1C ⊠G that is compatible with f and F follows immediately from S being
initial in CAlg(PrL) (see Remark 5.2.2.1), so that there is a essentially unique natural
equivalence between the composition of the inclusion63 S → C ⊗ S, which sends G to
1C ⊗G, with ρC, and 1C ⊠−.

Construction of the middle triangle: It suffices to construct a commutative triangle

SBG LModG(S)

S

≃

ΨG
S

ev∗ evm
(5.14)

in CAlg(PrL) that is compatible with f , as the middle triangle in Equation (5.13) we
need to construct can then be obtained by tensoring with C.

As both ev∗ and evm are symmetric monoidal as well as limit preserving and detect-
ing64, it follows from the symmetric monoidal structure on S being cartesian that the
symmetric monoidal structures on SBG and LModG(S) are cartesian as well65. By [HA,
2.4.1.8], any filler for the horizontal functor and the triangle (5.14) in PrL such that the
horizontal functor is an equivalence66, can then be lifted in an essentially unique way
to a filler for the triangle as a diagram in CAlg(PrL). It thus suffices to construct a
commuting triangle (5.14) in PrL in which the horizontal functor is an equivalence.

In [BP21, 3.9] an equivalence SBG ≃ LModβ1 BG(S) is constructed as a sequence of
equivalences67. See the introduction of Section 5.3 for a discussion of β1 – the underlying
63This is also the functor we could call 1C⊗S ⊠−, see Definition 5.2.2.2.
64See [HTT, 5.1.2.3] for ev∗ and [HA, 4.2.3.3] for evm.
65See [HA, 2.4.0.1] for the definition.
66Note that ev∗ and evm are known to preserve products as already noted, so if the horizontal functor is

an equivalence and hence also preserves products, (5.14) will be a commutative triangle of product
preserving functors.

67[BP21, 3.9] contains an unnecessary use of BGop ≃ BG, which likely stems from a misreading of the
definition of P(BG) used in [HTT, 5.1.5.6], which is defined as Fun(BGop, S) in [HTT, 5.1.0.1], not
Fun(BG, S).

235



Chapter 5. Mixed complexes and circle actions

space of β1 BG is ΩBG. As B is defined as the inverse functor to (the appropriately
restricted) β1, there is a canonical equivalence β1 BG ≃ G, so that we obtain an equiv-
alence LModβ1 BG(S) ≃ LModG(S).

Let us now go through the individual steps to say something about compatibility with
forgetful functors to S and compatibility with f .

For the first step, let j : BG → Fun(BGop, S) be the Yoneda embedding68, and con-
sider the commutative diagram

Fun(BG, S) Funcolim(Fun(BGop, S), S
)

S

ev∗

≃

j∗

evj(∗)

where j∗ is an equivalence by [HTT, 5.1.5.6]. Compatibility with f follows from naturality
of the Yoneda embedding.

Before we discuss the second step, we first need to note something regarding right fi-
brations over∞-groupoids69. Let X be an object of S and consider it as an∞-groupoid.
The ∞-category RFib(X) of right fibrations over X is the full subcategory of CFib(X)
spanned by those cartesian fibrations whose fibers are ∞-groupoids. CFib(X) in turn
is the subcategory of Cat∞/X spanned by the cartesian fibrations and morphisms of
cartesian fibrations. Note that by [HTT, 2.4.2.4], if p : E → X is a right fibration,
then every morphism of E is p-cocartesian, so morphisms among cartesian fibrations
over X (i. e. morphisms in Cat∞/X) are automatically morphisms of cartesian fibrations.
RFib(X) is thus the full subcategory of Cat∞/X spanned by the right fibrations. That
X is an ∞-groupoid together with [HTT, 2.4.2.4 and 2.4.1.5] implies that a functor of
∞-categories E → X is a right fibration if and only if E is an ∞-groupoid.

The inclusion S → Cat∞ is also fully faithful, so induces by Proposition D.1.2.1 a
fully faithful functor S/X → Cat∞/X with the same essential image. We thus obtain a
canonical equivalence RFib(X) ≃ S/X , see Proposition B.4.3.1.

Now we can tackle the second step, for which we consider the following composite
equivalence

Fun(BGop, S)
Gr
−→ RFib(BG) ≃ S/BG

where the first equivalence is the Grothendieck construction. This equivalence is natural
in G70 and hence induces a commutative triangle

Funcolim(Fun(BGop, S), S
)

Funcolim(S/BG, S
)

S

evj(∗)

≃

evGr(j(∗))

68See [HTT, Introduction of 5.1.3] for a definition and discussion of j – it can be described as the
functor MapS(•,−).

69See also [HTT, 5.1.1.1] for a related discussion.
70For naturality of the Grothendieck construction see [GHN17, A.32].

236



5.3. Group actions and modules over group rings

that is compatible with f .
Gr(j(∗)) : X → BG is the right fibration classified by j(∗). By [HTT, 4.4.4.5] the

∞-groupoid X has a final object and is thus contractible, so that we can identify Gr(j(∗))
with the inclusion of the basepoint of BG.

For the third step the equivalence

S/BG
≃
−→ RModβ1 BG(S)

is used that is described in [HTT, 5.2.6.28 and 5.2.6.29], and which is compatible with
f . By [HTT, 5.2.6.29] this equivalence fits into a commutative diagram

S

S/∗

S/BG RModβ1 BG(S)

Free

pr
≃

(∗→BG)∗

≃

where ∗ → BG refers to the inclusion of the basepoint. It follows that ∗ → BG is
mapped to the free right-β1 BG-module generated by ∗, so to β1 BG considered as a
right module over itself, under the equivalence S/BG ≃ RModβ1 BG(S). By definition
of B we also have a canonical equivalence β1 BG ≃ G. We thus obtain a commuting
triangle, compatible with f , as follows.

Funcolim(S/BG, S
)

Funcolim(RModG(S), S
)

S

≃

ev(∗→BG) evG

For the fourth step, it is explained in [BP21, 3.9] that the forgetful functor

LinFuncolim
S

(
RModG(S), S

)
→ Funcolim(RModG(S), S

)

is an equivalence, so that we obtain a commutative triangle

Funcolim(RModG(S), S
)

LinFuncolim
S

(
RModG(S), S

)

S

evG

≃

evG

that is compatible with f .
Finally, for the fifth step, [HA, 4.8.4.1] is used, where it is shown that there is an

equivalence as indicated by the top horizontal functor in the following diagram.

LinFuncolim
S

(
RModG(S), S

)
LModG(S)

S

≃

evG evm

237



Chapter 5. Mixed complexes and circle actions

That there also is a commutative triangle as indicated follows from unpacking the defi-
nition of the top horizontal equivalence, from which one also sees that this commutative
triangle is also compatible with f , see [HA, 4.8.4.1 and 4.6.2.9].

Combining everything yields a commutative triangle (5.14) in PrL in a manner com-
patible with f .

5.4. The monoidal equivalence D(k)BT ≃Mixed
We can now combine the main result of Section 5.3 with the equivalence between the

bialgebras k ⊠ T and D in D(k) to obtain an equivalence as follows.

D(k)BT ≃ LModk⊠T(D(k)) ≃ LModD(D(k))

This equivalence is only (Assoc-)monoidal, not E2-monoidal or even symmetric monoidal,
see Warning 5.4.0.2 below.

Construction 5.4.0.1. The ∞-category D(k) is a presentable symmetric monoidal
∞-category by Proposition 4.3.2.1 (1), and as the circle group T is path connected, it
follows from [HA, 5.2.6.4] that T is grouplike as an associative monoid in S. Hence we
can apply Proposition 5.3.0.8 and Remark 5.3.0.9 to obtain a commutative diagram in
Alg(PrL) as follows

D(k)∗ D(k) LMod1D(k)
(D(k))

D(k)BT LModk⊠T(D(k))

D(k)

(BT→∗)∗

(ev∗)−1 (evm)−1

LMod
(k⊠T→1

D(k))
(D(k))

≃

ev∗ evm

(5.15)

where the middle horizontal morphism is an equivalence and the morphisms of bialgebras
BT→ ∗ and D→ 1D(k) are the essentially unique ones, see Proposition 5.3.0.7.

Proposition 5.2.4.2 and Convention 5.2.4.3 provide us with an equivalence of bialgebras
in D(k)

φ : D→ k ⊠ T

and as k is a final object in BiAlgAssoc,Assoc(D(k)) by Proposition 5.3.0.7, we can extend
this to a commutative triangle of bialgebras in D(k) as follows.

D k ⊠ T

k

φ

238



5.4. The monoidal equivalence D(k)BT ≃Mixed

Applying the functor LMod from Definition 3.4.2.1 we obtain a commutative diagram
in Alg(PrL)

LMod1D(k)
(D(k))

LModk⊠T(D(k)) LModD(D(k))

D(k)

LMod
(k⊠T→1

D(k))
(D(k)) LMod

(D→1
D(k))

(D(k))

LModϕ(D(k))

≃

evm evm

(5.16)

where the top triangle is the one induced by the previous diagram, and the bottom one
uses that evm is a natural transformation.

Combining (5.15) and (5.16) we obtain a commutative diagram in Alg(PrL), i. e. of
presentable monoidal∞-categories with monoidal colimit preserving functors, as follows

D(k)∗ D(k) LMod1D(k)
(D(k))

D(k)BT LModD(D(k)) Mixed

D(k)

(BT→∗)∗

(ev∗)−1 (evm)−1

LMod
(D→1

D(k))
(D(k))

≃

ev∗ evm

such that the middle horizontal functor is an equivalence. ♦

Warning 5.4.0.2. While both D(k)BT and Mixed = LModD(D(k)) carry a symmetric
monoidal structure, the equivalence between them is only Assoc-monoidal.

For this reason one should be careful to distinguish between “objects of D(k) with
T-action” (or “T-objects in D(k)”) on the one hand and “mixed complexes” on the other
hand whenever the symmetric monoidal structures might be relevant. ♦

Remark 5.4.0.3. Let φ : k → k′ be a morphism of commutative rings. Combining the
compatibility statement with colimit preserving symmetric monoidal functors between
presentable symmetric monoidal ∞-categories that is part of Proposition 5.3.0.8 with
Remark 5.2.4.4 we obtain a commutative diagram of monoidal colimit preserving func-

239



Chapter 5. Mixed complexes and circle actions

tors71
D(k)BT LModDk

(
D(k)

)

D(k)

D(k′)

D(k′)BT LModDk′
(
D(k)

)

≃

(k′⊗k−)
∗

ev∗

k′⊗k−

evm

k′⊗k−

≃

ev∗ evm

where the horizontal equivalences are the ones from Construction 5.4.0.1. ♦

71Like with the diagram in Remark 5.2.4.4, there is also supposed to be a filler for the outer diagram
that is compatible with the forgetful functors.

240



Chapter 6.

Hochschild homology
In this chapter we introduce the main object of study of this text, Hochschild homology.

We will give both a modern account, in which the main construction is a functor

HHT : Alg
(
D(k)

)
→ D(k)BT

called Hochschild homology that will be defined and discussed in Section 6.2, as well as
a description of the classical constructions, where one considers a functor

C : Alg
(

Ch(k)cof
)
→ Mixedcof

called standard Hochschild complex. The latter construction will be discussed in Sec-
tion 6.3, where we will also show that the two constructions are related – the standard
Hochschild complex can be considered as a model for Hochschild homology. For both
the definitions the first step is to apply the cyclic bar construction, which takes an as-
sociative algebra in an some monoidal ∞-category C, and produces a cyclic object in C,
i. e. a functor Λ

op → C, where Λ is Connes’ cyclic category. For this reason, we start
this chapter in Section 6.1 with a discussion of the cyclic bar construction as well as the
geometric realization of cyclic objects.

6.1. The cyclic bar construction and geometric
realization of cyclic objects

In this section we discuss the cyclic bar construction. Given a presentable symmetric
monoidal ∞-category C, this is a (symmetric monoidal) functor

Bcyc : Alg(C)→ CBT

that constructs an object in C with T-action out of every (associative) algebra in C.
The construction proceeds in two main steps. Starting with an algebra R in C, one

first constructs a cyclic object in C, denoted by Bcyc
• (R), and also called the cyclic bar

construction1, which is a functor Λ
op → C, where Λ is Connes’ cyclic category. We will

review Λ in Section 6.1.1, and define the symmetric monoidal functor

Bcyc
• : Alg(C)→ Fun(Λop, C)

1In fact, we will almost exclusively refer to this construction as the cyclic bar construction in the
remainder of the text.

241



Chapter 6. Hochschild homology

in Section 6.1.2.
Given a cyclic object X in C, one can then take the geometric realization |X|, which

yields an object in C with T-action, as will be discussed in Section 6.1.3. The cyclic bar
construction Bcyc of an associative algebra R can then be defined as Bcyc(R) := |Bcyc

• (R)|.
As main references for the material below we use [NikSch], [Hoy18], and [Lod98].

6.1.1. Connes’ cyclic category Λ

In this section we discuss Connes’ cyclic category Λ, which has the simplex category
∆ as a subcategory and is mainly of interest because it encodes circle actions. More
concretely, if C is a presentable ∞-category and X : Λop → C a diagram, then the
geometric realization (i. e. colimit) of the restriction of X to ∆

op naturally acquires the
action of the circle group2 T, as we will see as Fact 6.1.3.6 in Section 6.1.3.2.

We will start by reviewing the two different approaches towards defining the simplex
category ∆ (one via generators and relations, one more abstract) in Section 6.1.1.1,
before discussing analogous definitions of the cyclic category Λ in Sections 6.1.1.2
and 6.1.1.3. We will show that the two definitions we give for Λ are equivalent in Sec-
tion 6.1.1.4. Finally, we will introduce the notion of cyclic objects in Section 6.1.1.5 and
describe the self-duality functor of Λ in Section 6.1.1.6, which will be relevant for the
definition of the cyclic bar construction in Section 6.1.2.

6.1.1.1. The simplex category ∆

Recall that there are two approaches towards defining the simplex category ∆.

• ∆ can be defined as the category of totally ordered non-empty finite sets together
with (weakly) order-preserving maps.

• ∆ can be constructed as the category with objects [n] for n ≥ 0 and morphisms
generated by δi : [n− 1]→ [n] (for n ≥ 1 and 0 ≤ i ≤ n) and σi : [n+1]→ [n] (for
n ≥ 0 and 0 ≤ i ≤ n) satisfying the simplicial identities3.

If we temporarily refer to the second definition as ∆
′, then we can relate ∆

′ and ∆

with a functor ∆
′ →∆ that can be described as follows.

• [n] is mapped to the totally ordered set {0 < 1 < · · · < n}.

• δi : [n − 1] → [n] is mapped to the injective order-preserving map that does not
have i in the image.

• σi : [n + 1] → [n] is mapped to the order-preserving map that is surjective and
maps both i and i+ 1 to i.

2T was defined in Construction 5.2.1.1.
3They can be found for example in [Lod98, B.3] or [Mac98, Page 177]. See also Remark 6.1.1.8 below.

242



6.1. The cyclic bar construction and geometric realization of cyclic objects

This functor is an equivalence of categories, as shown in [Mac98, Proposition 2 on page
178]4. We will thus usually identify ∆ and ∆

′ and use whatever description is most
appropriate for the occasion.

Notation 6.1.1.1. Let C be an ∞-category. A functor

X : Λop → C

will be called a simplicial object in C. We will write Xn instead of X([n]) and accordingly
often also use X• for X if we want to emphasize X being a simplicial object. We will
refer to the morphism induced by the opposite of δi as di, and to the morphism induced
by the opposite of σi as si. ♦

Completely analogously to the situation for the simplex category, there are two ap-
proaches to Connes’ cyclic category Λ. We will discuss an abstract definition first in Sec-
tion 6.1.1.2 and then discuss a definition using generators and relations in Section 6.1.1.3,
before showing that they are equivalent in Section 6.1.1.4.

6.1.1.2. Definition of Λ via posets

Definition 6.1.1.2 ([NikSch, page 380]). We denote by PoSet the category of partially
ordered sets with (weakly) order preserving maps. We furthermore define

ZPoSet := Fun(BZ,PoSet)

to be the category of objects in PoSet with Z-action.
An example for an object in ZPoSet is (1/n) · Z for n ≥ 1; as a subset of Q this set

inherits a partial order, and an integer k acts by addition.
We now define Λ∞ to be the full subcategory of ZPoSet spanned by the objects

isomorphic to (1/n) ·Z for n ≥ 1. The category Λ∞ is called the paracyclic category. ♦

Recall the equivalence

S≥1
∗ Mongp

Assoc(S)
β1

B

from [HA, 5.2.6, in particular 5.2.6.10] that was discussed in Section 5.3. The functors β1
and B induce mutually inverse equivalences on the respective ∞-categories of commu-
tative monoids, so as Z is commutative BZ acquires an induced commutative monoid
structure. BZ can in fact be identified, as an object of CMon(S≥1

∗ ), with the circle group
T (see Construction 5.2.1.1). To see this it suffices to check that β1(T) ≃ Z as com-
mutative monoids in S, but as the underlying spaces are discrete this is just a classical
exercise using the Eckmann-Hilton argument5.

4What is referred to as ∆ in [Mac98] is not what we refer to as ∆, but also includes the empty set.
What we refer to as ∆ is denoted by ∆

+ in [Mac98] and discussed in [Mac98, Bottom of page 178].
But while the statement of [Mac98, Proposition 2 on page 178] does not directly deal with our ∆, it
nevertheless directly implies the result, as there are no maps from a non-empty set to an empty set.

5The underlying space of β1(T) is ΩT. This loop space has two monoid structures – an associative via
composition of loops, and a commutative one via pointwise multiplication using the commutative
monoid structure on T.

243



Chapter 6. Hochschild homology

As T is path connected, it is grouplike as a monoid in S by [HA, 5.2.6.4], so we
can form BT and consider objects with T-action in some ∞-category D, i. e. functors
BT → D – see the introduction to Section 5.3. The ∞-groupoid BT ≃ B BZ can be
interpreted as the ∞-groupoid with a unique object ∗, unique morphism, and with Z
being the space of 2-morphisms id∗ → id∗. A T ≃ BZ-action on an ∞-category C, i. e. a
functor BT → Cat∞ mapping ∗ to C, then essentially consists of a natural equivalence
idC → idC corresponding to the generator 1 of Z.

If C = C is a 1-category, then this amounts to giving an automorphism φX : X → X for
every object X of C in such a way that these automorphisms are compatible with every
morphism of C, i. e. for every morphism f : X → Y of C it must hold φY ◦ f = f ◦ φX .
This data is in turn equivalent to a natural action of Z on the morphism sets of C: We
can let n act on MorC(X, Y ) by φnY ◦ −. If instead we have a natural action of Z on the
morphism sets given, then we can recover the automorphisms φX as the result of letting
1 act on the element idX in MorC(X,X).

We can now state the definition of the cyclic category Λ as it is given in [NikSch, page
380].
Definition 6.1.1.3 ([NikSch, page 380]). There is an action of Z on the morphisms
spaces of Λ∞ such that the action of an integer k on a morphism f yields the morphism
f(−) + k = f(−+ k).

Dividing out this action, i. e. identifying a morphism f with f + k for any integer k,
we obtain a category that we denote by Λ and call Connes’ cyclic category. ♦

Notation 6.1.1.4. We will use the notation [n]Λ for (1/(n+1)) ·Z when considered as
an object in Λ as described in Definition 6.1.1.2. Up to isomorphism, the objects of Λ
are thus given by [n]Λ for n ≥ 0. ♦

Warning 6.1.1.5. Notation 6.1.1.4 deviates from the notation in [NikSch], where [n]Λ
is defined to be 1/n · Z.

The notation we use is chosen to be more consistent with the notation used for objects
of ∆ – it also matches the notation used in [Lod98], see [Lod98, 6.1.1]. ♦

The category Λ contains ∆ as a subcategory, as we note next.
Construction 6.1.1.6 ([NikSch, page 382]). Consider ∆ as the category of totally
ordered non-empty finite sets. We can then define a functor ∆→ ZPoSet by mapping a
totally ordered non-empty finite set S to Z × S, equipped with the lexicographic order
and action by Z via addition on the first component. If S = {s0 < s1 < · · · < sn},
then there is an isomorphism Z × S ∼= (1/(n + 1)) · Z in ZPoSet that maps (k, si) to
k + (i/(n+ 1)), so the functor factors through Λ∞.

Following [NikSch, page 382], we will denote the resulting functor ∆ → Λ∞ by jop∞
6

and the composition
∆→ Λ∞ → Λ

by jop. It is not difficult to check that jop∞ and jop are faithful and induce bijections on
isomorphism classes of objects. ♦

6The reason for the op is that the opposite of this functor is more important (or at least more often
used) and hence gets to have the name with least decorations.

244



6.1. The cyclic bar construction and geometric realization of cyclic objects

6.1.1.3. Definition of Λ via generators and relations

We now describe Λ with generators and relations.

Construction 6.1.1.7 ([Lod98, 6.1.1]). We define the 1-category Λ
′ to have objects

[n]Λ′ for integers n ≥ 0, and morphisms generated by

δi : [n− 1]Λ′ → [n]Λ′ for n ≥ 1 and 0 ≤ i ≤ n

σi : [n+ 1]Λ′ → [n]Λ′ for n ≥ 0 and 0 ≤ i ≤ n

τ : [n]Λ′ → [n]Λ′ for n ≥ 0

subject to the following relations7.
δj ◦ δi = δi ◦ δj−1 for i < j

σj ◦ σi = σi ◦ σj+1 for i ≤ j

σj ◦ δi = δi ◦ σj−1 for i < j

σj ◦ δi = id for i = j or i = j + 1

σj ◦ δi = δi−1 ◦ σj for i > j + 1

τ ◦ δi = δi−1 ◦ τ for i > 0

τ ◦ δ0 = δn where τ : [n]Λ′ → [n]Λ′

τ ◦ σi = σi−1 ◦ τ for i > 0

τ ◦ σ0 = σn ◦ τ
2 where σ0 : [n+ 1]Λ′ → [n]Λ′

τn+1 = id[n]
Λ′ where τ : [n]Λ′ → [n]Λ′ ♦

Remark 6.1.1.8. If we remove the morphisms τ as generators in Construction 6.1.1.7
(as well as the relations involving them), then we obtain precisely the definition of ∆
via generators and relations. We thus obtain a functor j′op : ∆→ Λ

′. ♦

6.1.1.4. Comparison of the two definitions of Λ

To show that Λ and Λ
′ are equivalent, we first construct a comparison functor.

Proposition 6.1.1.9. There is a functor Φ: Λ′ → Λ defined as follows.

• [n]Λ′ is mapped to to [n]Λ.

• δi : [n− 1]Λ′ → [n]Λ′ is mapped to the unique morphism that sends 0 to 0 and has
0

n+1
, . . . , i−1

n+1
, i+1
n+1

, . . . , n
n+1

in its image.

• σi : [n + 1]Λ′ → [n]Λ′ is mapped to the unique morphism that sends 0 to 0, is
surjective, and sends i

n+2
and i+1

n+2
to i

n+1
.

7As we do not specify the n as part of the notation of the three types of morphisms, notation like δi
refers to more than a single morphism. The relations below are to be satisfied for all choices where
the morphisms can be composed as indicated and both sides of the equation have same domain and
codomain.

245



Chapter 6. Hochschild homology

• τ : [n]Λ′ → [n]Λ′ is mapped to the unique morphism that is surjective and sends
1

n+1
to 0

n+1
.

Furthermore, this functor fits into a commutative square

∆
′

Λ
′

∆ Λ

j′op

Φ∆ Φ

jop

that commutes up to natural isomorphism φ : jop ◦Φ∆ → Φ ◦ j′op where Φ∆ is the equiv-
alence from Section 6.1.1.1, and j′op and jop are as in Remark 6.1.1.8 and Construc-
tion 6.1.1.6. The components of the natural isomorphism φ are to be the isomorphisms

φ[n] : j
op([n]) = Z× [n]

∼=
−→ (1/(n+ 1)) · Z = [n]Λ

that were discussed in Construction 6.1.1.6. ♥

Proof. Easy but a bit tedious exercise checking the relations.

For both Λ and Λ
′ one can show that morphisms decompose uniquely as the compo-

sition of a power of τ with a morphism in the image of the inclusion of ∆, as we will
see next. This is what will imply that the functor Λ

′ → Λ from Proposition 6.1.1.9 is
an equivalence.

Proposition 6.1.1.10. Let f : [n]Λ′ → [m]Λ′ be a morphism in Λ
′. Then there ex-

ists a unique morphism g : [n] → [m] in ∆ and integer k with 0 ≤ k ≤ n such that
f = j′op(f) ◦ τ k.

An analogous statement also holds for Λ. Let f : [n]Λ → [m]Λ be a morphism in Λ.
Then there is a unique morphism g : [n]→ [m] in ∆ and integer k with 0 ≤ k ≤ n such
that f = φ[m] ◦ j

op(f) ◦φ−1
[n] ◦Φ(τ)

k, where we use notation from Proposition 6.1.1.9. ♥

Proof. The statement for Λ
′ is precisely [Lod98, 6.1.3].

For Λ note that there is a unique 0 ≤ k ≤ n and morphism f ′ : [n]Λ → [m]Λ such
that f = f ′ ◦ Φ(τ)k and such that f ′ maps Z to Z. The claim now follows from the
observation that a morphism Z × [n] → Z × [m] in Λ∞ that maps (0, 0) to (0, 0) must
be of the form idZ×g for a unique morphism g : [n]→ [m] in ∆.

Corollary 6.1.1.11. The functor Φ from Proposition 6.1.1.9 is an equivalence. ♥

Proof. Φ is by definition essentially surjective. That Φ is also fully faithful follows im-
mediately from Proposition 6.1.1.10.

We will from now on not distinguish between Λ and Λ
′ and use the description best

adapted for each individual situation.

246



6.1. The cyclic bar construction and geometric realization of cyclic objects

6.1.1.5. Cyclic objects

Notation 6.1.1.12 ([Lod98, 6.1.2.1]). Let C be an ∞-category. We call a functor

X : Λop → C

a cyclic object in C. We will use the same notational conventions as explained in No-
tation 6.1.1.1 for simplicial objects, and will refer to the image of [n]Λ under X as Xn

(and sometimes write X• for X), to the morphism induced by the opposite of δi as di,
to the morphism induced by the opposite of σi as si, and to the morphism induced by
the opposite of τ as t. ♦

6.1.1.6. Self-duality of Λ

We record that Λ has a self-duality functor, which will be needed later.

Fact 6.1.1.13 ([Lod98, 6.1.11]). There is an equivalence −◦ : Λop → Λ that maps

• [n]Λ to [n]Λ,

• δ
op
i to σi,

• σ
op
i to δi+1,

• τ op to τ−1.

where σn+1 : [n+ 1]Λ → [n]Λ is the extra degeneracy defined as σn+1 = σ0 ◦ τ
−1. ♧

The above is also proven in [NikSch, page 381] using the definition of Λ via posets8,
and one can check that the two functors agree by unpacking the definitions.

6.1.2. The cyclic bar construction as a cyclic object
In this section we discuss the cyclic bar construction of associative algebras. Let C

be a symmetric monoidal 1-category and A an associative algebra in C. Then one can
construct a simplicial object in C

. . . A⊗ A⊗ A A⊗ A A

where the structure morphisms di : A⊗n → A⊗(n−1) and si : A
⊗n → A⊗(n+1) can be

described as follows9:

1. If i ≤ n−2, then di is id⊗i
A ⊗µ⊗id⊗(n−2−i)

A , where µ : A⊗A→ A is the multiplication
morphism.

8Whereas [Lod98, 6.1.11] uses the definition via generators and relations.
9We omit making explicit any associativity or unitality isomorphisms from the symmetric monoidal

structure on C.

247



Chapter 6. Hochschild homology

2. dn−1 is the postcomposition of the symmetry isomorphism that brings the last
tensor factor to the front with µ⊗ id⊗(n−2)

A .

3. si is idi+1
A ⊗ ι⊗ id⊗(n−i−1)

A , where ι : 1C → A is the unit morphism.

Making use of cyclic permutations of the tensor factors, we can even extend the above
simplicial object to a cyclic object

. . . A⊗ A⊗ A A⊗ A A

where the structure morphism t : A⊗n → A⊗n is the symmetry isomorphism moving the
last tensor factor to the front.

The goal of this section is to rigorously define a cyclic object implementing this idea
for associative algebras in any symmetric monoidal ∞-category C. Furthermore, we will
also show that the resulting functor Bcyc

• : Alg(C) → Fun(Λop, C) can be upgraded to
a symmetric monoidal functor, where Alg(C) carries the induced symmetric monoidal
structure from Proposition E.4.2.3 and Fun(Λop, C) the pointwise symmetric monoidal
structure from [HA, 2.1.3.4].

Bcyc
• will be defined as a composition

Alg(C)→ FunFin∗

(
Assoc⊗, C⊗

) A
−→ Fun

(
Assoc⊗act, C⊗act

)

(⊗)∗
−−→ Fun

(
Assoc⊗act, C

)

(V ◦(−◦))
∗

−−−−−−→ Fun(Λop, C)

and we will define individual ingredients one by one10.
Let us now give a brief overview over the subsections below. We will start in Sec-

tion 6.1.2.1 by discussing the symmetric monoidal envelope of an ∞-operad, which will
explain what symmetric monoidal structure we consider on C⊗act. In Section 6.1.2.2 we
will then construct the first row (i. e. the first two functors) in the composition above
that will define Bcyc

• , and show that the composition of those two functor is lax sym-
metric monoidal. We will then define the symmetric monoidal functor ⊗ : C⊗act → C in
Section 6.1.2.3 and show that the composition of the lax symmetric monoidal functor

Alg(C)→ Fun
(
Assoc⊗act, C⊗act

)

from Section 6.1.2.2 with the symmetric monoidal functor (⊗)∗ is not just lax symmetric
monoidal, but symmetric monoidal. For the last step in the definition of Bcyc

• , we have
already defined the functor (−)◦, in Fact 6.1.1.13, and will define the remaining functor
10We warn though that while Bcyc

• will be shown to be symmetric monoidal, we do not claim that
the individual functors in the above composition are symmetric monoidal functors of symmetric
monoidal ∞-categories.

248



6.1. The cyclic bar construction and geometric realization of cyclic objects

V : Λ → Assoc⊗act in Section 6.1.2.4. This will be the last ingredient that we need to
define Bcyc

• , and we will put everything together in Section 6.1.2.5. We will end this
section by giving a more direct description for CAlg(Bcyc

• ), the functor induced by Bcyc
•

on commutative algebras, in Section 6.1.2.6, and showing that Bcyc
• preserves sifted

colimits in Section 6.1.2.7.

6.1.2.1. The symmetric monoidal envelope

Let pO : O⊗ → Fin∗ be an ∞-operad. In [HA, 2.2.4] the symmetric monoidal envelope
of O is discussed11, which is defined in [HA, 2.2.4.1] as

Env(O)⊗ := O⊗ ×Fin∗ Act(Fin∗) (6.1)

where the functor O⊗ → Fin∗ is given by pO, the ∞-category Act(Fin∗) is defined as the
full subcategory of Fun([1], Fin∗) spanned by the active morphisms12, and the functor
Act(Fin∗)→ Fin∗ is ev0.

Like [NikSch, page 366] and [HA, 2.2.4.3], we will use the notation O⊗
act to refer to

the subcategory of O⊗ spanned by all objects and the active morphisms13, i. e. those
morphisms mapped by pO to an active morphism in Fin∗. Note that the inclusion

O⊗
act → O

⊗

can be identified with the functor

O⊗ ×Fin∗ (Fin∗)act O⊗ ×Fin∗ Fin∗ O⊗

pr1

pr1
≃

where the left functor is the one induced by the inclusion (Fin∗)act → Fin∗ – this follows
from Proposition B.5.2.1 and Proposition B.4.3.1, see also Remark B.6.0.1.

Let pEnv(O) : Env(O)⊗ → Fin∗ be defined as ev1 ◦ pr2. Unpacking the definition of
Env(O)⊗, we can then interpret an object lying over 〈n〉 as a pair (O,α) with O an
object of O⊗ and α an active morphism pO(O) → 〈n〉 in Fin∗ – see [HA, 2.2.4.2]. In
particular, as there is a unique active morphism from any object of Fin∗ to 〈1〉, one can
identify Env(O)⊗〈1〉 with O⊗

act – see [HA, 2.2.4.3].
One important result about Env(O) that we will need is the following.

Fact 6.1.2.1 ([HA, 2.2.4.4 and 2.2.4.15]). Let pO : O⊗ → Fin∗ be an ∞-operad. Then
pEnv(O) : Env(O)⊗ → Fin∗ is a cocartesian fibration of ∞-operads, i. e. exhibits O⊗

act as
a symmetric monoidal ∞-category.

Furthermore, a morphism in Env(O)⊗ is pEnv(O)-cocartesian if and only if pr1 maps
that morphism to an inert morphism in O⊗. ♧

11The definitions in [HA, 2.2.4] are more general, but we only need the symmetric monoidal case.
12So those morphisms for which the preimage of ∗ has a single element, see [HA, 2.1.2.1].
13See [HA, 2.1.2.1 and 2.1.2.3] for a definition.

249



Chapter 6. Hochschild homology

Let us describe pEnv(O)-cocartesian lifts a bit more concretely. Let O be an object
of O⊗, α : 〈n〉 → 〈m〉 an active morphism in Fin∗, and consider (O,α) as an object of
Env(O)⊗〈m〉. Let β : 〈m〉 → 〈k〉 be a morphism of Fin∗. Then we can factor β ◦ α as a
composition of an inert morphism γ : 〈n〉 → 〈l〉 and an active morphism δ : 〈l〉 → 〈k〉 in
a unique way, see [HA, 2.1.2.2]. We can then interpret the commutative diagram

〈n〉 〈l〉

〈m〉 〈k〉

α

γ

δ

β

(6.2)

as a morphism from α to δ in Act(Fin∗). Let γ : O → O′ be a pO-cocartesian lift of γ.
Then γ together with (6.2) determine a pEnv(O)-cocartesian morphism

(O,α)→ (O′, δ)

in Env(O) lying over β. One implication of this discussion is that if O and O′ are two
objects of O⊗

act, then their tensor product is given by O⊕O′, see also [HA, 2.2.4.6]. The
monoidal unit of O⊗

act is given by the essentially unique object in O⊗
〈0〉.

The identity functor of O⊗ together with the functor O⊗ → Act(Fin∗) that maps an
object O to the active morphism idpO(O)

14 define a functor15 O⊗ → Env(O)⊗ over Fin∗.
Using Fact 6.1.2.1 it follows immediately that this functor is a morphism of ∞-operads.
We are now ready to state the crucial result concerning Env(O)⊗.

Fact 6.1.2.2 ([HA, 2.2.4.9]). Let O → Fin∗ be an∞-operad and D a symmetric monoidal
∞-category. Then restriction along the functor O⊗ → Env(O)⊗ discussed above induces
an equivalence

Fun⊗
(
Env(O),D

) ≃
−→ AlgO(D)

between the ∞-category of symmetric monoidal functors Env(O) → D and the ∞-
category of morphisms of ∞-operads O → D. ♧

Remark 6.1.2.3. Let α : O′ → O be a morphism of ∞-operads and G : D → D′ a
symmetric monoidal functor between symmetric monoidal ∞-categories.

It follows from Fact 6.1.2.1 that the morphism of∞-categories α induces a symmetric
monoidal functor

Env(α) : Env(O′)→ Env(O)

fitting into a commutative square of morphisms of ∞-operads as in the left of the fol-
lowing diagram, where the left horizontal functors are the morphisms of ∞-operads
14More rigorously, we consider the functor (pO)∗ ◦ const : O⊗ → Fun([1],Fin∗) that is adjoint to the

composition
[1]×O⊗ pr2−−→ O⊗ pO

−−→ Fin∗

and remark that it factors through Act(Fin∗).
15This functor is also discussed in [HA, Before 2.2.4.9].

250



6.1. The cyclic bar construction and geometric realization of cyclic objects

discussed above.

O Env(O) D

O′ Env(O′) D′

F

F̃

Gα Env(α)

The symmetric monoidal functor F̃ in the above diagram is to be the one corresponding
to F via the equivalence from Fact 6.1.2.2, i. e. making the triangle at the top commute.

It then follows from commutativity of the above diagram and Fact 6.1.2.2 that there
is an equivalence

˜(G ◦ F ◦ α) ≃ G ◦ F̃ ◦ Env(α)

where ˜(G ◦ F ◦ α) is the symmetric monoidal functor Env(O′) → D′ corresponding to
G ◦ F ◦ α under the equivalence of Fact 6.1.2.2. ♦

6.1.2.2. From associative algebras to active diagrams

Let us denote by pAssoc : Assoc⊗ → Fin∗ the canonical morphism of ∞-operads and let
pC : C

⊗ → Fin∗ be a symmetric monoidal ∞-category. Recall from Proposition E.4.2.3
that Alg(C) inherits an induced symmetric monoidal structure pAlg(C) : Alg(C)⊗ → Fin∗.
This comes with a canonical inclusion

ιAlg : Alg(C)⊗ → Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ (6.3)

where the functors with respect to which the pullback is taken are (pC)∗ and the functor16

adjoint to Fin∗ × Assoc⊗ idFin∗ ×pAssoc
−−−−−−−→ Fin∗ × Fin∗

−∧−
−−−→ Fin∗. The functor pAlg(C) is then

given by the composition pr2 ◦ ιAlg.
The functor ιAlg will be the first step in the definition of the symmetric monoidal

functor Bcyc
• .

We next recall that the pointwise symmetric monoidal structure on Fun(Assoc⊗act, C⊗act)
is given by the cocartesian fibration of ∞-operads

Fun
(
Assoc⊗act, C⊗act

)⊗
= Fun

(
Assoc⊗act, (C⊗act)⊗

)
×Fun(Assoc⊗act,Fin∗) Fin∗

pr2−−→ Fin∗ (6.4)

that exhibits Fun(Assoc⊗act, C⊗act) as a symmetric monoidal ∞-category, where the pull-
back is formed with respect to the functors (pC⊗

act
)∗ and the functor const17.

We are now ready to construct a functor

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, C⊗act

)⊗

16See also Proposition E.6.0.1.
17In other words the functor adjoint to pr1 : Fin∗ × Assoc⊗act → Fin∗.

251



Chapter 6. Hochschild homology

over Fin∗ whose composition with ιAlg will be a lax symmetric monoidal functor. To be
able to understand what this functor does it will later turn out to be helpful to also
construct a certain natural transformation µ : Aconst → pr1 ◦ A⊗.

Construction 6.1.2.4. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-category, and
let us use notation as above. We will construct a functor

A⊗ : Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, C⊗act

)⊗

over Fin∗, as well as a functor

Aconst : Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, (C⊗act)⊗

)

together with a natural transformation18 µ : Aconst → pr1 ◦A⊗ such that the natural
transformation19 (pr1)∗ ◦ µ is a natural equivalence. The names µ, Aconst and A⊗ will
only be used where we directly refer to this construction. The letter A has been chosen
as a reference to the word active, and A⊗ has the superscript ⊗ as its composition with
ιAlg will be shown in Proposition 6.1.2.5 below to be a morphism of∞-operads, whereas
Aconst is not even a functor over Fin∗. The reason why Aconst has superscript const and
the natural transformation is called µ will become clear during the construction. We will
later also use the notation A⊗ for the functor obtained by composing A⊗ as constructed
here with ιAlg, see Proposition 6.1.2.5.

By the definition of Fun
(
Assoc⊗act, C⊗act

)⊗ (see the introduction of Section 6.1.2.2) and
the universal property of pullbacks, constructing A⊗, Aconst, and µ as stated above is
equivalent to constructing a diagram as follows

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ Fin∗

Fun
(
Assoc⊗act, (C⊗act)⊗

)
Fun

(
Assoc⊗act, Fin∗

)
Aconst A′

µ

pr2

const

(
p
C⊗act

)

∗

18The functor pr1 appearing in pr1 ◦A⊗ is the following functor.

Fun
(

Assoc⊗act, C
⊗
act

)⊗
= Fun

(
Assoc⊗act, (C

⊗
act)

⊗
)
×Fun(Assoc⊗act,Fin∗) Fin∗

pr1−−→ Fun
(

Assoc⊗act, (C
⊗
act)

⊗
)

See (6.4).
19The functor pr1 appearing in (pr1)∗ is the following functor.

(C⊗act)
⊗ = C⊗ ×Fin∗

Act(Fin∗)
pr1−−→ C⊗

See Section 6.1.2.1 and in particular (6.1).

252



6.1. The cyclic bar construction and geometric realization of cyclic objects

where the ∞-category in the upper left is the pullback from (6.3), the two functors on
the right and bottom are as explained around (6.4), and the square on the right20 is
to be a commutative square, while µ is a natural transformation from Aconst to A′ such
that (pr1)∗ ◦µ is a natural equivalence. Using the ×-Fun-adjunction and plugging in the
definition of the symmetric monoidal envelope Env(C)⊗ = (C⊗act)

⊗ from (6.1) this is in
turn equivalent to constructing a diagram

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ Assoc⊗act × Fin∗

C⊗ ×Fin∗ Act(Fin∗) Fin∗

A′′ const A′′
µ′′

idAssoc⊗act
× pr2

pr2

p
C⊗act

(6.5)

where again the square is to come with a filler exhibiting it as a commutative square,
while µ′′ is merely a natural transformation such that pr1 ◦ µ′′ is a natural equivalence.

As the composition from the top left along the top right to the bottom right is the
projection to the last factor and using the definition of pC⊗

act
as ev1 ◦ pr2, we can finally

unpack this to see that we need to construct the following.

(1) A commutative diagram as follows.

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

C⊗ Act(Fin∗)

Fin∗

A′′
l

A′′
r

pC ev0

(6.6)

This diagram will then encode the functor A′′ from (6.5).

(2) A natural transformation
µ′′
r : A

′′ const
r → A′′

r

such that ev0 ◦µ
′′
r is an equivalence. Together with A′′

l and the filler of the commu-
tative diagram (6.6) this encodes a natural transformation µ′′ : A′′ const → A′′ such
that pr1 ◦ µ′′ can be identified with idA′′

l
.

(3) A natural equivalence ev1 ◦ A
′′
r ≃ pr3, which then encodes a filler for the right

square in (6.5).
20So involving A′, but not Aconst.

253



Chapter 6. Hochschild homology

Construction of A′′
l : We start by giving a definition of A′′

l . This is to be the composition

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

pr1×pr2−−−−→ Assoc⊗act × Fun
(
Assoc⊗, C⊗

) ev
−→ C⊗

that maps a tuple (〈m〉, F, 〈n〉) to F (〈m〉), which will be an object in C⊗〈n〉∧〈m〉, as we will
see properly next. Indeed, the equivalences21

pC ◦ A
′′
l = pC ◦ ev ◦ (pr1 × pr2)
≃ ev ◦

(
pr1 × (pC)∗

)
◦ (pr1 × pr2)

≃ ev ◦
(

pr1×
(
(pC)∗ ◦ pr2

))

≃ ev ◦
(

pr1 ×
(

̂(idFin∗ ∧pAssoc) ◦ pr3
))

≃ pr3 ∧ (pAssoc ◦ pr1)

allows us to identify the composition pC ◦ A
′′
l with the functor that can be informally

described as mapping a tuple (〈m〉, F, 〈n〉) to 〈n〉 ∧ 〈m〉.
Construction of µ′′

r : Let us now think about the functor A′′
r . The constraints imposed

by (1) and (3) imply that A′′
r needs to map a tuple (〈m〉, F, 〈n〉) to an active morphism

〈n〉 ∧ 〈m〉 → 〈n〉. The idea is to use the active morphism

〈n〉 ∧ 〈m〉
id⟨n⟩∧µm
−−−−−→ 〈n〉 ∧ 〈1〉 ∼= 〈n〉

where µm is the unique active morphism 〈m〉 → 〈1〉 and the isomorphism 〈n〉∧〈1〉 ∼= 〈n〉
is the unitality isomorphism, see [HA, 2.2.5.2].

For A′′ const
r we have the same constraint regarding the domain, but no constraint on

the codomain. We can thus let A′′ const
r map a tuple (〈m〉, F, 〈n〉) to the active morphism

id〈n〉∧〈m〉 : 〈n〉 ∧ 〈m〉 → 〈n〉 ∧ 〈m〉

which also explains why we are using the superscript const in the notation.
The component of µ′′

r at (〈m〉, F, 〈n〉) is then to be given by the commutative diagram

〈n〉 ∧ 〈m〉 〈n〉 ∧ 〈m〉

〈n〉 ∧ 〈m〉 〈n〉 ∧ 〈1〉

id⟨n⟩∧⟨m⟩

id⟨n⟩∧⟨m⟩

id⟨n⟩∧µm

id⟨n⟩∧µm

21From the first to the second line we use functoriality of evaluation, from the second to the third
functoriality of products of functors, from the third to the fourth the equivalence that is part of the
data of the pullback over Fun(Assoc⊗,Fin∗), and from the fourth to the fifth the ×-Fun-adjunction
and functoriality.

254



6.1. The cyclic bar construction and geometric realization of cyclic objects

considered as a morphism from id〈n〉∧〈m〉 to id〈n〉 ∧ µm in Act(Fin∗), whose evaluation at
0 is id〈n〉∧〈m〉, and whose evaluation at 1 is id〈n〉 ∧ µm.

To actually construct such functors and such a natural transformation, we first note
that (Fin∗)act has a final object 〈1〉, so that there exists a section

s : (Fin∗)act →
(
(Fin∗)act

)
/〈1〉

of the projection, sending 〈m〉 to µm. We thus obtain a composition

(Fin∗)act
s
−→ ((Fin∗)act)/〈1〉

i
−→ Fun

(
[1], (Fin∗)act

)

where i is the inclusion. That s is a section means that we have an identification
ev0 ◦ i ◦ s ≃ id(Fin∗)act As ev0 is right adjoint22 to the functor const, we thus obtain
a natural transformation

µ̃ : const→ i ◦ s

of functors (Fin∗)act → Fun([1], (Fin∗)act).
We can now define A′′

r as the composition

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

pr3×pr1−−−−→Fin∗ × Assoc⊗act
idFin∗×pAssoc
−−−−−−−→Fin∗ × (Fin∗)act
idFin∗×(i◦s)
−−−−−−→Fin∗ × Fun

(
[1], (Fin∗)act

)

const×i′
−−−−→Act(Fin∗)× Act(Fin∗)

−∧−
−−−→Act(Fin∗)

where i′ is the inclusion Fun([1], (Fin∗)act)→ Act(Fin∗).
We similarly make the following definitions.

A′′ const
r := (const ◦ pr3) ∧

(
i′ ◦ const ◦ pAssoc ◦ pr1

)

µ′′
r := (const ◦ pr3) ∧

(
i′ ◦ µ̃ ◦ pAssoc ◦ pr1

)

Construction of the commutative diagram (6.6) in (1): We already obtained an iden-
tification

pC ◦ A
′′
l ≃ pr3 ∧ (pAssoc ◦ pr1)

above. For ev0 ◦A
′′
r we obtain the following sequence of equivalences

ev0 ◦ A
′′
r = ev0 ◦

(
(const ◦ pr3) ∧

(
i′ ◦ i ◦ s ◦ pAssoc ◦ pr1

))

≃ (ev0 ◦ const ◦ pr3) ∧
(
ev0 ◦ i

′ ◦ i ◦ s ◦ pAssoc ◦ pr1
)

≃ pr3 ∧ (ev0 ◦ i ◦ s ◦ pAssoc ◦ pr1)
22Note that as 0 is an initial object of [0], we can identify ev0 with lim.

255



Chapter 6. Hochschild homology

≃ pr3 ∧ (pAssoc ◦ pr1)

where from the first to second line we use compatibility of ev0 with the functor − ∧ −,
from the second to the third we use the identification ev0 ◦ const ≃ id and compatibility
of ev0 with the inclusion i′, and from the third to the fourth we use the identification
ev0 ◦ i ◦ s ≃ id(Fin∗)act .

On ev0◦µ
′′
r being a natural equivalence, thereby completing (2): Using identifications as

just done for ev0 ◦A
′′
r we see that it suffices to show that ev0 ◦ µ̃ is a natural equivalence.

But by definition we can identify ev0 ◦ µ̃ with id(Fin∗)act .
Construction of a natural equivalence ev1 ◦A

′′
r ≃ pr3 as in (3): There is a sequence of

equivalences as follows

ev1 ◦ A
′′
r ≃ pr3 ∧ (ev1 ◦ i ◦ s ◦ pAssoc ◦ pr1)
≃ pr3 ∧

(
const〈1〉 ◦ pAssoc ◦ pr1

)

≃ pr3 ∧
(
const〈1〉

)

≃ pr3

where the first one is obtained just like for ev0 ◦ A
′′
r , the equivalence from the first to

the second line uses the definition of i as the inclusion of (Assoc⊗act)/〈1〉, the equivalence
from the second to the third line uses the canonical equivalences for precompositions of
constant functors, and the last equivalence uses the natural unitality equivalence [HA,
2.2.5.2]23 − ∧ 〈1〉 ∼= idFin∗ . ♦

Proposition 6.1.2.5. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-category. Then
the composition of functors over Fin∗

Alg(C)⊗
ιAlg
−−→ Fun

(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

A⊗

−−→ Fun
(
Assoc⊗act, C⊗act

)⊗

where ιAlg is as discussed in the introduction to Section 6.1.2.2 in (6.3) and A⊗ is as in
Construction 6.1.2.4, is a lax symmetric monoidal functor.

We will also denote this lax symmetric monoidal composition by A⊗. ♥

Proof. We have to show that the composition sends pr2 ◦ ιAlg-cocartesian morphisms
over an inert morphism in Fin∗ to a pr2-cocartesian morphism24. So let φ : R → S be a
pr2◦ιAlg-cocartesian morphism in Alg(C)⊗ lying over an inert morphism in Fin∗. We have
to show that (A⊗ ◦ ιAlg)(φ) is pr2-cocartesian. By the result [HTT, 2.4.1.3 (2)] regarding
cocartesian morphisms and pullbacks it suffices for this to show that (pr1◦A⊗◦ιAlg)(φ) is
(pC⊗

act
)∗-cocartesian. Applying [HTT, 3.1.2.1] on cocartesian fibrations and functor cate-

gories and using that pC⊗
act

is a cocartesian fibration by Fact 6.1.2.1, we are further reduced
23Depending on the definition one takes, this might even by an equality, see [HA, 2.2.5.1].
24See the introduction to Section 6.1.2.2 for a discussion of the canonical morphisms of ∞-operads

from the two symmetric monoidal ∞-categories to Fin∗. Without looking at the previous pages for
reference it may be hard to follow what the various projections etc. in this proof refer to.

256



6.1. The cyclic bar construction and geometric realization of cyclic objects

to showing that for every object X of Assoc⊗act, the morphism (evX ◦ pr1 ◦ A⊗ ◦ ιAlg)(φ)
is pC⊗

act
-cocartesian. Finally, using the description of pC⊗

act
-cocartesian morphisms from

Fact 6.1.2.1, we conclude that we need to show that for every object X of Assoc⊗act the
morphism (pr1 ◦ evX ◦ pr1 ◦ A⊗ ◦ ιAlg)(φ) is an inert morphism in C⊗.

Using notation from Construction 6.1.2.4 we have by construction a sequence of equiv-
alences25 as follows.

pr1 ◦ evX ◦ pr1 ◦ A⊗ ◦ ιAlg

≃ pr1 ◦ evX ◦ A′ ◦ ιAlg

≃ pr1 ◦ A′′ ◦
(
constX × ιAlg

)

≃ A′′
l ◦
(
constX × ιAlg

)

≃ ev ◦ (pr1 × pr2) ◦
(
constX × ιAlg

)

≃ evX ◦ pr1 ◦ ιAlg

The claim now follow directly from Proposition E.4.2.3 (2).

We will later need the following proposition, which will allow us to deduce statements
for A⊗ from Aconst, for which we will also provide a simpler description in Proposi-
tion 6.1.2.7 below.

Proposition 6.1.2.6. Let C be a symmetric monoidal ∞-category and X an object of

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

i. e. of the domain of A⊗ and Aconst from Construction 6.1.2.4. Then the morphism

µX : Aconst(X)→
(
pr1 ◦A⊗

)
(X)

in
Fun

(
Assoc⊗act, (C⊗act)⊗

)

is (pC⊗
act
)∗-cocartesian. ♥

Proof. Let X be as in the statement. By [HTT, 3.1.2.1] and the description of pC⊗
act

-
cocartesian morphisms in Fact 6.1.2.1 it suffices to show that for every object Y in
Assoc⊗act the morphism (pr1 ◦ evY )(µX) = (evY ◦ (pr1))(µX) is inert. But by Construc-
tion 6.1.2.4 that morphism is an equivalence, and hence in particular inert.

We end this section by giving another, simpler, description for the functor Aconst from
Construction 6.1.2.4.

Proposition 6.1.2.7. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-category. Then
the functor

Aconst : Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → Fun

(
Assoc⊗act, (C⊗act)⊗

)

25The pr1 in the last line corresponds to pr2 in the second to last line.

257



Chapter 6. Hochschild homology

constructed in Construction 6.1.2.4 is equivalent to the composition

Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

pr1−−→Fun
(
Assoc⊗, C⊗

)

Fun(α,ιact)
−−−−−−→Fun

(
Assoc⊗act,

(
C⊗act
)⊗)

where α : Assoc⊗act → Assoc⊗ is the inclusion, and ιact : C
⊗ → (C⊗act)

⊗ is the functor
described before Fact 6.1.2.2. ♥

Proof. In this proof we use notation from Construction 6.1.2.4, as well as the discussions
of the relevant definitions at the start of Section 6.1.2.2.

It suffices to check that the adjoint functors

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗ → C

⊗ ×Fin∗ Act(Fin∗)

are homotopic. For Aconst this adjoint functor is by construction A′′ const. For the com-
position given in the statement this adjoint is equivalent to the following composition,
which we will call Ã′′ const for now.

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

(α◦pr1)×pr2−−−−−−−→Assoc⊗ × Fun
(
Assoc⊗, C⊗

)
ev
−→C⊗

ιact−−→C⊗ ×Fin∗ Act(Fin∗)

To show that two such functor are equivalent we need to show that we can identify
the two corresponding commutative diagrams of the following form.

Assoc⊗act × Fun
(
Assoc⊗, C⊗

)
×Fun(Assoc⊗,Fin∗) Fin∗

C⊗ Act(Fin∗)

Fin∗

pC ev0

(6.7)

To simplify this problem we first notice that pr2◦ιact, and hence pr2◦Ã′′ const, by definition
factors though const : Fin∗ → Act(Fin∗). Similarly, we have equivalences as follows.

pr2 ◦ A′′ const = A′′ const
r

By definition we obtain the following.
= (const ◦ pr3) ∧

(
i′ ◦ const ◦ pAssoc ◦ pr1

)

258



6.1. The cyclic bar construction and geometric realization of cyclic objects

Using functoriality of − ∧−.
≃ const ◦

(
pr3 ∧ (pAssoc ◦ pr1)

)

This shows that also pr2 ◦ A′′ const factors through const.
We claim that because of this it actually suffices to construct a homotopy between

pr1 ◦ Ã′′ const and pr1 ◦ A′′ const, as we can then obtain a homotopy between pr2 ◦ Ã′′ const

and pr2◦A′′ const in such a manner that there is an evident compatible homotopy between
the fillers of the commutative squares (6.7) as follows.

pr2 ◦ Ã′′ const

Using that const ◦ ev0 ◦ const ≃ const.
≃ const ◦ ev0 ◦ pr2 ◦ Ã′′ const

Using the canonical homotopy from the diagram (6.7) associated to Ã′′ const.
≃ const ◦ pC ◦ pr1 ◦ Ã′′ const

Using the homotopy pr1 ◦ Ã′′ const ≃ pr1 ◦ A′′ const that we assume given.
≃ const ◦ pC ◦ pr1 ◦ A′′ const

Using the canonical homotopy from the diagram (6.7) associated to A′′ const.
≃ const ◦ ev0 ◦ pr2 ◦ A′′ const

Using that const ◦ ev0 ◦ const ≃ const.
≃ pr2 ◦A′′ const

It thus suffices to show that pr1 ◦ Ã′′ const ≃ pr1 ◦ A′′ const. But it follows immediately
from unpacking the definitions that there is an equivalence as follows.

pr1 ◦ Ã′′ const = idC⊗ ◦ ev ◦
(
(α ◦ pr1)× pr2

)
≃ ev ◦

(
(α ◦ pr1)× pr2

)
= pr1 ◦ A′′ const

6.1.2.3. Tensoring active diagrams together

Let C be a symmetric monoidal ∞-category. In Section 6.1.2.1 we discussed the sym-
metric monoidal structure on the ∞-category C⊗act, where the tensor product can be
described by (

⊕
1≤i≤nXi)⊗ (

⊕
n+1≤i≤n+mXi) ≃

⊕
1≤i≤n+mXi. In Definition 6.1.2.8 be-

low we will define a symmetric monoidal functor ⊗ : C⊗act → C, which can be described
as mapping

⊕
1≤i≤nXi to

⊗
1≤i≤nXi. Given the informal description of the symmetric

monoidal structure on C⊗act it should be plausible that there is such a symmetric monoidal
functor.

Definition 6.1.2.8. Let C be a symmetric monoidal ∞-category. We let

⊗ : C⊗act → C

be the symmetric monoidal functor that corresponds to the lax symmetric monoidal
functor idC : C → C (which is actually symmetric monoidal, but we do not use that here)
under the equivalence of Fact 6.1.2.2. ♦

259



Chapter 6. Hochschild homology

Note that by definition, the underlying functor of ⊗ from Definition 6.1.2.8 maps
objects X of C⊗〈1〉 to X, so symmetric monoidality implies that

⊕
1≤i≤nXi must be

mapped to
⊗

1≤i≤nXi.

Remark 6.1.2.9. Let F : C → D be a symmetric monoidal functor of symmetric
monoidal ∞-categories. Combining Remark 6.1.2.3 and F ∗(idD) = F∗(idC) yields a com-
mutative diagram of symmetric monoidal functors as follows

C⊗act D⊗
act

C D

F⊗
act

⊗ ⊗

F

where the two functors denoted by ⊗ are those from Definition 6.1.2.8. ♦

As ⊗ : C⊗act → C is a symmetric monoidal functor, it induces a symmetric monoidal
functor

Fun
(
Assoc⊗act, C⊗act

) (⊗)∗
−−→ Fun

(
Assoc⊗act, C

)

on functor categories with the pointwise symmetric monoidal structure26. Furthermore,
the composition (⊗∗)

⊗ ◦ A⊗ of the lax symmetric monoidal functor A⊗ from Proposi-
tion 6.1.2.5 with this symmetric monoidal functor is not only lax symmetric monoidal,
but actually symmetric monoidal, as we see in Proposition 6.1.2.11 below. Before doing
so we will use Proposition 6.1.2.6 and Proposition 6.1.2.7 to describe the compositions
ev〈m〉 ◦ ⊗∗ ◦ A.

Proposition 6.1.2.10. Let pC : C⊗ → Fin∗ be a symmetric monoidal ∞-category.
Then the composition27

Alg(C)→ Fun
(
Assoc⊗, C⊗

) α∗

−→ Fun
(
Assoc⊗act, C⊗

) (pC)∗−−−→ Fun
(
Assoc⊗act, Fin∗

)

is the constant functor with image pAssoc ◦ α and the composition28

Alg(C) A
−→ Fun

(
Assoc⊗act, C⊗act

) ⊗∗−→ Fun
(
Assoc⊗act, C

)

(C→C⊗)
∗−−−−−→ Fun

(
Assoc⊗act, C⊗

) (pC)∗−−−→ Fun
(
Assoc⊗act, Fin∗

)

is the constant functor with image const〈1〉.
26This follows directly from the definition [HA, 2.1.3.4] together with Proposition C.1.1.1 and [HTT,

3.1.2.1].
27The functor Alg(C) → Fun

(
Assoc⊗, C⊗

)
is to be the canonical one, i. e. inclusion into

FunFin∗

(
Assoc⊗, C⊗

)
followed by the projection, and α is the inclusion of Assoc⊗act into Assoc⊗.

28A is the underlying functor of the lax symmetric monoidal functor from Proposition 6.1.2.5, and ⊗
is the functor defined in Definition 6.1.2.8.

260



6.1. The cyclic bar construction and geometric realization of cyclic objects

Let µFin∗ : pAssoc ◦ α → const〈1〉 be the unique natural transformation of functors
Assoc⊗act → Fin∗ that is pointwise an active morphism. Then there is a homotopy be-
tween the composition

Alg(C)
α∗◦

(
Alg(C)→Fun(Assoc⊗,C⊗)

)

−−−−−−−−−−−−−−−−−−→ Fun
(
Assoc⊗act, C⊗

)
pAssoc◦α

(µFin∗)
!−−−−→ Fun

(
Assoc⊗act, C⊗

)
const⟨1⟩

and the following functor.
(
C → C⊗

)
∗
◦ ⊗∗ ◦ A : Alg(C)→ Fun

(
Assoc⊗act, C⊗

)
const⟨1⟩

In particular, there is a commutative diagram of ∞-categories as follows for every
m ≥ 0

Alg(C) FunFin∗

(
Assoc⊗act, C⊗act

)
Fun

(
Assoc⊗act, C

)

FunFin∗

(
Assoc⊗, C⊗

)
C⊗〈m〉 C⊗〈1〉 ≃ C

A ⊗∗

ev⟨m⟩

ev⟨m⟩ (µm)!

(6.8)

where the left vertical functor is the canonical functor and and µm is the unique active
morphism 〈m〉 → 〈1〉 in Fin∗.

Now let R be an associative algebra in C. Then we can identify (⊗∗ ◦ A)(R)(〈m〉)
with R⊗m and if f : 〈m〉 → 〈m′〉 is an active morphism in Assoc⊗, then we can identify
(⊗∗ ◦ A)(R)(f) with the morphism R⊗m → R⊗m′ induced by f , so for example for f
the unique active morphism 〈0〉 → 〈1〉 we can identify (⊗∗ ◦ A)(R)(f) with the unit
morphism 1C → R. ♥

Proof. In this proof we use notation from Construction 6.1.2.4.
Recall the natural transformation29 µ : Aconst → pr1 ◦ A⊗ from Construction 6.1.2.4.

We can define a natural transformation

µ :=
(
⊗⊗
)
∗
◦ µ ◦

(
Alg(C)→ Alg(C)⊗

)

of functors from Alg(C) to Fun
(
Assoc⊗act, C⊗

)
.

We first claim that it suffices to show the following.

(1)
(
⊗⊗
)
∗
◦ Aconst ◦

(
Alg(C)→ Alg(C)⊗

)
≃ α∗ ◦

(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

(2)
(
⊗⊗
)
∗
◦ pr1 ◦ A⊗ ◦

(
Alg(C)→ Alg(C)⊗

)
≃
(
C → C⊗

)
∗
◦ ⊗∗ ◦ A

(3) (pC)∗ ◦ µ ≃ constµFin∗

29We use Aconst here as notation for the restriction of what was called Aconst in Construction 6.1.2.4
to Alg(C)⊗, and similarly for µ – like we do for A⊗.

261



Chapter 6. Hochschild homology

(4) For every object R of Alg(C), the component µR of µ is (pC)∗-cocartesian.

Let us now explain how the statements we need to prove follow from claims (1), (2),
(3) and (4).

The claims regarding the images of the two functors to Fun(Assoc⊗act, Fin∗) follow
directly from claims (1), (2) and (3), and the identification of

(
C → C⊗

)
∗
◦ ⊗∗ ◦ A

then follows from claims (1), (2), (3) and (4)30. The inclusion functor C → C⊗ is fully
faithful31, so for construction of a commutative diagram (6.8) it suffices by Proposi-
tion B.4.3.1 to show that the two composite functors from the top left to the bottom
right become homotopic after composing with the inclusion to C⊗. But we have a chain
of equivalences as follows.

(
C → C⊗

)
◦ ev〈m〉 ◦ ⊗∗ ◦ A

Using compatibility of evaluation with postcomposition.
≃ ev〈m〉 ◦

(
C → C⊗

)
∗
◦ ⊗∗ ◦ A

Postcomposing the already obtained equivalence with ev〈m〉.

≃ ev〈m〉 ◦
(
µFin∗

)
!
◦ α∗ ◦

(
Alg(C)→ Fun

(
Assoc⊗, C⊗

))

Using [HTT, 3.1.2.1 (2)].
≃ (µm)! ◦ ev〈m〉 ◦ α

∗ ◦
(

Alg(C)→ Fun
(
Assoc⊗, C⊗

))

Finally, compatibility of evaluations with precomposing and (un)making the identifica-
tion C⊗〈1〉 ≃ C.

≃
(
C → C⊗

)
◦ (µm)! ◦ ev〈m〉 ◦

(
Alg(C)→ FunFin∗

(
Assoc⊗, C⊗

))

Finally, the concrete description of (⊗∗ ◦A)(R) follows directly from the identification
of
(
C → C⊗

)
∗
◦ ⊗∗ ◦ A by unpacking the definitions.

So let us now prove claims (1), (2), (3) and (4).
Proof of claim (1): We have equivalences as follows.

(
⊗⊗
)
∗
◦ Aconst ◦

(
Alg(C)→ Alg(C)⊗

)

Using the description of Aconst from Proposition 6.1.2.7.
≃
(
⊗⊗
)
∗
◦ (ιact)∗ ◦ α

∗ ◦
(

Alg(C)→ Fun
(
Assoc⊗, C⊗

))

Using that by definition of the functor ⊗ – see Definition 6.1.2.8 – there is an equivalence
⊗⊗ ◦ ιact ≃ idC.

≃ α∗ ◦
(

Alg(C)→ Fun
(
Assoc⊗, C⊗

))

30We remark that we do not need to worry about the equivalences in claims (1) and (2) lying over
non-identity natural isomorphisms of functors to Fin∗, as the unique active morphism 〈m〉 → 〈1〉 in
Fin∗ stays unchanged if we pre- and postcompose it by isomorphisms.

31This follows from Proposition B.5.3.1 using that {〈1〉} → Fin∗ is fully faithful.

262



6.1. The cyclic bar construction and geometric realization of cyclic objects

Proof of claim (2): Follows immediately by using that lax monoidal functors such
as A and ⊗ are compatible with the inclusion of the underlying ∞-category into the
respective ∞-operad.

Proof of claim (3): It suffices to show that the adjoint natural transformations of
functors

Assoc⊗act × Alg(C)→ Fin∗

are equivalent, i. e. that there is an equivalence between pC ◦ qµ and µFin∗ ◦ pr1.
We first note that as ⊗⊗ : (C⊗act)

⊗ → C⊗ is a functor over Fin∗, we have an equivalence
as follows.

pC ◦ ⊗
⊗ ≃ pC⊗

act
= ev1 ◦ pr2

Unpacking the definition of µ in Construction 6.1.2.4 we thus obtain equivalences as
follows.

pC ◦ qµ

= pC ◦ ⊗
⊗ ◦ qµ ◦

(
idAssoc⊗act

×
(

Alg(C)→ Alg(C)⊗
))

≃ ev1 ◦ pr2 ◦ qµ ◦

(
idAssoc⊗act

×
(

Alg(C)→ Alg(C)⊗
))

≃ ev1 ◦ µ
′′
r ◦

(
idAssoc⊗act

×
(

Alg(C)→ Alg(C)⊗
))

≃ ev1 ◦
((

const〈1〉
)
∧
(
i′ ◦ µ̃ ◦ pAssoc ◦ pr1

))

≃ ev1 ◦ i
′ ◦ µ̃ ◦ pAssoc ◦ pr1

≃ µFin∗ ◦ pr1

Proof of claim (4): Follows immediately by combining that all components of µ are(
pC⊗

act

)
∗
-cocartesian by Proposition 6.1.2.6, that ⊗⊗ is symmetric monoidal by definition,

and [HTT, 3.1.2.1].

Proposition 6.1.2.11. Let C be a symmetric monoidal ∞-category. Consider the com-
position

Alg(C)⊗ A⊗

−−→ Fun
(
Assoc⊗act, C⊗act

)⊗ (⊗∗)
⊗

−−−→ Fun
(
Assoc⊗act, C

)⊗

of functors over Fin∗, where A⊗ is as in Proposition 6.1.2.5 and (⊗∗)
⊗ is the symmetric

monoidal functor induced by ⊗ from Definition 6.1.2.8 on functor categories with the
pointwise symmetric monoidal structure.

Then this composition is a symmetric monoidal functor. ♥

Proof. We will use notation from Construction 6.1.2.4 in this proof32, which will be
similar to the proof of Proposition 6.1.2.10.
32We will though use Aconst as notation for the restriction of what was called Aconst in Construc-

tion 6.1.2.4 to Alg(C)⊗, and similarly for µ, as we do for A⊗.

263



Chapter 6. Hochschild homology

Just like in Proposition 6.1.2.5, it suffices to show that for every object 〈m〉 in Assoc⊗act,
the composition

ev〈m〉 ◦ pr1 ◦ (⊗∗)
⊗ ◦ A⊗

maps pr2 ◦ ιAlg-cocartesian morphisms to pC-cocartesian morphisms. Also like in Propo-
sition 6.1.2.5, we use the definitions of the various functors to rewrite this composition
into a more suitable form. We start by using the definition of (⊗∗)

⊗ and compatibility
of evaluation with postcomposition of functors to obtain homotopies as follows.

ev〈m〉 ◦ pr1 ◦ (⊗∗)
⊗ ◦ A⊗

≃ ev〈m〉 ◦
(
⊗⊗
)
∗
◦ pr1 ◦ A⊗

≃ ⊗⊗ ◦ ev〈m〉 ◦ pr1 ◦ A⊗

Let f : X → Y be a pr2 ◦ ιAlg-cocartesian morphism in Alg(C)⊗. From the natural
transformation µ : Aconst → pr1 ◦ A⊗ we obtain a commutative square as follows.

(
⊗⊗ ◦ ev〈m〉 ◦ A

const)(X)
(
⊗⊗ ◦ ev〈m〉 ◦ pr1 ◦ A⊗

)
(X)

(
⊗⊗ ◦ ev〈m〉 ◦ A

const)(Y )
(
⊗⊗ ◦ ev〈m〉 ◦ pr1 ◦ A⊗

)
(Y )

(⊗⊗◦ev⟨m⟩)(µX)

(⊗⊗◦ev⟨m⟩◦A
const)(f) (⊗⊗◦ev⟨m⟩◦pr1◦A⊗)(f)

(⊗⊗◦ev⟨m⟩)(µY )

We need to show that the right vertical morphism is pC-cocartesian. By Proposition 6.1.2.6
we know that µX and µY are (pC⊗

act
)∗-cocartesian, so it follows from [HTT, 3.1.2.1] and

⊗⊗ being symmetric monoidal by definition that the top and bottom horizontal mor-
phisms in the diagram are pC-cocartesian. It thus suffices by [HTT, 2.4.1.7] to show that
the left vertical morphism is pC-cocartesian.

For this we use the description of Aconst from Proposition 6.1.2.7 and that by definition
⊗⊗ ◦ ιact ≃ idC⊗ to obtain equivalences as follows.

⊗⊗ ◦ ev〈m〉 ◦ A
const

≃ ⊗⊗ ◦ ev〈m〉 ◦ (ιact)∗ ◦ α
∗ ◦ pr1 ◦ ιAlg

≃ ⊗⊗ ◦ ιact ◦ ev〈m〉 ◦ α
∗ ◦ pr1 ◦ ιAlg

≃ ev〈m〉 ◦ α
∗ ◦ pr1 ◦ ιAlg

≃ ev〈m〉 ◦ pr1 ◦ ιAlg

So what is left to show is that ev〈m〉 ◦ pr1 ◦ ιAlg maps pr2 ◦ ιAlg-cocartesian morphisms
to pC-cocartesian morphisms. But this follows immediately from Proposition E.4.2.3
(4).

Remark 6.1.2.12. Let F : C → D be a symmetric monoidal functor of symmetric
monoidal∞-categories. Then going through the constructions and using Remark 6.1.2.3

264



6.1. The cyclic bar construction and geometric realization of cyclic objects

it is straightforward to see that there is a commutative diagram of symmetric monoidal
functors as follows

Alg(C)⊗ Fun
(
Assoc⊗act, C

)⊗

Alg(D)⊗ Fun
(
Assoc⊗act,D

)⊗

(⊗∗)
⊗◦A⊗◦ιAlg

Alg(F )⊗ (F∗)
⊗

(⊗∗)
⊗◦A⊗◦ιAlg

where the horizontal functors are the compositions considered in Proposition 6.1.2.11
for C and D, respectively. Furthermore, if G : D → E is another symmetric monoidal
functor, then the composite of the compatibility diagrams for F and G as above can be
identified with the compatibility diagram for G ◦ F . ♦

6.1.2.4. The functor V : Λ→ Assoc⊗act
Let C be a symmetric monoidal ∞-category. With Proposition 6.1.2.11 we have now

constructed a symmetric monoidal functor

Alg(C)→ Fun
(
Assoc⊗act, C

)

that is the first33 step in the symmetric monoidal functor Bcyc
• . We already constructed

the self-duality functor
−◦ : Λop → Λ

in Section 6.1.1.6. We will now introduce a functor

V : Λ→ Assoc⊗act
so that precomposition with V ◦ (−◦) induces a symmetric monoidal functor

Fun
(
Assoc⊗act, C

)
→ Fun(Λop, C)

with respect to the pointwise symmetric monoidal structures.

Fact 6.1.2.13 ([NikSch, B.1]). There is a functor

V : Λ→ Assoc⊗act
that maps

• [n]Λ to 〈n+ 1〉,

• δj : [n − 1]Λ → [n]Λ to the active map that sends i to i if i < j + 1 and to i + 1
otherwise34,

33Or the first two or three, however one wants to count.
34For the reader confused by why it is j + 1 and not j: This arises from the fact that we defined δj

using elements 0
n+1 , . . . ,

n
n+1 (i. e. we start counting from 0), whereas the elements of 〈n + 1〉 are

1, . . . , n+ 1 (i. e. we start counting from 1).

265



Chapter 6. Hochschild homology

• σj : [n + 1]Λ → [n]Λ to the active map that sends i to i if i ≤ j + 1 and to i − 1
otherwise, with ordering on the preimage of j + 1 given by j + 1 < j + 2,

• τ : [n]Λ → [n]Λ to the active map that sends 1 to n+1 and i to i− 1 for i > 1. ♧

Proposition 6.1.2.14. Let C be a symmetric monoidal ∞-category. Then the functor

Fun
(
Assoc⊗act, C⊗

)
×Fun(Assoc⊗act,Fin∗) Fin∗

(V ◦(−◦))
∗
×(V ◦(−◦))∗ id

−−−−−−−−−−−−−−→ Fun
(
Λ

op, C⊗
)
×Fun(Λop,Fin∗) Fin∗

over Fin∗ upgrades the functor

Fun
(
Assoc⊗act, C

) (V ◦(−◦))
∗

−−−−−−→ Fun(Λop, C)

to a symmetric monoidal functor with respect to the pointwise symmetric monoidal
structures (see [HA, 2.1.3.4]). ♥

Proof. Follows directly from the definition of the pointwise symmetric monoidal struc-
tures and Proposition C.1.1.1 and [HTT, 3.1.2.1].
Remark 6.1.2.15. The symmetric monoidal functor from Proposition 6.1.2.14 is natu-
ral in C. In particular, for F : C → D a symmetric monoidal functor between symmetric
monoidal ∞-categories, we obtain a commutative square

Fun
(
Assoc⊗act, C

)
Fun(Λop, C)

Fun
(
Assoc⊗act,D

)
Fun(Λop,D)

(V ◦(−◦))
∗

F∗ F∗

(V ◦(−◦))
∗

of symmetric monoidal functors. ♦

6.1.2.5. The definition of the cyclic bar construction as a cyclic object

We are now ready to define the cyclic bar construction Bcyc
• .

Definition 6.1.2.16 ([NikSch, III.2.3]). Let C be a symmetric monoidal ∞-category.
We define the cyclic bar construction as the symmetric monoidal functor35

Bcyc
• : Alg(C)→ Fun(Λop, C)

that is given as the composition of the symmetric monoidal functor

Alg(C)→ Fun
(
Assoc⊗act, C

)

from Proposition 6.1.2.11 and the symmetric monoidal functor

Fun
(
Assoc⊗act, C

)
→ Fun(Λop, C)

from Proposition 6.1.2.14. ♦
35In the codomain with respect to the pointwise symmetric monoidal structure.

266



6.1. The cyclic bar construction and geometric realization of cyclic objects

Remark 6.1.2.17. Bcyc
• is compatible with symmetric monoidal functors. If F : C → D

is a symmetric monoidal functor, then there is a commuting diagram

Alg(C) Fun(Λop, C)

Alg(D) Fun(Λop,D)

Bcyc
•

Alg(F ) F∗

Bcyc
•

of symmetric monoidal functors. Furthermore, if G : D → E is another symmetric
monoidal functor, then the composite of the compatibility squares as above for F and
G can be identified with the compatibility square for G ◦ F . This follows by combining
Remark 6.1.2.12 with Remark 6.1.2.15. ♦

6.1.2.6. Bcyc
• for cocartesian symmetric monoidal ∞-categories

Let C be a symmetric monoidal ∞-category. The cyclic bar construction

Bcyc
• : Alg(C)→ Fun(Λop, C)

is a symmetric monoidal functor and thus induces a functor as follows.

CAlg(C) ≃ CAlg
(
Alg(C)

) CAlg(Bcyc
• )

−−−−−−→ CAlg
(
Fun(Λop, C)

)
≃ Fun

(
Λ

op,CAlg(C)
)

(6.9)

In this section we will give a different description of this functor: It is the left adjoint of
the forgetful functor ev[0]Λ .

To prove this we will proceed as follows. We will first show in Proposition 6.1.2.18 that
already Bcyc

• – so without passing to commutative algebras – is left adjoint to ev[0]Λ , under
the assumption that the symmetric monoidal structure on C is cocartesian. In order to
apply this to the composition Equation (6.9), we will then show in Proposition 6.1.2.19
how we can identify CAlg(Bcyc

• ) (where the cyclic bar construction is taken of algebras
in C) with the cyclic bar construction for CAlg(C).

Proposition 6.1.2.18. Let C a symmetric monoidal ∞-category and assume that the
underlying ∞-category admits finite coproducts and that the symmetric monoidal struc-
ture is cocartesian in the sense of [HA, 2.4.0.1]. Under these assumptions the forgetful
functor

eva : Alg(C)→ C

is an equivalence by [HA, 2.4.3.9].
Then the composite

Bcyc
• ◦ ev−1

a : C → Fun(Λop, C)

is left adjoint to the evaluation functor ev[0]Λ. ♥

267



Chapter 6. Hochschild homology

Proof. Let i : {[0]Λ} → Λ
op be the inclusion. We will identify C with Fun({[0]Λ}, C) and

consider eva as a functor to Fun({[0]Λ}, C). Under this identification, the functor ev[0]Λ

corresponds to precomposition with i.
We start by noting that we can use Proposition 6.1.2.10 to identify the composition

i∗ ◦Bcyc
• with eva and this identification provides for every object R of C a commutative

triangle of ∞-categories as follows.

{[0]Λ}

C

Λ
op

i

constR

(Bcyc
• ◦ev−1

a )(R)

It now suffices to show that this triangle exhibits (Bcyc
• ◦ev−1

a )(R) as a left Kan extension
of constR – see [HA, 4.3.2, 4.3.3, and in particular 4.3.3.7]36.

For this we need to show by [HA, 4.3.2.2 and 4.3.1.3] that for every object [n]Λ of Λop

the induced diagram

(Λop)/[n]Λ ×Λ
op {[0]Λ} Λ

op C

(
(Λop)/[n]Λ ×Λ

op {[0]Λ}
)▷

pr (Bcyc
• ◦ev−1

a )(R)

G

where the left vertical functor is the inclusion and G is the functor that is induced by
(Bcyc

• ◦ev−1
a )(R), exhibitsG(∞) = (Bcyc

• ◦ev−1
a )(R)([n]Λ) as a colimit of (Bcyc

• ◦ev−1
a )(R)◦pr.

Let us start by unpacking what the category (Λop)/[n]Λ ×Λ
op {[0]Λ} looks like. As

[0]Λ has no nontrivial endomorphisms the 1-category (Λop)/[n]Λ ×Λ
op {[0]Λ} is actually a

discrete category. Objects are morphisms [0]Λ → [n]Λ in Λ
op, so morphisms [n]Λ → [0]Λ

in Λ. There are n + 1 such morphisms, namely fm for 1 ≤ m ≤ n + 1, where fm is the
morphism (1/(n+1)) ·Z→ Z in Λ

37 that maps l/(n+1) to 0 for 0 ≤ l < m−1 and to 1
for m− 1 ≤ l ≤ n. In terms of the generators of Λ38 we can write fm as fm := σn0 ◦ τ

m−1.
Hence what we need to show is that the morphism
∐

1≤m≤n+1

(
Bcyc

• ◦ ev−1
a

)
(R)([0]Λ)

∐
1≤m≤n+1(B

cyc
• ◦ev−1

a )(R)(fm)
−−−−−−−−−−−−−−−−−−→

(
Bcyc

• ◦ ev−1
a

)
(R)([n]Λ) (∗)

is an equivalence in C.
For this we need to understand what (Bcyc

• ◦ev−1
a )(R) maps the morphism fm to. First

we use Fact 6.1.1.13 to see that the self-duality functor −◦ of Λ maps fm = σn0 ◦ τ
m−1

36That we only need to check this pointwise for a single (though of course arbitrary) R boils down to
the fact that induced natural transformations between left Kan extensions are defined essentially
uniquely through the universal property of left Kan extensions and ultimately colimits.

37See Section 6.1.1.2.
38See Section 6.1.1.3.

268



6.1. The cyclic bar construction and geometric realization of cyclic objects

to τ 1−mδn1 . Next we need to apply the functor V from Fact 6.1.2.13, which maps this to
the active morphism 〈1〉 → 〈n+ 1〉 in Assoc⊗ that sends 1 to m. Denote this morphism
of Assoc⊗act by f ′

m.
We can then identify morphism (∗) with the morphism39

∐

1≤m≤n+1

(
⊗∗ ◦ A ◦ ev−1

a

)
(R)(〈1〉)

∐
1≤m≤n+1(⊗∗◦A◦ev−1

a )(R)(f ′m)
−−−−−−−−−−−−−−−−−−−→

(
⊗∗ ◦ A ◦ ev−1

a

)
(R)(〈n+ 1〉)

in C. With Proposition 6.1.2.10 we can further identify this morphism with the morphism

∐

1≤m≤n+1

R

∐
1≤m≤n+1


R≃1⊗m−1

C ⊗R⊗1⊗n−m
C

u⊗m−1⊗idR⊗u⊗n−m

−−−−−−−−−−−−→R⊗n+1




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ R⊗n+1 (∗∗)

where u : 1C → R is the unit morphism of the associative algebra ev−1
a (R). Morphism

(∗∗) is an equivalence as the symmetric monoidal structure on C is cocartesian.

Proposition 6.1.2.19. Let C be a symmetric monoidal ∞-category. We compare Bcyc
•

for CAlg(C) and C in this proposition, so to distinguish them we will use superscripts
such as Bcyc

•
,C.

Then there is a commutative diagram of ∞-categories

CAlg
(
Alg(C)

)
CAlg

(
Fun(Λop, C)

)

Alg
(
CAlg(C)

)
Fun

(
Λ

op,CAlg(C)
)

CAlg
(
Bcyc

•
,C
)

≃ ≃

Bcyc
•

,CAlg(C)

(6.10)

where the left and right vertical equivalences are the canonical ones40. ♥

Proof. The symmetric monoidal forgetful functor ev〈1〉 : CAlg(C) → C induces by Re-
mark 6.1.2.17 a commuting diagram

Alg
(
CAlg(C)

)
Fun

(
Λ

op,CAlg(C)
)

Alg(C) Fun(Λop, C)

Bcyc
•

,CAlg(C)

Alg(ev⟨1⟩) (ev⟨1⟩)∗

Bcyc
•

,C

39We use notation like in Proposition 6.1.2.10.
40For the left equivalence this is the composition

CAlg
(
Alg(C)

)
≃ BiFunc(Comm,Assoc; C) ≃ BiFunc(Assoc,Comm; C) ≃ Alg

(
CAlg(C)

)

where the middle equivalence is given by precomposition with the symmetry equivalence and the
other two are the ones from Proposition E.5.0.1. For the right vertical equivalence see [HA, 2.1.3.4].

269



Chapter 6. Hochschild homology

of symmetric monoidal functors. Applying CAlg to this diagram we obtain the bottom
commutative square in the commutative diagram of ∞-categories below.

Alg
(
CAlg(C)

)
Fun

(
Λ

op,CAlg(C)
)

CAlg
(

Alg
(
CAlg(C)

))
CAlg

(
Fun

(
Λ

op,CAlg(C)
))

CAlg
(
Alg(C)

)
CAlg

(
Fun(Λop, C)

)

Bcyc
•

,CAlg(C)

ev⟨1⟩

CAlg
(
Bcyc

•
,CAlg(C)

)

CAlg
(
Alg(ev⟨1⟩)

)

ev⟨1⟩

CAlg
(
(ev⟨1⟩)∗

)

CAlg
(
Bcyc

•
,C
)

(∗)

By [HA, 3.2.4.7] the symmetric monoidal structure on CAlg(C) is cocartesian, so it
follows that the induced symmetric monoidal structure on Alg(CAlg(C)) is also cocarte-
sian, and hence the left top vertical functor is an equivalence by [HA, 2.4.3.9]. To see
that the lower left vertical functor is also an equivalence and that the composite left
vertical equivalence can be identified with the one in diagram (6.10), we consider the
following commutative diagram

Alg
(
CAlg(C)

)
CAlg

(
Alg
(
CAlg(C)

))
CAlg

(
Alg(C)

)

CAlg
(
Alg(C)

)
CAlg

(
CAlg

(
Alg(C)

))
CAlg

(
Alg(C)

)
≃

ev⟨1⟩
≃

CAlg
(
Alg(ev⟨1⟩)

)

≃ =

ev⟨1⟩
≃

CAlg(ev⟨1⟩)

where the middle and left vertical equivalences are (induced by) the canonical equiva-
lence exchanging the “inner” Alg and CAlg. By Proposition E.6.0.1, the bottom right
horizontal functor is an equivalence, and the composite equivalence from the bottom
left to the bottom right is homotopic to the identity functor. It follows that the bottom
left vertical functor in diagram (∗) is an equivalence and that the composite left vertical
equivalence can be identified with the left vertical equivalence in diagram (6.10).

We can argue completely analogously for the two right vertical functors in diagram
(∗) being equivalences and the identification of the composite with the right vertical
equivalence in diagram (6.10) – this time we need to exchange the “inner” Fun(Λop,−)
and CAlg.

Proposition 6.1.2.20. Let C be a symmetric monoidal ∞-category. Consider the com-

270



6.1. The cyclic bar construction and geometric realization of cyclic objects

position41

CAlg(C) CAlg(eva)−1

−−−−−−−→ CAlg
(
Alg(C)

) CAlg(Bcyc
• )

−−−−−−→ CAlg
(
Fun(Λop, C)

) ≃
−→ Fun

(
Λ

op,CAlg(C)
)

where the last functor is the canonical equivalence [HA, 2.1.3.4]42. This composition is
left adjoint to the functor ev[0]Λ. ♥

Proof. Using Proposition 6.1.2.19 we can identify the composition in question with the
following composition

CAlg(C) ev−1
a−−→ Alg

(
CAlg(C)

) Bcyc
•

,CAlg(C)

−−−−−−−→ Fun
(
Λ

op,CAlg(C)
)

where Bcyc
•

,CAlg(C) is the cyclic bar construction with respect to the symmetric monoidal
∞-category CAlg(C). The claim now follows from Proposition 6.1.2.18, as the symmetric
monoidal structure on CAlg(C) is cocartesian.

6.1.2.7. Bcyc
• and sifted colimits

The following statement concerning Bcyc
• and sifted colimits will be helpful later when

we want to show that Hochschild homology is compatible with relative tensor products.

Proposition 6.1.2.21. Let C be a symmetric monoidal ∞-category. Let I be a small
sifted∞-category43, and assume that the symmetric monoidal structure of C is compatible
with I-indexed colimits in the sense of [HA, 3.1.1.18].

Then the functor
Bcyc

• : Alg(C)→ Fun(Λop, C)

from Definition 6.1.2.16 preserves I-indexed colimits. ♥

Proof. Colimits in functor categories are detected pointwise by [HTT, 5.1.2.3], so it
suffices to show that for every m ≥ 1 the composition ev[m−1]Λ ◦ Bcyc

• preserves I-
indexed colimits. Unpacking the definition of Bcyc

• , we can identify this composition with
ev〈m〉◦⊗∗◦A, see Definition 6.1.2.16 and Proposition 6.1.2.11. Using Proposition 6.1.2.10
we can further identify this composition with

Alg(C)
ev⟨m⟩
−−−→ C⊗〈m〉

(µm)!−−−→ C⊗〈1〉 ≃ C

where µm : 〈m〉 → 〈1〉 is the unique active morphism in Fin∗.
41CAlg(eva) can be identified with the composition

CAlg
(
Alg(C)

)
≃ Alg

(
CAlg(C)

) eva−−→ CAlg(C)

and is thus an equivalence by [HA, 3.2.4.7 and 2.4.3.9].
42This equivalence arises from using that Fun(Fin∗,−) preserves pullbacks and the ×-Fun-adjunction.
43See [HTT, 5.5.8.1] for a definition.

271



Chapter 6. Hochschild homology

By [HA, 3.2.3.7], the functor (µm)! appearing above preserves I-indexed colimits, so
it remains to show that

ev〈m〉 : Alg(C)→ C⊗〈m〉

also does so. The inert morphisms ρi : 〈m〉 → 〈1〉 determine natural transformations
evρi : ev〈m〉 → ev〈1〉. By definition of Alg(C), these natural transformations will be com-
ponentwise inert morphisms in C⊗ lying over ρi. It follows44 that the natural transfor-
mation ∏

1≤i≤m

evρi : ev〈m〉 →
∏

1≤i≤m

ev〈1〉

is a natural equivalence.
It thus suffices to show that

∏

1≤i≤m

ev〈1〉 : Alg(C)→
∏

1≤i≤m

C

preserves I-indexed colimits. As colimits in products of ∞-categories are detected com-
ponentwise by [HTT, 5.1.2.3], we are left to show that

ev〈1〉 : Alg(C)→ C

preserves I-indexed colimits, which is true by [HA, 3.2.3.1 (4)].

6.1.3. Geometric realization of cyclic objects
Let C be a presentable symmetric monoidal ∞-category and X : Λop → C a cyclic

object in C. Recall from Construction 6.1.1.6 that there is a functor j : ∆op → Λ
op,

along which we can precompose X, obtaining a simplicial object j∗X. In this section
we discuss how the extra automorphisms in Λ provide the structure of a T-action on
the geometric realization |j∗X| = colim j∗X. We follow the approach of [Hoy18], but see
also [NikSch, Appendix B].

We will start in Section 6.1.3.1 by briefly reviewing ∞-groupoid completions and
the fact that the ∞-groupoid completion of Λop is BT, which will be needed to define
the geometric realization functor for cyclic objects in Section 6.1.3.2. We will end in
Section 6.1.3.3 by discussing monoidality of this construction.

6.1.3.1. The ∞-groupoid completion of Λ
op

In this short section we recall that the ∞-groupoid completion of Λop is given by BT.
We first introduce some notation.

Notation 6.1.3.1. Let C be an ∞-category. We denote the ∞-groupoid completion of
C by Cgpd. Concretely Cgpd is the ∞-groupoid obtained by inverting all morphisms of C,
and comes with a functor C → Cgpd that is initial among functors with domain C and
whose codomain is an ∞-groupoid.
44See Proposition A.3.2.1 and [HA, 2.1.1.14].

272



6.1. The cyclic bar construction and geometric realization of cyclic objects

This construction can be made into a functor −gpd : Cat∞ → S that is left left adjoint
to the inclusion, see [HTT, 1.2.5.6 and the preceding discussion] and [HA, 1.3.4.1]. ♦

We can now recall the following result about the ∞-groupoid completion of Λop. The
two references state their results as Λ

gpd ≃ BT, but Fact 6.1.3.2 can be immediately
obtained from this by either using that Λ is self-dual by Fact 6.1.1.13 or using that
−gpd is compatible with passing to opposite ∞-categories and that ∞-groupoids are
equivalent to their opposites.

Fact 6.1.3.2 ([Hoy18, 1.2], [NikSch, B.4]). There is an equivalence

(Λop)gpd ≃ BT

of ∞-groupoids. ♧

6.1.3.2. Definition of the geometric realization

We now come to the definition of the geometric realization of cyclic objects. This will
be defined as a left adjoint, so we start by showing that the left adjoint exists.

Proposition 6.1.3.3. Let C be an ∞-category. Denote by ϕ : Λop → BT the canonical
functor exhibiting BT as the ∞-groupoid completion of Λop, see Fact 6.1.3.2. Then the
following hold.

(1) The functor
ϕ∗ : Fun(BT, C)→ Fun(Λop, C)

is fully faithful, and its essential image is spanned by those functors that map every
morphism in Λ

op to an equivalence in C.

(2) Assume that C is presentable. Then ϕ∗ admits a left adjoint. ♥

Proof. Proof of claim (1): Holds by definition, see [HA, 1.3.4.1].
Proof of claim (2): By [HTT, 5.5.3.6], both Fun(BT, C) and Fun(Λop, C) are pre-

sentable. By the adjoint functor theorem [HTT, 5.5.2.9] it thus suffices to show that
ϕ∗ is accessible and preserves small limits. This follows immediately from the fact that
limits and colimits in functor categories are calculated pointwise45.

We can now make the following definition.

Definition 6.1.3.4 ([Hoy18, Page 2]). Let C be a presentable ∞-category. Then we
denote the left adjoint to ϕ∗ from Proposition 6.1.3.3 by

|−| : Fun(Λop, C)→ CBT

and call it the geometric realization functor for cyclic objects. ♦

45See [HTT, 5.1.2.3] for the fact that (co)limits are calculated pointwise, and [HTT, 5.4.2.5 and 5.3.4.5]
for the definition of accessible functors.

273



Chapter 6. Hochschild homology

Remark 6.1.3.5. Let
C C ′

F

G

⊣

be an adjunction of ∞-categories, with C and C ′ both presentable.
Then compatibility of precomposing with postcomposing yields a commutative dia-

gram
Fun(Λop, C) CBT

Fun(Λop, C ′) C ′BT

ϕ∗

G∗

ϕ∗

G∗

so that, by passing to left adjoints and using Proposition D.2.2.1 and [HTT, 5.2.6.2] we
obtain a commutative diagram

Fun(Λop, C) CBT

Fun(Λop, C ′) C ′BT

|−|

F∗ F∗

|−|

relating the geometric realization functors for C and C ′. ♦

We end this section with the following comparison between geometric realization of
cyclic and simplicial objects, which gives a description of the underlying object of |X|
for a cyclic object X.

Fact 6.1.3.6 ([Hoy18, 1.1]). Let C be a presentable ∞-category. Then there is a com-
mutative square of ∞-categories as follows

Fun(Λop, C) CBT

Fun(∆op, C) C

|−|

j∗ ev∗

|−|

where ϕ is as in Construction 6.1.1.6, ∗ is the basepoint (i. e. the up to equivalence unique
object) of BT, and the lower horizontal functor is the geometric realization functor for
simplicial objects, so the functor colim∆

op. ♧

6.1.3.3. Monoidality

If C is a presentable symmetric monoidal ∞-category, then both Fun(Λop, C) and CBT

can be given the pointwise symmetric monoidal structure46, with respect to which the
functor ϕ∗ from Proposition 6.1.3.3 can be upgraded to a symmetric monoidal functor.
In this section we show that the geometric realization functor for cyclic objects can also
be upgraded to a symmetric monoidal functor.
46See [HA, 2.1.3.4].

274



6.1. The cyclic bar construction and geometric realization of cyclic objects

Proposition 6.1.3.7. Let O be an ∞-operad and let pC : C⊗ → O⊗ be a cocartesian
fibration of ∞-operads, and assume furthermore that CX is presentable for every object
X of O, and that the O-monoidal structure on C is compatible with small colimits in the
sense of [HA, 3.1.1.18 and 3.1.1.19].

Then the adjunctions |−| ⊣ ϕ∗ from Definition 6.1.3.4 for the presentable∞-categories
CX for objects X of O can be upgraded to an adjunction relative to O⊗ in the sense of
[HA, 7.3.2.2]

Fun(Λop, C)⊗
(
CBT

)⊗

O⊗

(|−|)
⊗

(ϕ∗)⊗

where the functors to O⊗ are the canonical O-monoidal functors that exhibit Fun(Λop, C)
and CBT as equipped with the pointwise O-monoidal structure.

Furthermore, both
(
|−|
)⊗ and (ϕ∗)⊗ are O-monoidal functors. ♥

Proof. (ϕ∗)⊗ is defined as the induced functor

Fun
(
BT, C⊗

)
×Fun(BT,O⊗) O

⊗ ϕ∗×φ∗ idO⊗
−−−−−−→ Fun

(
Λ

op, C⊗
)
×Fun(Λop,O⊗) O

⊗

which by [HTT, 3.1.2.1] and Proposition C.1.1.1 preserves pr2-cocartesian morphisms
and is thus O-monoidal. Furthermore, by Proposition 6.1.3.3 (1), the functors

ϕ∗ : Fun
(
BT, C⊗

)
→ Fun

(
Λ

op, C⊗
)

and
ϕ∗ : Fun

(
BT,O⊗

)
→ Fun

(
Λ

op,O⊗
)

are fully faithful, with essential image spanned by those functors that map all morphisms
to equivalences. It follows from Proposition B.5.3.1 that (ϕ∗)⊗ is also fully faithful, with
essential image spanned by those objects which are mapped by pr1 to functors that
invert all morphisms. An object in Fun(Λop, C)⊗ lying over X ≃ X1 ⊕ · · · ⊕ Xn in O⊗

is mapped by pr1 to a functor Λ
op → C⊗ that factors over the conservative inclusion

of C⊗X ≃ CX1 × · · · × CXn . As morphisms in products of ∞-categories are equivalences if
and only if their component morphisms are, we can hence identify the essential image
of (ϕ∗)⊗ with the the induced ∞-operad structure as defined in [HA, Start of section
2.2.1] on the full subcategory Fun(BT, C) of the the underlying∞-category Fun(Λop, C)
of the ∞-operad Fun(Λop, C)⊗.

The claims will now follow from the conclusion of [HA, 2.2.1.9]47. To verify the re-
quirements to apply that result, it remains to show that the localization functors

Fun(Λop, CX)
|−|
−→ Fun(BT, CX)

ϕ∗

−→ Fun(Λop, CX)

47That |−|⊗X will be given by |−| : Fun
(
Λ

op, CX
)
→ Fun(BT, CX) for X an object of O follows from

[HA, 7.3.2.5] and [HTT, 5.2.6].

275



Chapter 6. Hochschild homology

for X an object of O are compatible with the O-monoidal structure on Fun(Λop, C)⊗ in
the sense of [HA, 2.2.1.6].

So let f : X1 ⊕ · · · ⊕Xn → Y be a morphism in O⊗, with Xi and Y objects of O. We
obtain an induced functor on fibers

∏

1≤i≤n

Fun
(
Λ

op, CXi
)
≃ Fun(Λop, C)⊗X1⊕···⊕Xn

f!−→ Fun(Λop, C)⊗Y ≃ Fun(Λop, CY )

and what we have to show is that if morphisms gi are an mapped to equivalences by

|−| : Fun
(
Λ

op, CXi
)
→ Fun

(
BT, CXi

)

for each 1 ≤ i ≤ n, then so is f!(g1 ⊕ · · · ⊕ gn).
Using that the forgetful functor ev∗ : Fun(BT, CY ) → CY detects equivalences by

Proposition A.3.2.1, and combining this with Fact 6.1.3.6, this boils down to showing
that

(
ev∗ ◦ |−|

)(
f!(g1 ⊕ · · · ⊕ gn)

)
≃

(
colim
∆

op
◦ j∗
)(
f!(g1 ⊕ · · · ⊕ gn)

)

is an equivalence if (colim∆
op ◦ j∗)(gi) is for every 1 ≤ i ≤ n.

Let us unpack the functor colim∆
op ◦ j∗ ◦ f!. We have natural equivalences as follows,

where Ci is an object of CXi .
(

colim
∆

op
◦ j∗ ◦ f!

)
(C1 ⊕ · · · ⊕ Cn)

Using that j∗ is O-monoidal with respect to the pointwise O-monoidal structures on
Fun(Λop, C) and Fun(∆op, C).

≃

(
colim
∆

op
◦ f!

)
(j∗C1 ⊕ · · · ⊕ j

∗Cn)

Using the definition of the pointwise O-monoidal structure.

≃ colim
∆

op


∆

op
∏

1≤i≤n id∆op
−−−−−−−−→

∏

1≤i≤n

∆
op

∏
1≤i≤n Ci◦j
−−−−−−−→

∏

1≤i≤n

CXi
f!−→ CY




Applying [HA, 3.2.3.7], which is applicable as the O-monoidal structure of C is compat-
ible with small colimits by assumption and ∆

op is sifted [HTT, 5.5.8.1 and 5.5.8.4].

≃ f!


colim

∆
op


 ∏

1≤i≤n

Ci ◦ j







Using that colimits in products are calculated pointwise [HTT, 5.1.2.3].

≃ f!


⊕

1≤i≤n

colim
∆

op
Ci ◦ j




276



6.2. Hochschild homology

Thus the claim we need to show ultimately boils down to the following: If gi : Ci → Di

induces an equivalence
colim
∆

op
(Ci ◦ j)→ colim

∆
op

(Di ◦ j)

for every 1 ≤ i ≤ n, then the induced morphism

f!


⊕

1≤i≤n

colim
∆

op
(Ci ◦ j)


→ f!


⊕

1≤i≤n

colim
∆

op
(Di ◦ j)




is an equivalence as well, which is clear.

Remark 6.1.3.8. LetO be an∞-operad and let pC : C⊗ → O⊗ and pC′ : C ′⊗ → O⊗ be co-
cartesian fibrations of∞-operads that both satisfy the conditions of Proposition 6.1.3.7.
Let

C⊗ C ′⊗

O⊗

F⊗

pC pC

G⊗

⊣

be an adjunction relative to O⊗ in the sense of [HA, 7.3.2.2 and 7.3.2.3], with both F

and G being O-monoidal.
Then proceeding exactly like in Remark 6.1.3.5 and using Proposition 6.1.3.7, we can

conclude that the commutative diagram

Fun(Λop, C) CBT

Fun(Λop, C ′) C ′BT

|−|

F∗ F∗

|−|

can be upgraded to a commutative diagram of O-monoidal functors. ♦

6.2. Hochschild homology
In this section we finally define the functor

HHMixed : Alg
(
D(k)

)
→Mixed

that the chapters below will be about, and discuss some crucial first properties48.
We will start with the definition in Section 6.2.1. In Section 6.2.2 we will then discuss

different descriptions of Hochschild homology of commutative algebras. Finally, we will
show in Section 6.2.3 that HHMixed preserves relative tensor product, which will later be
crucial for calculations.
48We will compare HHMixed with the classical standard Hochschild complex in the next section, Sec-

tion 6.3.

277



Chapter 6. Hochschild homology

6.2.1. Definition of Hochschild homology
We can now define Hochschild homology by specializing the general discussion of the

cyclic bar construction and geometric realization of cyclic objects of Section 6.1 to the
case of D(k). We can apply the definitions of Bcyc

• and |−| to D(k) as it is a presentable
symmetric monoidal ∞-category according to Proposition 4.3.2.1.

Definition 6.2.1.1. We define HHT to be the symmetric monoidal functor that is given
as the composition

HHT : Alg
(
D(k)

) Bcyc
•−−→ Fun

(
Λ

op,D(k)
) |−|
−→ D(k)BT

where Bcyc
• is the symmetric monoidal functor from Definition 6.1.2.16 and |−| is the

symmetric monoidal functor from Definition 6.1.3.4 and Proposition 6.1.3.7.
We furthermore denote by

HH : Alg
(
D(k)

)
→ D(k)

the symmetric monoidal functor given by composing HHT with the symmetric monoidal
functor ev∗.

We refer to both HHT and HH as the Hochschild homology functor. ♦

The reason we use the subscript T for HHT is to distinguish this functor from the
composition with the equivalence D(k)BT ≃ Mixed from Construction 5.4.0.1, as we
will need to refer to both functors in later chapters. We thus also give the latter functor
a name.

Definition 6.2.1.2. We define

HHMixed : Alg
(
D(k)

)
→Mixed

to be the monoidal functor obtained by composing the symmetric monoidal functor HHT

from Definition 6.2.1.1 with the monoidal equivalence from Construction 5.4.0.1. ♦

Notation 6.2.1.3. If we evaluate HH, HHT, or HHMixed at an object of the form
Alg(γ)(R), with R an object of Alg(Ch(k)cof), then we will often omit γ from the notation
and just write e. g. HH(R) instead of HH(Alg(γ)(R)). ♦

Warning 6.2.1.4. As the equivalence D(k)BT ≃ Mixed from Construction 5.4.0.1 is
only (associatively) monoidal, not symmetric monoidal, the same is true for HHMixed. ♦

Remark 6.2.1.5. As the monoidal equivalence D(k)BT ≃ Mixed constructed in Con-
struction 5.4.0.1 is compatible with the forgetful functors to D(k), we obtain a homotopy

evm ◦ HHMixed ≃ ev∗ ◦ HHT ≃ HH

of monoidal functors. ♦

278



6.2. Hochschild homology

Remark 6.2.1.6. Let φ : k → k′ be a morphism of commutative rings. Then combining
Remark 6.1.2.17 with Remark 6.1.3.8 applied to the adjunction from Remark 4.3.2.2 we
obtain a commutative diagram of symmetric monoidal functors as follows.

Alg
(
D(k)

)
D(k)BT D(k)

Alg
(
D(k)′

)
D(k′)BT D(k′)

HH

HHT

k′⊗k−

evm

(k′⊗k−)
∗

k′⊗k−

HHT

HH

evm

Combining the above with Remark 5.4.0.3 we also obtain a commutative diagram of
monoidal functors as follows.

Alg
(
D(k)

)
Mixedk

Alg
(
D(k′)

)
Mixedk′

HHMixed

k′⊗k− k′⊗k−

HHMixed

♦

6.2.2. Hochschild homology and commutative algebras
The functors HHT and HH defined in Definition 6.2.1.1 are symmetric monoidal func-

tors and thus induce functors on ∞-categories of commutative algebras. In this section
we will give different characterizations of those induced functors that will be of use later.

We will start in Section 6.2.2.1 by mostly fixing notation. In Section 6.2.2.3 we will
show that if R is a commutative algebra in D(k), then HHT(R) can essentially be ob-
tained as R ⊠ T, i. e. tensoring R as an object of CAlg(D(k)) with T, considered as a
space with a T-action. To properly discuss this, we will first introduce − ⊠ − and T
in Section 6.2.2.2. As an application of this description, we will show in Section 6.2.2.4
and Section 6.2.2.5 how interpret HH of commutative algebras as pushouts and relative
tensor products in CAlg(D(k)).

6.2.2.1. HH for commutative algebras

As the functors HH and HHT from Definition 6.2.1.1 are symmetric monoidal, they
induce functors on ∞-categories of commutative algebras as well. By precomposing and
postcomposing with canonical equivalences, we arrive at the following definitions.

279



Chapter 6. Hochschild homology

Definition 6.2.2.1. We denote by HHT the composition

CAlg
(
D(k)

) ≃
−→ CAlg

(
Alg
(
D(k)

)) CAlg(HHT)
−−−−−−→ CAlg

(
D(k)BT

)
≃
−→ CAlg

(
D(k)

)BT

where the individual functors are as follows.

• The first equivalence is the inverse of the following equivalence49.

CAlg(eva) : CAlg
(

Alg
(
D(k)

))
→ CAlg

(
D(k)

)

• The functor HHT appearing in CAlg(HHT) refers to the symmetric monoidal func-
tor from Definition 6.2.1.1.

• The second equivalence refers to the canonical equivalence, see [HA, 2.1.3.4].

We furthermore denote by HH the composition of the functor HHT above with the
functor

ev∗ : CAlg
(
D(k)

)BT
→ CAlg

(
D(k)

)

that is given by evaluation at the basepoint. Equivalently, HH is the composition

CAlg
(
D(k)

) ≃
−→ CAlg

(
Alg
(
D(k)

)) CAlg(HH)
−−−−−→ CAlg

(
D(k)

)

where the equivalence is like above and the symmetric monoidal functor HH occurring
in CAlg(HH) is the one from Definition 6.2.1.1. ♦

We next show that the definitions made in Definition 6.2.2.1 are compatible with the
definitions from Definition 6.2.1.1 in the appropriate way.
49This functor can be identified with the composition of the equivalence

CAlg
(

Alg
(
D(k)

))
≃ BiFunc

(
Comm,Assoc;D(k)

)

from Proposition E.5.0.1, the equivalence

BiFunc
(
Comm,Assoc;D(k)

)
≃ BiFunc

(
Assoc,Comm;D(k)

)

given by precomposing with the symmetry equivalence

Assoc⊗ × Comm⊗ ≃ Comm⊗ × Assoc⊗

the equivalence
BiFunc

(
Assoc,Comm;D(k)

)
≃ Alg

(
CAlg

(
D(k)

))

from Proposition E.5.0.1, and the functor

eva : Alg
(

CAlg
(
D(k)

))
→ CAlg

(
D(k)

)

that is an equivalence by [HA, 3.2.4.7 and 2.4.3.9].

280



6.2. Hochschild homology

Proposition 6.2.2.2. There is a commutative diagram

CAlg
(
D(k)

)
CAlg

(
D(k)

)BT

Alg
(
D(k)

)
D(k)BT

p∗Assoc

HHT

(ev⟨1⟩)∗

HHT

(6.11)

where pAssoc is the canonical morphism of∞-operads Assoc⊗ → Comm⊗, the top horizon-
tal functor is the one from Definition 6.2.2.1 and the bottom horizontal functor is the
one from Definition 6.2.1.1.

Similarly, there is a commutative diagram

CAlg
(
D(k)

)
CAlg

(
D(k)

)

Alg
(
D(k)

)
D(k)

p∗Assoc

HH

ev⟨1⟩

HH

(6.12)

in Cat∞. ♥

Proof. Diagram (6.11) is obtained as the composite outer diagram of the following com-
mutative diagram.

CAlg
(
D(k)

)
CAlg

(
D(k)

)BT

CAlg
(

Alg
(
D(k)

))
CAlg

(
D(k)BT

)

Alg
(
D(k)

)
D(k)BT

p∗Assoc

HHT

(ev⟨1⟩)∗
ev⟨1⟩

CAlg(eva)

CAlg(HHT)

ev⟨1⟩

≃

HH

where the upper right vertical functor is the canonical equivalence. The top square
commutes by definition of the top horizontal functor, the bottom square commutes by
naturality of ev〈1〉, and commutativity of the right triangle is clear from the definition.
It remains discuss the left triangle, which we obtain as the outer commutative triangle

281



Chapter 6. Hochschild homology

in the following commutative diagram

CAlg
(

Alg
(
D(k)

))
CAlg

(
CAlg

(
D(k)

))
CAlg

(
D(k)

)

Alg
(
D(k)

)
ev⟨1⟩

CAlg(eva)

CAlg(p∗Assoc) CAlg(ev⟨1⟩)
ev⟨1⟩

p∗Assoc

where we use that CAlg
(
ev〈1〉

)
and ev〈1〉 are homotopic and both equivalences by Propo-

sition E.6.0.1 and that CAlg(eva), and hence CAlg
(
p∗Assoc

)
, are equivalences as well.

To obtain commutative diagram (6.12) from (6.11) it suffices to remark that there is
an equivalence ev∗ ◦ (ev〈1〉)∗ ≃ ev〈1〉 ◦ ev∗.

6.2.2.2. Circle actions on tensor products with T

There is one object with T-action that is perhaps the most obvious non-trivial example:
T acting on itself. Roughly, this action should be encoded in a functor BT → S that
maps the object ∗ to the underlying space of T, and a morphism in BT, corresponding
to an element t of T, to the map t · − : T → T. A bit more rigorously, we could view
T as an object in LModT(S) using the morphism of ∞-operads LM → Assoc from [HA,
4.2.1.5], and then use the equivalence SBT ≃ LModT(S) from Proposition 5.3.0.8. As
yet another alternative approach, one can define the functor BT → S as the left Kan
extension along the inclusion ∗ → BT of the functor const∗ : ∗ → S, as discussed in
[RSV21, Before 2.12]. We will follow [RSV21] in denoting this object of SBT by T.

That T defined as a left Kan extension is equivalent to the object with T-action
obtained from T as a left module over itself can be seen by using that the left Kan
extension functor S ≃ Fun(∗, S) → Fun(BT, S) is left adjoint to the forgetful functor
ev∗ by [HTT, 4.3.3.7], that the left-T-module T can be described as the free T-module
generated by ∗ and so as the image of ∗ under the left adjoint of evm by [HA, 4.2.4.8], and
that the equivalence SBT ≃ LModT(S) is shown in Proposition 5.3.0.8 to be compatible
with the respective forgetful functors to S, and hence must also be compatible with their
left adjoints.

Now let C be a presentable ∞-category. S is the unit object in PrL by [HA, 4.8.1.20],
so there is a unitality equivalence C ⊗ S ≃ C that amounts to a functor

−⊠− : C × S→ C

that preserves small colimits separately in each variable50. We thus obtain a colimit-
preserving functor

−⊠ T : C → C

50Compare with Section 5.2.2 for a more detailed related discussion.

282



6.2. Hochschild homology

which we should lift to a functor as follows.

−⊠ T : C → CBT

This is indeed the case, and this functor has in fact the following universal property.

Fact 6.2.2.3 ([RSV21, 2.12]). Let C be a presentable ∞-category. Then there is an
adjunction

C CBT
−⊠T

ev∗

such that the composition ev∗ ◦ (−⊠ T) is equivalent to −⊠ T. ♧

6.2.2.3. HH of commutative algebras as a tensor product with T

D(k) is a presentable symmetric monoidal ∞-category by Proposition 4.3.2.1, so
CAlg(D(k)) is presentable by [HA, 3.2.3.5 (2)]. We can thus apply Fact 6.2.2.3 and
obtain a functor

−⊠ T : CAlg
(
D(k)

)
→ CAlg

(
D(k)

)BT

which we will now show is equivalent to the functor HHT from Definition 6.2.2.151.

Proposition 6.2.2.4. There is an adjunction

CAlg
(
D(k)

)
CAlg

(
D(k)

)BTHHT

ev∗

where HHT is the functor from Definition 6.2.2.1. Furthermore, there is a homotopy
HHT ≃ (−⊠ T) of functors from CAlg

(
D(k)

)
to CAlg

(
D(k)

)BT as well as HH ≃ (−⊠ T)
of endofunctors of CAlg

(
D(k)

)
. ♥

Proof. It suffices to show the claim that HHT is left adjoint to ev∗, as the other two
claims then follow immediately from Fact 6.2.2.3 by using uniqueness of left adjoints
[HTT, 5.2.6] and the definition of HH as ev∗ ◦ HHT in Definition 6.2.2.1.

Unpacking the definition of HHT in Definition 6.2.2.1 and Definition 6.2.1.1, the func-
tor HHT of the statement is given by the composition

CAlg
(
D(k)

) CAlg(eva)−1

−−−−−−−→ CAlg
(

Alg
(
D(k)

)) CAlg(Bcyc
• )

−−−−−−→ CAlg
(

Fun
(
Λ

op,D(k)
))

CAlg(|−|)
−−−−−−→ CAlg

(
D(k)BT

)
≃
−→ CAlg

(
D(k)

)BT (6.13)

where the last equivalence is the canonical one.
By Definition 6.1.3.4 the functor

|−| : Fun
(
Λ

op,D(k)
)
→ D(k)BT

51This claim also appears as Proposition IV.2.2 in [NikSch], but the proof only considers the underlying
objects in D(k).

283



Chapter 6. Hochschild homology

is left adjoint to ϕ∗, where ϕ : Λop → BT is the canonical functor exhibiting BT as
the ∞-groupoid completion of Λop, see Fact 6.1.3.2. Applying Proposition 6.1.3.7 and
Proposition E.3.3.1 we obtain that CAlg(|−|) is left adjoint to CAlg(ϕ∗). From the the
commutative diagram

CAlg
(

Fun
(
Λ

op,D(k)
))

CAlg
(
D(k)BT

)

Fun
(
Λ

op,CAlg
(
D(k)

))
CAlg

(
D(k)

)BT

≃

CAlg(ϕ∗)

≃

ϕ∗

where the vertical equivalences are the canonical ones, together with uniqueness of ad-
joints, we obtain a commutative diagram as follows.

CAlg
(

Fun
(
Λ

op,D(k)
))

CAlg
(
D(k)BT

)

Fun
(
Λ

op,CAlg
(
D(k)

))
CAlg

(
D(k)

)BT

≃

CAlg(|−|)

≃

|−|

We can thus identify the composition (6.13) with the following composition.

CAlg
(
D(k)

) CAlg(eva)−1

−−−−−−−→ CAlg
(

Alg
(
D(k)

)) CAlg(Bcyc
• )

−−−−−−→ CAlg
(

Fun
(
Λ

op,D(k)
))

≃
−→ Fun

(
Λ

op,CAlg
(
D(k)

)) |−|
−→ CAlg

(
D(k)

)BT (6.14)

By Definition 6.1.3.4, |−| is left adjoint to ϕ∗ and by Proposition 6.1.2.20 the com-
position of the first three functors of (6.14) is left adjoint to ev[0]Λ . It follows from
composability of adjoints [HTT, 5.2.2.6] that the composition of all four functors of
(6.14) is left adjoint to

ev[0]Λ ◦ ϕ
∗ ≃ evϕ([0]Λ) ≃ ev∗

which is what needed to be shown.

6.2.2.4. HH of commutative algebras as a pushout

The description of HH for commutative algebras from Proposition 6.2.2.4 allows us to
derive the following alternative description that will be useful when comparing it to the
classical standard Hochschild complex.

Proposition 6.2.2.5. The functor

HH : CAlg
(
D(k)

)
→ CAlg

(
D(k)

)

284



6.2. Hochschild homology

from Definition 6.2.2.1 is homotopic to the functor that maps a commutative algebra R
to the pushout of52

R ∐R R

R

idR∐idR

idR∐idR (6.15)

in CAlg
(
D(k)

)
– the coproduct in the diagram is also to be taken in CAlg

(
D(k)

)
and is

hence by [HA, 3.2.4.7] given by the tensor product. ♥

Proof. By Proposition 6.2.2.4 the functor HH is homotopic to − ⊠ T. The underlying
space of T is a 1-circle, and there is thus a pushout diagram

∗ ∐ ∗ ∗

∗ T

in S. As − ⊠ − preserves colimits in each variable separately (see Section 6.2.2.2), the
claim immediately follows using that −⊠ ∗ ≃ id.
52Here is how to more rigorously define this functor. Let

I = (• ← • → •) = [1]∐{0} [1]

so that it suffices to construct a functor CAlg
(
D(k)

)
→ Fun(I,CAlg

(
D(k)

)
) that maps an object

R to the diagram (6.15), for we can then compose this functor with the functor colimI . Using the
×-Fun-adjunction, it suffices to construct a functor

I × CAlg
(
D(k)

)
→ CAlg

(
D(k)

)

for which it suffices to produce a commutative diagram as follows.

{0} × CAlg
(
D(k)

)
[1]× CAlg

(
D(k)

)

[1]× CAlg
(
D(k)

)
CAlg

(
D(k)

)

with the left vertical and top horizontal functor the inclusion. Each of the two other functors are
to correspond to the natural transformation that sends R to R ∐ R

id∐id
−−−→ R, and taking the

same functors there is an obvious filler for the diagram, so it suffices to construct this natural
transformation.

The functor mapping R to R ∐R is the composition

CAlg
(
D(k)

) const
−−−→ CAlg

(
D(k)

)∗∐∗ colim
−−−→ CAlg

(
D(k)

)

so as colim is left adjoint to the functor const (see [HTT, 4.2.4.3]) we obtain the required natural
transformation as the counit of the adjunction.

285



Chapter 6. Hochschild homology

6.2.2.5. HH of commutative algebras as a relative tensor product

As pushouts of commutative algebras can be calculated as relative tensor products,
we obtain the following corollary of Proposition 6.2.2.5.

Corollary 6.2.2.6. The functor

HH : CAlg
(
D(k)

)
→ CAlg

(
D(k)

)

from Definition 6.2.2.1 is homotopic to the functor that maps a commutative algebra R
to the relative tensor product in CAlg(D(k))

R⊗R⊗R R

where the structure of R as a left and right R⊗ R-module arises from the morphism of
commutative algebras

R⊗R ≃ R ∐R
idR∐idR−−−−−→ R

– see Construction E.8.0.4 for more details on how to construct the necessary data to
take the relative tensor product of of this. ♥

Proof. Follows immediately from combining Proposition 6.2.2.5 with Proposition E.8.0.5.

Remark 6.2.2.7. If R is a commutative algebra in D(k), then the underlying morphism
in D(k) of the morphism

R⊗R ≃ R ∐R
idR∐idR−−−−−→ R

in CAlg(D(k)) can be identified with the multiplication morphism of R. This essentially
follows from Proposition E.6.0.153. ♦

6.2.3. Hochschild homology and relative tensor products
In this short section we show that HHMixed preserves relative tensor products, which

will be crucial later for calculating HHMixed of certain quotients.
53Denote for the moment the functor

ev〈1〉 : CAlg
(

CAlg
(
D(k)

))
→ CAlg

(
D(k)

)

by ev′
〈1〉 to distinguish it from the following functor.

ev〈1〉 : CAlg
(
D(k)

)
→ D(k)

Then the morphism in question is – as a morphism in CAlg(D(k)) – the multiplication morphism of
the object R′ in CAlg(CAlg(D(k))) corresponding to R under the equivalence ev′

〈1〉. As ev〈1〉 is sym-
metric monoidal, it maps this morphism to the multiplication morphism of the commutative algebra
in D(k) given by CAlg(ev〈1〉)(R

′). We would like to identify this with R, and Proposition E.6.0.1
says that we can.

286



6.3. The standard Hochschild complex

Proposition 6.2.3.1. The functors HHT, HHMixed, and HH from Definition 6.2.1.1 and
Definition 6.2.1.2 preserve sifted colimits.

In particular, all three functors being monoidal as well, they also preserve relative
tensor products54. ♥

Proof. As D(k) is presentable symmetric monoidal by Proposition 4.3.2.1 (1), the sym-
metric monoidal structure on D(k) is in particular compatible with sifted colimits, and
hence we can apply Proposition 6.1.2.21 to conclude that

Bcyc
• : Alg

(
D(k)

)
→ Fun

(
Λ

op,D(k)
)

preserves sifted colimits. As a left adjoint, the geometric realization functor

|−| : Fun
(
Λ

op,D(k)
)
→ D(k)BT

preserves all colimits, so in particular sifted colimits – see Definition 6.1.3.4 and [HTT,
5.2.3.5]. It thus follows that HHT and HHMixed preserve sifted colimits, and as the for-
getful functor ev∗ : D(k)BT → D(k) preserves colimits by [HTT, 5.1.2.3] it also follows
that HH preserves sifted colimits.

All three functors are monoidal by definition, so they also preserve relative tensor
products by Proposition E.8.0.1.

6.3. The standard Hochschild complex
In this section we review the classical definitions for Hochschild homology on the

level of chain complexes. The main point is that if A is a differential graded algebra,
then one can construct a strict mixed complex C(A) out of A, called the standard
Hochschild complex, which represents HHMixed(A). Similarly, when A is a commutative
differential graded algebra, then the underlying chain complex of C(A) can be upgraded
to a commutative differential graded algebra that represents HH(A).

We will start in Section 6.3.1 by reviewing the standard Hochschild complex for asso-
ciative algebras, before treating the commutative case in Section 6.3.2. In Section 6.3.3
we will then discuss in what way γ : Ch(k)cof → D(k) preserves relative tensor prod-
ucts, which will be relevant when we show that the standard Hochschild complex indeed
represents Hochschild homology in Section 6.3.4.

6.3.1. The standard Hochschild complex for associative
algebras

In Section 6.2.1 we defined a functor

HHMixed : Alg
(
D(k)

)
→Mixed

54See Remark E.8.0.2 for a discussion of what the statement that those functors preserve relative tensor
products means.

287



Chapter 6. Hochschild homology

called Hochschild homology. This was a definition on the level of the ∞-category D(k).
There is also a classical definition of Hochschild homology constructed on the level of
chain complexes, and we will recall the main definitions in this section55. We use the
book [Lod98] as well as [Hoy18] the main references for this material.

We will start in Section 6.3.1.1 by making concrete how the cyclic bar construction
Bcyc

• looks like in the case of the symmetric monoidal category Ch(k)cof. While in the
definition of HHMixed the next step would be the geometric realization functor for cyclic
objects that would yield an object of

(
Ch(k)cof

)BT, this is not sensible in this setting56
– as Ch(k)cof is a 1-category, any functor BT → Ch(k)cof factors though τ≤1(BT) ≃ ∗,
so a T-action on an object of Ch(k)cof yields no extra information. So in Section 6.3.1.2
we instead give a different construction that produces a strict mixed complex out of a
cyclic object in chain complexes. We end in Section 6.3.1.3 by defining the standard
Hochschild complex as the composite functor from Alg(Ch(k)) to Mixed.

6.3.1.1. The cyclic bar construction for chain complexes

Ch(k) is a symmetric monoidal category, so we can apply Definition 6.1.2.16 to obtain
the cyclic bar construction functor Bcyc

• . The next proposition makes this functor more
concrete.

Proposition 6.3.1.1. The functor

Bcyc
• : Alg

(
Ch(k)cof

)
→ Fun

(
Λ

op,Ch(k)cof
)

from Definition 6.1.2.16 is given on a differential graded algebra A with cofibrant under-
lying complex by the following formulas57.

Bcyc
n (A) = A⊗(n+1)

di(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai · ai+1 ⊗ ai+2 ⊗ · · · ⊗ an for i < n

dn(a0 ⊗ · · · ⊗ an) = (−1)degCh(an)·
∑n−1
i=0 degCh(ai)an · a0 ⊗ a1 ⊗ · · · ⊗ an−1

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an

t(a0 ⊗ · · · ⊗ an) = (−1)degCh(an)·
∑n−1
i=0 degCh(ai)an ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an−1

In particular, the restriction of Bcyc
• to Alg(LModk(Ab)) via the inclusion of chain

complexes that are concentrated in degree 058 can be identified with the functor defined
in [Lod98, 6.1.12]59 ♥

55We will later see in Section 6.3.4.1 that the classical definition indeed represents the one from Sec-
tion 6.2.1.

56Even without asking for the construction to be compatible with HHMixed.
57See Notation 6.1.1.12 for the notation we use here.
58This implies that the signs in the formulas above vanish.
59Compare also to [Lod98, 1.6.1, 2.1.0, and 2.5.4] – there are though some differences in the signs, see

[Lod98, 6.1.2.2].

288



6.3. The standard Hochschild complex

Proof. This amounts to unpacking the definition of the functors−◦ and V in Fact 6.1.1.13
and Fact 6.1.2.13 to see where the generators of Λop are taken by V ◦ (−)◦, and then
applying Proposition 6.1.2.1060.

6.3.1.2. Geometric realization of cyclic chain complexes

In Definition 6.2.1.2 we defined HHMixed as the composition of the cyclic bar construc-
tion with the geometric realization functor

Fun
(
Λ

op,D(k)
)
→ D(k)BT

defined in Definition 6.1.3.4 and the equivalence

D(k)BT ≃Mixed

from Construction 5.4.0.1. There is also a classical way of obtaining a strict mixed
complex out of a cyclic chain complex, as we recall now.

Construction 6.3.1.2 ([Hoy18, Section 2] and [Lod98, 2.5.10]). Let X• be an object
in Fun(Λop,Ch(k)). We then define a number of new operators on X• as follows.

∂X : Xn → Xn−1, ∂X :=
n∑

i=0

(−1)idi

s−1 : Xn → Xn+1, s−1 := t ◦ sn

t′ : Xn → Xn, t′ := (−1)nt

N : Xn → Xn, N :=
n∑

i=0

t′i

d : Xn → Xn+1, d :=
(
id− t′

)
◦ s−1 ◦N

The operator ∂X then satisfies ∂X ◦ ∂X = 0 so that we can consider X• together with
∂X as a complex in Ch(k), i. e. a double complex61, and hence can form the total complex,
an object of Ch(k), by setting

Tot
(
X•, ∂

X
)
n

:=
⊕

i+j=n

(Xi)j

and for x and element of (Xi)j

∂Tot(X•,∂
X)(x) := ∂X(x) + (−1)i∂Xi(x)

60The signs arise from the signs in the symmetry isomorphism of the symmetric monoidal structure on
Ch(k), see Definition 4.1.2.1.

61To be precise, we set

Xn :=
{
X[n]Λ if n ≥ 0

0 otherwise

so in particular, (X•, ∂
X) is a upper half plane (or right half plane, depending on which way around

one arranges the two indices) double complex.

289



Chapter 6. Hochschild homology

as the boundary operator62.
The operator d induces morphisms Tot

(
X•, ∂

X
)
∗
→ Tot

(
X•, ∂

X
)
∗+1

that we also
denote by d, and the identities holding in Λ (see Construction 6.1.1.7) imply that d
makes Tot

(
X•, ∂

X
)

into a strict mixed complex63, see for example the arguments in
[Lod98, Section 2.1].

This construction is functorial, and we denote the resulting functor

Fun
(
Λ

op,Ch(k)
)
→ Mixed

by |−|Mixed. Composing with the forgetful functor that maps strict mixed complexes to
their underlying chain complexes we obtain a functor

Fun
(
Λ

op,Ch(k)
)
→ Ch(k)

that we denote by |−|Ch. ♦

Warning 6.3.1.3. Our notation deviates from the notation used in most previous work.
We use ∂ and d instead of b and B, which is the notation used in for example [Lod98]
and [Hoy18], which are the sources we have otherwise followed in Construction 6.3.1.2.
The notation ∂ is widely used for the boundary operator of a chain complex64, and d
fits better with the relation to the mixed complex of de Rham forms, which will be
introduced in Section 7.1.

Apart from the change of notation, the various operators in Construction 6.3.1.2 agree
with the definitions in [Hoy18, Section 2]. The definitions also agree with the definitions
given in [Lod98, 2.5.10] if we restrict to cyclic objects in LModk(Ab) (via the inclusion as
chain complexes concentrated in degree 0). While the formulas in [Lod98, 2.5.10] differ
by some signs, those arise from the fact that Loday does not actually define a mixed
complex from the input of a cyclic object in chain complexes, but of a cyclic module
as defined in [Lod98, 2.5.1]. While the data of a cyclic module and a cyclic object in
LModk(Ab) are isomorphic, the isomorphism introduces some signs, see [Lod98, 6.1.2.2].
After composing Loday’s construction with the isomorphism between cyclic objects in
LModk(Ab) and cyclic modules, the signs cancel. ♦

Proposition 6.3.1.4. If X• is a functor Λ
op → Ch(k) that is pointwise cofibrant, then

|X•|Ch is cofibrant as well.
We thus obtain a commutative diagrams as follows

Fun
(
Λ

op,Ch(k)cof
)

Mixedcof Ch(k)cof

Fun
(
Λ

op,Ch(k)
)

Mixed Ch(k)

|−|Mixed evm

|−|Mixed evm

62In the formula for the boundary operator, ∂X(x) is an element of (Xi−1)j and ∂Xi(x) is an element
of (Xi)j−1.

63See Definition 4.2.1.2 and Remark 4.2.1.4 for the definition.
64So is d, but this would be very confusing when the mixed complex of de Rham forms shows up in

Section 7.1.

290



6.3. The standard Hochschild complex

where Mixedcof is the full subcategory of Mixed spanned by those strict mixed complexes
whose underlying chain complex is cofibrant (see Definition 4.2.1.2), and the vertical
functors are (induced by) the inclusion of Ch(k)cof into Ch(k). ♥

Proof. Let X• be an object in Fun(Λop,Ch(k)cof). Define a sequence
. . .→ |X•|

≤−1
Ch → |X•|

≤0
Ch → |X•|

≤1
Ch → . . .

of sub-chain-complexes of |X•|Ch by letting |X•|
≤m
Ch be given by65

(
|X•|

≤m
Ch

)
n

:=
⊕

i+j=n,i≤m

(Xi)j

which one should think of as taking the total complex of the brutal truncation of X• to
degrees less than or equal to m.

Note that |X•|
≤m
Ch
∼= 0 for m < 0, and |X•|Ch is the colimit of the above sequence

of inclusions. It thus suffices to show that |X•|
≤0
Ch is cofibrant and that each inclusion

|X•|
≤m
Ch → |X•|

≤m+1
Ch is a cofibration.

That |X•|
≤0
Ch is cofibrant follows immediately from the assumption, as there is an

obvious isomorphism |X•|
≤0
Ch
∼= X0. So now let m be a nonnegative integer. Then there

is a pushout diagram as follows

Sm ⊗Xm+1 |X•|
≤m
Ch

Dm+1 ⊗Xm+1 |X•|
≤m+1
Ch

∂X

i⊗idXm+1

where Sm and Dm+1 are as in [Hov99, 2.3.3]66 and i is the inclusion, ∂X is to be under-
stood as mapping 1 ⊗ x to ∂X(x), which is defined as in Construction 6.3.1.2, and the
right vertical morphism is the inclusion. As Xm+1 was assumed to be a cofibrant chain
complex and i is a cofibration, it follows from Ch(k) being a symmetric monoidal model
category that the left vertical morphism, and hence also the right vertical morphism, are
cofibrations.
Remark 6.3.1.5. Construction 6.3.1.2 is clearly compatible with respect to extension
of scalars. Specifically, let φ : k → k′ be a morphism of commutative rings. Then the
symmetric monoidal functor k′⊗k− from Ch(k)cof to Ch(k′)cof (see Fact 4.1.5.1) induces
an obvious commutative diagram

Fun
(
Λ

op,Ch(k)cof
)

Mixedk,cof

Fun
(
Λ

op,Ch(k′)cof
)

Mixedk′,cof

|−|Mixed

(k′⊗k−)
∗

k′⊗k−

|−|Mixed

of 1-categories. ♦
65The boundary operator of |X•|Ch never increases i or j, so this indeed defines a sub-chain-complex.
66So Sm is k[m], and Dm+1 is concentrated in degrees m and m+1, with the boundary operator from

degree m+ 1 to degree m being idk.

291



Chapter 6. Hochschild homology

6.3.1.3. The standard Hochschild complex

Combining Sections 6.3.1.1 and 6.3.1.2 we obtain the following definition.

Definition 6.3.1.6. Composing the cyclic bar construction for associative algebras in
Ch(k)cof67, with the functor |−|Mixed from Construction 6.3.1.2 we obtain a functor

Alg
(

Ch(k)cof
)
→ Mixedcof

that we denote by C and call the standard Hochschild complex. ♦

Remark 6.3.1.7. Combining functoriality of Bcyc
• (see Remark 6.1.2.17) and |−|Mixed

(see Remark 6.3.1.5) we can deduce that C is functorial in k. Concretely, if φ : k → k′ is
a morphism of commutative rings, then there is a commutative diagram

Alg
(
Ch(k)cof

)
Mixedk,cof

Alg
(
Ch(k′)cof

)
Mixedk′,cof

C

k′⊗k− k′⊗k−

C

in Cat. ♦

6.3.1.4. C for algebras concentrated in degree 0

In this section we discuss the standard Hochschild complex as defined in Defini-
tion 6.3.1.6 for k-algebras R with projective underlying k-module, which we consider
as algebras in Ch(k)cof concentrated in degree 0.

Remark 6.3.1.8. The restriction of the standard Hochschild complex functor C as we
defined it to k-algebras whose underlying k-module is projective agrees with the functor
C defined in [Lod98], see [Lod98, Section 1.1, in particular 1.1.3, and section 2.1, in
particular 2.1.7]. This follows from Proposition 6.3.1.1 and Warning 6.3.1.3. ♦

Going through the definitions, one obtains the following description.

Proposition 6.3.1.9. Let R be a k-algebra with projective underlying k-module. Then
the strict mixed complex C(R) is concentrated in nonnegative degrees and for n ≥ 0 the
following hold68.

Cn(R) = R⊗(n+1)

∂(r0 ⊗ · · · ⊗ rn) = (−1)nrn · r0 ⊗ r1 ⊗ · · · ⊗ rn−1

+
n−1∑

i=0

(−1)ir0 ⊗ · · · ⊗ ri · ri+1 ⊗ · · · ⊗ rn

67See Proposition 6.3.1.1.
68For n = 0 we instead have ∂(r0) = 0.

292



6.3. The standard Hochschild complex

d(r0 ⊗ · · · ⊗ rn) =
n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

+
n∑

i=0

(−1)inri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

These formulas agree with the definitions used in [Lod98]69. ♥

Proof. Follows immediately by unpacking the definitions in Proposition 6.3.1.1 and Con-
struction 6.3.1.2. Let us go through the steps for the last formula in a bit more detail.
We use that d is defined as (id − t′) ◦ s−1 ◦ N , and go through the application of each
composition factor individually. r0 ⊗ · · · ⊗ rn is mapped by N to the following element

n∑

i=0

(−1)inrn+1−i ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ rn−i

where the summand indexed by i = 0 is to be interpreted as r0 ⊗ · · · ⊗ rn. Using that
(n+ 1)n is even, we can replace i by n+ 1− i to rewrite the above expression as

n+1∑

i=1

(−1)inri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

which is also equal to the following sum, as the summand for i = 0 is equal to the one
for i = n+ 1.

n∑

i=0

(−1)inri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

The effect of applying s−1 can be described as inserting a tensor factor 1 at the start, so
the above expression is mapped by s−1 to the following.

n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

Finally, applying id− t′ we obtain
n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

−(−1)n+1

n∑

i=0

(−1)inri−1 ⊗ 1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−2

69For the boundary operator, see [Lod98, 1.1.1]. For the differential a formula is given in [Lod98, 2.1.7.3],
which is though differing from our formula by the sign before the second sum, which is presumably
due to a typo – the definition given in [Lod98, 2.1.7.1 and 2.1.0] yields the formula we have stated
above. That there must be a typo in [Lod98] around this formula can also be seen by comparing
with the formulas for B(a0) and B(a0, a1) given just below [Lod98, 2.1.7.3], which are compatible
with the sign as in the formula stated above, but not the sign in [Lod98, 2.1.7.3].

293



Chapter 6. Hochschild homology

and after replacing i by i− 1 in the second sum to remove the sign due to

−(−1)n+1(−1)n = 1

and using that the resulting summands for i = 0 and i = n + 1 are equal we finally
obtain the following.

=
n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

+
n∑

i=0

(−1)inri ⊗ 1⊗ ri+1 ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

6.3.1.5. The normalized standard Hochschild complex

To simplify formulas it is often useful to divide out a particularly easy to describe
acyclic subcomplex of C(R), spanned by elements of the form r0 ⊗ · · · ⊗ rn with one
of the elements r1, . . . , rn being equal to 1. We only use this for the case where R is
concentrated in degree 0 and refer to [Lod98, 1.1.14] for more details.

Proposition 6.3.1.10 ([Lod98, 1.1.14 and 1.1.15]). Let R be a k-algebra with projective
underlying k-module. We define R to be the quotient R/(k · 1) of k-modules, where k · 1
is the k-submodule of R spanned by the unit 1. We will use the notation r for the image
of an element r of R under the quotient map R→ R. Define

Cn(R) :=
{
R⊗R

⊗n if n ≥ 0

0 otherwise

for integers n and note that Cn(R) is a quotient of Cn(R).
Then the strict mixed complex structure of C(R) induces a strict mixed complex struc-

ture on C(R) such that the following simplified formula holds for the differential.

d(r0 ⊗ r1 ⊗ · · · ⊗ rn) =
n∑

i=0

(−1)in1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

Furthermore, the morphism of strict mixed complexes

C(R)→ C(R), r0 ⊗ r1 ⊗ · · · ⊗ rn 7→ r0 ⊗ r1 ⊗ · · · ⊗ rn

determines a natural transformation C→ C of functors from the category of k-algebras
with projective underlying k-module to Mixed that is pointwise a quasiisomorphism.

We call C(R) the normalized standard Hochschild complex. ♥

Proof. That C(R) obtains an induced chain complex structure is [Lod98, 1.6.4] and
that the quotient morphism C(R) → C(R) is a quasiisomorphism is shown in [Lod98,

294



6.3. The standard Hochschild complex

1.1.15 and 1.6.5]. That these quotient morphisms assemble to a natural transformation
as claimed follows directly from the definition.

That the kernel of C(R)→ C(R) is closed under d is clear by looking at the formula
given for d in Proposition 6.3.1.9, and the expression for the induced operator d on C(R)
also follows immediately. See also [Lod98, 2.1.9].

Remark 6.3.1.11. Functoriality of C with respect to change of scalars as discussed in
Remark 6.3.1.7 passes to C. In particular, for φ : k → k′ a morphism of commutative
rings there exists a dashed natural isomorphism fitting into a commutative diagram

C(k′ ⊗k −) C(k′ ⊗k −)

k′ ⊗k C(−) k′ ⊗k C(−)

∼= ∼=

of functors from the category k-algebras with projective underlying k-module to Mixedk′ .
The top and bottom natural transformations are (induced by) the ones from Proposi-
tion 6.3.1.10 and the left natural isomorphism is the one from Remark 6.3.1.7. ♦

6.3.2. The standard Hochschild complex for commutative
algebras

The functor
HHMixed : Alg

(
D(k)

)
→Mixed

is monoidal and hence induces a functor on ∞-categories of (associative) algebras. Un-
fortunately, the standard Hochschild complex functor

C : Alg
(

Ch(k)cof
)
→ Mixedcof

that was defined in Definition 6.3.1.6 is not monoidal and not even lax or colax monoidal,
see [Lod98, 4.3.1] and [Kas87]. To get around this for Künneth-type-formulas, one can
employ a weakened notion of morphism between strict mixed complexes that is called
strongly homotopy linear map in [Kas87] and S-morphism in [Lod98] – see [Kas87, 2.2]
and [Lod98, 2.5.14]. This is a morphism of underlying chain complexes that need not
strictly commute with d, but only up to specified homotopy, which in turn also does not
need to strictly commute with d, but up to specified homotopy, and so on. For a more
detailed discussion of strongly homotopy linear morphisms see Section 4.2.3.

We take the necessity to consider these kind of sequences of higher homotopies as a
hint that if one is interested in both the mixed structure as well as (symmetric) monoidal
structure, then one should work at the level of ∞-categories and consider the functor
HHT. From this perspective, that C may not be fully adequate to consider both mixed
and multiplicative structures can also be expected from the fact that while HHT and HH

295



Chapter 6. Hochschild homology

are symmetric monoidal, HHMixed has only been shown to be (associatively) monoidal –
so it would be unexpected for C as a functor to Mixedcof to be symmetric monoidal70.

To nevertheless be able to do some calculations on the level of chain complexes re-
garding multiplicative structures, we forget about the strict mixed complex structure,
and only consider C as a functor to Ch(k)cof.

To bring the standard Hochschild complex functor C as a functor to Ch(k)cof into
a form that is more amenable for our purposes, we discuss the bar resolution CBar(A)
of an associative algebra in Ch(k)cof in Section 6.3.2.1, which will allow us to rewrite
C(A) as a relative tensor product C(A) ∼= A ⊗A⊗Aop CBar(A) in Section 6.3.2.2. We
will also show that as a left-A ⊗ Aop-module, CBar(A) is a cofibrant replacement of A,
which will be relevant in Section 6.3.4.2, where we compare the standard Hochschild
complex to HH. In Section 6.3.2.3 we then introduce the shuffle product on CBar(A), and
upgrade all the relevant constructions to commutative algebras – provided that A itself
was commutative. This will allow us to describe the standard Hochschild complex of a
commutative differential graded algebra with cofibrant underlying chain complex as an
object of CAlg(Ch(k)cof) in Section 6.3.2.4.

6.3.2.1. The bar resolution

In this section we introduce the bar resolution, that will be used in Section 6.3.2.2
below to give an alternative description of the standard Hochschild complex of Defini-
tion 6.3.1.6. We closely follow [Lod98, 1.1.11 to 1.1.13], though we also consider differ-
ential graded algebras that are not concentrated in degree 0.

Construction 6.3.2.1. [Lod98, 1.1.11 to 1.1.13] Let A be an associative algebra in
Ch(k)cof.

We let BarA(A,A)• be the chain complex in Ch(k) (so a double complex) that is
determined by the following formulas.

BarA(A,A)n := A⊗ A⊗n ⊗ A

∂BarA(A,A)•(a0 ⊗ · · · ⊗ an+1) :=
n∑

i=0

(−1)i(a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an+1)

We then define CBar(A), called the bar resolution of A, to be the total complex of
BarA(A,A)•, so we let

CBar(A)n :=
⊕

i+j=n

(
BarA(A,A)i

)
j
=
⊕

i+j=n

(
A⊗(i+2)

)
j

and for a an element of
(
BarA(A,A)i

)
j

we define the boundary operator as follows.

∂C
Bar(A)(a) := ∂BarA(A,A)•(a) + (−1)i∂A⊗A

⊗i⊗A(a)

70At least in a homotopically meaningful way that is compatible with HHT.

296



6.3. The standard Hochschild complex

Note that if A is concentrated in degree 0, then CBar(A) is precisely the complex Cbar
∗

defined in [Lod98, 1.1.11].
There are two important extra pieces of structure regarding CBar(A) that we will also

need.
The first is that there is a natural morphism of chain complexes CBar(A)→ A that is

defined by the formula

(a0 ⊗ · · · ⊗ ai+1) 7→

{
a0 · a1 if i = 0

0 otherwise

an again, this is precisely the augmentation of Cbar
∗ as defined in [Lod98, 1.1.11] if A is

concentrated in degree 0.
The second extra piece of structure is that CBar(A) can be given the structure of a left

module over A⊗Aop, where Aop refers to the opposite algebra of A, i. e. the differential
graded algebra with the same underlying chain complex, but if we denote the multipli-
cation in A with · and in Aop with ⋆, then ⋆ is defined as a⋆a′ := (−1)degCh(a)·degCh(a

′)a′ ·a.
The left module structure is then defined via the following formula.

(
a⊗ a′

)
· (a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) :=

(−1)(
∑n+1
i=0 degCh(ai)) degCh(a

′)
(
(a · a0)⊗ a1 ⊗ · · · ⊗ an ⊗ (an+1 · a

′)
)

One can similarly define a left-A⊗ Aop-module structure on A, via

(a⊗ a′) · a′′ := (−1)degCh(a
′) degCh(a

′′)a · a′′ · a′

and this makes the morphism of chain complexes CBar(A) → A into a morphism of
left-A ⊗ Aop-modules. This structure is again (for A concentrated in degree 0) exactly
the one considered in [Lod98, 1.1.13].

The above constructions can be summarized in the following diagram

Alg
(
Ch(k)cof

)
LMod

(
Ch(k)

)

Alg(Ch(k))

CBar

A 7→A

A 7→A⊗Aop

where the functor on the right is the forgetful functor, the bottom functor at the top
maps A to A considered as a left-A ⊗ Aop-module as described above, and the natural
transformation at the top lies over the identity natural transformation of A 7→ A⊗Aop.

♦

To show that the terminology “bar resolution” is reasonable, we will now prove that
CBar(A) is cofibrant as a left-A⊗ Aop-module, as well as quasiisomorphic to A.

297



Chapter 6. Hochschild homology

Proposition 6.3.2.2 ([Lod98, 1.1.12]). Let A be an associative algebra in Ch(k)cof. Then
the morphism

CBar(A)→ A

of chain complexes constructed in Construction 6.3.2.1 is a quasiisomorphism. ♥

Proof. The proof is an immediate generalization of the proof of [Lod98, 1.1.12], though
we need to add some signs to account for elements of A in odd degrees. So let ϕ denote the
morphism CBar(A) → A and let ψ : A → CBar(A) be the morphism of chain complexes
that maps a to 1⊗a. Then ϕ◦ψ = idA, so it suffices to construct a homotopy h between
idCBar(A) and ψ ◦ ϕ. For this, define h via

h(a0 ⊗ · · · ⊗ an+1) := 1⊗ a0 ⊗ · · · ⊗ an+1

by k-linearly extending.
If n > 0 we then have

(
∂C

Bar(A) ◦ h+ h ◦ ∂C
Bar(A)

)
(a0 ⊗ · · · ⊗ an+1)

= 1 · a0 ⊗ · · · ⊗ an+1 −
n∑

i=0

(−1)i(1⊗ a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1

n+1∑

i=0

(−1)
∑i−1
j=0 degCh(aj)

(
1⊗ a0 ⊗ · · · ⊗ ∂

A(ai)⊗ · · · ⊗ an+1

)

+
n∑

i=0

(−1)i(1⊗ a0 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an+1)

+ (−1)n
n+1∑

i=0

(−1)
∑i−1
j=0 degCh(aj)

(
1⊗ a0 ⊗ · · · ⊗ ∂

A(ai)⊗ · · · ⊗ an+1

)

= a0 ⊗ · · · ⊗ an+1

while for n = 0 the third term does not appear, so that we obtain
(
∂C

Bar(A) ◦ h+ h ◦ ∂C
Bar(A)

)
(a0 ⊗ a1)

= a0 ⊗ a1 − 1⊗ a0 · a1

= (id−ψ ◦ ϕ)(a0 ⊗ a1)

which shows that h is a homotopy as required.

Proposition 6.3.2.3. Let A be an associative algebra in Ch(k)cof. Then CBar(A) as
defined in Construction 6.3.2.1 is cofibrant as a left-A⊗ Aop-module with respect to the
model structure of Theorem 4.2.2.1.

In particular, the underlying chain complex of CBar(A) is cofibrant. ♥

298



6.3. The standard Hochschild complex

Proof. Let us begin by noting that the second claim, that the underlying chain complex
of CBar(A) is cofibrant, follows from the first claim by applying Theorem 4.2.2.1 (8),
which is applicable as the underlying chain complex of A is cofibrant by assumption.

Let Bar≤mA (A,A)• be the chain complex in Ch(k) defined as the brutal truncation to
degrees smaller or equal to m of BarA(A,A)• from Construction 6.3.2.1, i. e.

Bar≤mA (A,A)n :=
{
A⊗ A⊗n ⊗ A if n ≤ m

0 otherwise

and with boundary operator defined by the same formula as in Construction 6.3.2.1.
We then let CBar

≤m(A) be the total complex of Bar≤mA (A,A)•, which concretely means
that CBar

≤m(A) is given in level n by
⊕

i+j=n,i≤m(A
⊗(i+2))j.

Note that the left-A ⊗ Aop-module structure restricts from CBar(A) to CBar
≤m(A), and

CBar(A) is the colimit of the sequence

CBar
≤0 (A)→ CBar

≤1 (A)→ CBar
≤2 (A)→ . . .

so that it suffices to show that CBar
≤0 (A) is cofibrant and each of the morphisms

CBar
≤m(A)→ CBar

≤m+1(A)

is a cofibration.
For CBar

≤0 (A) we note that
CBar

≤0 (A)
∼= A⊗ Aop

as left-A ⊗ Aop-modules, so CBar
≤0 (A) is isomorphic to the free left-A ⊗ Aop-module gen-

erated by k and hence cofibrant, as k is cofibrant in Ch(k).
For m ≥ 0 there is an evident pushout diagram in Ch(Ch(k))

A⊗m+3 ⊗ Sm Bar≤mA (A,A)•

A⊗m+3 ⊗Dm+1 Bar≤(m+1)
A (A,A)•

id
A⊗m+3⊗i′

where A⊗m+3 is concentrated in degree 0 with respect to the “outer” chain degree, Sm is
the chain complex in Ch(k) that is concentrated in degree m, where it is k[0], the complex
Dm+1 is concentrated in degreesm andm+1, where it is k[0], with the boundary operator
from degree m+ 1 to degree m the identity morphism, and i′ is the inclusion.

As the formation of the total complex preserves pushouts, we obtain a pushout dia-
gram in Ch(k). It is not difficult to see that that square can be considered as a commu-
tative square of left-A⊗ Aop-modules of the following form

FreeLModA⊗Aop
(
A⊗m+1 ⊗ Sm

)
CBar

≤m(A)

FreeLModA⊗Aop
(
A⊗m+1 ⊗Dm+1

)
CBar

≤m+1(A)

FreeLModA⊗Aop (idA⊗m+1⊗i)

299



Chapter 6. Hochschild homology

where i is the inclusion of Sm = k[m] into the chain complex concentrated in degrees
m and m+ 1 that is given by (Dm+1)m = (Dm+1)m+1 = k, with boundary operator the
identity, see [Hov99, 2.3.3]. As we assumed A to have cofibrant underlying complex and
i is a cofibration in Ch(k), the tensor product idA⊗m+1 ⊗ i is a cofibration as well, and
it then follows that FreeLModA⊗Aop (idA⊗m+1 ⊗i) is a cofibration of left-A ⊗ Aop-modules,
and thus so is the inclusion CBar

≤m(A)→ CBar
≤m+1(A).

6.3.2.2. C as a relative tensor product

Using the bar resolution from Section 6.3.2.1 we can now give a different description
of the standard Hochschild complex that we defined in Section 6.3.1.3.

Proposition 6.3.2.4 ([Lod98, 1.1.13]). The standard Hochschild complex functor

C : Alg
(

Ch(k)cof
)
→ Ch(k)cof

as defined in Definition 6.3.1.6 (but postcomposed with the forgetful functor from Mixedcof
to Ch(k)cof) is naturally isomorphic to the functor71

A 7→ A⊗A⊗Aop CBar(A)

where CBar(A) is as in Construction 6.3.2.1 and A is a right-A ⊗ Aop-module via the
action defined by a · (a′ ⊗ a′′) := a′′aa′. ♥

Proof. Follows from unpacking the definitions and using isomorphisms of the following
form.

A⊗A⊗Aop
(
A⊗ A⊗n ⊗ A

)
∼= A⊗ A⊗n

a⊗ (a0 ⊗ · · · ⊗ an+1) 7→ an+1 · a · a0 ⊗ a1 ⊗ · · · ⊗ an

6.3.2.3. The shuffle product

In this section we assume that A is a commutative algebra in Ch(k)cof, and upgrade
the bar resolution CBar(A) from Section 6.3.2.1 to a commutative differential graded
algebra.

Definition 6.3.2.5 ([Lod98, 4.2.1] and [BACH, 1.2]). Let n and m be nonnegative
integers. Then we define

Bn,m :=
{
σ ∈ Σn+m

∣∣ σ(1) < · · · < σ(n) and σ(n+ 1) < · · · < σ(n+m)
}

=
{
σ ∈ Σn+m

∣∣ σ preserves the ordering of {1, . . . , n} and {n+ 1, . . . , n+m}
}

where Σn+m is the symmetric group on n+m elements, see Section 2.3 (34). ♦

71We take the relative tensor product in Ch(k). That the relative tensor product is isomorphic to C(A)
shows that it is indeed cofibrant and can thus be considered as functor to Ch(k)cof.

300



6.3. The standard Hochschild complex

Construction 6.3.2.6 ([Lod98, E.4.2.2] and [BACH, 1.2]). Let A be a commutative
algebra in Ch(k)cof. We then define a product on CBar(A) from Section 6.3.2.1 by k-
linearly extending the following formula

(al ⊗ a1 ⊗ · · · ⊗ an ⊗ ar) ·
(
a′l ⊗ an+1 ⊗ · · · ⊗ an+m ⊗ a

′
r

)

:=
∑

σ∈Bn,m

(−1)s ·
(
al · a

′
l ⊗ aσ−1(1) ⊗ · · · ⊗ aσ−1(n+m) ⊗ ara

′
r

)

where s is a sign (dependent on σ etc.) defined as follows.

s = sgn(σ) +


degCh(ar) ·

n+m∑

i=n+1

degCh(ai)


+


degCh(a

′
l) ·




n∑

i=1

degCh(ai)







+
(
degCh(ar) · degCh(a

′
l)
)
+



n+m∑

i=1

degCh(ai) ·


 ∑

i<j,σ(j)<σ(i)

degCh(aj)







To make the formula more intuitive, let us provide the following interpretation. The
summand indexed by σ should be thought of as moving ai, which previously occupied
what we might describe as “slot i” in the tensor product to “slot σ(i)” – this explains
why σ−1 rather than σ occurs in the indices. Moving the ai past each other then incurs
signs coming from the symmetry isomorphism in Ch(k) (see Definition 4.1.2.1), and this
is how the last summand of s arises. The other three summands of s involving chain
degrees arise from moving ar and a′l to their correct positions. Finally, sgn(σ) is needed
for compatibility with the part of the boundary operator coming from ∂BarA(A,A)• – see
Construction 6.3.2.1.

A tedious, but straightforward, calculation shows that the above multiplication is com-
patible with the boundary operator as well as associative and commutative, and with unit
1⊗ 1, making CBar(A) into an object of CAlg(Ch(k)cof) (see Proposition 6.3.2.3 for cofi-
brancy of the underlying chain complex). Let us just mention one aspect of the required
calculations when checking that the multiplication is compatible with the boundary oper-
ator. The boundary operator has two summands, with one arising from ∂BarA(A,A)• . With
regards to that summand, multiplying first and then applying the boundary operator
results in (a priori) extra summands (compared to applying the boundary operator first
and then multiplying), where originally non-neighboring elements have been multiplied
together. However, these summands always arise in pairs from two elements of Bn,m that
only differ by a transposition, and using that A is commutative one can see that they
always cancel each other out. The rest of the needed calculations are mostly checking
that the signs match.

With respect to this commutative algebra structure on CBar(A), it is straightforward to
check that the morphism CBar(A)→ A from Construction 6.3.2.1 becomes a morphism
in CAlg(Ch(k)cof).

Furthermore, the inclusion of A⊗A ∼= CBar
≤0 (A) (see the proof of Proposition 6.3.2.3 for

this notation) into CBar(A) becomes a morphism of commutative algebras as well, and

301



Chapter 6. Hochschild homology

the left-A⊗A-module structure72 on CBar(A) that was discussed in Construction 6.3.2.1
can be identified with the one induced from this morphism of commutative algebras.

The left-A⊗A-module structure on A considered in Construction 6.3.2.1 can similarly
be identified with the one arising from the morphism of commutative algebras A⊗A→ A

that is given by the multiplication morphism. That the morphism CBar(A) → A is a
morphism of left-A⊗ A-modules is then reflected in the commutativity of the diagram

CBar(A) A

A⊗ A

of commutative algebras in Ch(k).
We can thus summarize these constructions in the commutative diagram

CBar idCAlg(Ch(k)cof)

A 7→ A⊗ A

of natural transformations between endofunctors of CAlg(Ch(k)cof).
Finally, note that the right-A ⊗ A-module structure on A considered in Proposi-

tion 6.3.2.4 can also be identified with the one arising from the morphism of commutative
algebras A⊗ A→ A considered above. ♦

6.3.2.4. C for commutative algebras

Combining the description of the standard Hochschild complex as a relative tensor
product with the bar resolution in Section 6.3.2.2 and the commutative algebra struc-
ture on the bar resolution constructed in Construction 6.3.2.6, we can now upgrade the
standard Hochschild complex for commutative algebras to an object of CAlg(Ch(k)cof).

Proposition 6.3.2.7. The composition of the forgetful functor

CAlg
(

Ch(k)cof
)
→ Alg

(
Ch(k)cof

)

with the standard Hochschild complex functor

C : Alg
(

Ch(k)cof
)
→ Mixedcof

72As A is commutative we have A = Aop.

302



6.3. The standard Hochschild complex

from Definition 6.3.1.6 and the forgetful functor Mixedcof → Ch(k)cof factors through
CAlg(Ch(k)cof), so that we obtain a commutative diagram

CAlg
(
Ch(k)cof

)
CAlg

(
Ch(k)cof

)

Alg
(
Ch(k)cof

)
Mixedcof Ch(k)cof

C

C

where we denote the lift by C as well, and all the unlabeled functors are the respective
forgetful functors.

Furthermore, the functor

C : CAlg
(

Ch(k)cof
)
→ CAlg

(
Ch(k)cof

)

is given by A 7→ A⊗A⊗A CBar(A), where the A⊗A-module structures on A and CBar(A)
arise via the natural transformations of functors to CAlg(Ch(k)cof) discussed in Con-
struction 6.3.2.6 and the relative tensor product is taken in CAlg(Ch(k)). ♥

Proof. Follows immediately from Proposition 6.3.2.4 and Construction 6.3.2.6 using that
the symmetric monoidal forgetful functor from CAlg(Ch(k)) to Ch(k) preserves relative
tensor products73.

Remark 6.3.2.8. Going through the definition, it is straightforward to check that the
natural isomorphisms encoding functoriality in k of C of associative algebras as described
in Remark 6.3.1.7 are multiplicative after restricting to commutative differential graded
algebras. So concretely, if φ : k → k′ is a morphism of commutative rings, then there is
a commutative diagram

CAlg
(
Ch(k)cof

)
CAlg

(
Mixedk,cof

)

CAlg
(
Ch(k′)cof

)
CAlg

(
Mixedk′,cof

)

C

k′⊗k− k′⊗k−

C

lifting the commutative diagram from Remark 6.3.1.7. ♦

6.3.2.5. C for commutative algebras concentrated in degree 0

Like in Section 6.3.1.4, we unpack the commutative algebra structure on the standard
Hochschild complex C(R) in the case that R is concentrated in degree 0.
73See Proposition E.8.0.1 and [HA, 3.2.3.1 (4)]. Note that in 1-categories, geometric realizations – i. e.

colimits over ∆op – are calculated as coequalizers (see [Rie14, 8.3.8]), so that relative tensor products
are the “classical” ones.

303



Chapter 6. Hochschild homology

Definition 6.3.2.9 ([Lod98, 1.3.4]). Let R be a commutative k-algebra and n ≥ 0 an
integer. Then we define an action of the symmetric group Σn on Cn(R) as follows. For
r0, . . . , rn elements of R, we define the action of σ on r0 ⊗ r1 ⊗ · · · ⊗ rn as

σ · (r0 ⊗ r1 ⊗ · · · ⊗ rn) := r0 ⊗ rσ−1(1) ⊗ · · · ⊗ rσ−1(n)

and extend this k-linearly to an action of Σn on Cn(R). An action of Σn on Cn(R) is
defined analogously. ♦

Proposition 6.3.2.10. Let R be a commutative k-algebra with projective underlying
k-module. Then the unit 1 of R, considered as an element of C(R)0, is the unit of
the commutative algebra structure on C(R), and the following formula holds for the
multiplication74.

(r0 ⊗ r1 ⊗ · · · ⊗ rn) ·
(
r′0 ⊗ rn+1 ⊗ · · · ⊗ rn+m

)

=
∑

σ∈Bn,m

sgn(σ) · σ ·
(
r0 · r

′
0 ⊗ r1 ⊗ · · · ⊗ rn+m

)
♥

Proof. Follows directly from Construction 6.3.2.6 and Proposition 6.3.2.7.

We also obtain an induced multiplication on the normalized standard Hochschild
complex.

Proposition 6.3.2.11. Let R be a commutative k-algebra with projective underlying k-
module. Then the commutative algebra structure on C(R) induces a commutative algebra
structure on C(R) that makes the quotient morphism

C(R)→ C(R)

into a morphism in CAlg(Ch(k)). ♥

Proof. Follows immediately from Proposition 6.3.1.10 and Proposition 6.3.2.10.

Remark 6.3.2.12. Given a morphism of commutative rings φ : k → k′, the diagram of
natural transformations

C(k′ ⊗k −) C(k′ ⊗k −)

k′ ⊗k C(−) k′ ⊗k C(−)

∼= ∼=

discussed in Remark 6.3.1.11 can be lifted to a commutative diagram of natural trans-
formations from the category of commutative k-algebras with projective underlying k-
module to the category CAlg(Mixedk′), such that the left natural isomorphism is the one
from Remark 6.3.2.8 and the top and bottom natural transformations are the ones from
Proposition 6.3.2.11. ♦

74We identify C(R)n for n ≥ 0 with the tensor product R⊗(n+1) for these formulas.

304



6.3. The standard Hochschild complex

Warning 6.3.2.13. Let R be a commutative k-algebra with projective underlying k-
module. While C(R) has both a strict mixed complex structure as well as the structure
of a differential graded algebra, it is not in general an algebra in Mixed. To see this, let r
and r′ be elements of R Then, using the formulas from Propositions 6.3.1.9 and 6.3.2.10
we obtain

d(r · r′) = 1⊗ r · r′ + r · r′ ⊗ 1

d(r) · r′ + r · d(r′) =
(
(1⊗ r) + (r ⊗ 1)

)
· r′ + r ·

((
1⊗ r′

)
+
(
r′ ⊗ 1

))

=
(
r′ ⊗ r

)
+
(
r · r′ ⊗ 1

)
+
(
r ⊗ r′

)
+
(
r · r′ ⊗ 1

)

which shows that, in general, d does not satisfy the Leibniz rule and hence C(R) does
not form an algebra in Mixed – see Remark 4.2.1.12.

The formulas simplify slightly for C(R) so that we get

d(r · r′) = 1⊗ r · r′

d(r) · r′ + r · d(r′) =
(
r′ ⊗ r

)
+
(
r ⊗ r′

)

which is however nevertheless not in general equal.
We can note though that

∂
(
1⊗ r ⊗ r′

)
= r ⊗ r′ − 1⊗ r · r′ + r′ ⊗ r

so that the Leibniz rule is at least satisfied up to homotopy for elements of degree 0 –
which is to be expected, as HHMixed(R) has the structure of an object in Alg(Mixed),
and we will see in Section 6.3.4 that C(R) represents the underlying mixed complex of
HHMixed(R) if we consider it as an object of Mixedcof, and the underlying algebra in D(k)
of HHMixed(R) if we consider it as an object of Alg(Ch(k)cof). ♦

Despite Warning 6.3.2.13, we can show instances of the Leibniz rule for the normalized
standard Hochschild complex under additional assumptions, as we show next.

Proposition 6.3.2.14. Let R be a commutative k-algebra with projective underlying
k-module. Let n ≥ 1 and r, s1, . . . , sn elements of C(R) (of arbitrary degree). Then the
following partial Leibniz rule identity holds.

d
(
r · d(s1) · · · d(sn)

)
= d(r) · d(s1) · · · d(sn) ♥

Proof. We first note that it suffices to prove the case n = 1. For suppose we have already
proved the statement for all 1 ≤ n ≤ m, and that r, s1, . . . , sm+1 are elements of C(R).
Then the following calculation shows how we can deduce the claim for n = m+ 1.

d
(
r · d(s1) · · · d(sm+1)

)

= d
((
r · d(s1) · · · d(sm)

)
· d(sm+1)

)

305



Chapter 6. Hochschild homology

Applying the claim for n = 1.
= d

(
r · d(s1) · · · d(sm)

)
· d(sm+1)

Applying the claim for n = m.
= d(r) · d(s1) · · · d(sm) · d(sm+1)

So now assume that n,m ≥ 0, that r is an element of Cn(R) and s is an element of
Cm(R). We have to show that d

(
r · d(s)

)
= d(r) · d(s).

Using notation from Section 2.3 (34), the formula from Proposition 6.3.1.10 for the
differential d(r) of an element r in degree n of C(R) can be written in a more concise
way as

d(r) =
∑

τ∈Cn+1

sgn(τ) · τ · (1⊗ r)

where 1 ⊗ r is to interpreted as notation for 1 ⊗ r0 ⊗ · · · ⊗ rn if r = r0 ⊗ r1 ⊗ · · · ⊗ rn
for r0, . . . , rn elements of R, and k-linearly extended for other elements. We now begin
by unpacking the definition of d

(
r · d(s)

)
.

d
(
r · d(s)

)

= d


r ·

∑

τr∈Cm+1

sgn(τr) · τr · (1⊗ s)




= d




∑

τr∈Cm+1,
σ∈Bn,m+1

sgn(σ) · sgn(τr) · σ ·
(
id{1,...,n}∐τr

)
· (r ⊗ s)




=
∑

τr∈Cm+1,
σ∈Bn,m+1,
τ∈Cn+m+2

sgn(τ) · sgn(σ) · sgn(τr) · τ ·
(
id{1}∐σ

)
·
(
id{1,...,n+1}∐τr

)
· (1⊗ r ⊗ s)

=
∑

τr∈Cm+1,
σ∈Bn,m+1,
τ∈Cn+m+2

sgn
(
τ ◦
(
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

))

·
(
τ ◦
(
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

))
· (1⊗ r ⊗ s)

Next we unpack the definition of d(r) · d(s).

d(r) · d(s)

=


 ∑

τl∈Cn+1

sgn(τl) · τl · (1⊗ r)


 ·


 ∑

τr∈Cm+1

sgn(τr) · τr · (1⊗ s)




=
∑

τl∈Cn+1
τr∈Cm+1

sgn(τl ∐ τr) ·
(
τl · (1⊗ r)

)
·
(
τr · (1⊗ s)

)

306



6.3. The standard Hochschild complex

=
∑

τl∈Cn+1
τr∈Cm+1

σ∈Bn+1,m+1

sgn(σ) sgn(τl ∐ τr) · σ · (τl ∐ τr) · (1⊗ r ⊗ s)

=
∑

τl∈Cn+1
τr∈Cm+1

σ∈Bn+1,m+1

sgn
(
σ ◦ (τl ∐ τr)

)
·
(
σ ◦ (τl ∐ τr)

)
· (1⊗ r ⊗ s)

The claim thus boils down to a statement about different decompositions of elements
of Σn+m+2 that we now make concrete. We define two maps of sets as follows.

f : Cm+1 × Bn,m+1 × Cn+1+m+1 → Σn+1+m+1

(τr, σ, τ) 7→ τ ◦
(
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

)

g : Cn+1 × Cm+1 × Bn+1,m+1 → Σn+1+m+1

(τl, τr, σ) 7→ σ ◦ (τl ∐ τr)

To show d
(
r · d(s)

)
is equal d(r) · d(s) it then suffices to show that for every element ρ

of Σn+1+m+1 the preimages of ρ under f and g satisfy |f−1(ρ)| = |g−1(ρ)|. We will show
this by going through the following steps.

(1) Proof that f is injective.

(2) Proof that g is injective

(3) Definition of a subset Cn+1,m+1 of Σn+1+m+1.

(4) Proof that Im(g) = Cn+1,m+1.

(5) Proof that Im(f) ⊆ Cn+1,m+1.

(6) Proof that Im(f) = Cn+1,m+1.

Step (1): Let (τr, σ, τ) be an element of Cm+1 × Bn,m+1 × Cn+1+m+1, and let ρ be
the composition ρ = τ ◦ (id{1}∐σ) ◦ (id{1,...,n+1}∐τr). What we have to show is that
τr, σ, and τ are uniquely determined by ρ. First note that ρ(1) = τ(1). As elements of
Cn+1+m+1 are determined uniquely by their value on a single element, this means that
τ is uniquely determined by ρ. As id{1}∐σ preserves the order of the elements of the
subset {n+ 1 + 1, . . . , n+ 1 +m+ 1}, we obtain

r{n+1+1,...,n+1+m+1}

((
id{1}∐σ

)
◦
(
id{1,...,n+1}∐τr

))
= τr

which shows the claim.
Step (2): Let σ be an element of Bn+1,m+1, τl an element of Cn+1 and τr an element

of Cm+1. As σ preserves the order of the elements of the subsets {1, . . . , n + 1} as well
as {n+ 1 + 1, . . . , n+ 1 +m+ 1}, we obtain

r{1,...,n+1}

(
σ ◦ (τl ∐ τr)

)
= τl

307



Chapter 6. Hochschild homology

and similarly
r{n+1+1,...,n+1+m+1}

(
σ ◦ (τl ∐ τr)

)
= τr

which implies the claim.
Step (3): We let Cn+1,m+1 be the subset of Σn+1+m+1 consisting of those permuta-

tions ρ for which r{1,...,n+1}(ρ) is an element of Cn+1 and r{n+1+1,...,n+1+m+1}(ρ) is an
element of Cm+1. One should think of Cn+1,m+1 as a variant of Bn+1,m+1; The permuta-
tions in Bn+1,m+1 are those that preserve the order of the elements of the two subsets
{1, . . . , n + 1} and {n + 1, . . . , n + 1 +m + 1},75 and the permutations in Cn+1,m+1 are
those which cyclically preserve the order of the elements of those subsets.

Step (4): The argument used in step (2) shows that Im(g) ⊆ Cn+1,m+1. For the other
direction, suppose that ρ is an element of Cn+1,m+1. Then let τl = r{1,...,n+1}(ρ) and
τr = r{n+1,...,n+1+m+1}(ρ), and define σ := ρ ◦

(
τ−1
l ∐ τ

−1
r

)
. Then we obtain

r{1,...,n+1}(σ) = τl ◦ τ
−1
l = id and r{n+1+1,...,n+1+m+1}(σ) = τr ◦ τ

−1
r = id

so that σ is an element of Bn+1,m+1. This shows that Cn+1,m+1 ⊆ Im(g).
Step (5): It follows from the previous step that permutations of the form

(id{1}∐σ) ◦ (id{1,...,n+1}∐τr)

for σ an element of Bn,m+1 and τr an element of Cm+1 lie in Cn+1,m+1. It thus suffices
to show that Cn+1,m+1 is closed under postcomposition with elements of Cn+1+m+1. This
follows from the fact that if X is a subset of {1, . . . , n+1+m+1} and τ an element of
Cn+1+m+1, then rX(τ) is an element of C|X|.

Step (6): By the previous two steps it suffices to show that
∣∣Im(f)

∣∣ =
∣∣Im(g)

∣∣

and as both f and g are injective, it suffices to show that

|Cm+1| ·
∣∣Bn,m+1

∣∣ · |Cn+1+m+1| = |Cn+1| · |Cm+1| ·
∣∣Bn+1,m+1

∣∣

which is verified by the following calculation.

|Cm+1| ·
∣∣Bn,m+1

∣∣ · |Cn+1+m+1|

= (m+ 1) ·

(
(n+m+ 1)!

n! · (m+ 1)!

)
· (n+ 1 +m+ 1)

= (m+ 1) ·

(
(n+ 1) · (n+ 1 +m+ 1)!

(n+ 1)! · (m+ 1)! · (n+ 1 +m+ 1)

)
· (n+ 1 +m+ 1)

= (n+ 1) · (m+ 1) ·

(
(n+ 1 +m+ 1)!

(n+ 1)! · (m+ 1)!

)

= |Cn+1| · |Cm+1| ·
∣∣Bn+1,m+1

∣∣
75So the respective restrictions yield the elements id{1,...,n+1} of Σn+1 and id{1,...,m+1} of Σm+1.

308



6.3. The standard Hochschild complex

6.3.3. Relative tensor products in Ch(k) and D(k)

The canonical functor γ : Ch(k)cof → D(k) is symmetric monoidal – see Proposi-
tion 4.3.2.1 – and thus preserves tensor products. In this section we discuss how γ

interacts with relative tensor products. There is no reason to expect that γ preserves
∆

op-indexed colimits in general, so we can not just apply Proposition E.8.0.1. Instead,
we will show that γ preserves relative tensor products if one of the two modules is cofi-
brant as a module. Cofibrancy is here taken to be with respect to the model structure
on RModR(Ch(k)) and LModR(Ch(k)) for an algebra R in Ch(k) from Theorem 4.2.2.176.
Note that as Ch(k) is a 1-category, geometric realizations – i. e. colimits over ∆

op – are
calculated as coequalizers77, so that the relative tensor product in Ch(k) is the “classical”
one.

We begin by noting that there is a canonical comparison map from γ(X) ⊗γ(R) γ(Y )
to γ(X ⊗R Y ).
Remark 6.3.3.1. Let F : C → D be a monoidal functor of monoidal ∞-categories,
and assume that the monoidal structures on C and D are compatible with ∆

op-indexed
colimits in the sense of [HA, 3.1.1.18]. The relative tensor product induces a functor

RMod(C)×Alg(C) LMod(C) −⊗−−
−−−−→ C

and similarly for D, see [HA, 4.4.2.10 and 4.4.2.11].
By [HA, 4.4.2.8] this functor can be identified as the functor mapping a triple (M,R,N)

to |BarR(M,N)•|, the geometric realization of the simplicial object BarR(M,N)• which
can be described as M ⊗R⊗• ⊗N , see also Section E.8.

As F is monoidal, it follows from the definition of the bar construction [HA, 4.4.2.7]
that there is a natural equivalence as follows.

BarF (R)(F (M), F (N))• ≃ F ◦ BarR(M,N)•

As there is a natural transformation

|F ◦X•| = colim
∆

op
(F ◦X•)→ F

(
colim
∆

op
X•

)
= F

(
|X•|

)

for simplicial objects X• in C, we thus obtain a canonical natural transformation com-
paring first applying F , and then taking the relative tensor product with first taking the
relative tensor product and then applying F .

RMod(C)×Alg(C) LMod(C) C

RMod(D)×Alg(D) LMod(D) D

−⊗−−

RMod(F )⊗Alg(F )LMod(F ) F

−⊗−−

♦
76Ch(k) satisfies the assumptions by Fact 4.1.3.1.
77See [Rie14, 8.3.8].

309



Chapter 6. Hochschild homology

Remark 6.3.3.2. We would like to compare relative tensor products of chain complexes
with relative tensor products in D(k). There is a slight issue here that Remark 6.3.3.1
does not directly apply to give us what we want: We can not apply it to γ : Ch(k)→ D(k)
as this functor is not monoidal, so the monoidal functor we would want to consider is
γ : Ch(k)cof → D(k), but there is no reason for the full subcategory Ch(k)cof of Ch(k) to
be closed under ∆

op-indexed colimits.
However, this is not actually a problem. If R is an algebra in Ch(k), and M and N are

right and left modules over R, and such that the underlying chain complexes of R, M ,
and N are cofibrant, then, because γ is monoidal on Ch(k)cof, we obtain an equivalence

Barγ(R)(γ(M), γ(N))• ≃ γ ◦ BarR(M,N)•

just like in Remark 6.3.3.1.
We also still obtain a canonical morphism

colim
∆

op

(
Barγ(R)(γ(M), γ(N))•

)
≃ colim

∆
op

(
γ ◦ BarR(M,N)•

)
→ γ

(
colim
∆

op

(
BarR(M,N)•

))

where on the right the colimit is taken in Ch(k) rather than Ch(k)cof, and the γ is the
functor

γ : Ch(k)→ D(k)

that is given by postcomposing the other functor called γ with the cofibrant replacement
functor.

The upshot is that we still have a canonical comparison transformation as in Re-
mark 6.3.3.1, even if it doesn’t quite fit into the setup of Remark 6.3.3.1. ♦

Proposition 6.3.3.3. Let (M,R,N) be an object of

RMod
(

Ch(k)cof
)
×Alg(Ch(k)cof) LMod

(
Ch(k)cof

)

i. e. R is a differential graded algebra, M is a right module over R, N is a left module
over R, and all three have cofibrant underlying chain complex.

Assume that one of M and N is cofibrant as a module over R with respect to the model
structure of Theorem 4.2.2.1. Then the relative tensor product M ⊗R N , calculated in
Ch(k), is again cofibrant and the canonical comparison morphism (see Remark 6.3.3.2)

γ(M)⊗γ(R) γ(N)→ γ(M ⊗R N)

is an equivalence. ♥

Proof. Let R be an object of Alg
(
Ch(k)cof

)
. We will use the notation

FreeRModR
Ch : Ch(k)cof → RMod

(
Ch(k)cof

)

as well as FreeLModR
Ch , FreeRModR

D
, and FreeLModR

D
for the left adjoints to the respective

forgetful functors evm. We also let C be the collection of objects (M,R,N) of

RMod
(

Ch(k)cof
)
×Alg(Ch(k)cof) LMod

(
Ch(k)cof

)

310



6.3. The standard Hochschild complex

and C≃ the subcollection of those tuples (M,R,N) for which the canonical comparison
morphism

γ(M)⊗γ(R) γ(N)→ γ(M ⊗R N)

is an equivalence. When we refer to colimits below while talking about objects and
morphisms in Ch(k)cof, those colimits are always to be taken in the category Ch(k).

We first show the claim regarding cofibrancy of the relative tensor product, and will
do the case where N is cofibrant as a module – the other case is analogous. Fix R and
M as in the statement. Then it suffices to show that the functor

M ⊗R − : LModCh(k)→ Ch(k)

maps generating cofibrations to cofibrations and preserves colimits. That the functor
preserves colimits follows from [HA, 4.4.2.15]. Let i : X → Y be a cofibration in Ch(k).
Then it remains to show that

M ⊗R FreeLModR
Ch (i) : M ⊗R FreeLModR

Ch (X)→M ⊗R FreeLModR
Ch (Y )

is again a cofibration. But this morphism can be identified with the morphism

M ⊗ i : M ⊗X →M ⊗ Y

which is a cofibration as M is cofibrant and i a cofibration.
Let us now turn towards the claim that γ(M)⊗γ(R) γ(N)→ γ(M ⊗R N) is an equiva-

lence if one of M and N is cofibrant as a module. By the definition of the model structure
on modules78 and [Hov99, 2.1.18 (b) and 2.1.9] it suffices to show the following.

(1) Let (M,R,N) be in C. Then (M,R, 0) and (0, R,N) are in C≃.

(2) Let R be an object of Alg(Ch(k)cof), let M be an object of RMod(Ch(k)cof), and
let X be an object in Ch(k)cof.
Then (M,R,FreeLModR

Ch (X)) is in C≃.

(3) Let (M,R,N) be in C≃ with N cofibrant as a module, let i : X → Y be a cofi-
bration between cofibrant objects of Ch(k), and let f : FreeLModR

Ch (X) → N be
a morphism in LModR

(
Ch(k)cof

)
. Then (M,R,N ∐FreeLModR

Ch (X)
FreeLModR

Ch (Y )) is
again in C≃, where the pushouts are formed with respect to the morphisms f and
FreeLModR

Ch (i).
The analogous statement holds for pushouts of this form in the first component.

(4) Let R be an object of Alg(Ch(k)cof) and M an object of RMod(Ch(k)cof).
Let λ be an ordinal and let F : λ → LMod(Ch(k)cof) be a λ-sequence79. Assume
that for every morphism α→ α+1 in λ the induced morphism F (α)→ F (α+1) is

78Theorem 4.2.2.1
79See for example [Hov99, 2.1.1] for a definition.

311



Chapter 6. Hochschild homology

a cofibration in LMod(Ch(k)cof), and that for every object α of λ the left-R-module
F (α) is cofibrant and the triple (M,R, F (α)) is in C≃.
Then (M,R, colimλ F ) is also in C≃. The analogous statement holds for transfinite
compositions in the first component as well.

As all statements are symmetrical, we will only show the statements with regards to
the last component.

Proof of claim (1): As both γ(M) ⊗γ(R) 0 ≃ 0 and M ⊗R 0 ∼= 0, this follows from γ

preserving the zero object by Proposition 4.3.2.1 (3).
Proof of claim (2): Consider the following commutative diagram

γ(M)⊗ γ(X) γ(M ⊗X)

γ(M)⊗γ(R) γ
(

FreeLModR
Ch (X)

)
γ
(
M ⊗R FreeLModR

Ch (X)
)

where the horizontal morphisms are the canonical comparison morphisms, and the ver-
tical morphisms are induced by the morphism80

(M,k,X)→ (M,R,FreeLModR
Ch (X))

in
RMod

(
Ch(k)cof

)
×Alg(Ch(k)cof) LMod

(
Ch(k)cof

)

that is given by the identity of M , the unit morphism k → R, and the morphism from X

to the underlying object of FreeLModR
Ch (X) that exhibits the latter as a free left-R-module

generated by X.
It follows from Proposition E.7.4.1 that the induced morphism

γ(X)→ γ
(

FreeLModR
Ch (X)

)

exhibits the codomain as the free left-γ(R)-module generated by γ(X), so it follows from
associativity [HA, 4.4.3.14] and unitality [HA, 4.4.3.16] of the relative tensor product that
both the left and right vertical morphisms in the above diagram are equivalences81. As
the top horizontal morphism is an equivalence as well, so must be the bottom horizontal
morphism.
80See [HA, 4.4.2.9] for the identification of the relative tensor product over the unit k with the (non-

relative) tensor product.
81One can easily see from the definition of free modules that FreeLModR

Ch (k) ≃ R, and that
FreeLModR

Ch (X) ≃ FreeLModR

Ch (k)⊗X. One thus obtains equivalences

M ⊗R FreeLModR

Ch (X) ≃M ⊗R (R⊗X) ≃ (M ⊗R R)⊗X ≃M ⊗X

and similarly for the other relevant relative tensor product in D(k).

312



6.3. The standard Hochschild complex

Proof of claim (3): Applying the canonical comparison transformation for the relative
tensor products to the commutative square

FreeLModR
Ch (X) N

FreeLModR
Ch (Y ) P

f

FreeLModR
Ch (i) (∗)

where we write P for the pushout, we obtain the commuting cube

γ(M)⊗γ(R) γ
(

FreeLModR
Ch (X)

)
γ
(
M ⊗R FreeLModR

Ch (X)
)

γ(M)⊗γ(R) γ(N) γ(M ⊗R N)

γ(M)⊗γ(R) γ
(

FreeLModR
Ch (Y )

)
γ
(
M ⊗R FreeLModR

Ch (Y )
)

γ(M)⊗γ(R) γ(P ) γ(M ⊗R P )

′

(∗∗)

in D(k). We need to show that the bottom front horizontal morphism is an equivalence.
For this it suffices to show the following.

(a) The right side in diagram (∗∗) is a pushout square.

(b) The left side in diagram (∗∗) is a pushout square.

(c) The horizontal morphism in diagram (∗∗) other than the bottom front one are
equivalences.

Proof of claim (a): In the commutative square

M ⊗R FreeLModR
Ch (X) M ⊗R N

M ⊗R FreeLModR
Ch (Y ) M ⊗R P

M⊗Rf

M⊗RFree
LModR
Ch (i)

the chain complex M ⊗R N is cofibrant and M ⊗R FreeLModR
Ch (i) is a cofibration by

what we already showed at the beginning of the proof. As (∗) is a pushout square, and
M ⊗R − preserves colimits by [HA, 4.4.2.15], this is again a pushout square, and by
[HTT, A.2.4.4] even a homotopy pushout square. The claim thus follows by applying
[HA, 1.3.4.24].

313



Chapter 6. Hochschild homology

Proof of claim (b): Follows from [HA, 1.3.4.24] using that (∗) is a homotopy pushout
by [HTT, A.2.4.4].

Proof of claim (c): For the two back horizontal morphisms this follows from claim (2),
and for the top front horizontal morphism this is by assumption.

Proof of claim (4): Analogous to (3), this time using that transfinite compositions are
already homotopy colimits if all morphisms of the form F (α)→ F (α+1) are cofibrations,
which follows from [HTT, A.2.9.24 (1)], which shows that such diagrams are cofibrant
in the projective model structure on λ-diagrams.

6.3.4. The standard Hochschild complex as a model for HH
In this section we compare the Hochschild homology functors defined in Section 6.2

with the standard Hochschild complex functors as defined in Sections 6.3.1 and 6.3.2,
showing that the latter represent the former.

We first discuss the case where we take into account the mixed complex structure,
but not multiplicative structure, in Section 6.3.4.1, and then the case of commutative
algebras, where we take into account the commutative algebra structure on Hochschild
homology, but not the mixed structure, in Section 6.3.4.2.

6.3.4.1. The mixed case

The following comparison result by Hoyois shows that the standard Hochschild com-
plex of A, considered as a strict mixed complex, is a model for the mixed complex
HHMixed(γ(A)).

Proposition 6.3.4.1 ([Hoy18, 2.3]). There is a commuting diagram82

Alg
(

Ch(k)cof
)

Fun
(
Λ

op,Ch(k)cof
)

Mixedcof

Alg
(
D(k)

)
Fun

(
Λ

op,D(k)
)

D(k)BT Mixed

C

Bcyc
•

Alg(γ)

|−|Mixed

γ∗ γMixed

Bcyc
•

HHMixed

|−| ≃

where the horizontal equivalence at the bottom left is the monoidal equivalence from
Construction 5.4.0.1. ♥

82Here, γ refers to the symmetric monoidal functor Ch(k)cof → D(k). The construction Bcyc
• is defined

in Definition 6.1.2.16, |−| is defined in Definition 6.1.3.4, |−|Mixed is defined in Construction 6.3.1.2,
C is defined in Definition 6.3.1.6, and HHMixed is defined in Definition 6.2.1.2.

314



6.3. The standard Hochschild complex

Proof. The top and bottom rectangles commute by definition of C and HHMixed, see
Definition 6.3.1.6 and Definition 6.2.1.2. For the left square in the middle see Re-
mark 6.1.2.17.

For X• a functor Λ
op → Ch(k), the underlying chain complex of |X•|Mixed is defined

in Construction 6.3.1.2 as the total complex of a certain double complex, which is an
upper83 half plane complex. If X[n]Λ is acyclic for every n ≥ 0, then it follows that the
rows of the corresponding double complex are all acyclic, so that we can apply the acyclic
assembly lemma [Wei94, 2.7.3] to conclude that the total complex |X•|Mixed is acyclic.
As colimits of (double) complexes as well as functor categories are calculated degreewise,
and the construction of the total complex from a double complex preserves colimits, it
follows by using the long exact sequence of homology that every morphism X• → Y• in
Fun(Λop,Ch(k)cof) that is pointwise a quasiisomorphism is mapped under |−|Mixed to a
quasiisomorphism.

The upshot is that |−|Mixed induces a functor

K : Fun
(
Λ

op,D(k)
)
→Mixed

of ∞-categories that fits into a commutative diagram as follows.

Fun(Λop,Ch(k)cof) Mixedcof

Fun
(
Λ

op,D(k)
)

Mixed

|−|Mixed

γ∗ γMixed

K

This is the functor also called K that is defined in [Hoy18, Right before 2.2].
We are thus left to construct a commuting triangle

Fun
(
Λ

op,D(k)
)

D(k)BT

Mixed

|−|

K
≃

where the vertical equivalence is the one from Construction 5.4.0.1. This is exactly what
[Hoy18, 2.3] provides – as long as we chose the correct vertical equivalence. However,
the vertical equivalence has been chosen in Construction 5.4.0.1 and Convention 5.2.4.3
in reference to [Hoy18, 2.3] as exactly the one that is required to obtain the above
commuting triangle.

Remark 6.3.4.2. Let φ : k → k′ be a morphism of commutative rings. Then the sym-
metric monoidal functor k′⊗k− : Ch(k)cof → Ch(k′)cof (see Fact 4.1.5.1) induces a natural
83Or right, depending on the convention. We will assume in this proof that we convert a complex of

complexes to a double complex such that Xi,j = (Xj)i. If X• = Bcyc
• (A), then the row indexed by

n ≥ 0 contains A⊗(n+1), and the rows indexed by n < 0 are empty.

315



Chapter 6. Hochschild homology

transformation from the the commutative diagram from Proposition 6.3.4.1 for k to the
one for k′.

To be more precise, functoriality of the cyclic bar construction (see Remark 6.1.2.17)
with respect to the commutative diagram

Ch(k)cof Ch(k′)cof

D(k) D(k′)

k′⊗k−

γ γ

k′⊗k−

(∗)

of symmetric monoidal functors from Remark 4.3.2.2 yields a commutative cube

Alg
(
Ch(k)cof

)
Fun

(
Λ

op,Ch(k)cof
)

Alg
(
Ch(k′)cof

)
Fun

(
Λ

op,Ch(k′)cof
)

Alg
(
D(k)

)
Fun

(
Λ

op,D(k)
)

Alg
(
D(k′)

)
Fun

(
Λ

op,D(k′)
)

where the horizontal functors are all Bcyc
• , the vertical functors are induced by γ, and the

functors from the back to the front are induced by k′⊗k −. Existence of a commutative
cube

Fun
(
Λ

op,Ch(k)cof
)

Mixedk,cof

Fun
(
Λ

op,Ch(k′)cof
)

Mixedk′,cof

Fun
(
Λ

op,D(k)
)

Mixedk

Fun
(
Λ

op,D(k′)
)

Mixedk′

where the horizontal functors are |−| and |−|Mixed, and the left and right sides are induced
by diagram (∗) is implicit in the proof of [Hoy18, 2.3], though unfortunately not explicitly

316



6.3. The standard Hochschild complex

stated84. Combining the two commutative cubes we obtain a commutative cube

Alg
(
Ch(k)cof

)
Mixedk,cof

Alg
(
Ch(k′)cof

)
Mixedk′,cof

Alg
(
D(k)

)
Mixedk

Alg
(
D(k′)

)
Mixedk′

C

C

HHMixed

HHMixed

in Cat∞, where the front and back sides are the big outer squares in Proposition 6.3.4.1,
the left and right sides are induced by diagram (∗), the top is the diagram from Re-
mark 6.3.1.7 and the bottom is the diagram from Remark 6.2.1.6. ♦

6.3.4.2. The commutative case

We now compare the standard Hochschild complex C in the commutative case to
HH : CAlg(D(k))→ CAlg(D(k)) from Definition 6.2.2.1, which will be possible because
we can write both as a relative tensor product according to Corollary 6.2.2.6 and Propo-
sition 6.3.2.7, and discussed how to compare relative tensor products in Ch(k) with
relative tensor products in D(k) in Section 6.3.3.

Proposition 6.3.4.3. There is a commuting diagram

CAlg
(
Ch(k)cof

)
CAlg

(
Ch(k)cof

)

CAlg
(
D(k)

)
CAlg

(
D(k)

)

C

CAlg(γ) CAlg(γ)

HH

(6.16)

where C is the functor from Proposition 6.3.2.7 and HH is the functor from Defini-
tion 6.2.2.1 and γ is the symmetric monoidal functor Ch(k)cof → D(k). ♥

Proof. By Proposition 6.3.2.7 C is given as the relative tensor product A⊗A⊗A CBar(A)
in CAlg(Ch(k)) – see Construction 6.3.2.6 and Construction E.8.0.4 for a definition of
the relevant A⊗ A-module structures.

Like in Remark 6.3.3.1 and Remark 6.3.3.2 we obtain a natural comparison transfor-
mation

CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)
→ CAlg(γ)

(
A⊗A⊗A CBar(A)

)
(∗)

84See also Remark 5.4.0.3

317



Chapter 6. Hochschild homology

where we use that we already know that the relative tensor product will have cofibrant
underlying chain complex85. We want to show that this morphism is an equivalence. As
the forgetful functor

eva : CAlg
(
D(k)

)
→ D(k)

detects equivalences by [HA, 3.2.2.6], it suffices to show that the underlying morphism in
D(k) is an equivalence. By [HA, 3.2.3.1 (4)] and Proposition E.4.2.3 (5) in combination
with Proposition E.8.0.1, both forgetful functors

eva : CAlg
(
Ch(k)

)
→ Ch(k) and eva : CAlg

(
D(k)

)
→ D(k)

preserve relative tensor products, so that we can identify the composition of the natural
transformation (∗) of functors CAlg(Ch(k)cof)→ CAlg(D(k)) with eva with the natural
comparison transformation

γ(A)⊗γ(A⊗A) γ
(

CBar(A)
)
→ γ

(
A⊗A⊗A CBar(A)

)

from Remark 6.3.3.2. As CBar(A) is cofibrant as a left-A⊗A-module by Proposition 6.3.2.3,
we can apply Proposition 6.3.3.3 to conclude that this is an equivalence.

We have now seen that the composition CAlg(γ) ◦ C in (6.16) is homotopic to the
functor that is described by

A 7→ CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)

85Here are some more details. CAlg(γ) : CAlg(Ch(k)cof) → CAlg(D(k)) is symmetric monoidal, and
thus induces a natural equivalence of bar constructions as follows.

BarCAlg(γ)(A⊗A)

(
CAlg(γ)(A),CAlg(γ)(CBar(A))

)
•
≃ CAlg(γ) ◦ BarA⊗A

(
A,CBar(A)

)
•

The relative tensor product A⊗A⊗A CBar(A) is given by the colimit

colim
∆op

BarA⊗A

(
A,CBar(A)

)
•

calculated in CAlg(Ch(k)) (see the introduction to Section 6.3.3), so comes with a cocone diagram

(∆op)▷ → CAlg(Ch(k))

but as we know that the relative tensor product has cofibrant underlying chain complex in
this instance, this functor actually factors over CAlg(Ch(k)cof). Postcomposing this cocone di-
agram (as a diagram in CAlg(Ch(k)cof)) with CAlg(γ), we obtain a cocone diagram from
CAlg(γ) ◦ BarA⊗A(A,CBar(A))• to CAlg(γ)(A ⊗A⊗A CBar(A)), and hence by the universal prop-
erty of colim a morphism as follows.

CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)

≃ colim
∆op

BarCAlg(γ)(A⊗A)

(
CAlg(γ)(A),CAlg(γ)(CBar(A))

)
•

≃ colim
∆op

CAlg(γ) ◦ BarA⊗A(A,CBar(A))•

→ CAlg(γ)(A⊗A⊗A CBar(A))

318



6.3. The standard Hochschild complex

where the the A ⊗ A-module structures are as in Construction 6.3.2.6 and Construc-
tion E.8.0.4. The natural morphism CBar(A)→ A of left-A⊗A-modules from Construc-
tion 6.3.2.6 provides a natural transformation

CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)
(

CBar(A)
)
→ CAlg(γ)(A)⊗CAlg(γ)(A⊗A) CAlg(γ)(A)

that is an equivalence by Proposition 6.3.2.286. As γ and CAlg(γ) are symmetric monoidal,
we can further identify γ(A⊗A) with γ(A)⊗ γ(A) and the left and right module struc-
tures of γ(A) over γ(A ⊗ A) (which arise from the morphism of commutative algebras
A ⊗ A → A given by the multiplication morphism) with the module structures arising
from the multiplication morphism γ(A)⊗ γ(A)→ γ(A).

We have thus identified the composition CAlg(γ) ◦ C in (6.16) with the functor de-
scribed by

A 7→ γ(A)⊗γ(A)⊗γ(A) γ(A)

which is precisely the description of HH◦CAlg(γ) one obtains from Corollary 6.2.2.6.

Remark 6.3.4.4. Let φ : k → k′ be a morphism of commutative rings. Then there is a
commutative cube

CAlg
(
Ch(k)cof

)
CAlg

(
Ch(k)cof

)

CAlg
(
Ch(k′)cof

)
CAlg

(
Ch(k′)cof

)

CAlg
(
D(k)

)
CAlg

(
D(k)

)

CAlg
(
D(k′)

)
CAlg

(
D(k′)

)

C

C

HH

HH

in Cat∞, where the top square is the one from Remark 6.3.2.8, the bottom square is
induced by the one from Remark 6.2.1.6, the left and right squares are induced by the
one from Remark 4.3.2.2, and the front and back squares are the ones from Proposi-
tion 6.3.4.3. To see this, one goes through the construction of the fillers for the different
sides, which are ultimately constructed from symmetric monoidality of different functors
and the universal property of colimits – see Remark 6.3.3.1. Using the universal property
of colimits, one is left to check commutativity of a diagram of equivalences of simplicial

86Using that equivalences of left-CAlg(γ)(A ⊗ A)-modules are detected by the composition of the for-
getful functors evm : LModCAlg(γ)(A⊗A)(CAlg(D(k))) → CAlg(D(k)) and eva CAlg(D(k)) → D(k)
by [HA, 3.2.3.1 (4)] and [HA, 4.2.3.3 (2)].

319



Chapter 6. Hochschild homology

objects that looks in level n like the outer diagram of equivalences depicted below.

(
k′ ⊗k γ(R)

)⊗k′ (n+1) (
γ(k′ ⊗k R)

)⊗k′ (n+1)

k′ ⊗k
(
γ(R)⊗k(n+1)

)
γ
(
(k′ ⊗k R)

⊗k′ (n+1)
)

k′ ⊗k γ
(
R⊗k(n+1)

)
γ

(
k′ ⊗k

(
R⊗k(n+1)

))

The two diagonal equivalences on the left and right arise from γ and k′ ⊗k − being
symmetric monoidal, and the two horizontal equivalences arise from the commutative
diagram

Ch(k)cof Ch(k′)cof

D(k) D(k′)

k′⊗k−

γ γ

k′⊗k−

from Remark 4.3.2.2. This latter commutative square is actually a commutative square
of symmetric monoidal functors, which is how we obtain the filler for the above diagram:
The dashed equivalences (defined so as to make the left and right triangle commute)
are precisely the equivalences exhibiting the compositions k′ ⊗k γ(−) and γ(k′ ⊗k −) as
symmetric monoidal functors, and the filler for the square in the middle is the one ex-
hibiting the homotopy between those two compositions being an homotopy of symmetric
monoidal functors. ♦

320



Chapter 7.

Hochschild homology of polynomial
algebras

In Definition 6.2.1.2 we defined a monoidal functor

HHMixed : Alg
(
D(k)

)
→Mixed

that thus induces a functor

AlgE2

(
D(k)

)
≃ Alg

(
Alg
(
D(k)

))
→ Alg(Mixed)

that we will also denote by HHMixed.
An important collection of examples of commutative (so in particular E2-) algebras in

D(k) is given by polynomial algebras, i. e. algebras of the form k[X] for X a set1, and the
goal of this chapter is to describe HHMixed of polynomial algebras as algebras in Mixed.
Concretely, given a set X, we would like to obtain a strict model for HHMixed(k[X]), as an
object of Alg(Mixed), i. e. an object A in Alg(Mixedcof) such that there is an equivalence

HHMixed
(
k[X]

)
≃ Alg(γMixed)(A)

in Alg(Mixed). We would also like A to be as efficient (i. e. small) as possible.
By the results of Section 6.3.4 we already know that the standard Hochschild complex

C(k[X]) of a polynomial k-algebra k[X], considered as either a commutative differen-
tial graded algebra, or a strict mixed complex, represents HH and HHMixed of k[X],
respectively. However, we have no comparison result available that compares C(k[X])
and HHMixed(k[X]) as associative algebras of mixed complexes – while the standard
Hochschild complex is a strict mixed complex as well as a differential graded algebra, it
satisfies the Leibniz rule only up to homotopy, so we can not even consider it as a strict
algebra in strict mixed complexes2! Even without this obstacle, C(k[X]) would not be
the kind of strict model we hope for, as it is not very efficient.

The first step on the road to finding a small strict model for HHMixed(k[X]) as an object
of Alg(Mixed) thus needs to be to define an object in Alg(Mixed) that we later hope to
prove is such a strict model. For R a commutative k-algebra we will thus in Section 7.1

1See Definition 7.0.0.1 for a definition.
2See Warning 6.3.2.13

321



Chapter 7. Hochschild homology of polynomial algebras

review the definition of the strict mixed complex of de Rham forms on R, denoted by
Ω•
R/k, which has a very concise description. Indeed, as the underlying complex has no

non-zero boundary operators, so it is not possible to find a “smaller” quasiisomorphic
chain complex.

Our goal, which we will only be able to prove if |X| ≤ 2, and which is formulated as
Conjecture B, is then to produce an equivalence

HHMixed
(
k[X]

)
≃ Alg(γMixed)

(
Ω•
k[X]/k

)

in Alg(Mixed), i. e. to show that Ω•
k[X]/k is a strict model for HHMixed(k[X]) as an object

of Alg(Mixed).
In Section 7.2 we will begin comparing Ω•

k[X]/k with Hochschild homology of k[X] by
constructing a quasiisomorphism ϵX from Ω•

k[X]/k to the normalized standard Hochschild
complex C(k[X]). This quasiisomorphism is multiplicative, so as we already know that
C(k[X]), and hence also C(k[X]), is a strict model for HH(k[X]) as an object of Alg(D(k)),
we can conclude that Ω•

k[X]/k is so as well.
To show that Ω•

k[X]/k is also a strict model for HHMixed(k[X]) as an object of Mixed
it would suffice to show that ϵX is even a morphism of strict mixed complexes. This is
unfortunately not the case, but we can instead upgrade ϵX to a strongly homotopy linear
quasiisomorphism3, and will do so in Section 7.3.

The partial results regarding only the algebra and only the mixed structure from
Sections 7.2 and 7.3 will then be used as input in Section 7.4, where we will show that
Ω•
k[X]/k is even a strict model for HHMixed(k[X]) as an object of Alg(Mixed) as long as
|X| ≤ 2.

Suppose now that X is a set with |X| ≤ 2 and f an element of k[X]. Denote the
morphism of commutative k-algebras k[t]→ k[X] that maps t to f by F . Now that we
know that Ω•

k[t]/k represents HHMixed(k[t]) and Ω•
k[X]/k represents HHMixed(k[X]) we can

ask whether the induced morphism Ω•
F/k also represents the morphism HHMixed(F ) in

Alg(Mixed). We are thus asking for a commutative square

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

HHMixed
(
k[Y ]

)
Alg(γMixed)

(
Ω•
k[Y ]/k

)

≃

HHMixed(F ) Alg(γMixed)
(
Ω•
F/k

)

≃

in Alg(Mixed) such that the two horizontal morphisms are equivalences. We will formu-
late the claim that such a square exists for F as Conjecture C, and prove this conjecture
for |X| ≤ 1, as well as for |X| = 2 as long as 2 is invertible in k, in Section 7.5. We will
also discuss Conjecture D, which is very closely related to Conjecture C and will be an
essential ingredient in the results of later chapters.

3See Section 4.2.3 for this notion.

322



7.1. The mixed complex of de Rham forms

We end the introduction to this chapter by fixing some notation concerning polynomial
algebras.

Definition 7.0.0.1. Let X be a set. Then k[X] denotes the polynomial k-algebra gener-
ated by X, i. e. the free commutative k-algebra generated by X. Its underlying k-module
is free, and a basis is given by elements of the form4 xi⃗ with i⃗ an element of Z×X

≥0 such that
all but finitely many components are zero. We also use notation such as k[x1, . . . , xn] for
the polynomial k-algebra that is generated by n formal variables x1, . . . , xn, and trust
that this will not lead to confusion.

Note that as the underlying k-module of a polynomial k-algebra is free, a polynomial
k-algebra is cofibrant when considered as a chain complex concentrated in degree 0.5 ♦

7.1. The mixed complex of de Rham forms
Given a commutative k-algebra R, we denote by Ω1

R/k the k-module of Kähler differ-
entials – for a definition see [Lod98, 1.1.9 and 1.3.7 to 1.3.9]. One then defines [Lod98,
1.3.11] Ωn

R/k for n ≥ 0 to be the exterior product ΛnRΩ
1
R/k. Equipping Ω•

R/k with the
zero boundary operator we obtain a commutative differential graded algebra. Ω1

R/k also
comes with a derivation [Lod98, 1.3.8] d : Ω0

R/k = R → Ω1
R/k, and the unique extension

of d to an operator of degree 1 on Ω•
R/k that satisfies d ◦ d = 0 and the Leibniz rule

makes Ω•
R/k into an object of CAlg(Mixed)6, called the mixed complex of de Rham forms

of R. Elements of Ωn
R/k are of the form r0 d r1 · · · d rn, with

d(r0 d r1 · · · d rn) = d r0 d r1 · · · d rn
and

(r0 d r1 · · · d rn) ·
(
r′0 d r′1 · · · d r′m

)
= r0r

′
0 d r1 · · · d rn d r′1 · · · d r′m

describing the differential and multiplication [Lod98, 1.3.11 and 2.3.1]. This construction
is functorial in morphisms of commutative k-algebras f : R → R′ – there is a unique
morphism in CAlg(Mixed) from Ω•

R/k to Ω•
R′/k that is given by f in degree 0.

For R = k[X] for some set X, the k[X]-module Ω1
k[X]/k is free with basis given by

{ dx | x ∈ X } – see [Lod98, 1.3.10 and 1.3.11]. It follows that we can identify Ω•
k[X]/k

with k[X] ⊗ Λk(k · { dx | x ∈ X }), where k · { dx | x ∈ X } is the chain complex that
is freely generated by { dx | x ∈ X }, where we give the elements d x chain degree 1. In
particular, Ω•

k[X]/k is levelwise free as a k-module, and hence cofibrant by [Hov99, 2.3.6].
We can thus make the following definition.

Definition 7.1.0.1. We denote by

Ω•
−/k : CAlg

(
LModk(Ab)

)
→ CAlg(Mixed)

4See Section 2.3 (32) for this notation.
5See [Hov99, 2.3.6]
6See Remark 4.2.1.12.

323



Chapter 7. Hochschild homology of polynomial algebras

the functor sending a k-algebra R to the commutative algebra in strict mixed complexes
Ω•
R/k discussed above. We also denote by7

Ω•
k[−]/k : Set→ CAlg(Mixedcof)

the functor sending a set X to Ω•
k[X]/k. ♦

Remark 7.1.0.2. Ω•
−/k is also functorial in k: For φ : k → k′ a morphism of commutative

rings and R a k-algebra, there is an evident isomorphism

k′ ⊗k Ω
•
R/k
∼= Ω•

k′⊗kR/k′ , a⊗ (r0 d r1 · · · d rn) 7→ (a⊗ r0) d(1⊗ r1) · · · d(1⊗ rn)

in CAlg(Mixedk′) that is natural in R and exhibits

CAlg
(
LModk(Ab)

)
CAlg(Mixedk)

CAlg
(
LModk′(Ab)

)
CAlg(Mixedk′)

k′⊗k−

Ω•
−/k

k′⊗k−

Ω•
−/k′

as a commutative diagram in Cat. ♦

7.2. De Rham forms as a strict model in CAlg(Ch(k))
The reason the mixed complex of de Rham forms is relevant for us is the close rela-

tionship with the (normalized) standard Hochschild complex that we will discuss in this
section.

In Section 6.3.2.1 we discussed the bar resolution CBar(A) of an associative algebra A
and saw in Proposition 6.3.2.4 that the standard Hochschild complex of A is given by the
relative tensor product A⊗A⊗Aop CBar(A). In Section 7.2.1 we will, for a set X, construct
a morphism ϵ̃X of left-k[X]⊗ k[X]-modules (in chain complexes) Csm(X)→ CBar(k[X]).
Tensoring with k[X] over k[X] ⊗ k[X] we then obtain a morphism of chain complexes
that we will be able to identify with a morphism Ω•

k[X]/k → C(k[X]). In this manner we
will obtain a natural transformation

ϵ : Ω•
k[−]/k → C

(
k[−]

)

of functors Set→ CAlg(Ch(k)cof) that will turn out to be a pointwise quasiisomorphism,
thereby providing a convenient multiplicative model Ω•

k[X]/k for HH(k[X]). This will be
discussed in Section 7.2.2.

While ϵX (for a set X) is a morphism of differential graded algebras, it is not a mor-
phism of strict mixed complexes. However ϵX can be upgraded to a strongly homotopy
linear morphism in the sense of Section 4.2.3. This will be shown in the next section,
Section 7.3.

7See Definition 4.2.1.2 for a definition of Mixedcof.

324



7.2. De Rham forms as a strict model in CAlg(Ch(k))

7.2.1. A smaller replacement for the bar complex
In this section we will first construct Csm(X) and ϵ̃X in Construction 7.2.1.1, before

showing that they have good homotopical properties in Proposition 7.2.1.2.

Construction 7.2.1.1 ([Lod98, 3.2.2]). LetX be a set. We will construct a commutative
triangle of left-k[X]⊗ k[X]-modules in Ch(k)

Csm(X) CBar(k[X]
)

k[X]

ϵ̃X

(7.1)

where CBar(k[X]) refers to the bar resolution as constructed in Construction 6.3.2.1, and
the right diagonal morphism is the one also defined in Construction 6.3.2.1. We will use
notation from Section 2.3 (34).

Definition of Csm(X) as a graded left-k[X]⊗ k[X]-module: We define

Csm(X)n := k[X]⊗ Λn(k ·X)⊗ k[X]

and the action of k[X]⊗ k[X] as follows, with l′, r′, l, r elements of k[X] and x1, . . . , xn
elements of X.

(
l′ ⊗ r′

)
· (l ⊗ x1 · · · xn ⊗ r) := l′l ⊗ x1 · · · xn ⊗ rr

′

Note that if there exist i 6= j with xi = xj, then the right hand side is also 0, so the
action is well-defined8.

Definition of the boundary operator on Csm(X): We make the following definition for
l, r elements of k[X] and x1, . . . , xn elements of X.

∂(l ⊗ x1 · · · xn ⊗ r)

:=
n∑

i=1

(−1)i−1
(
(lxi ⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ r)− (l ⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ xir)

)

For well-definedness, assume that 1 ≤ j < j′ ≤ n such that xj = xj′ . We then have to
check that the formula just given for ∂(l ⊗ x1 · · · xn ⊗ r) is zero. One can immediately see
that the summands for i /∈ {j, j′} vanish, as the middle tensor factor x1 · · · xi−1·xi+1 · · · xn
then contains both xj and xj′ as factors. Thus we are left with the following sum.

(−1)j−1
(
lxj ⊗ x1 · · · xj−1 · xj+1 · · · xn ⊗ r

)

− (−1)j−1
(
l ⊗ x1 · · · xj−1 · xj+1 · · · xn ⊗ xjr

)

+ (−1)j
′−1
(
lxj′ ⊗ x1 · · · xj′−1 · xj′+1 · · · xn ⊗ r

)

8See (29) in Section 2.3 for a definition of the exterior algebra Λ(k ·X).

325



Chapter 7. Hochschild homology of polynomial algebras

− (−1)j
′−1
(
l ⊗ x1 · · · xj′−1 · xj′+1 · · · xn ⊗ xj′r

)

To see that this is zero, we will argue that the first and third terms cancel, the argument
for the second and fourth term canceling is completely analogous. For this, we carry out
the following calculation.

(−1)j−1
(
lxj ⊗ x1 · · · xj−1 · xj+1 · · · xn ⊗ r

)

= (−1)j−1
(
lxj ⊗ x1 · · · xj−1 · xj+1 · · · xj′−1 · xj′ · xj′+1 · · · xn ⊗ r

)

Using that xj′ = xj.
= (−1)j−1

(
lxj′ ⊗ x1 · · · xj−1 · xj+1 · · · xj′−1 · xj · xj′+1 · · · xn ⊗ r

)

Now we move the factor xj in the inner tensor factor to the spot between xj−1 and xj+1.
This involves moving past j′ − j − 1 other factors, so incurs a sign (−1)j

′−j−1.
= (−1)j−1(−1)j

′−j−1
(
lxj′ ⊗ x1 · · · xj′−1 · xj′+1 · · · xn ⊗ r

)

= −(−1)j
′−1
(
lxj′ ⊗ x1 · · · xj′−1 · xj′+1 · · · xn ⊗ r

)

It is clear from the definition that ∂ is compatible with the left-k[X] ⊗ k[X]-module
structure.
∂ squares to zero on Csm(X): For l, r elements of k[X] and x1, . . . , xn elements of X

we obtain the following calculation9, where we use 1j>i as ad hoc notation for 0 if j ≯ i

and 1 if j > i.

∂
(
∂(l ⊗ x1 · · · xn ⊗ r)

)

= ∂




n∑

i=1

(−1)i−1
(
(lxi ⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ r)

)



− ∂




n∑

i=1

(−1)i−1
(
(l ⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ xir)

)



The indices in the sums below range from 1 to n.
= +

∑

i 6=j

(−1)i−1(−1)j−1j>i−1
(
lxixj ⊗ x1 · · · xj−1 · xj+1 · · · xi−1 · xi+1 · · · xn ⊗ r

)

−
∑

i 6=j

(−1)i−1(−1)j−1j>i−1
(
lxi ⊗ x1 · · · xj−1 · xj+1 · · · xi−1 · xi+1 · · · xn ⊗ xjr

)

−
∑

i 6=j

(−1)i−1(−1)j−1j>i−1
(
lxj ⊗ x1 · · · xj−1 · xj+1 · · · xi−1 · xi+1 · · · xn ⊗ xir

)

+
∑

i 6=j

(−1)i−1(−1)j−1j>i−1
(
l ⊗ x1 · · · xj−1 · xj+1 · · · xi−1 · xi+1 · · · xn ⊗ xjxir

)

The second and third line cancel by pairing the summand within the second line indexed
by (i, j) with the summand within the third line indexed by (j, i), as the sign arising

9x1 · · ·xj−1 ·xj+1 · · ·xi−1 ·xi+1 · · ·xn is to be as interpreted as the product from x1 to xn while omitting
xj and xi, also when j > i.

326



7.2. De Rham forms as a strict model in CAlg(Ch(k))

from the 1j>i expression will differ between the two terms. Furthermore, the first and
fourth line each already vanish individually, which one sees by pairing the summand
indexed by (i, j) with the one indexed by (j, i).

Definition of Csm(X)→ k[X] as a morphism of graded k[X]⊗k[X]-modules: We define
this morphism to be given by

(l ⊗ x1 · · · xn ⊗ r) 7→

{
l · r if n = 0

0 otherwise

for l, r elements of k[X] and x1, . . . , xn elements of X. It is clear that this is well-defined
and compatible with the k[X]⊗ k[X]-action.

Compatibility of Csm(X) → k[X] with ∂: Let l and r be elements of k[X] and x

an element of X. We have to show that ∂(l ⊗ x ⊗ r) is mapped to zero. But we have
∂(l ⊗ x⊗ r) = lx⊗ r − l ⊗ xr, which is mapped to lxr − lxr = 0.

Definition of ϵ̃X as a morphism of graded k[X]⊗ k[X]-modules: For l and r elements
of k[X] and x1, . . . , xn elements of X, we make the following definition.

ϵ̃X(l ⊗ x1 · · · xn ⊗ r) :=
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

To see that this is well-defined on k[X] ⊗ Λn(k ·X) ⊗ k[X], we need to verify that the
formula on the right hand side is 0 if xi = xj for some 1 ≤ i < j ≤ n. But we can split
up Σn as the union of left cosets of the subgroup {id, (i j)} in Σn, where (i j) denotes
the transposition that exchanges i and j, and thus carry out the following calculation.

∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

=
∑

[σ]∈Σn/(i j)

(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ sgn
(
σ ◦ (i j)

)
l ⊗ x(i j)(σ−1(1)) ⊗ · · · ⊗ x(i j)(σ−1(n)) ⊗ r

)

As xi = xj, we can simplify the indices of x in the second summand. We also use that
sgn
(
(i j)

)
= −1.
=

∑

[σ]∈Σn/(i j)

(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

− sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r
)

= 0

That the definition of ϵ̃X is compatible with the left-k[X]⊗ k[X]-module structures is
clear.

Some comments on how to relate ϵ̃X with actions of Σn: We can define an action of
the symmetric group Σn on CBar(k[X])n that is given by permuting the inner n tensor

327



Chapter 7. Hochschild homology of polynomial algebras

factors, i. e. we make the following definition for y0, . . . , yn+1 elements of k[X].

σ · (y0 ⊗ y1 ⊗ · · · ⊗ yn ⊗ yn+1) := y0 ⊗ yσ−1(1) ⊗ · · · ⊗ yσ−1(n) ⊗ yn+1

In particular we can then write ϵ̃X as follows, where l, x1, . . . , xn, r are elements of k[X].

ϵ̃X(l ⊗ x1 · · · xn ⊗ r) =
∑

σ∈Σn

sgn(σ)
(
σ · (l ⊗ x1 · · · xn ⊗ r)

)

Finally, let us note that if S is a set with n elements and we write an element
of CBar(k[X])n as l ⊗ yφ(1) ⊗ · · · ⊗ yφ(n) ⊗ r for φ : {1, . . . , n} → S a bijection and
l, yφ(1), . . . , yφ(n), r elements of k[X], then the action of σ ∈ Σn takes the following form.

σ ·
(
l ⊗ yφ(1) ⊗ · · · ⊗ yφ(n) ⊗ r

)
= l ⊗ y

φ(σ−1(1)) ⊗ · · · ⊗ yφ(σ−1(n)) ⊗ r (∗)

Compatibility of ϵ̃X with ∂: We carry out the following calculation, for l and r elements
of k[X] and x1, . . . , xn elements of X.

∂
(
ϵ̃X(l ⊗ x1 · · · xn ⊗ r)

)

= ∂


∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n) ⊗ r




We apply the formula for the boundary operator of CBar(k[X]
)

as defined in Construc-
tion 6.3.2.1, writing the summands for i = 0 and i = n as separate terms.
=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+
n−1∑

i=1

(−1)i
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i)xσ−1(i+1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

We now split up the set Σn the sum in the second line is indexed over as the union of
the right cosets of the subgroup generated by the transposition (i i + 1). Note that the
right cosets have the form {σ, (i i+ 1)σ}.
=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+
n−1∑

i=1

(−1)i
∑

[σ]∈(i i+1)\Σn

(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i)xσ−1(i+1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ sgn
(
(i i+ 1) ◦ σ

)
l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i+1)xσ−1(i) ⊗ · · · ⊗ xσ−1(n) ⊗ r

)

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

328



7.2. De Rham forms as a strict model in CAlg(Ch(k))

=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+
n−1∑

i=1

(−1)i
∑

[σ]∈(i i+1)\Σn

(
sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i)xσ−1(i+1) ⊗ · · · ⊗ xσ−1(n) ⊗ r

− sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(i+1)xσ−1(i) ⊗ · · · ⊗ xσ−1(n) ⊗ r
)

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

The middle summands now cancel, using that xσ−1(i) and xσ−1(i+1) commute in k[X].
=
∑

σ∈Σn

sgn(σ)lxσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(n) ⊗ r

+ (−1)n
∑

σ∈Σn

sgn(σ)l ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n−1) ⊗ xσ−1(n)r

Now let σ′ be an element of Σn and assume that i is such that σ′(i) = 1. Then
σ = σ1→n ◦ σ

′ ◦ σn→i fixes n, so that we can consider σ as an element of10 Σn−1. The
upshot is that if σ′ maps i to 1, then we can write it uniquely as σ′ = σn→1 ◦ σ ◦ σi→n

for σ an element of Σn−1. Analogously, if σ′ maps i to n, then we can write it uniquely
as σ′ = σ ◦ σi→n for σ an element of Σn−1.

Continuing the calculation from above, we can now rewrite the sums as follows.

=
n∑

i=1

∑

σ∈Σn−1

(
sgn(σn→1 ◦ σ ◦ σi→n)·

lx(σn→1◦σ◦σi→n)
−1(1) ⊗ x(σn→1◦σ◦σi→n)

−1(2) ⊗ · · · ⊗ x(σn→1◦σ◦σi→n)
−1(n) ⊗ r

)

+ (−1)n
n∑

i=1

∑

σ∈Σn−1

(
sgn(σ ◦ σi→n)·

l ⊗ x(σ◦σi→n)
−1(1) ⊗ · · · ⊗ x(σ◦σi→n)

−1(n−1) ⊗ x(σ◦σi→n)
−1(n)r

)

The sign of σj→j′ is (−1)j−j
′ , as one can see by writing σj→j′ as the composition of

transpositions
(
(j′ + 1) j′

)
◦
(
(j′ + 2) j′ + 1

)
· · · ◦

(
j (j − 1)

)
if j > j′, and similarly if

j′ > j.

=
n∑

i=1

∑

σ∈Σn−1

(
(−1)n−1+i−n sgn(σ)·

lx
σn→i

(
σ−1(σ1→n(1))

) ⊗ x
σn→i

(
σ−1(σ1→n(2))

) ⊗ · · · ⊗ x
σn→i

(
σ−1(σ1→n(n))

) ⊗ r
)

+ (−1)n
n∑

i=1

∑

σ∈Σn−1

(
(−1)i−n sgn(σ)·

l ⊗ x
σn→i(σ−1(1)) ⊗ · · · ⊗ xσn→i(σ−1(n−1)) ⊗ xσn→i(σ−1(n))r

)

10We consider Σn−1 as a subset of Σn by extending with n 7→ n.

329



Chapter 7. Hochschild homology of polynomial algebras

=
n∑

i=1

∑

σ∈Σn−1

(
(−1)i−1 sgn(σ)lxi ⊗ xσn→i(σ−1(1)) ⊗ · · · ⊗ xσn→i(σ−1(n−1)) ⊗ r

)

−
n∑

i=1

∑

σ∈Σn−1

(
(−1)i−1 sgn(σ)l ⊗ x

σn→i(σ−1(1)) ⊗ · · · ⊗ xσn→i(σ−1(n−1)) ⊗ xir
)

We can now apply (∗).

=
n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)
(
σ ·
(
lxi ⊗ xσn→i(1) ⊗ · · · ⊗ xσn→i(n−1) ⊗ r

))

−
n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)
(
σ ·
(
l ⊗ xσn→i(1) ⊗ · · · ⊗ xσn→i(n−1) ⊗ xir

))

We now evaluate σn→i in the indices.

=
n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)
(
σ · (lxi ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ r)

)

−
n∑

i=1

∑

σ∈Σn−1

(−1)i−1 sgn(σ)
(
σ · (l ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ xir)

)

=
∑

σ∈Σn−1

sgn(σ)


σ ·




n∑

i=1

(−1)i−1lxi ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ r







−
∑

σ∈Σn−1

sgn(σ)


σ ·




n∑

i=1

(−1)i−1l ⊗ x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xn ⊗ xir







We can now plug in the definition of the boundary operator on Csm(X).
=

∑

σ∈Σn−1

sgn(σ)
(
σ ·
(
∂(l ⊗ x1 ⊗ · · · ⊗ xn ⊗ r)

))

Finally, we can use the definition of ϵ̃X .
= ϵ̃X

(
∂(l ⊗ x1 ⊗ · · · ⊗ xn ⊗ r)

)

Commutativity of diagram (7.1): Clear from the definitions. ♦

We next show that ϵ̃X is an equivalence between cofibrant replacements of k[X] in
LModk[X]⊗k[X](Ch(k)).

Proposition 7.2.1.2. For X a set the following hold.

(1) Csm(X) as defined in Construction 7.2.1.1 is cofibrant as an object in the model cat-
egory LModk[X]⊗k[X](Ch(k)) with respect to the model structure of Theorem 4.2.2.1
(where Ch(k) carries the model structure of Fact 4.1.3.1).

(2) The morphism of chain complexes ϵ̃X : Csm(X)→ CBar(X) as defined in Construc-
tion 7.2.1.1 is a quasiisomorphism. ♥

330



7.2. De Rham forms as a strict model in CAlg(Ch(k))

Proof. Proof of claim (1): The category of left-k[X] ⊗ k[X]-modules in Ch(k) is iso-
morphic to Ch(k[X]⊗ k[X]). We can equip Ch(k[X]⊗ k[X]) with the projective model
structure from Fact 4.1.3.1, and comparing weak equivalences and fibrations we then
see that the isomorphism between LModk[X]⊗k[X](Ch(k)) and Ch(k[X] ⊗ k[X]) is even
an isomorphism of model categories. As Csm(X) is concentrated in nonnegative degrees
and is levelwise free as an k[X]⊗ k[X]-module we can then apply [Hov99, 2.3.6], which
shows the claim.

Proof of claim (2): The proof of this claim follows the ideas of [Lod98, 3.2.2]. Consid-
ering only the underlying chain complexes, it follows directly from the definitions that
morphisms in diagram (7.1) are natural in the set X. We thus obtain a commutative
triangle

Csm(−) CBar(k[−]
)

k[−]

ϵ̃

p

of natural transformations of functors Set → Ch(k). That the right diagonal morphism
is a quasiisomorphism has been shown in Proposition 6.3.2.2, so it suffices to show that
for any set X the left diagonal morphism pX : Csm(X)→ k[X] is a quasiisomorphism.

Both k[−] as well as Λn(k·−) preserve filtered colimits as functors Set→ LModk(Ab)11.
Colimits of chain complexes are detected levelwise, the tensor product commutes with
colimits in each variable separately, and if J is a filtered category and n ≥ 0 an integer,
then the diagonal functor J→ Jn is cofinal [HTT, 5.3.1.22 and 4.1.1.8]. This implies that
Csm(−) and k[−] preserve filtered colimits as functors Set→ Ch(k). Homology preserves
filtered colimits as well [Wei94, 2.6.15], so quasiisomorphisms are closed under filtered
colimits. As any set can be written as the filtered colimit of its finite subsets, this implies
that it suffices to show that p : Csm(−)→ k[−] is a quasiisomorphism on finite sets.
11One can prove this by directly checking the universal property. We sketch this for Λn(k · −). So let J

be a filtered category, F : J→ Set a functor, Y a k-module, and gi : Λ
n(k ·F (i))→ Y a morphism of

k-modules for each object i of J such that gi ◦ (Λ
n(k ·F (f))) = gj for every morphism f : j → i in J.

Then we have to check that there exists a unique morphism of k-modules g : Λn(k · (colimF ))→ Y

such that g ◦ (Λn(k · ιi)) = gi for every object i in J, where ιi : F (i)→ colimF is the morphism that
exhibits colimF as a colimit. The k-module Λn(k · (colimF )) is free, with basis given by elements
of the form x1 · · ·xn with x1, . . . , xn elements of colimF such that xa 6= xb for a 6= b. For such
x1, . . . , xn, there must be (as J is filtered) an object i of J and elements x′

1, . . . , x
′
n of F (i) such that

xa = ιi(x
′
a) for 1 ≤ a ≤ n (filteredness was used to find a single such i that works for all n elements

at once). But then we must have g(x1 · · ·xn) = (g◦(Λn(k ·ιi)))(x
′
1 · · ·x

′
n) = gi(x

′
1 · · ·x

′
n). This shows

uniqueness. If i′ is a different object of J and x′′
1 , . . . , x

′′
n elements of F (i′) such that xa = ιi′(x

′′
a) for

1 ≤ a ≤ n, then, as J is filtered, there must exist morphisms f : i→ j and f ′ : i′ → j in J such that
F (f)(x′

a) = F (f ′)(x′′
a) for 1 ≤ a ≤ n. We thus obtain

gi
(
x′
1 · · ·x

′
n

)
=
(
gj ◦ (Λ

n(k · F (f)))
)(
x′
1 · · ·x

′
n

)
= gj

(
F (f)(x′

1) · · ·F (f)(x′
n)
)

= gj
(
F (f ′)(x′′

1) · · ·F (f ′)(x′′
n)
)
=
(
gj ◦ (Λ

n(k · F (f ′)))
)(
x′′
1 · · ·x

′′
n

)
= gi′

(
x′′
1 · · ·x

′′
n

)

so that the above formula for g(x1 · · ·xn) is independent of the choice of x′
1, . . . x

′
n, which implies

that this defines a morphism g that is compatible with the gi as required.

331



Chapter 7. Hochschild homology of polynomial algebras

Now suppose that the set X is the disjoint union of Y and Y ′, with ι : Y → X and
ι′ : Y ′ → X the inclusions. We obtain a commutative diagram of chain complexes as
follows, to be explained below.

Csm(Y )⊗ Csm(Y ′) Csm(X)

k[Y ]⊗ k[Y ′] k[X]

pY ⊗pY ′ pX

The top horizontal morphism is defined by k-linearly extending the assignment

(l ⊗ y1 · · · yn ⊗ r)⊗ (l′ ⊗ y′1 · · · y
′
n ⊗ r

′)

7→ k[ι](l) · k[ι′](l′)⊗ ι(y1) · · · ι(yn) · ι
′
(
y′1
)
· · · ι′

(
y′n
)
⊗ k[ι](r) · k[ι′](r′)

where l, r are elements of k[Y ], y1, . . . yn are elements of Y , l′, r′ are elements of k[Y ′],
and y′1, . . . , y′n are elements of Y ′. It is immediate that this is well-defined, and checking
compatibility with the boundary operator requires only unpacking the definitions and
using that k[X] is commutative. The bottom horizontal morphism is given by composing
k[ι]⊗ k[ι′] with the multiplication k[X]⊗ k[X]→ k[X].

Both the horizontal morphisms in the above diagram are isomorphisms, as one can
easily see by considering the respective bases consisting of tensor products of monomials.
To show that pX is a quasiisomorphism, it thus suffices to show that pY ⊗ pY ′ is a
quasiisomorphism.

Assume for the moment that pY and pY ′ are quasiisomorphisms. As k[Y ] and k[Y ′]
are concentrated in degree 0, we can read off their homology and can thus conclude
that Csm(Y ), Csm(Y ′), k[Y ], and k[Y ′] are all chain complexes that have free homology.
The Künneth spectral sequences12 that converge to the homology of the tensor products
Csm(Y )⊗Csm(Y ′) and k[Y ]⊗k[Y ′] thus collapse already on the second page, from which
we can deduce that pY ⊗ pY ′ is also a quasiisomorphism.

It thus suffices to show that pY and pY ′ are quasiisomorphisms in order to conclude
that pX is a quasiisomorphism as well, if X is the disjoint union of Y and Y ′. As every
finite set can be written as the disjoint union of sets that have exactly one element, we
have thus reduced the claim to showing that p{x} is a quasiisomorphism.

We now show that p{x} is a chain homotopy equivalence. Note that the chain complex
Λ(k · {x}) is free with basis 1 in degree 0, free with basis x in degree 1, and zero in other
degrees. We can define a section s of p{x} by s(r) = 1 ⊗ r, so it suffices to construct a
morphism of k-modules h : k[x]⊗k[x]→ k[x]⊗k·{x}⊗k[x] that satisfies ∂◦h = id−s◦p{x}
on elements of degree 0 and h ◦ ∂ = id on elements of degree 1. For this we define h as
follows on basis elements, where n,m ≥ 0.

h(xn ⊗ xm) :=
n−1∑

i=0

xi ⊗ x⊗ xn+m−i−1

12See for example [Rot08, 10.90].

332



7.2. De Rham forms as a strict model in CAlg(Ch(k))

Then we obtain the following calculation for the first identity.

∂
(
h(xn ⊗ xm)

)

=
n−1∑

i=0

∂
(
xi ⊗ x⊗ xn+m−i−1

)

=
n−1∑

i=0

(
xi+1 ⊗ xn+m−i−1 − xi ⊗ xn+m−i

)

=
n∑

i=1

xi ⊗ xn+m−i −
n−1∑

i=0

xi ⊗ xn+m−i

= xn ⊗ xm − 1⊗ xn+m

=
(
id− s ◦ p{x}

)
(xn ⊗ xm)

The following calculation shows the second identity.

h
(
∂(xn ⊗ x⊗ xm)

)

= h
(
xn+1 ⊗ xm

)
− h
(
xn ⊗ xm+1

)

=
n∑

i=0

xi ⊗ x⊗ xn+m−i −
n−1∑

i=0

xi ⊗ x⊗ xn+m−i

= xn ⊗ x⊗ xm

= id(xn ⊗ x⊗ xm)

This proves the claim.

7.2.2. A quasiisomorphism between de Rham forms and the
standard Hochschild complex

In this section we define and discuss ϵ, a natural quasiisomorphism from Ω•
k[−]/k to

C(k[−]).

Construction 7.2.2.1. For every set X we are going to construct a morphism of chain
complexes

ϵX : Ω•
k[X]/k → C(k[X])

where C refers to the normalized standard Hochschild complex defined in Proposi-
tion 6.3.1.10.

So let X be a set. We define ϵX as a composition as follows, where we will explain the

333



Chapter 7. Hochschild homology of polynomial algebras

individual morphisms below.

Ω•
k[X]/k C

(
k[X]

)

k[X]⊗ Λ(k ·X) C
(
k[X]

)

k[X]⊗k[X]⊗k[X] Csm(X) k[X]⊗k[X]⊗k[X] CBar(k[X]
)

ϵX

ϵ′X
∼=

ϵ′′X
∼=

k[X]⊗k[X]⊗k[X]ϵ̃X

ϵ′′′X
∼=

In k[X]⊗Λ(k ·X) the elements of X in the exterior product are to have degree 1, and
we make the resulting graded k-module into a chain complex by equipping it with the
zero boundary operator. The isomorphism ϵ′X is then the one suggested in Section 7.1,
its inverse is defined by

l ⊗ x1 · · · xn 7→ l · dx1 · · · dxn
where l is an element of k[X] and x1, . . . , xn are elements of X.

Csm(X) is as in Construction 7.2.1.1, so is given by k[X]⊗Λ(k ·X)⊗k[X] as a graded
k-module. We can thus define ϵ′′X as

l ⊗ x1 · · · xn 7→ l ⊗ (1⊗ x1 · · · xn ⊗ 1)

where l is an element of k[X] and x1, . . . , xn are elements of X, and it is clear that this
is an isomorphism of graded k-modules. We still have to check that ϵ′′X is a morphism
of chain complexes, i. e. is compatible with the boundary operators, which the following
calculations shows it is.

∂
(
l ⊗ (1⊗ x1 · · · xn ⊗ 1)

)

=
n∑

i=1

(−1)i−1l ⊗ (xi ⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ 1− 1⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ xi)

=
n∑

i=1

(−1)i−1
(
xil ⊗ (1⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ 1)

−lxi ⊗ (1⊗ x1 · · · xi−1 · xi+1 · · · xn ⊗ 1)
)

=
n∑

i=1

(−1)i−10 = 0

ϵ̃X was defined in Construction 7.2.1.1, and the lower horizontal morphism is just the
induced one. The isomorphism ϵ′′′X is to be the isomorphism from Proposition 6.3.2.4,
given by

a⊗ (a0 ⊗ · · · ⊗ an+1) 7→ (an+1 · a · a0)⊗ a1 ⊗ · · · ⊗ an

334



7.2. De Rham forms as a strict model in CAlg(Ch(k))

with a, a0, . . . , an elements of k[X]. Finally, the morphism from the standard Hochschild
complex to the normalized standard Hochschild complex is the quotient morphism from
Proposition 6.3.1.10.

Going through all the definitions, ϵX is described by the following formula13

ϵX(r · dx1 · · · dxn) =
∑

σ∈Σn

sgn(σ)r ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

=
∑

σ∈Σn

sgn(σ)σ · (r ⊗ x1 ⊗ · · · ⊗ xn)

where r is an element of k[X] and x1, . . . , xn are elements of X. ♦

Proposition 7.2.2.2. The following hold regarding the morphisms constructed in Con-
struction 7.2.2.1.

(1) Let X be a set, x1, . . . , xn elements of X, and r an element of k[X]. Then ϵX maps
the element r dx1 · · · dxn of Ωn

k[X]/k to the element r dx1 · · · dxn of Cn(k[X]).

(2) Let X be a set. Then ϵX is a morphism of commutative differential graded alge-
bras, with respect to the commutative algebra structure on the normalized standard
Hochschild complex from Proposition 6.3.2.11.

(3) The morphisms ϵX assemble to a natural transformation

ϵ : Ω•
k[−]/k → C(k[−])

of functors Set→ CAlg(Ch(k)).

(4) For every set X the chain complexes Ω•
k[X]/k and C(k[X]) are cofibrant, so the

natural transformation ϵ : Ω•
k[−]/k → C(k[−]) from claim (3) can be lifted to a

natural transformation of functors Set→ CAlg(Ch(k)cof).

(5) Let φ : k → k′ be a morphism of commutative rings. Then the diagram

k′ ⊗k Ω
•
k[−]/k k′ ⊗k C

(
k[−]

)

Ω•
k′[−]/k′ C

(
k′[−]

)
∼=

∼= (7.2)

of natural transformations of functors Set → CAlg(Ch(k′)cof) commutes, where
the horizontal functors are induced by ϵ, the left natural isomorphism is the one
from Remark 7.1.0.214, and the right natural isomorphism is the one from Re-
mark 6.3.1.11.

13For the action of Σn on C(k[X]), see Definition 6.3.2.9.
14Composed with the natural isomorphism Ω•

k′⊗kk[−]/k
∼= Ω•

k′[−]/k that is induced by the natural iso-
morphism k′ ⊗k k[−] ∼= k′[−] that is given by l ⊗ r 7→ l · φ[−](r).

335



Chapter 7. Hochschild homology of polynomial algebras

(6) For every set X, the morphism ϵX is a quasiisomorphism. ♥

Proof. Proof of claim (1): If x is an element of X, then we can consider x as an element
of k[X] and thus of C0(k[X]). By Proposition 6.3.1.10 we then have dx = 1 ⊗ x in
C1(k[X]), and using Proposition 6.3.2.10 we obtain that for x1, . . . , xn and r as in the
claim the equation

r · dx1 · · · dxn =
∑

σ∈Σn

sgn(σ)r ⊗ xσ−1(1) ⊗ · · · ⊗ xσ−1(n)

holds in Cn(k[X]), which shows the claim, as the right hand side is the formula for
ϵX(r · dx1 · · · dxn) given in Construction 7.2.2.1.

Proof of claim (2): Follows immediately from claim (1).
Proof of claim (3): Let f : X → Y be a map of sets, and denote by F = k[f ] the

induced morphism of commutative k-algebras k[X] → k[Y ]. We have to show that
C(F ) ◦ ϵX = ϵY ◦ Ω

•
F/k. So let x1, . . . , xn be elements of X and r an element of k[X].

We first evaluate the left hand side on r dx1 · · · dxn. By (1), ϵX maps r dx1 · · · dxn to
r dx1 · · · dxn. As C(F ) is compatible with the strict mixed structure as well as multipli-
cation, and given by F on degree 0 (see Propositions 6.3.1.10, 6.3.2.7 and 6.3.2.11) we
obtain the following.

(C(F ) ◦ ϵX)(r dx1 · · · dxn) = F (r) d f(x1) · · · d f(xn)

We now evaluate ϵY ◦ Ω•
F/k on r dx1 · · · dxn. The morphism Ω•

F/k maps this element
to F (r) d f(x1) · · · d f(xn). It is crucial to note at this point that this description of this
element is again of the form that allows us to apply (1), i. e. f(xi) is an element of the
set Y , not merely an element of k[Y ], see also Warning 7.2.2.5. We can thus apply (1)
to conclude that

(ϵY ◦ Ω
•
F/k)(r dx1 · · · dxn) = F (r) d f(x1) · · · d f(xn)

which shows the claim.
Proof of claim (4): For Ω•

k[X]/k this is discussed before Definition 7.1.0.1. For C(k[X]),
note that k[X] and (k[X]) = k[X]/(k ·1) are free k-modules with bases

{
xj⃗
∣∣∣ j⃗ ∈ Z×X

}

and
{
xj⃗
∣∣∣ j⃗ ∈ Z×X , j⃗ 6= 0⃗

}
, respectively, and thus C(k[X]) is cofibrant by Proposi-

tion 6.3.1.10 and [Hov99, 2.3.6].
Proof of claim (5): It suffices to check that the square commutes when evaluated at

a set X, which can be checked by writing a generic element of the upper left chain
complex as r′ ⊗ (r dx1 · · · dxn) for x1, . . . , xn elements of X, r an element of k[X], and
r′ an element of k′, and verifying that the images in the lower right along the two
compositions agree, by applying claim (1) in a manner similar to the proof of claim (3).

Proof of claim (6): ϵX is defined as the composite of five morphisms in Construc-
tion 7.2.2.1. Three of those were already remarked to be isomorphisms in Construc-
tion 7.2.2.1, and a fourth morphism is the quotient morphism C(k[X]) → C(k[X]),

336



7.2. De Rham forms as a strict model in CAlg(Ch(k))

which was shown in Proposition 6.3.1.10 to be a quasiisomorphism. It thus remains to
show that the fifth involved morphism, k[X]⊗k[X]⊗k[X] ϵ̃X , is a quasiisomorphism as well.

For this, we note as in the proof of claim (1) of Proposition 7.2.1.2 that the model
categories LModk[X](Ch(k)) and LModk[X]⊗k[X](Ch(k)) are isomorphic to Ch(k[X]) and
Ch(k[X]⊗ k[X]), respectively. The functor

k[X]⊗k[X]⊗k[X] − : LModk[X]⊗k[X](Ch(k))→ LModk[X](Ch(k))
can be identified with the extension of scalars functor along the multiplication mor-
phism k[X]⊗ k[X]→ k[X] and is thus by Fact 4.1.5.1 a left Quillen functor and hence
preserves weak equivalences between cofibrant objects by [Hov99, 1.1.12]. But ϵ̃X is a
quasiisomorphism by claim (2) of Proposition 7.2.1.2, Csm(X) is cofibrant as an object
of LModk[X]⊗k[X](Ch(k)) by claim (1) of Proposition 7.2.1.2, and CBar(k[X]) is cofibrant
as an object of LModk[X]⊗k[X](Ch(k)) by Proposition 6.3.2.3.

As an immediate conclusion of Proposition 7.2.2.2 we obtain the following result show-
ing that Ω•

k[X]/k is a strict multiplicative (but not mixed) model for HH(k[X]).
Corollary 7.2.2.3. Let X be a set. Then there is an equivalence

HH
(
k[X]

)
≃ CAlg(γ)

(
Ω•
k[X]/k

)

in CAlg(D(k)). Concretely, such an equivalence is given by the composition15

HH
(
k[X]

)
CAlg(γ)

(
C
(
k[X]

))
CAlg(γ)

(
C
(
k[X]

))
CAlg(γ)

(
Ω•
k[X]/k

)
≃ ≃ ≃

CAlg(γ)(ϵX)

where the left equivalence is the one from Proposition 6.3.4.3, the middle one is induced by
the quotient morphism from Propositions 6.3.1.10 and 6.3.2.11, and the right equivalence
is induced from ϵX as constructed in Construction 7.2.2.1. ♥

Proof. Combine Propositions 6.3.4.3, 6.3.1.10 and 6.3.2.11 with Proposition 7.2.2.2 (2),
(4), and (6).
Proposition 7.2.2.4. Let φ : k → k′ be a morphism of commutative rings and X a set.
Then there is a commutative square

k′ ⊗k HH
(
k[X]

)
k′ ⊗k CAlg(γ)

(
Ω•
k[X]/k

)

HH
(
k′ ⊗k k[X]

)
CAlg(γ)

(
k′ ⊗k Ω

•
k[X]/k

)

HH
(
k′[X]

)
CAlg(γ)

(
Ω•
k′[X]/k′

)

≃

≃ ≃

≃ ≃

≃

(7.3)

15If we later refer to “the equivalence from Corollary 7.2.2.3” we mean this specific one.

337



Chapter 7. Hochschild homology of polynomial algebras

in CAlg(D(k′)), where the two horizontal equivalences are (induced from) those from
Corollary 7.2.2.3, the top left vertical equivalence is the one from Remark 6.2.1.6, the
bottom left vertical equivalence is induced from the isomorphism k′ ⊗k k[X] ∼= k′[X] that
is given by including both tensor factors in k′[X] and then multiplying, the top right
vertical equivalence is the one from Remark 4.4.1.3, and the bottom right equivalence is
induced by the isomorphism that is given by applying the unit in the first tensor factor
and Ω•

ιk[X]/k in the second, and then multiplying. ♥

Proof. Consider the following diagram in CAlg(D(k′)) that will be explained below.

k′ ⊗k HH
(
k[X]

)
HH
(
k′ ⊗k k[X]

)
HH
(
k′[X]

)

k′ ⊗k CAlg(γ)
(

C
(
k[X]

))
CAlg(γ)

(
k′ ⊗k C

(
k[X]

))
CAlg(γ)

(
C
(
k′[X]

))

k′ ⊗k CAlg(γ)
(

C
(
k[X]

))
CAlg(γ)

(
k′ ⊗k C

(
k[X]

))
CAlg(γ)

(
C
(
k′[X]

))

k′ ⊗k CAlg(γ)
(
Ω•
k[X]/k

)
CAlg(γ)

(
k′ ⊗k Ω

•
k′[X]/k

)
CAlg(γ)

(
Ω•
k′[X]/k

)

≃

≃ ≃

≃

≃

≃ ≃

≃ ≃

≃ ≃

≃k′⊗kCAlg(γ)(ϵX)

≃ ≃

≃CAlg(γ)(k′⊗kϵX) ≃CAlg(γ)(ϵX)

The big outer rectangle is exactly given by the transpose of diagram (without a filler
so far) (7.3), after replacing the horizontal equivalences by their definition in Corol-
lary 7.2.2.3. The middle vertical morphisms are all induced by the quotient morphism
from the standard Hochschild complex to the normalized standard Hochschild complex,
see Propositions 6.3.1.10 and 6.3.2.11. The two middle left horizontal equivalences are
the ones from Remark 4.4.1.3, the middle right horizontal equivalences are the ones from
Remarks 6.3.1.7 and 6.3.1.11, combined with the equivalence k′ ⊗k k[X] ∼= k′[X] that
was already mentioned in the statement.

It now suffices to give a filler for all the small squares and rectangles in the above
diagram. The top rectangle has a filler by Remark 6.3.4.4 and minor considerations re-
garding the isomorphism k′⊗k k[X] ∼= k′[X] using naturality of the equivalence Proposi-
tion 6.3.4.3. The middle left and bottom left squares have fillers by naturality of the equiv-
alences from Remark 4.4.1.3. The middle right square has a filler by Remark 6.3.1.11.
The bottom right square has a filler by Proposition 7.2.2.2 (5).

Warning 7.2.2.5. Let X be a nonempty set. Then ϵX is not not strictly compatible
with the strict mixed structures on domain and codomain. Indeed, if x is an element of
X, then we have

d
(
ϵX
(
x2
))

= d
(
x2
)
= 1⊗ x2

338



7.3. De Rham forms as a strict model in Mixed

which is not equal (though homologous) to the following.

ϵX

(
d
(
x2
))

= ϵX(2x dx) = 2x⊗ x

In Section 7.3 we will however see that ϵ can be upgraded to a strongly homotopy linear
morphism. ♦

Warning 7.2.2.6. A previous version of this text claimed that ϵ as defined in Con-
struction 7.2.2.1 can even be considered as a natural transformation Ω•

−/k → C(−) of
functors from the full subcategory of the category of k-algebras spanned by the polyno-
mial algebras, to CAlg(Ch(k)cof), a claim that fed into the eventual proof of the main
result Theorem A.

That claim is however incorrect, as was pointed out by Thomas Nikolaus. Indeed, if
we consider the morphism of commutative rings φ : Z[x]→ Z[y] that maps x to y2, then
the diagram

Ω•
Z[x]/Z C(Z[x])

Ω•
Z[y]/Z C(Z[y])

Ω•
ϕ/Z

ϵ{x}

C(φ)

ϵ{y}

does not commute, as one can check using the element dx of the top left; The compo-
sition along the top right maps this element to 1⊗ y2 in the bottom right, whereas the
composition along the bottom left maps this element to 2y ⊗ y. This phenomenon is
closely related to ϵ failing to preserve the differential, see Warning 7.2.2.5. ♦

7.3. De Rham forms as a strict model in Mixed
Let X be a set. As a conclusion to Section 7.2 we showed in Corollary 7.2.2.3 that

Ω•
k[X]/k is a strict model for HH(k[X]) as an object in CAlg(D(k)). In this section we

show that it is also a model for HHMixed(k[X]) as an object in Mixed.
To do so we show that ϵX can be upgraded to a strongly homotopy linear morphism

in the sense of Section 4.2.3. We will define the data necessary for this, i. e. morphisms
ϵ
(l)
X for l ≥ 0 (where ϵ(0)X = ϵX), in Section 7.3.1, and the rest of the section will then be

devoted to proving that this makes ϵX into a strongly homotopy linear morphism.
As Ω•

k[X]/k has zero boundary operator, this amounts to

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X (7.4)

holding for l ≥ 1. We will be able to use the partial Leibniz rule for d on the normalized
standard Hochschild complex that we proved in Proposition 6.3.2.14 to reduce to only
needing to show the above identity for elements of degree 0. This will make up the bulk
of this section.

339



Chapter 7. Hochschild homology of polynomial algebras

A general pattern that will occur many times in this verification will be that we are
given a sum of two sums, each of which are indexed over somewhat complicated indexing
sets. We then produce a bijection between those two sets and show that the summands
that correspond along this bijection agree, perhaps up to sign. The strategy to show
that (7.4) holds will thus be to write both sides as sums over some indexing set, then
to subdivide the respective indexing sets sufficiently to be able to pairwise match up
the subsets; some will match up on the same side of (7.4) and cancel, others from one
side will match with the other side. As the indexing sets we consider will often involve
permutations, we will make heavy use of notation and definitions from Section 2.3 (34).

We now give a short overview over the main steps of the proof.
In Section 7.3.2 we will begin by writing the left hand side of (7.4) as a sum indexed

by a set I. We then write I as a disjoint union of various subsets, some of which have
“cancel” in their notation, and show that the sums over those subsets vanish.

In Section 7.3.3 we begin by considering ϵ
(l−1)
X ◦ d, and immediately subdivide the

resulting summands into two types. We will also match up the summands of the first type
with sums over some subsets of I, i. e. with summands from the left hand side of (7.4).
In Section 7.3.4 we will then turn towards the summands of the second type, and rewrite
them as a sum over a new indexing set Id that is better suited for later simplifications.
In Section 7.3.5 we consider d ◦ ϵ(l−1)

X and write this as a sum over a indexing set I1. We
then sum up the progress made so far in showing (7.4) in Section 7.3.6.

While Id and I1 are defined using similar notions, this does not hold for I, so in
Section 7.3.7 we replace the remaining subsets of I (those over which the sums have not
been matched up yet) by sets I∂even and I∂odd that are defined in a way similar to Id and
I1.

In Section 7.3.8 we then write I∂even, I∂odd, Id, and I1 as disjoint unions of various
subsets. In Section 7.3.9 we show how the sums over some of the subsets of Id cancel
with each other, and in Section 7.3.10 we show how the remaining sums match up with
each other.

Finally, we put everything together in Section 7.3.11 to prove that ϵ(•)X indeed upgrades
ϵX to a strongly homotopy linear morphism.

7.3.1. Definition of the higher homotopies
Construction 7.3.1.1. Let X be a totally ordered set. We will construct morphisms
of Z-graded k-modules

ϵ
(l)
X : Ω•

k[X]/k → C
(
k[X]

)

of degree 2l for every l ≥ 0, such that ϵ(0)X = ϵX , where ϵX is as defined in Construc-
tion 7.2.2.1.

The construction and later verifications that we will need to do to show that ϵ(•)X forms
a strongly homotopy linear morphism are somewhat involved, so we begin by introducing
some auxiliary notation and definitions.

First let l ≥ 1 be an integer. Then we let El be the following subset of the symmetric

340



7.3. De Rham forms as a strict model in Mixed

group Σ2l
16, where we consider σ to be extended by σ(0) = 0.

El :=
{
σ ∈ Σ2l

∣∣ ∀ 0 ≤ i ≤ l − 1: σ cyclically preserves the

ordering of {2i, 2i+ 1, 2i+ 2}
}

Note that as σ(0) was defined to be 0 the condition in particular implies that σ(1) < σ(2).
Next, if l,m ≥ 0 are integers, then we first define a set C(l,m) as follows.

C(l,m) :=
{
(c1, . . . , cl+1) ∈ {1, . . . ,m+ 1}l+1

∣∣ cl+1 = m+ 1 and ci + 1 ≤ ci+1 − 1 for 1 ≤ i ≤ l
}

Let l,m ≥ 0 be integers, y1, . . . , ym elements of k[X], and (c1, . . . , cl+1) an element of
C(l,m). Then we define an element T ((y1, . . . , ym), (c1, . . . , cl+1)) in C2l(k[X]) as follows.

T
(
(y1, . . . , ym), (c1, . . . , cl+1)

)
:=

c1−1∏

j=1

yj ⊗ yc1 ⊗
c2−1∏

j=c1+1

yj ⊗ · · · ⊗ ycl ⊗

cl+1−1∏

j=cl+1

yj

Note that as cl+1− 1 = m+1− 1 = m, the last tensor factor does not contain undefined
factors. The condition ci + 1 ≤ ci+1 − 1 in the definition of C(l,m) is made precisely to
ensure that the products

∏ci+1−1
j=ci+1 yj are not 1 and thus that T ((y1, . . . , ym), (c1, . . . , cl+1))

is not zero. We will furthermore use the notation T
(
(y1, . . . , ym), (c1, . . . , cl+1)

)
i
, where

0 ≤ i ≤ 2l, for the i-th tensor factor of T
(
(y1, . . . , ym), (c1, . . . , cl+1)

)
.

We can now define ϵ(l)X on degree 0, where we can prescribe the value on monomials in
X and then extend k-linearly. Every monomial in X can be written uniquely as

∏m
j=1 yj

where m ≥ 0, each yj is an element of X, and such that j < j′ implies yj < yj′ . For
example if X = {x1, x2, x3} with x1 < x2 < x3, then the monomial x21x2x33 would be
written as the product x1 · x1 · x2 · x3 · x3 · x3. On elements of this form we define ϵ(l)X as

ϵ
(l)
X




m∏

j=1

yj


 =

∑

σ∈El

sgn(σ) · σ ·




∑

(c1,...,cl+1)
∈C(l,m)

T
(
(y1, . . . , ym), (c1, . . . , cl+1)

)




Note that in the case l = 0 the set El consists only of the identity, C(l,m) only of the
1-tuple (m + 1), and that T ((y1, . . . , ym), (m + 1)) =

∏m
j=1 yj. The above definition of

ϵ
(0)
X thus recovers the definition of ϵX from Construction 7.2.2.1 on elements of degree 0.

To define ϵ(l)X in degrees other than 0, we set

ϵ
(l)
X (f dx1 · · · dxn) := ϵ

(l)
X (f) · ϵX(dx1 · · · dxn)

for f an element of k[X] and x1, . . . , xn elements of X, and extend k-linearly. Note that
Proposition 7.2.2.2 (2) implies that ϵ(0)X = ϵX . ♦
16The symmetric group Σ2l is the group of bijections of the set {1, . . . , 2l}.

341



Chapter 7. Hochschild homology of polynomial algebras

7.3.2. Simplification of the boundary
We begin the verification that

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

holds for l ≥ 1 by subdividing the left side, and showing that some parts cancel directly.

Definition 7.3.2.1. Let X be a set. Then we define for integers 0 ≤ i ≤ n a morphism
of k-modules

∂i : Cn(k[X])→ Cn−1(k[X])

as the k-linear extension of

∂i : x
v⃗0 ⊗ xv⃗1 ⊗ · · · ⊗ xv⃗n 7→ xv⃗0 ⊗ · · · ⊗ x ⃗vi−1 ⊗ xv⃗i+ ⃗vi+1 ⊗ x ⃗vi+2 ⊗ · · · ⊗ xv⃗n

for 0 ≤ i ≤ n− 1 and
∂n : x

v⃗0 ⊗ xv⃗1 ⊗ · · · ⊗ xv⃗n 7→ xv⃗n+v⃗0 ⊗ xv⃗1 ⊗ · · · ⊗ x ⃗vn−1

for i = n, with v⃗0, . . . , v⃗n elements of ZX≥0 (with all but finitely many components zero)
such that v⃗1, . . . , v⃗n are non-zero. ♦

Remark 7.3.2.2. Let X be a totally ordered set. Then it follows directly from the
definition of the boundary operator on the normalized standard Hochschild complex of
k[X] in Propositions 6.3.1.9 and 6.3.1.10 that for n ≥ 1

∂ : Cn(k[X])→ Cn−1(k[X])

is given by the following sum.

∂ =
n∑

i=0

(−1)i∂i

This implies in particular the following formula, where l ≥ 1, and y1, . . . , ym and other
notation is as in Construction 7.3.1.1.

∂


ϵ(l)X




m∏

j=1

yj





 =

∑

0≤i≤2l,
σ∈El

c⃗∈C(l,m)

(−1)i · sgn(σ) · ∂i
(
σ · T

(
(y1, . . . , ym), c⃗

))

♦

Definition 7.3.2.3. In this definition we use notation from Construction 7.3.1.1. Let
X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construc-
tion 7.3.1.1. We will define several subsets of the set

I := {0, . . . , 2l} × El × C(l,m)

that by Remark 7.3.2.2 is the indexing set of a sum we can express ∂(ϵ(l)X (
∏m

j=1 yj)) as.

342



7.3. De Rham forms as a strict model in Mixed

For 1 ≤ i ≤ 2l − 1 we define the following set.

Icanceli :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and for all 0 ≤ p ≤ l − 1 it holds that

{σ−1(i), σ−1(i+ 1)} * {2p, 2p+ 1, 2p+ 2}
}

For i = 0 and i = 2l we make the following definitions.
Icancel0 :=

{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = 0 and σ−1(1) 6= 1
}

Icancel2l :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = 2l and σ−1(2l) 6= 2
}

The above three subsets of I cover the large part of I where σ−1(i) and σ−1(i + 1) do
not take certain special values. We now define a number of additional subsets to deal
with the remaining elements. We begin with the case in which i is neither 0 nor 2l, and
where 2p + 1 is involved. So we make the following definitions for 1 ≤ i ≤ 2l − 1 and
1 ≤ p ≤ l − 1.

Icanceli,2p,2p+1 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 2p and σ−1(i+ 1) = 2p+ 1

and cp+1 + 1 < cp+2 − 1
}

Icanceli,2p+1,2p+2 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 2p+ 1 and σ−1(i+ 1) = 2p+ 2

and cp + 1 < cp+1 − 1
}

While p = 0 would be impossible in the definition of Icanceli,2p,2p+1, it is possible for Icanceli,2p+1,2p+2,
though we need a slightly different definition, as there is no c0. So we make the following
definition for 1 ≤ i ≤ 2l − 1.

Icanceli,1,2 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 1 and σ−1(i+ 1) = 2

and 0 < c1 − 1
}

Now we consider the case where 2p+1 is not involved. We make the following definition
for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1.

Ii,2p+2,2p :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 2p+ 2 and σ−1(i+ 1) = 2p
}

We next consider the cases i = 0 and i = 2l.17

Icancel0,0,1 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = 0 and σ−1(1) = 1 and c1 + 1 < c2 − 1
}

I0,0,1 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = 0 and σ−1(1) = 1 and c1 + 1 = c2 − 1
}

I2l,2,0 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = 2l and σ−1(2l) = 2
}

We now need to cover the left over complement. So we make the following definition for
1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1.

Ii,2p,2p+1 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 2p and σ−1(i+ 1) = 2p+ 1

and cp+1 + 1 = cp+2 − 1
}

343



Chapter 7. Hochschild homology of polynomial algebras

Ii,2p+1,2p+2 :=
{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 2p+ 1 and σ−1(i+ 1) = 2p+ 2

and cp + 1 = cp+1 − 1
}

Finally, we define the following for 1 ≤ i ≤ 2l − 1.
Ii,1,2 :=

{(
i′, σ, c⃗

)
∈ I

∣∣ i′ = i and σ−1(i) = 1 and σ−1(i+ 1) = 2

and c1 = 1
}

Still with l, m, and y1, . . . , ym as above, we also introduce the following shorthand
notation. For (i, σ, c⃗) an element of I we define

B
(
(i, σ, c⃗)

)
:= (−1)i · sgn(σ) · ∂i

(
σ · T

(
(y1, . . . , ym), c⃗

))

so that we with Remark 7.3.2.2 have the following concise formula for the boundary of
ϵ
(l)
X (
∏m

j=1 yj).

∂


ϵ(l)X




m∏

j=1

yj





 =

∑

v∈I

B(v)

♦

Proposition 7.3.2.4. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Then I is the disjoint union of the following
subsets.

Icanceli for 0 ≤ i ≤ 2l

Icanceli,2p,2p+1 for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1

Icanceli,2p+1,2p+2 for 1 ≤ i ≤ 2l − 1 and 0 ≤ p ≤ l − 1

Ii,2p+2,2p for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1

Ii,2p,2p+1 for 1 ≤ i ≤ 2l − 1 and 1 ≤ p ≤ l − 1

Ii,2p+1,2p+2 for 1 ≤ i ≤ 2l − 1 and 0 ≤ p ≤ l − 1

Icancel0,0,1

I0,0,1

I2l,2,0

♥

Proof. We provide a proof here, but even the very diligent reader that otherwise reads
all proofs might prefer to go through the case distinctions for themselves rather than
17Note that l ≥ 1 implies that c2 is well-defined.

344



7.3. De Rham forms as a strict model in Mixed

reading the proof. The only arguments appearing apart from nested case distinctions is
to look into the definitions of El and C(l,m) to see how they exclude certain values, e. g.
σ−1(i) can not be 0 if i > 0 or σ(2p) = σ(2p+ 1) + 1 is not possible.

In all listed subsets there is a unique integer occurring as the first component of the
elements. We can thus consider the possible values for the first component separately.

We begin with the value 0. So let (0, σ, c⃗) be an element of I. We have to show that
(0, σ, c⃗) is an element of exactly one of the subsets Icancel0 , Icancel0,0,1 , and I0,0,1. If σ−1(1) 6= 1,
then the element lies in Icancel0 but not in the other two subsets. If instead σ−1(1) = 1,
then the element lies in Icancel0,0,1 if and only if c1 + 1 < c2 − 1 and in I0,0,1 if and only if
c1 + 1 = c2 − 1. As c1 + 1 ≤ c2 − 1 by the definition of C(l,m), this covers all cases.

We next consider elements for which the first component is 2l. So let (2l, σ, c⃗) be an
element of I. We have to show that (0, σ, c⃗) is an element of exactly one of the subsets
Icancel2l and I2l,2,0. But the element is in Icancel2l if and only if σ−1(2l) 6= 2, and in I2l,2,0
otherwise.

Now let 1 ≤ i ≤ 2l−1 and (i, σ, c⃗) an element of I. We have to show that this element
lies in precisely one of the following subsets of I.

Icanceli

Icanceli,2p,2p+1 for 1 ≤ p ≤ l − 1

Icanceli,2p+1,2p+2 for 0 ≤ p ≤ l − 1

Ii,2p+2,2p for 1 ≤ p ≤ l − 1

Ii,2p,2p+1 for 1 ≤ p ≤ l − 1

Ii,2p+1,2p+2 for 0 ≤ p ≤ l − 1

We first note that (i, σ, c⃗) is an element of Icanceli if and only if the condition is satisfied
that for all 0 ≤ p ≤ l− 1 it holds that {σ−1(i), σ−1(i+1)} * {2p, 2p+1, 2p+2}. It thus
remains to show that (i, σ, c⃗) is an element of one of the other subsets listed above if and
only if there exists a 0 ≤ p ≤ l−1 such that {σ−1(i), σ−1(i+1)} ⊆ {2p, 2p+1, 2p+2}. It
follows directly from the definitions that if (i, σ, c⃗) is an element of one of those subsets,
then there exists such a 0 ≤ p ≤ l − 1.

We thus assume that 0 ≤ p ≤ l−1 is such that {σ−1(i), σ−1(i+1)} ⊆ {2p, 2p+1, 2p+2},
and what we need to show is that (i, σ, c⃗) is an element of exactly one of the subsets of
I listed below.

Ii,2p+2,2p for 1 ≤ p ≤ l − 1

Icanceli,2p,2p+1 for 1 ≤ p ≤ l − 1

Ii,2p,2p+1 for 1 ≤ p ≤ l − 1

Icanceli,2p+1,2p+2 for 0 ≤ p ≤ l − 1

Ii,2p+1,2p+2 for 0 ≤ p ≤ l − 1

By definition of El it must hold either that

σ(2p) < σ(2p+ 1) < σ(2p+ 2)

345



Chapter 7. Hochschild homology of polynomial algebras

or
σ(2p+ 2) < σ(2p) < σ(2p+ 1)

or
σ(2p+ 1) < σ(2p+ 2) < σ(2p)

which implies that it is not possible to have one of the following three equalities.

σ(2p+ 1) = σ(2p+ 2) + 1

σ(2p+ 2) = σ(2p) + 1

σ(2p) = σ(2p+ 1) + 1

This means that we must be in precisely one of the following three cases.

(a) σ−1(i) = 2p+ 2 and σ−1(i+ 1) = 2p.

(b) σ−1(i) = 2p and σ−1(i+ 1) = 2p+ 1.

(c) σ−1(i) = 2p+ 1 and σ−1(i+ 1) = 2p+ 2.

We now go through these cases individually.
In case (a), we first note that (i, σ, c⃗) can only possibly be an element of a subset of the

first type listed above. Furthermore, note that p can not be 0, because σ(0) = 0 6= i+ 1.
Thus we must have 1 ≤ p ≤ l − 1, and so (i, σ, c⃗) is indeed an element of Ii,2p+2,2p.

In case (b), the element (i, σ, c⃗) can only possibly be an element of the second or third
type of subset listed above, i. e. Icanceli,2q,2q+1 and Ii,2q,2q+1 for 1 ≤ q ≤ l− 1. Again p can not
be 0, as σ(0) = 0 6= i. By definition of C(l,m) we must have cp+1 + 1 ≤ cp+2 − 1, so we
have either cp+1 +1 < cp+2− 1 or cp+1 +1 = cp+2− 1. The element (i, σ, c⃗) is an element
of Icanceli,2p,2p+1 precisely in the first case and of Ii,2p,2p+1 precisely in the second case.

Finally, in the case (c), the element (i, σ, c⃗) can only possibly be an element of the
fourth or fifth type of subset listed above, i. e. Icanceli,2q+1,2q+2 and Ii,2q+1,2q+2 for 0 ≤ q ≤ l−1.
If p > 0, then the argument is analogous to the case (b), but it remains to show that
if p = 0, then (i, σ, c⃗) is an element of precisely one of Icanceli,1,2 and Ii,1,2. It is an element
of the first precisely if c1 > 1 and of the second precisely if c1 = 1. As c1 ≥ 1 by the
definition of C(l,m), this finishes the proof.

Proposition 7.3.2.5. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Then the following holds for every 1 ≤ i ≤ 2l− 1.

∑

v∈Icancel
i

B(v) = 0

♥

346



7.3. De Rham forms as a strict model in Mixed

Proof. Let (i, σ, c⃗) be an element of Icanceli . Then we claim that (i, (i i+ 1) ◦ σ, c⃗) is also
an element of Icanceli . For this we need to show that (i i + 1) ◦ σ is again an element of
El, and that for all 0 ≤ p ≤ l − 1 the following holds.

{
σ−1
(
(i i+ 1)−1(i)

)
, σ−1

(
(i i+ 1)−1(i+ 1)

) }
* {2p, 2p+ 1, 2p+ 2}

This latter condition follows directly from (i, σ, c⃗) being an element of Icanceli given the
following short calculation.

{
σ−1
(
(i i+ 1)−1(i)

)
, σ−1

(
(i i+ 1)−1(i+ 1)

) }

=
{
σ−1(i+ 1), σ−1(i)

}
=
{
σ−1(i), σ−1(i+ 1)

}

We still have to show that (i i+1) ◦ σ is an element of El. So let 0 ≤ p ≤ l− 1. Then
there is a condition on the ordering of the three integers obtained by applying (i i+1)◦σ
to 2p, 2p+ 1, and 2p+ 2. Applying σ to those three elements, the condition is satisfied
as σ is in El. As postcomposing with (i i+ 1) only swaps i and i+ 1, the condition will
thus also be satisfied for (i i + 1) ◦ σ as long as at most one of i and i + 1 occurs as a
value of 2p, 2p+ 1, and 2p+ 2 under σ. But this is ensured by the condition that

{
σ−1(i), σ−1(i+ 1)

}
* {2p, 2p+ 1, 2p+ 2}

that holds due to (i′, σ, c⃗) being an element of Icanceli .
Now let S be a subset of Σ2l containing exactly one representative of each right coset

of {id, (i i+ 1)}. We then obtain
∑

v∈Icancel
i

B(v) =
∑

(i,σ,⃗c)∈Icancel
i

such that
σ∈S

(
B
(
(i, σ, c⃗)

)
+B

((
i, (i i+ 1) ◦ σ, c⃗

)))

so that it suffices to show that if (i, σ, c⃗) is an element of Icanceli , then the following holds.

B((i, σ, c⃗)) + B((i, (i i+ 1) ◦ σ, c⃗)) = 0

But as ∂i multiplies together the i-th and i+ 1-th tensor factor we have

∂i

(
(i i+ 1) ·

(
σ · T

(
(y1, . . . , ym), c⃗

)))
= ∂i

(
σ · T

(
(y1, . . . , ym), c⃗

))

which together with sgn((i i+ 1)) = −1 finishes the proof.

Proposition 7.3.2.6. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈Icancel
0

B(v) +
∑

v∈Icancel
2l

B(v) = 0

♥

347



Chapter 7. Hochschild homology of polynomial algebras

Proof. We prove this by constructing a bijection

φ : Icancel0 → Icancel2l

such that for every element v of Icancel0 we have B(φ(v)) = −B(v).
We define φ as follows.

φ : (0, σ, c⃗) 7→ (2l, σ1→2l ◦ σ, c⃗)

We also directly define the candidate inverse map as follows.

ψ : (2l, σ, c⃗) 7→ (0, σ2l→1 ◦ σ, c⃗)

It is clear that φ and ψ will be mutually inverse bijections as long as both are well-
defined.

Before showing well-definedness we begin with a small observation. Let (0, σ, c⃗) be an
element of Icancel0 . Then the definition of Icancel0 rules out that σ−1(1) = 1, and we claim
that the requirement that σ is an element of El also rules out σ−1(1) = 2. Indeed, if
we had σ(2) = 1, then, as σ(0) = 0, we would have σ(0) < σ(2), which due to σ ∈ El
requires that σ(1) is an integer bigger than σ(0) and smaller than σ(2), which would be
impossible. In a completely analogous way one can see that if (2l, σ, c⃗) is an element of
Icancel2l , then σ−1(2l) can be neither 1 nor 2.

Now we turn to showing that φ is well-defined. So let (0, σ, c⃗) be an element of Icancel0 .
We have to show that (2l, σ1→2l ◦ σ, c⃗) is an element of Icancel2l .

We first show that σ1→2l◦σ is an element of El. So let 0 ≤ p ≤ l−1. As σ1→2l preserves
the ordering of the subset {2, . . . 2l} it is immediate that σ1→2l ◦ σ cyclically preserves
the ordering of {2p, 2p+ 1, 2p+ 2} as long as none of the three values σ(2p), σ(2p+ 1),
and σ(2p + 2) is 1. So assume that 0 ≤ p ≤ l − 1 is such that one of these three values
is 1. Our previous observation rules out that this can happen when p = 0, so we may
assume that 1 ≤ p ≤ l − 1, which implies that 2p, 2p + 1, and 2p + 2 are all at least 1
and hence their images under σ will also be at least 1, which implies that the one that
is 1 will be the minimum, and σ being in El will then imply which of the other two
values must be bigger. We now consider the three possible cases separately. So assume
first that σ(2p) = 1. We then obtain that

σ(2p) < σ(2p+ 1) < σ(2p+ 2)

which implies the following.

(σ1→2l ◦ σ)(2p+ 1) < (σ1→2l ◦ σ)(2p+ 2) < (σ1→2l ◦ σ)(2p)

Next, assume that σ(2p+ 1) = 1. In this case we must have

σ(2p+ 1) < σ(2p+ 2) < σ(2p)

which implies the following.

(σ1→2l ◦ σ)(2p+ 2) < (σ1→2l ◦ σ)(2p) < (σ1→2l ◦ σ)(2p+ 1)

348



7.3. De Rham forms as a strict model in Mixed

Finally, assume that σ(2p+ 2) = 1. Then we must have

σ(2p+ 2) < σ(2p) < σ(2p+ 1)

which implies the following.

(σ1→2l ◦ σ)(2p) < (σ1→2l ◦ σ)(2p+ 1) < (σ1→2l ◦ σ)(2p+ 2)

This shows that σ1→2l ◦ σ is an element of El. To show that φ is well-defined we still
need to show that

(σ1→2l ◦ σ)
−1(2l) = σ−1

(
σ−1
1→2l(2l)

)
= σ−1(1)

is not 2. But this has been shown in the observation we made above.
We have now shown that φ is well-defined. That ψ is well-defined can be shown in a

completely analogous way.
It remains to show that for every element v of Icancel0 we have B(φ(v)) = −B(v). So

let (0, σ, c⃗) be an element of Icancel0 . Then we have the following calculation.

B
(
φ
(
(0, σ, c⃗)

))

= B
(
(2l, σ1→2l ◦ σ, c⃗)

)

= (−1)2l · sgn(σ1→2l ◦ σ) · ∂2l

(
σ1→2l ·

(
σ · T

(
(y1, . . . , ym), c⃗

)))

= sgn(σ1→2l) · sgn(σ) · ∂0
(
σ · T

(
(y1, . . . , ym), c⃗

))

= (−1) · sgn(σ) · ∂0
(
σ · T

(
(y1, . . . , ym), c⃗

))

= −B
(
(0, σ, c⃗)

)

Proposition 7.3.2.7. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Let 1 ≤ p ≤ l−1 be an integer. Then the following
holds. ∑

1≤i≤2l−1
v∈Icancel

i,2p,2p+1

B(v) +
∑

1≤i≤2l−1
v∈Icancel

i,2p+1,2p+2

B(v) = 0

♥

Proof. We use the following notation.

J :=
{
(i, v) ∈ {1, . . . , 2l − 1} × I

∣∣∣ v ∈ Icanceli,2p,2p+1

}

J ′ :=
{
(i, v) ∈ {1, . . . , 2l − 1} × I

∣∣∣ v ∈ Icanceli,2p+1,2p+2

}

To prove this proposition it then suffices to construct maps

φ : J → J ′ and ψ : J ′ → J

349



Chapter 7. Hochschild homology of polynomial algebras

that are mutually inverse bijections such that for every element (i, v) of J we have
B(w) = −B(v) if w is the second component of φ((i, v)).

So let (i, (i, σ, c⃗)) be an element of J . By definition of Icanceli,2p,2p+1 we have σ(2p) = i and
σ(2p + 1) = i + 1 so that σ(2p) < σ(2p + 1). The definition of El then implies that we
are in one of the following two cases.

(a) σ(2p) < σ(2p+ 1) < σ(2p+ 2)

(b) σ(2p+ 2) < σ(2p) < σ(2p+ 1)

If we are in case (a) we let τ = σi+1→σ(2p+2)−1
18, and if we are instead in case (b) we

let τ = σi+1→σ(2p+2). In both cases we define φ as follows.

φ
((
i, (i, σ, c⃗)

))
:=
(
τ(i+ 1),

(
τ(i+ 1), τ ◦ σ, c⃗+ ⃗ep+1

))

We will show later that φ is actually well-defined, but will first define ψ. So let
(i, (i, σ, c⃗)) be an element of J ′. By definition of Icanceli,2p+1,2p+2 we have σ(2p + 1) = i and
σ(2p + 2) = i + 1 so that σ(2p + 1) < σ(2p + 2). The definition of El then implies that
we are in one of the following two cases.

(a) σ(2p) < σ(2p+ 1) < σ(2p+ 2)

(b) σ(2p+ 1) < σ(2p+ 2) < σ(2p)

If we are in case (a) we let τ ′ = σi→σ(2p)+1
19 and if we are instead in case (b) we let

τ ′ = σi→σ(2p) . In both cases we define ψ as follows.

ψ
((
i, (i, σ, c⃗)

))
:=
(
τ ′(i)− 1,

(
τ ′(i)− 1, τ ′ ◦ σ, c⃗− ⃗ep+1

))

We next show that φ is well-defined. So let (i, (i, σ, c⃗)) be an element of J . We first
show that 1 ≤ τ(i + 1) ≤ 2l − 1. That 1 ≤ τ(i + 1) is clear. In case (a) we have that
τ(i+ 1) is by definition strictly smaller than σ(2p+ 2), which can be at most 2l, and in
case (b) we can use that σ(2p+2) is strictly smaller than σ(2p) by virtue of us being in
case (b), and σ(2p) is at most 2l. This show that τ(i+ 1) ≤ 2l − 1.

Next we need to show that τ ◦ σ is an element of El. As τ preserves the ordering of
the complement of {σ(2p + 1)} it immediately follows from σ cyclically preserving the
ordering of {2q, 2q + 1, 2q + 2} that τ ◦ σ does so as well, as long as 0 ≤ q ≤ l − 1 with
q 6= p. But if we are in case (a) then we have

(τ ◦ σ)(2p) < (τ ◦ σ)(2p+ 1) < (τ ◦ σ)(2p+ 2)

and in case (b) we have

(τ ◦ σ)(2p+ 1) < (τ ◦ σ)(2p+ 2) < (τ ◦ σ)(2p)

18Note that σ(2p+ 1) < σ(2p+ 2) implies σ(2p+ 2)− 1 ≥ σ(2p+ 1) ≥ 1, so τ is well-defined.
19Note that σ(2p) < σ(2p+ 1) implies σ(2p) + 1 ≤ σ(2p+ 1) ≤ 2l, so τ ′ is well-defined.

350



7.3. De Rham forms as a strict model in Mixed

so that τ ◦ σ cyclically preserves the ordering of {2p, 2p+ 1, 2p+ 2} as well.
To finish showing that (τ(i + 1), τ ◦ σ, c⃗ + ⃗ep+1) is an element of I we need to show

that c⃗′ = c⃗ + ⃗ep+1 is an element of C(l,m). Most of the (in)equalities that need to
be satisfied for this are inherited from c⃗, as c⃗′ has all components except the p + 1-th
component in common with c⃗, so we are left to show that cp + 1 ≤

(
cp+1 + 1

)
− 1 and(

cp+1 + 1
)
+ 1 ≤ cp+2 − 1. The former follows directly from cp + 1 ≤ cp+1 − 1, and the

latter follows from cp+1 + 1 < cp+2 − 1, which is part of the definition of Icanceli,2p,2p+1.
We have now shown that (τ(i+ 1), τ ◦ σ, c⃗+ ⃗ep+1) is an element of I, and we need to

show that it is even an element of Icancelτ(p+1),2p+1,2p+2. The condition on τ ◦ σ holds as

τ
(
σ(2p+ 1)

)
= τ(i+ 1)

and τ is defined exactly so that τ(i + 1) + 1 = τ(σ(2p + 2)). The condition on c⃗ + ⃗ep+1

requires that (
cp
)
+ 1 <

(
cp+1 + 1

)
− 1

which holds as cp + 1 ≤ cp+1 − 1 due to c⃗ being in C(l,m).
This finishes the proof that φ is well-defined. That ψ is well-defined can be shown

completely analogously.
We next show that ψ ◦ φ = id. So let (i, (i, σ, c⃗)) be an element of J and τ as in the

definition of φ so that the following holds.

φ
((
i, (i, σ, c⃗)

))
:=
(
τ(i+ 1),

(
τ(i+ 1), τ ◦ σ, c⃗+ ⃗ep+1

))

Then let τ ′ be as in the definition of ψ such that we have the following.

ψ

(
φ
((
i, (i, σ, c⃗)

)))
:=
(
τ ′
(
τ(i+ 1)

)
− 1,

(
τ ′
(
τ(i+ 1)

)
− 1, τ ′ ◦ τ ◦ σ, c⃗+ ⃗ep+1 − ⃗ep+1

))

Inspecting this it is clear that it suffices to show that τ ′ ◦ τ is the identity. Note that
τ maps i + 1 to some element but preserves the ordering of the complement, whereas
τ ′ preserves the ordering of the complement of {τ(i + 1)}. The composition thus also
preserves the ordering of the complement of {i+1}, so that it suffices to show that τ ′ ◦ τ
maps i+ 1 to i+ 1.

For this we distinguish between the two cases. Let us first assume case (a). Then τ

maps i + 1 to σ(2p + 2) − 1. In showing that φ is well-defined we already saw that
φ((i, (i, σ, c⃗))) will be as in case (a) for ψ. Thus τ ′ is defined by mapping τ(i + 1)
to (τ ◦ σ)(2p) + 1. As σ(2p) is smaller than both σ(2p + 1) and σ(2p + 2), we have
(τ ◦σ)(2p) = σ(2p) so that we obtain the following calculation, where the second equality
comes from the definition of Icanceli,2p,2p+1.

(τ ◦ σ)(2p) + 1 = σ(2p) + 1 = i+ 1

Let us now assume case (b). Then τ maps i + 1 to σ(2p + 2). In showing that φ is
well-defined we already saw that φ((i, (i, σ, c⃗))) will be as in case (b) for ψ. Thus τ ′ is
defined by mapping τ(i+1) to (τ ◦σ)(2p). As σ(2p) is smaller than σ(2p+1) but bigger

351



Chapter 7. Hochschild homology of polynomial algebras

than σ(2p+2), we have τ(σ(2p)) = σ(2p)+1 so that we obtain the following calculation,
where the second equality comes from the definition of Icanceli,2p,2p+1.

(τ ◦ σ)(2p) = σ(2p) + 1 = i+ 1

We have now shown that ψ ◦ φ = id. That φ ◦ ψ = id can be proven in an analogous
way.

It remains to show that for every element (i, (i, σ, c⃗)) of J

B(w) = −B
(
(i, σ, c⃗)

)

holds if w is the second component of φ((i, (i, σ, c⃗))). Let τ again be like in the definition
of φ((i, (i, σ, c⃗))), so that φ((i, (i, σ, c⃗))) is given by (τ(i + 1), (τ(i + 1), τ ◦ σ, c⃗ + ⃗ep+1)).
We can then carry out the following calculation.

B
(
(τ(i+ 1), τ ◦ σ, c⃗+ ⃗ep+1)

)

= (−1)τ(i+1) · sgn(τ ◦ σ) · ∂τ(i+1)

(
(τ ◦ σ) · T

(
(y1, . . . , ym), c⃗+ ⃗ep+1

))

= (−1)τ(i+1) · sgn(τ) · sgn(σ) · ∂τ(i+1)

(
(τ ◦ σ) · T

(
(y1, . . . , ym), c⃗+ ⃗ep+1

))

= (−1)τ(i+1) · (−1)τ(i+1)−(i+1) · sgn(σ) · ∂τ(i+1)

(
(τ ◦ σ) · T

(
(y1, . . . , ym), c⃗+ ⃗ep+1

))

= −(−1)i · sgn(σ)∂τ(i+1)

(
(τ ◦ σ) · T

(
(y1, . . . , ym), c⃗+ ⃗ep+1

))

It now remains to show that

∂τ(i+1)

(
(τ ◦ σ) · T

(
(y1, . . . , ym), c⃗+ ⃗ep+1

))
= ∂i

(
σ · T

(
(y1, . . . , ym), c⃗

))
(∗)

On the left hand side we start with T
(
(y1, . . . , ym), c⃗+ ⃗ep+1

)
, permute the tensor factors

with τ ◦ σ, and then multiply the τ(i+ 1)-th and τ(i+ 1) + 1-th tensor factor together.
Note that (τ ◦ σ)−1(τ(i+ 1)) = σ−1(i+ 1) = 2p+ 1, and in both cases we distinguished
one can furthermore check that τ−1(τ(i+1)+1) = σ(2p+2). As τ preserves the ordering
of the complement of {i+1}, we can thus describe the process of obtaining the left hand
side of (∗) from T

(
(y1, . . . , ym), c⃗+ ⃗ep+1

)
also as follows: First we permute the tensor

factors using σ, then we remove the σ(2p + 1) = i + 1-th tensor factor and replace the
σ(2p+ 2)-th tensor factor by its product with the σ(2p+ 1)-th tensor factor.

The σ(2p+ 2)-th tensor factor is given by

T
(
(y1, . . . , ym), c⃗+ ⃗ep+1

)
2p+2

=

c′p+2−1∏

j=c′p+1+1

yj

where we define c⃗′ = c⃗+ ⃗ep+1 for ease of notation, and the σ(2p+ 1)-th tensor factor is
given by

T
(
(y1, . . . , ym), c⃗+ ⃗ep+1

)
2p+1

= yc′p+1

352



7.3. De Rham forms as a strict model in Mixed

so that, using that c′p+1 = cp+1 + 1 and that the other components of c′ equal those of c,
we obtain that the product is

ycp+1+1 ·




cp+2−1∏

j=cp+1+2

yj


 =

cp+2−1∏

j=cp+1+1

yj

which is exactly the 2p + 2-th tensor factor of T
(
(y1, . . . , ym), c⃗

)
. As the tensor factors

of T
(
(y1, . . . , ym), c⃗′

)
and T

(
(y1, . . . , ym), c⃗

)
are equal except the 2p-th, 2p + 1-th, and

2p + 2-th, we can thus describe the process of obtaining the left hand side of (∗) from
T
(
(y1, . . . , ym), c⃗

)
as follows (note that the second argument of T is now c⃗, not c⃗′): First

we permute the tensor factors using σ, then we remove the σ(2p + 1)-th tensor factor
and replace the σ(2p)-th tensor factor by the 2p-th tensor factor of T

(
(y1, . . . , ym), c⃗′

)
.

We have

T
(
(y1, . . . , ym), c⃗′

)
2p

=

(cp+1+1)−1∏

j=cp+1

yj

=




cp+1−1∏

j=cp+1

yj


 · ycp+1

= T
(
(y1, . . . , ym), c⃗

)
2p
· T
(
(y1, . . . , ym), c⃗

)
2p+1

so that we can also describe the process of obtaining the left hand side of (∗) from
T
(
(y1, . . . , ym), c⃗

)
as follows: First we permute the tensor factors using σ, then we remove

the σ(2p + 1)-th tensor factor and replace the σ(2p)-th tensor factor by the product of
the σ(2p)-th tensor factor with the σ(2p + 1)-th tensor factor. But this is exactly the
definition of the right hand side, as σ(2p) = i.

Proposition 7.3.2.8. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈Icancel
0,0,1

B(v) +
∑

1≤i≤2l−1
v∈Icancel

i,1,2

B(v) = 0

♥

Proof. This proposition and proof is very similar to Proposition 7.3.2.7, but a easier, as
we are always in case (a).20 We will thus refer to the proof of Proposition 7.3.2.7 for
20The reason this is a separate proposition is the fact that the condition that c1 needs to satisfy for

c⃗ ∈ C(l,m) is not precisely of the same form as for ci with i > 1, which makes the definitions a little
different, and that σ(2p) is always 0 if p = 0. Those differences don’t add any complications to the
proof and instead make it simpler however.

353



Chapter 7. Hochschild homology of polynomial algebras

more details of the proof. We use the following notation.

J :=
{
(i, v) ∈ {1, . . . , 2l − 1} × I

∣∣∣ v ∈ Icanceli,1,2

}

To prove this proposition it then suffices to construct maps

φ : Icancel0,0,1 → J and ψ : J → Icancel0,0,1

that are mutually inverse bijections such that for every element v of J the identity
B(w) = −B(v) holds if w is the second component of φ(v).

We begin by defining φ, which we do as follows.21

φ
(
(0, σ, c⃗)

)
=
(
σ(2)− 1,

(
σ(2)− 1, σ1→σ(2)−1 ◦ σ, c⃗+ e⃗1

))

Now let (i, (i, σ, c⃗)) be an element of J . Then we define ψ as follows.

ψ
((
i, (i, σ, c⃗)

))
= (0, σi→1 ◦ σ, c⃗− e⃗1)

We next show that φ is well-defined. So let (0, σ, c⃗) be an element of Icancel0,0,1 . Then
1 ≤ σ(2) − 1 ≤ 2l − 1 and σ1→σ(2)−1 ◦ σ ∈ El can be shown exactly as in the proof of
Proposition 7.3.2.7. To see that c⃗ + e⃗1 is an element of C(l,m) we need to show that
(c1 + 1) + 1 ≤ c2 − 1, which follows from the condition c1 + 1 < c2 − 1 that is part of
the definition of Icancel0,0,1 . To see that (σ(2)− 1, σ1→σ(2)−1 ◦ σ, c⃗+ e⃗1) is even an element of
Icanceli,1,2 we need to show a condition on the values of 1 and 2 under σ1→σ(2)−1 ◦ σ, which
can be done exactly as in Proposition 7.3.2.7, and that 0 < (c1 + 1) − 1, which follows
from c1 ≥ 1.

The proof that ψ is well-defined is very similar. That φ and ψ are mutually inverse
can be shown just as in Proposition 7.3.2.7 (though the proof is easier, as only one case
needs to be considered). Finally, that B(w) = −B(v) for every element v of J with w

the second component of φ(v) can also be shown in exactly the same way as in the proof
of Proposition 7.3.2.7.

We sum up the progress made in this section with the following proposition.

Proposition 7.3.2.9. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Let 1 ≤ p ≤ l−1 be an integer. Then the following
holds.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
=

∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q+2,2q

B(v) +
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v)

+
∑

v∈I0,0,1

B(v) +
∑

v∈I2l,2,0

B(v)

♥
21As σ(1) = 1 by definition of Icancel

0,0,1 we must have σ(2) ≥ 2, so σ(2)− 1 ≥ 1.

354



7.3. De Rham forms as a strict model in Mixed

Proof. This follows by combining the previous results as follows. We start by applying
Remark 7.3.2.2 and Definition 7.3.2.3.

∂
(
ϵ
(l)
X (y1 · · · ym)

)

=
∑

v∈I

B(v)

Now we apply the decomposition of I from Proposition 7.3.2.4.
=

∑

1≤i≤2l−1,
v∈Icancel

i

B(v)

+
∑

v∈Icancel
0

B(v) +
∑

v∈Icancel
2l

B(v)

+
∑

1≤q≤l−1




∑

1≤i≤2l−1,
v∈Icancel

i,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
v∈Icancel

i,2q+1,2q+2

B(v)




+
∑

1≤i≤2l−1,
v∈Icancel

i,1,2

B(v) +
∑

v∈Icancel
0,0,1

B(v)

+
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q+2,2q

B(v) +
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v)

+
∑

v∈I0,0,1

B(v) +
∑

v∈I2l,2,0

B(v)

The first line is zero by Proposition 7.3.2.5, the second line by Proposition 7.3.2.6, the
third line by Proposition 7.3.2.7, and the fourth line by Proposition 7.3.2.8, which shows
the claim.

7.3.3. Identification of summands of ϵ(l−1)X ◦ d of a first type
We now begin looking into the term ϵ

(l−1)
X

(
d(y1 · · · ym)

)
. We can write this as a sum

of terms of two types, and one one type can immediately be identified with summands
from ∂(ϵ

(l)
X (y1 · · · ym)).

Remark 7.3.3.1. In this remark we use notation from Construction 7.3.1.1. Let X be a
totally ordered set, l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1.

We consider ϵ(l−1)
X

(
d(y1 · · · ym)

)
. Unpacking the definition, we obtain the following.

ϵ
(l−1)
X

(
d(y1 · · · ym)

)

= ϵ
(l−1)
X

(
m∑

s=1

y1 · · · ys−1 · ys+1 · · · ym · d ys

)

355



Chapter 7. Hochschild homology of polynomial algebras

=
m∑

s=1

ϵ
(l−1)
X (y1 · · · ys−1 · ys+1 · · · ym) · (1⊗ ys)

=
∑

1≤s≤m
σ∈El−1

c⃗∈C(l−1,m−1)

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

We can distinguish two types of summands: Those in which ys−1 and ys+1 appear together
in a tensor factor, and those in which they don’t. The former happens precisely if there
exists an integer 1 ≤ p ≤ l − 1 with cp < s − 1 and cp+1 > s22, or if c1 > s. Note that
these possibilities exclude each other, i. e. if we count c1 > s as being the condition for
p = 0, then if there exists a 0 ≤ p ≤ l− 1 satisfying the condition, then it is unique. ♦

We begin by identifying the summands of ϵ(l−1)
X (d(y1 · · · ym)) in which ys−1 and ys+1

occur in the same tensor factor.

Proposition 7.3.3.2. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

1≤i≤2l−1,
1≤p≤l−1

∑

v∈Ii,2p+2,2p

B(v)

=
∑

1≤s≤m,
σ∈El−1,

c⃗∈C(l−1,m−1),
1≤p≤l−1
such that

cp<s−1<s<cp+1

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

♥

Proof. We first evaluate the product occurring in the summands on the right hand side
of the equation, which by Propositions 6.3.2.10 and 6.3.2.11 yields the following for s, σ,
c⃗, and p as in the sum in the statement.

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

=
∑

1≤t≤2l−1

sgn
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·

(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

)
⊗ ys

)

We now make the following definitions.

J :=
{
(i, p, v) ∈ {1, . . . , 2l − 1} × {1, . . . , l − 1} × I

∣∣ v ∈ Ii,2p+2,2p

}

22Note that we “jump over” ys, so ys+1 has index s rather than s+ 1.

356



7.3. De Rham forms as a strict model in Mixed

J ′ :=
{(
s, σ′′, c⃗′, p, t

)
∈

{1, . . . ,m} × El−1 × C(l − 1,m− 1)× {1, . . . , l − 1} × {1, . . . , 2l − 1}∣∣∣ c′p < s− 1 < s < c′p+1

}

Furthermore, for (s, σ′′, c⃗′, p, τ) an element of J ′ we will use the following notation.

B′

((
s, σ′′, c⃗′, p, t

))
:= sgn

(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·

(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·

(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗′

)
⊗ ys

)

It thus suffices to construct a bijection of sets

Φ: J → J ′

such that for each element (i, p, v) of J it holds that B′(Φ((i, p, v))) = B(v).
So let (i, p, (i, σ, c⃗)) be an element of J . Let s := cp+1. As 1 ≤ p ≤ l − 1 we have

2 ≤ p+ 1 ≤ l, so that cp+1 is defined and satisfies 1 ≤ cp+1 ≤ (m+ 1)− 2 < m. Next we
define σ′ as follows.

σ′ = σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2

Note that σ′(2l) = 2l so that we can consider σ′ as an element of Σ2l−1. We let
t := σ′(2p+1). Note that 1 ≤ t ≤ 2l−1 and that t is σ(2p+1) if σ(2p+1) < σ(2p+2) and
σ(2p+ 1)− 1 otherwise. We can now define another permutation σ′′ to be the following
composition.

σ′′ := σt→2l−1 ◦ σ
′ ◦ σ2l−1→2p+1

= σt→2l−1 ◦ σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1

With this definition σ′′ is an element of Σ2l−1 that satisfies σ′′(2l − 1) = 2l − 1, so that
we can consider σ′′ as an element of Σ2(l−1).

We claim that σ′′ is an element of El−1. So let 0 ≤ a ≤ l− 2. We have to show that σ′′

cyclically preserves the ordering of {2a, 2a + 1, 2a + 2}. We note first that as a ≤ l − 2
implies 2a+2 ≤ 2l−2, so the image of {2a, 2a+1, 2a+2} under σ◦σ2l→2p+2◦σ2l−1→2p+1 will
have image in the complement of {σ(2p+2), σ−1

σ(2p+2)→2l(t)}, so that σt→2l−1 ◦σσ(2p+2)→2l

is order-preserving on this image. This means that it suffices to show 0 ≤ a ≤ l− 2 that
σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1 cyclically preserves the ordering of {2a, 2a+ 1, 2a+ 2}.

We first consider the case of a < p. Then the claim follows as σ2l−1→2p+1 and σ2l→2p+2

are the identity on {2a, 2a + 1, 2a + 2}, and σ cyclically preserves the ordering of
{2a, 2a + 1, 2a + 2}. We next consider the case of a > p. In this case both σ2l−1→2p+1

is given by addition with 1 on {2a, 2a + 1, 2a + 2}, and σ2l→2p+2 is given by addition
with 1 on {2a + 1, 2a + 2, 2a + 3}. The claim thus follows from σ cyclically preserving
the ordering of {2(a + 1), 2(a + 1) + 1, 2(a + 1) + 2}. It remains to consider the case
a = p. In this case 2p, 2p + 1, and 2p + 2 are mapped by σ2l−1→2p+1 to 2p, 2p + 2, and

357



Chapter 7. Hochschild homology of polynomial algebras

2p + 3, which are mapped by σ2l→2p+2 to 2p, 2p + 3, and 2p + 4, which are mapped by
σ to σ(2p), σ(2p+ 3), and σ(2p+ 4), respectively. So we have to show that σ cyclically
preserves the ordering of {2p, 2p + 3, 2p + 4}. But by assumption σ is an element of
Ii,2p+2,2p, which implies that σ(2p) = σ(2p + 2) + 1. This means that σ cyclically pre-
serves the ordering of {2p, 2p+3, 2p+4} if and only if σ cyclically preserves the ordering
of {2p+ 2, 2p+ 3, 2p+ 4}, which is the case, as σ is an element of El.

We define c⃗′ ∈ {1, . . . ,m}l as follows.

c′a :=
{
ca for a ≤ p

ca+1 − 1 for a > p
for 1 ≤ a ≤ l

Note that as ca ≤ m+1 for 1 ≤ a ≤ l+1 we obtain c′a ≤ m for 1 ≤ a ≤ l. Furthermore, as
p ≥ 1, and 1 ≤ c1 < c2 < . . . < cl+1 we also obtain that c′a ≥ 1 for 1 ≤ a ≤ l, so that c⃗′ is
indeed an element of {1, . . . ,m}l. We claim that c⃗′ is in fact an element of C(l−1,m−1).
For this we first note that as p ≤ l − 1 we have c′l = cl+1 − 1 = m + 1 − 1 = m, which
handles one of the conditions. That c′a + 1 ≤ c′a+1 − 1 for 1 ≤ a ≤ l − 1 follows directly
from the corresponding property for c⃗ as long as a 6= p. For a = p we have

c′p + 1 = cp + 1 ≤ cp+1 − 1 ≤ cp+2 − 3 = c′p+1 − 2 ≤ c′p+1 − 1

which finishes the proof that c⃗′ is an element of C(l − 1,m− 1).
We can now define Φ as follows.

Φ
((
i, p, (i, σ, c⃗)

))
:=
(
s, σ′′, c⃗′, p, t

)
=
(
cp+1, σ

′′, c⃗′, p, σ′(2p+ 1)
)

To show that Φ is well-defined it remains to show that it holds in the above situation
that

c′p < s− 1 < s < c′p+1

but unpacking the definitions, this become the following.

cp < cp+1 − 1 < cp+1 < cp+2 − 1

which holds as c⃗ is an element of C(l,m).
We next show that for each element (i, p, v) of J it holds that B′(Φ((i, p, v))) = B(v).

We continue using the notation we introduced up to now for this. We first check that
the signs of the two terms agree. For this we have the following calculation.

sgn
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))

= sgn(σ2l−1→t) · sgn
(
σ′′
)

= (−1)2l−1−t · sgn
(
σt→2l−1 ◦ σ

′ ◦ σ2l−1→2p+1

)

= (−1)2l−1−t · (−1)2l−1−t · sgn
(
σ′
)
· (−1)2l−1−2p−1

= sgn
(
σ′
)

= sgn
(
σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2

)

358



7.3. De Rham forms as a strict model in Mixed

= (−1)2l−σ(2p+2) · sgn(σ) · (−1)2p+2−2l

= (−1)σ(2p+2) · sgn(σ)
= (−1)i · sgn(σ)

To complete the proof of B′(Φ((i, p, v))) = B(v) it remains to show the following.
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·

(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗′

)
⊗ ys

)

= ∂i

(
σ · T

(
(y1, . . . , ym), c⃗

))

We begin by considering T ((y1, . . . , ys−1, ys+1, . . . , ym), c⃗′), in the following calculation,
where we let y′1 = y1, . . . , y

′
s−1 = ys−1, y

′
s = ys+1, . . . , y

′
m−1 = ym.

T
(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗′

)

=

c′1−1∏

j=1

y′j ⊗ y
′
c′1
⊗

c′2−1∏

j=c′1+1

y′j ⊗ · · · ⊗ y
′
c′
l−1
⊗

c′
l
−1∏

j=c′
l−1+1

y′j

=

c1−1∏

j=1

y′j ⊗ y
′
c1
⊗

c2−1∏

j=c1+1

y′j ⊗ · · · ⊗

cp+2−1−1∏

j=cp+1

y′j ⊗ y
′
cp+2−1 ⊗

cp+3−1−1∏

j=cp+2−1+1

y′j ⊗ y
′
cp+3−1 ⊗ · · ·

Using that s = cp+1.

=

c1−1∏

j=1

yj ⊗ yc1 ⊗
c2−1∏

j=c1+1

yj ⊗ · · · ⊗

cp+1−1∏

j=cp+1

yj ·

cp+2−1∏

j=cp+1+1

yj ⊗ ycp+2 ⊗

cp+3−1∏

j=cp+2+1

yj ⊗ · · ·

Abbreviating T ((y1, . . . , ym), c⃗) as T = T0 ⊗ . . . T2l, we obtain the following.
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·

(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗′

)
⊗ ys

)

=
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))

·
(
T0 ⊗ · · · ⊗ T2p−1 ⊗

(
T2p · T2p+2

)
⊗ T2p+3 ⊗ · · · ⊗ T2l ⊗ T2p+1

)

=
(
σ2l−1→t ◦ σt→2l−1 ◦ σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1

)
|{1,...,2l−1}

·
(
T0 ⊗ · · · ⊗ T2p−1 ⊗

(
T2p · T2p+2

)
⊗ T2p+3 ⊗ · · · ⊗ T2l ⊗ T2p+1

)

=
(
σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 ◦ σ2l−1→2p+1

)
|{1,...,2l−1}

·
(
T0 ⊗ · · · ⊗ T2p−1 ⊗

(
T2p · T2p+2

)
⊗ T2p+3 ⊗ · · · ⊗ T2l ⊗ T2p+1

)

=
(
σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2

)
|{1,...,2l−1}

·
(
T0 ⊗ · · · ⊗ T2p−1 ⊗

(
T2p · T2p+2

)
⊗ T2p+1 ⊗ T2p+3 ⊗ T2p+4 ⊗ · · · ⊗ T2l

)

359



Chapter 7. Hochschild homology of polynomial algebras

Recall that σ(2p + 2) = i and σ(2p) = i + 1. We now have to distinguish several
cases. We start with 1 ≤ j ≤ 2p − 1 such that σ(j) < i. Then the permutation
σ′ = σσ(2p+2)→2l ◦ σ ◦ σ2l→2p+2 maps j to σ(j), as both σσ(2p+2)→2l as well as σ2l→2p+2 act
as the identity on the relevant elements. Thus the σ(j)-th tensor factor in the result is
given by Tj. If instead 2p+ 2 < j ≤ 2l and σ(j) < i, then σ′ maps j − 1 to σ(j). As the
j − 1-th tensor factor of the unpermuted tensor product is given by Tj, we can again
conclude that the σ(j)-th tensor factor of the result is given by Tj. If j = 2p or j = 2p+2
then we can not have σ(j) < i. If σ(2p+1) < i, then we get that σ′(2p+1) = σ(2p+1).
The upshot is that the 0-th to (i − 1)-th tensor factors of the result will be given by
T0 ⊗ Tσ−1(1) ⊗ · · · ⊗ Tσ−1(i−1).

We have
σ′(2p) = σi→2l(σ(2p)) = σi→2l(i+ 1) = i

so that we can conclude that the i-th tensor factor is given by T2p · T2p+2 = T2p+2 · T2p.
Now let 1 ≤ j ≤ 2p − 1 with σ(j) > i. Then σ′(j) = σ(j) − 1, so the (σ(j) − 1)-th

tensor factor of the result is given by Tj. If instead 2p + 2 < j ≤ 2l and σ(j) > i, then
σ′(j − 1) = σ(j)− 1, so that we can again conclude that the (σ(j)− 1)-th tensor factor
of the result is given by Tj. Finally, if σ(2p+ 1) > i, then σ′(2p+ 1) = σ(2p+ 1)− 1 as
well. As σ({2p, 2p+ 2}) = {i, i+ 1}, the image of {1, . . . , 2p− 1, 2p+ 3, . . . , 2l} under σ
contains {i+2, . . . , 2l}. The upshot is that the (i+1)-th through 2l−1-th tensor factors
of the product are given by Tσ−1(i+2) ⊗ · · · ⊗ Tσ−1(2l).

Thus we obtain
(
σ2l−1→t ◦

(
σ′′ ∐ id{2l−1}

))
·

(
T
(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗′

)
⊗ ys

)

= T0 ⊗ Tσ−1(1) ⊗ · · ·Tσ−1(i−1) ⊗ Tσ−1(i) · Tσ−1(i+1) ⊗ Tσ−1(i+2) ⊗ · · · ⊗ Tσ−1(2l)

= ∂i

(
σ · T

(
(y1, . . . , ym), c⃗

))

To finish the proof of this proposition it remains to show that Φ is a bijection. For
this we construct an inverse Ψ. So let (s, σ′′, c⃗′, p, t) be an element of J ′. Then we define

σ′ := σ2l−1→t ◦ σ
′′ ◦ σ2p+1→2l−1

as an element of Σ2l−1. We then define i := σ′(2p) and define σ as follows, as an element
of Σ2l.

σ := σ2l→i ◦ σ
′ ◦ σ2p+2→2l

Note that as σ′ is an element of Σ2l−1 we have that 1 ≤ i ≤ 2l − 1.
We also claim that σ is an element of El. So let 0 ≤ a ≤ l−1. We have to show that σ

cyclically preserves the ordering of {2a, 2a+1, 2a+2}. For this we distinguish four cases.
If a < p, then 2a, 2a+1, and 2a+2 are mapped to 2a, 2a+1, and 2a+2 by σ2p+2→2l and
σ2p+1→2l−1. The permutation σ′′ cyclically preserves the ordering of {2a, 2a+ 1, 2a+ 2},
and as a < p ≤ l−1, the image under σ′′ lies in {1, . . . , 2l−2}, so that σ2l→i and σ2l−1→t

preserve the ordering.

360



7.3. De Rham forms as a strict model in Mixed

Next we consider the case a = p. In this case we have the following.

σ(2p) =
(
σ2l→i ◦ σ

′ ◦ σ2p+2→2l

)
(2p) =

(
σ2l→i ◦ σ

′
)
(2p) = σ2l→i(i) = i+ 1

σ(2p+ 2) =
(
σ2l→i ◦ σ

′ ◦ σ2p+2→2l

)
(2p+ 2) =

(
σ2l→i ◦ σ

′
)
(2l) = σ2l→i(2l) = i

Which shows that σ cyclically preserves the ordering of {2p, 2p+ 1, 2p+ 2} (it does not
matter where 2p+ 1 is mapped to).

We now consider the case a = p+ 1.

σ(2p+ 3) =
(
σ2l→i ◦ σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1 ◦ σ2p+2→2l

)
(2p+ 3)

=
(
σ2l→i ◦ σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1

)
(2p+ 2)

=
(
σ2l→i ◦ σ2l−1→t ◦ σ

′′
)
(2p+ 1)

σ(2p+ 3) =
(
σ2l→i ◦ σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1 ◦ σ2p+2→2l

)
(2p+ 4)

=
(
σ2l→i ◦ σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1

)
(2p+ 3)

=
(
σ2l→i ◦ σ2l−1→t ◦ σ

′′
)
(2p+ 2)

What we thus need to show is that the three distinct integers i, (σ2l→i◦σ2l−1→t◦σ
′′)(2p+1),

and (σ2l→i ◦ σ2l−1→t ◦ σ
′′)(2p+ 2) are cyclically ordered. We now note that

(
σ2l→i ◦ σ2l−1→t ◦ σ

′′
)
(2p) =

(
σ2l→i ◦ σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1

)
(2p)

=
(
σ2l→i ◦ σ

′
)
(2p)

= σ2l→i(i)

= i+ 1

so as 2p + 1 6= 2p and 2p + 2 6= 2p, we can replace i by i + 1 and instead show that
σ2l→i ◦ σ2l−1→t ◦ σ

′′ cyclically preserves the ordering of {2p, 2p + 1, 2p + 2}. Note that
a ≤ l−1 and we are looking at the case where a = p+1, which implies that p ≤ l−2 (even
though p in general can be l−1 as well), which implies that the set {2p, 2p+1, 2p+2} is
mapped by σ′′ to the complement of {2l−1, 2l}, so that σ2l→i◦σ2l−1→t is order preserving
on this image. That σ2l→i◦σ2l−1→t◦σ

′′ cyclically preserves the order of {2p, 2p+1, 2p+2}
thus follows from σ′′ doing so.

Finally, we consider the case p+1 < a ≤ l−1. Then 2a, 2a+1, and 2a+2 are mapped
by σ2p+1→2l−1 ◦ σ2p+2→2l to 2(a − 1), 2(a − 1) + 1, and 2(a − 1) + 2. As a ≤ l − 1 we
have a− 1 ≤ l − 2, so that σ′′ maps these elements into the complement of {2l − 1, 2l},
on which σ2l→i ◦ σ2l−1→t is order preserving. The claim thus follows from σ′′ cyclically
preserving the order of {2(a− 1), 2(a− 1) + 1, 2(a− 1) + 2}.

To define Ψ we still need to define c⃗, which we do as follows.

ca :=





c′a for 1 ≤ a ≤ p

s for a = p+ 1

c′a−1 + 1 for p+ 2 ≤ a ≤ l + 1

for 1 ≤ a ≤ l + 1

We first note that as 1 ≤ s ≤ m and 1 ≤ c′a ≤ m for all 1 ≤ a ≤ l, we have that c⃗ is an
element of {1, . . . ,m+ 1}l+1. We next need to show that c⃗ is an element of C(l,m). For

361



Chapter 7. Hochschild homology of polynomial algebras

this we first note that p+ 1 ≤ l− 1 + 1 = l, so cl+1 = c′l + 1 = m+ 1. Furthermore, that
ca + 1 ≤ ca+1 − 1 for 1 ≤ a ≤ l follows directly from c⃗′ being in C(l − 1,m− 1) as long
as a < p or a ≥ p+ 2, so that it only remains to consider the cases a = p and a = p+ 1.
But we have

cp = c′p, cp+1 = s, cp+2 = c′p+1 + 1

so that the required property follows from

c′p < s− 1 < s < c′p+1

which holds as (s, σ′′, c⃗′, p, t) is an element of J ′.
We have now defined i, σ, and c⃗ and shown that (i, σ, c⃗) is an element of I. In the

course of doing so we also already showed that σ(2p) = i+ 1 and σ(2p+ 2) = i, so that
(i, σ, c⃗) is even an element of Ii,2p+2,2p. We can thus define Ψ as follows.

Ψ

((
s, σ′′, c⃗′, p, t

))
:=
(
i, p, (i, σ, c⃗)

)

It remains to show that Ψ ◦ Φ and Φ ◦ Ψ are the respective identity maps. So let
(i, p, (i, σ, c⃗)) be an element of J , and let s, σ′, σ′′, c⃗′, and t be as in the definition of
Φ((i, p, (i, σ, c⃗))). Then recall that σ′ and σ′′ were defined (in the definition of Φ) as
follows.

σ′ = σi→2l ◦ σ ◦ σ2l→2p+2

σ′′ = σt→2l−1 ◦ σ
′ ◦ σ2l−1→2p+1

We first note that then
σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1 = σ′

so that the σ′ defined from σ′′ in the definition of Ψ((s, σ′′, c⃗′, p, t)) recovers the σ′ used
in the definition of Φ((i, p, (i, σ, c⃗))). Next we have

σ′(2p) =
(
σi→2l ◦ σ ◦ σ2l→2p+2

)
(2p)

= (σi→2l ◦ σ)(2p)

= (σi→2l)(i+ 1)

= i

so that we in the definition of Ψ((s, σ′′, c⃗′, p, t)) also recover the correct i. It then also
follows immediately from the definition that the correct σ is recovered as well. Let c⃗ be
what was called c⃗ in the definition of Ψ((s, σ′′, c⃗′, p, t)). Then we have for 1 ≤ a ≤ p that

ca = c′a = ca

while for p+ 2 ≤ a ≤ l + 1 we have

ca = c′a−1 + 1 = ca−1+1 − 1 + 1 = ca

362



7.3. De Rham forms as a strict model in Mixed

and finally, we have the following.

cp+1 = s = cp+1

This shows that Ψ ◦ Φ is the identity.
Now let (s, σ′′, c⃗′, p, t) be an element of J ′, and let σ′, σ, i, and c⃗ be as in the def-

inition of Ψ((s, σ′′, c⃗′, p, t)). Let Φ(i, p, (i, σ, c⃗)) = (s, σ′′, c⃗′, p, t). Then we directly ob-
tain s = cp+1 = s and p = p. It then follows from the definition that the σ′ con-
structed in the definition of Φ(i, p, (i, σ, c⃗)) recovers the σ′ constructed in the definition
of Ψ((s, σ′′, c⃗′, p, t)). We then obtain that

t = σ′(2p+ 1)

=
(
σ2l−1→t ◦ σ

′′ ◦ σ2p+1→2l−1

)
(2p+ 1)

= t

from which we can then also conclude that σ′′ = σ′′. It remains to show that c⃗′ = c⃗′. If
1 ≤ a ≤ p then we have

c′a = ca = c′a

and if instead p < a ≤ l, then we have

c′a = ca+1 − 1 = c′a+1−1 + 1− 1 = c′a

which finishes the proof.

The next proposition is exactly like Proposition 7.3.3.2, just for p = 0.

Proposition 7.3.3.3. In this proposition we use notation from Construction 7.3.1.1
and Definition 7.3.2.3. Let X be a totally ordered set, l ≥ 1 and m ≥ 0 integers, and
y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈I2l,2,0

B(v)

=
∑

1≤s≤m,
σ∈El−1,

c⃗∈C(l−1,m−1)
such that
s<c1

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

♥

Proof. The proof is very similar to the proof of Proposition 7.3.3.2, but has some differ-
ences that require some minor changes. For example there is only I2l,2,0 rather than Ii,2,0
for various values of i, which is related to the relevant permutations σ being forced to
map 0 to 0. We will point out how the main steps differ in the case at hand to the case
considered in Proposition 7.3.3.2, but avoid details, for which Proposition 7.3.3.2 should
be consulted.

363



Chapter 7. Hochschild homology of polynomial algebras

The proof of Proposition 7.3.3.2 begins with an unpacking of the product occurring
on the right hand side, which applies in the same way in our case. We then define

J ′ :=
{(
s, σ′′, c⃗′, t

)
∈

{1, . . . ,m} × El−1 × C(l − 1,m− 1)× {1, . . . , 2l − 1}∣∣∣ s < c′1

}

and for an element (s, σ′′, c⃗′, t) of J ′ we define B′((s, σ′′, c⃗′, t)) in exactly the same way
as in the proof of Proposition 7.3.3.2 (note the definition of B′ there does not depend
on p). It thus suffices to construct a bijection of sets

Φ: I2l,2,0 → J ′

such that for each element v of I2l,2,0 it holds that B′(Φ(v)) = B(v).
For the construction of Φ, let (i, σ, c⃗) be an element of I2l,2,0. Then we define s, σ′′, c⃗′,

and t in exactly the same way as in Proposition 7.3.3.2. The verification of the required
property of c⃗′ differs slightly, we have to show that s < c′1 which amounts to c1 < c2− 1,
which is satisfied as c⃗ is an element of C(l,m).

The proof of Proposition 7.3.3.2 continues with a verification of B′(Φ(v)) = B(v),
which can be done in essentially the same way, only requiring very minor modification,
and less cases.

The construction of Ψ requires some modifications from the way it was done in Propo-
sition 7.3.3.2. To start with we do not have p given as part of the input, and instead
set p = 0. The definition of i, which is defined as σ′(2p) = 0 in Proposition 7.3.3.2,
needs to be changed to i := 2l. The definition of σ′, σ, and c⃗, using these values for p
and i, is then exactly as in Proposition 7.3.3.2. The verification that σ is in El needs
to be modified when checking the cases a = p and a = p + 1. In the case a = p = 0
we have σ(0) = 0 and σ(2) = 2l, so σ cyclically preserves the ordering of {0, 1, 2} as
1 ≤ σ(2) < 2l. For the case a = p+1 = 1 one arrives as in the proof of Proposition 7.3.3.2
to showing that 2l, (σ2l−1→t◦σ

′′)(1), and (σ2l−1→t◦σ
′′)(2) are cyclically ordered, which is

the case if and only if 0, (σ2l−1→t◦σ
′′)(1), and (σ2l−1→t◦σ

′′)(2) are cyclically ordered. One
now uses that (σ2l−1→t ◦ σ

′′)(0) = 0 and proceeds as in the proof of Proposition 7.3.3.2.
The remaining verification steps in the construction of Ψ are exactly as in the proof of
Proposition 7.3.3.2.

The verification of Ψ ◦Φ = id is the same as in the proof of Proposition 7.3.3.2 except
for the argument showing that i is correctly recovered, which instead in our case is a
tautology. The situation for the verification for Φ ◦Ψ = id is analogous.

7.3.4. Reindexing of summands of ϵ(l−1)X ◦ d of a second type

We have now shown how the summands of ϵ(l−1)
X (d(y1 · · · ym)) in which ys−1 and

ys+1 occur together as factors of a single tensor factor match up with summands of

364



7.3. De Rham forms as a strict model in Mixed

∂(ϵ
(l)
X (y1 · · · ym)). We now consider those summands in which ys−1 and ys+1 do not oc-

cur together as factors of a single tensor factor. For this it will be helpful to introduce
some further notation, and while doing so we will also immediately introduce relevant
analogous definitions that will be used in the next sections for d(ϵ(l−1)

X (y1 · · · ym)) and
the remaining summands from ∂(ϵ

(l)
X (y1 · · · ym)).

Definition 7.3.4.1. Let n ≥ 1 be an integer and σ an element of Σn. Let us for the
moment denote by P (σ) the following set.

P (σ) :=
{
p ∈ {1, . . . , n− 1}

∣∣ σ cyclically preserves the ordering of {p− 1, p, p+ 1}
}

Then we make the following definitions

eeven(σ) := max
({

p ∈ {1, . . . , n− 1}
∣∣ p /∈ P (σ) and 2 | p

})

eodd(σ) := min
({

p ∈ {1, . . . , n− 1}
∣∣ p /∈ P (σ) and 2 ∤ p

})

where we set eeven(σ) = −∞ if the set over which the maximum is taken is empty, and
eodd(σ) =∞ if the set over which the minimum is taken is empty.

Now let n,m ≥ 0 be integers. Then we define a set C full(n,m) as follows.

C full(n,m) :=
{
(c1, . . . , cn+1) ∈ {1, . . . ,m+ 1}n+1

∣∣ c1 < c2 < . . . < cn < cn+1 and cn+1 = m+ 1
}

Now let X be a totally ordered set, n ≥ 1 and m ≥ 0 integers, y1, . . . , ym as in Construc-
tion 7.3.1.1, and c⃗ an element of C full(n,m). Then we define an element T full((y1, . . . , ym), c⃗)
in Cn(k[X]) as follows.

T full((y1, . . . , ym), c⃗
)

:=
c1−1∏

j=1

yj ⊗
c2−1∏

j=c1

yj ⊗
c3−1∏

j=c2

yj ⊗ · · · ⊗

cn+1−1∏

j=cn

yj

Finally, we also make the following definition for n,m ≥ 0 and c⃗ an element of
C full(n,m).

eeven(c⃗) := max
({

p ∈ {1, . . . , n}
∣∣ cp + 1 < cp+1 and 2 | p

}
∪
{
p ∈ {0}

∣∣ 1 < c1
})

eodd(c⃗) := min
({

p ∈ {1, . . . , n}
∣∣ cp + 1 < cp+1 and 2 ∤ p

})

Again, if the set over which we take the maximum is empty we set eeven(c⃗) = −∞ and
if the set over which we take the minimum we set eodd(c⃗) =∞. ♦

Definition 7.3.4.2. In this definition we use notation from Construction 7.3.1.1 and
continue on with similar definition as Definition 7.3.2.3. Let X be a totally ordered set,
l ≥ 1 and m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. The following set

365



Chapter 7. Hochschild homology of polynomial algebras

Id will act as an indexing set for the summands of ϵ(l−1)
X (d(y1 · · · ym)) that were not yet

considered, while the set I1 will be used for d(ϵ(l−1)
X (y1 · · · ym)).

Id :=
{
(σ, c⃗, p) ∈ Σ2l−1 × C

full(2l − 1,m)× {1, . . . , 2l − 1}
∣∣ eeven(c⃗) < p < eodd(c⃗) and eeven(σ)− 2 < p < eodd(σ) + 2

and σ cycl. pres. the ord. of {p− 2, p− 1, p+ 1} if 2 | p and p ≤ 2l − 2

and σ cycl. pres. the ord. of {p− 1, p+ 1, p+ 2} if 2 ∤ p and p ≤ 2l − 3
}

I1 :=
{
(σ, c⃗) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eeven(σ) = −∞ and eeven(c⃗) = −∞

}

One should think of Id as something like El × C(l,m), but where we have an extra
component p that we “jump over” in the properties that El and C(l,m) need to satisfy.
We also define some new indexing sets that we will use to reindex sums appearing in
∂(ϵ

(l)
X )(y1 · · · ym).

I∂even :=
{
(σ, c⃗) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eeven(c⃗) 6= −∞ and eeven(σ) ≤ eeven(c⃗)

and eodd(c⃗) ≥ eeven(c⃗) + 3 and eodd(σ) ≥ eeven(c⃗) + 1
}

I∂odd :=
{
(σ, c⃗) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eodd(c⃗) 6=∞ and eodd(σ) ≥ eodd(c⃗)

and eeven(c⃗) ≤ eodd(c⃗)− 3 and eeven(σ) ≤ eodd(c⃗)− 1
}

We also define B′′ and B′ as follows for (σ′, c⃗′) an element of Σ2l−1 × C
full(2l − 1,m)

and (σ, c⃗, p) an element of Id

B′′
(
(σ, c⃗)

)
:= sgn(σ) · σ · T full((y1, . . . , ym), c⃗

)

B′
(
(σ, c⃗, p)

)
:= (−1)p+1 · B′′

(
(σ, c⃗)

)
♦

Proposition 7.3.4.3. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered set, l ≥ 1 and m ≥ 0
integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

ϵ
(l−1)
X

(
d(y1 · · · ym)

)
=

∑

1≤i≤2l−1,
1≤p≤l−1

∑

v∈Ii,2p+2,2p

B(v) +
∑

v∈I2l,2,0

B(v)

+
∑

v∈Id

B′(v)

♥

366



7.3. De Rham forms as a strict model in Mixed

Proof. Define a set J ′ as follows.

J ′ :=
{
(s, σ, c⃗) ∈ {1, . . . ,m} × El−1 × C(l − 1,m− 1)
∣∣ there is no 1 ≤ p ≤ l − 1 such that cp < s− 1 < s < cp+1,

and c1 ≯ s
}

Then Remark 7.3.3.1 together with Propositions 7.3.3.2 and 7.3.3.3 imply

ϵ
(l−1)
X

(
d(y1 · · · ym)

)

=
∑

1≤i≤2l−1,
1≤p≤l−1

∑

v∈Ii,2p+2,2p

B(v) +
∑

v∈I2l,2,0

B(v)

+
∑

(s,σ,⃗c)∈J ′

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

so that it suffices to show the following.
∑

v∈Id

B′(v) =
∑

(s,σ,⃗c)∈J ′

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

As in the proof of Proposition 7.3.3.2, we begin by evaluating the product occurring in
the summands on the right hand side of the equation, which by Propositions 6.3.2.10
and 6.3.2.11 yields the following for (s, σ, c⃗) an element of J ′.

(
sgn(σ) · σ · T

(
(y1, . . . , ys−1, ys+1, . . . , ym), c⃗

))
· (1⊗ ys)

=
∑

1≤t≤2l−1

sgn
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·

(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , yi−1, yi+1, . . . , ym), c⃗

)
⊗ ys

)

Defining a set J as follows

J :=
{
(s, t, σ, c⃗) ∈ {1, . . . ,m} × {1, . . . , 2l − 1} × El−1 × C(l − 1,m− 1)
∣∣ there is no 1 ≤ q ≤ l − 1 such that cq < s− 1 < s < cq+1,

and c1 ≯ s
}

it then suffices to show that there exists a bijection

Φ: J → Id

such that the following holds for all elements (s, t, σ, c⃗) of J .

B′
(
Φ
(
(s, t, σ, c⃗)

))

= sgn
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))

·
(
σ2l−1→t ◦

(
σ ∐ id{2l−1}

))
·
(
T
(
(y1, . . . , yi−1, yi+1, . . . , ym), c⃗

)
⊗ ys

)

367



Chapter 7. Hochschild homology of polynomial algebras

So to define Φ, let (s, t, σ, c⃗) be an element of J . As c1 ≯ s we must have c1 ≤ s. We
also have s ≤ m = cl. As c1 < c2 < · · · < cl there must thus either exists a 1 ≤ q ≤ l

with cq = s or with cq < s < cq+1. But as we ruled out cq < s− 1 < s < cq+1, the latter
implies cq = s−1. The upshot is that there is a 1 ≤ q ≤ l with either cq = s or cq = s−1.
If cq = s then set p := 2q − 1. If instead cq = s− 1, then set p := 2q. We then define

σ′ := σ2l−1→t ◦ σ ◦ σp→2l−1

as an element of Σ2l−1 and c⃗′ as follows.

c′a :=





ca/2 + 1 if 2 | a
c(a+1)/2 if a ≤ p and 2 ∤ a
c(a−1)/2 + 2 if a > p and 2 ∤ a

for 1 ≤ a ≤ 2l

We want to define Φ by setting

Φ
(
(s, t, σ, c⃗)

)
:=
(
σ′, c⃗′, p

)

and for this we need to check various things to ensure that this is well-defined.
To begin with, we have 1 ≤ q ≤ l and defined p as either 2q or 2q − 1. We can thus

conclude that 1 ≤ p ≤ 2l, and are left to exclude that p = 2l can occur. This could
only occur if we had cl = s− 1, which can not happen, as cl = m and s− 1 < m. Thus
1 ≤ p ≤ 2l − 1.

We next show that eeven(σ′)− 2 < p < eodd(σ
′) + 2. We begin with the left inequality.

To show that eeven(σ′) < p+ 2 we need to show that if p+ 2 ≤ a ≤ 2l− 2 and a is even,
then σ′ cyclically preserves the ordering of {a− 1, a, a+ 1}. Unpacking the definition of
σ′ this amounts to σ cyclically preserving the ordering of {a− 2, a− 1, a}, which it does
as a− 1 is odd, 1 ≤ a− 1 ≤ 2l− 323, and σ is an element of El−1. Similarly, to show that
eodd(σ

′) > p− 2, we need to show that if 1 ≤ a ≤ p− 2 and a is odd, then σ′ cyclically
preserves {a − 1, a, a + 1}, which unpacking the definition of σ amounts to σ cyclically
preserving the ordering of {a − 1, a, a + 1}, which it does as it is an element of El−1.
Similarly we can show the extra condition on σ around p, where this time the elements
are “split up” by σp→2l−1. If p ≤ 2l− 2 is even, then σ′ cyclically preserving the ordering
of {p−2, p−1, p+1} amounts to σ cyclically preserving the ordering of {p−2, p−1, p},
which it does as 1 ≤ p − 1 ≤ 2l − 3 is odd24 and σ is an element of El−1. Similarly, if
p ≤ 2l−3 is odd, then σ′ cyclically preserving the ordering of {p−1, p+1, p+2} amounts
to σ cyclically preserving the ordering of {p−1, p, p+1}, which it does as 1 ≤ p ≤ 2l−3
is odd.

We now show that c⃗′ is an element of C full(2l − 1,m). For this we first need to show
that c′a is a well-defined element of {1, . . . ,m + 1} for 1 ≤ a ≤ 2l. If 1 ≤ a ≤ 2l is even,
then 1 ≤ a/2 ≤ l, so 1 ≤ ca/2 ≤ m is well-defined, implying that 1 ≤ c′a/2 ≤ m + 1.
If a is odd and 1 ≤ a ≤ p ≤ 2l − 1, then 2 ≤ a + 1 ≤ 2l, so 1 ≤ (a + 1)/2 ≤ l and
231 ≤ a− 1 is implied by p+ 2 ≤ a.
241 ≤ p− 1, as p = 1 conflicts with the assumption that p is even.

368



7.3. De Rham forms as a strict model in Mixed

1 ≤ c(a+1)/2 ≤ m is well-defined. If instead a is odd with 2 ≤ p + 1 ≤ a ≤ 2l, then
1 ≤ a−1 ≤ 2l−1. As a−1 is even this implies that 1 ≤ (a−1)/2 ≤ l−1 so that c(a−1)/2

is well-defined and 1 ≤ c(a−1)/2 ≤ m. As (a − 1)/2 ≤ l − 1 we furthermore have that
c(a−1)/2 ≤ cl − 2 = m − 2, so that 1 ≤ c(a−1)/2 + 2 ≤ m. So far we showed that c⃗′ is an
element of {1, . . . ,m+ 1}2l, so we still need to verify the (in)equalities the components
need to satisfy. It follows immediately from the definition that c′2l = cl + 1 = m + 1. It
remains to show that c′1 < · · · < c′2l. So let 1 ≤ a ≤ 2l be even. Assume that 2 ≤ a. Then
we need to show that c′a−1 < c′a. Depending on whether a − 1 ≤ p or not this amounts
to either ca/2 < ca/2 + 1, which clearly true, or c(a/2)−1 + 2 < ca/2 + 1, which is true as
c⃗ is an element of C(l − 1,m− 1). Now assume that a ≤ 2l − 2. Then we have to show
that c′a < c′a+1. Again we have two cases and this amounts to either ca/2 + 1 < c(a/2)+1,
which is true as c⃗ is an element of C(l − 1,m − 1), or to ca/2 + 1 < ca/2 + 2, which is
trivially true.

To show that Φ is well-defined it only remains to show that eeven(c⃗′) < p < eodd(c⃗′).
We begin with eeven(c⃗′) < p. So let p ≤ a ≤ 2l be even. Then we have to show that
c′a+1 = c′a+1. But unpacking the definition of c⃗′ we have c′a = ca/2+1 and c′a+1 = ca/2+2,
so this holds. For p < eodd(c⃗′) let 1 ≤ a ≤ p be odd. Then we have to show that
c′a+1 = c′a+1. This time we have by definition c′a = c(a+1)/2, and c′a+1 = c(a+1)/2+1. This
finishes the proof that Φ is well-defined.

Now let (s, t, σ, c⃗) be an element of J , and Φ((s, t, σ, c⃗)) = (σ′, c⃗′, p). We want to verify
the identity for B′(Φ((s, t, σ, c⃗))). We begin with the following calculation.

B′
(
Φ
(
(s, t, σ, c⃗)

))

= (−1)p+1 · sgn(σ′) · σ′ · T full
(
(y1, . . . , ym), c⃗′

)

= (−1)p+1 · sgn
(
σ2l−1→t ◦ σ ◦ σp→2l−1

)
·
(
σ2l−1→t ◦ σ ◦ σp→2l−1

)
·


c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗

c′3−1∏

j=c′2

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj




= (−1)p+1 · (−1)p−(2l−1) sgn(σ2l−1→t ◦ σ) · (σ2l−1→t ◦ σ)·

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj




= sgn(σ2l−1→t ◦ σ) · (σ2l−1→t ◦ σ)·

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj




Let y′1 = y1, . . . , y
′
s−1 = ys−1, and y′s = ys+1, . . . , y

′
m−1 = ym. It then suffices to show the

369



Chapter 7. Hochschild homology of polynomial algebras

following.

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj

= T
((
y′1, . . . , y

′
m−1

)
, c⃗
)
⊗ ys

For this we distinguish two cases according to the parity of p. If p is odd, then we obtain
the following by unpacking the definition of c⃗′ and p.

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj

=

c1−1∏

j=1

yj ⊗
c1∏

j=c1

yj ⊗ · · · ⊗

cq−1∏

j=cq−1+1

yj ⊗

cq+1∏

j=cq+1

yj ⊗ · · · ⊗

cl∏

j=cl−1+2

yj ⊗

cq∏

j=cq

yj

=

c1−1∏

j=1

yj ⊗ yc1 ⊗ · · · ⊗

cq−1∏

j=cq−1+1

yj ⊗ ycq+1 ⊗ · · · ⊗

cl∏

j=cl−1+2

yj ⊗ ycq

=

c1−1∏

j=1

y′j ⊗ y
′
c1
⊗ · · · ⊗

cq−1∏

j=cq−1+1

y′j ⊗ y
′
cq
⊗ · · · ⊗

cl−1∏

j=cl−1+1

y′j ⊗ ys

= T
((
y′1, . . . , y

′
m−1

)
, c⃗
)
⊗ ys

If p is instead even, one obtains the following instead. There is only a slight difference
in the middle.

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗ · · · ⊗

c′p−1∏

j=c′p−1

yj ⊗

c′p+2−1∏

j=c′p+1

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj ⊗

c′p+1−1∏

j=c′p

yj

=

c1−1∏

j=1

yj ⊗
c1∏

j=c1

yj ⊗ · · · ⊗

cq∏

j=cq

yj ⊗

cq+1∏

j=cq+2

yj ⊗ · · · ⊗

cl∏

j=cl−1+2

yj ⊗

cq∏

j=cq

yj

=

c1−1∏

j=1

yj ⊗ yc1 ⊗ · · · ⊗ ycq ⊗

cq+1∏

j=cq+2

yj ⊗ · · · ⊗

cl∏

j=cl−1+2

yj ⊗ ycq

=

c1−1∏

j=1

y′j ⊗ y
′
c1
⊗ · · · ⊗ y′cq ⊗

cq+1−1∏

j=cq+1

y′j ⊗ · · · ⊗

cl−1∏

j=cl−1+1

y′j ⊗ ys

= T
((
y′1, . . . , y

′
m−1

)
, c⃗
)
⊗ ys

To finish the proof of this proposition it remains to show that Φ is a bijection, for
which we construct an inverse Ψ. So let (σ′, c⃗′, p) be an element of Id. Then we define s,

370



7.3. De Rham forms as a strict model in Mixed

t, σ, and c⃗ as follows.

s := c′p

t := σ′(p)

σ := σt→2l−1 ◦ σ
′ ◦ σ2l−1→p

ca := c′2a − 1 for 1 ≤ a ≤ l

We want to define Ψ as
Ψ
(
(σ′, c⃗′, p)

)
:= (s, t, σ, c⃗)

for which we need to check various things to ensure that this is well-defined.
We first note that c⃗′ is an element of C full(2l − 1,m) and 1 ≤ p ≤ 2l − 1, so c′p is

defined and satisfies 1 ≤ cp < c2l = m+1, so 1 ≤ s ≤ m. Next, σ′ is an element of Σ2l−1,
so 1 ≤ t ≤ 2l − 1 is also well-defined.

We next need to show that σ is an element of El−1. For this we first note that it follows
from the definition of t and σ that σ is an element of Σ2l−2. So now let 1 ≤ a ≤ 2l−3 be
an odd integer. We have to show that σ cyclically preserves the ordering of {a−1, a, a+1}.
As a ≤ 2l − 3 we have a + 1 < 2l − 1, so this amounts to showing that σ′ cyclically
preserves the ordering of {σ2l−1→p(a − 1), σ2l−1→p(a), σ2l−1→p(a + 1)}. For this we need
to distinguish four cases. First consider the case a < p− 1. Then we have to show that
σ′ cyclically preserves the ordering of {a − 1, a, a + 1}, which it does, as a is odd and
a ≤ p − 2 < eodd(σ

′). Next consider the case a > p. Then we have to show that σ′

cyclically preserves the ordering of {a, a+ 1, a+ 2}, which it does, as a+ 1 is even and
eeven(σ

′) < p + 2 ≤ a + 1. The cases a = p− 1 and a = p remain. So assume a = p− 1.
Then we have to show that σ′ cyclically preserves the ordering of {p − 2, p − 1, p + 1}.
Now a ≤ 2l− 3 being odd implies that p ≤ 2l− 2 is even, so this is part of the condition
for (σ′, c⃗′, p) being an element of Id. Similarly, if we assume a = p, then we have to
show that σ′ cyclically preserves the ordering of {p − 1, p + 1, p + 2}, which it does as
p = a ≤ 2l − 3 is even.

We now turn to showing that c⃗ is an element of C(l − 1,m − 1). If 1 ≤ a ≤ l, then
2 ≤ 2a ≤ 2l, so c′2a is defined and satisfies 1 ≤ c′1 < c′2a ≤ m+1, so that ca is well-defined
and satisfies 1 ≤ ca ≤ m. We also obtain cl = c′2l − 1 = m + 1 − 1 = m. So now let
1 ≤ a ≤ l − 1. Then we have to show that ca + 1 ≤ ca+1 − 1. This amounts to showing
that c′2a ≤ c′2a+2 − 2. But this follows from c′2a < c′2a+1 < c′2a+2.

To finish the proof that Ψ is well-defined it remains to show that c1 ≯ s and that there
is no 1 ≤ q ≤ l − 1 such that cq < s − 1 < s < cq+1. Applying the definitions of s and
c⃗, this means we have to show that c′2 − 1 ≯ c′p and that there is no 1 ≤ q ≤ l − 1 such
that c′2q − 1 < c′p − 1 < c′p < c′2q+2 − 1. Let us first tackle the first claim. Assume that
c′p < c′2− 1, so c′p +1 < c′2. As c′1 < c′2 < c′3 < · · · this implies that p = 1. As p < eodd(c⃗′)
and p = 1 is odd, this means that c′1+1 = c′2, which contradicts c′p+1 < c′2. Next, assume
1 ≤ q ≤ l − 1 such that c′2q − 1 < c′p − 1 < c′p < c′2q+2 − 1. Again as c′1 < c′2 < · · · we
obtain that we must have 2q < p < 2q+2, so p = q+1. As eeven(c⃗′) < p < eodd(c⃗′) we can
then conclude that c′p + 1 = c′p+1, which contradicts the assumption that c′p < c′2q+2 − 1.
This finishes the proof that Ψ is well-defined.

371



Chapter 7. Hochschild homology of polynomial algebras

It remains to show that Φ ◦Ψ and Ψ ◦Φ are the respective identities. So let (s, t, σ, c⃗)
be an element of J and Φ((s, t, σ, c⃗)) = (σ′, c⃗′, p). Let Ψ((σ′, c⃗′, p)) = (s, t, σ, c⃗). It follows
directly from the definitions that t = σ′(p) = t, from which we can then conclude σ = σ

as well. It is also immediate from the definitions that c⃗ = c⃗. To show that s = s, one
needs to distinguish by the parity of p, and then this also follows directly by unpacking
the definitions.

Now let (σ′, c⃗′, p) be an element of Id and let Ψ((σ′, c⃗′, p)) = (s, t, σ, c⃗), as well as
Φ((s, t, σ, c⃗)) = (σ′, c⃗′, p). We again need to distinguish by the parity of p. If p is odd, then
p < eodd(c⃗′) implies that c′p+1 − 1 = c′p. From this we obtain c(p+1)/2 = c′p+1 − 1 = c′p = s.
Thus we obtain p = 2((p + 1)/2) − 1 = p. If instead p is even, then we directly obtain
cp/2 = c′p−1 = s−1, so that p = 2(p/2) = p. As p = p it then follows from the definition
that σ′ = σ′. For c⃗′ we obtain the following for 1 ≤ a ≤ 2l.

c′a :=





c′a if 2 | a
c′a+1 − 1 if a ≤ p and 2 ∤ a
c′a−1 + 1 if a > p and 2 ∤ a

So let a ≤ p be odd. Then a < eodd(c⃗′), so that c′a = c′a+1 − 1. Now let a > p be odd.
Then a − 1 ≥ p > eeven(c⃗′) is even, so c′a−1 + 1 = c′a. This shows that c⃗′ = c⃗′ and thus
finishes the proof that Φ ◦Ψ = id and thus the proof of this proposition.

7.3.5. A first look at d ◦ ϵ(l−1)X

We now turn to d(ϵ(l−1)
X (y1 · · · ym)) and write it as a sum over I1.

Proposition 7.3.5.1. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered set, l ≥ 1 and m ≥ 0
integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

d
(
ϵ
(l−1)
X (y1 · · · ym)

)
=
∑

v∈I1

B′′(v)

♥

Proof. We begin by evaluating the left hand side using the definition of ϵ(l−1)
X from Con-

struction 7.3.1.1 and of the differential on the normalized standard Hochschild complex
in Proposition 6.3.1.10.

d
(
ϵ
(l−1)
X (y1 · · · ym)

)

= d




∑

σ∈El−1,
c⃗∈C(l−1,m)

sgn(σ) · σ · T
(
(y1, . . . , ym), c⃗

)




372



7.3. De Rham forms as a strict model in Mixed

=
∑

0≤t≤2l−2

σtcyc,2l−1 ·



1⊗




∑

σ∈El−1,
c⃗∈C(l−1,m)

sgn(σ) · σ · T
(
(y1, . . . , ym), c⃗

)







Note that sgn(σcyc,2l−1) = (−1)(2l−1)−1 = 1.

=
∑

0≤t≤2l−2

∑

σ∈El−1,
c⃗∈C(l−1,m)

sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·
(
1⊗ T

(
(y1, . . . , ym), c⃗

))

Finally, we note that if we had c1 = 1, then the first tensor factor of T ((y1, . . . , ym), c⃗)
would be 1, making 1⊗ T ((y1, . . . , ym), c⃗) = 0. We can thus remove those summands.

=
∑

0≤t≤2l−2

∑

σ∈El−1,
c⃗∈C(l−1,m)
such that
c1>1

sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·
(
1⊗ T

(
(y1, . . . , ym), c⃗

))

This leads us to defining a set J as follows.

J :=
{
(t, σ, c⃗) ∈ {0, . . . , 2l − 2} × El−1 × C(l − 1,m)

∣∣ c1 > 1
}

It then suffices to construct a bijection

Φ: J → I1

such that for every element (t, σ, c⃗) of J the following holds.

B′′
(
Φ
(
(t, σ, c⃗)

))
= sgn

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·
(
1⊗ T

(
(y1, . . . , ym), c⃗

))

So let (t, σ, c⃗) be an element of J . Then we make the following definitions.

σ′ := σtcyc,2l−1 ◦
(
id{1}∐σ

)

c′a :=





1 if a = 1

ca/2 if a is even
c(a−1)/2 + 1 if 1 < a is odd

for 1 ≤ a ≤ 2l

Φ
(
(t, σ, c⃗)

)
:=
(
σ′, c⃗′

)

We need to show that (σ′, c⃗′) defined like this is a well-defined element of I1. For this
note first that as σ is an element of Σ2l−2 the permutation σ′ is indeed an element of

373



Chapter 7. Hochschild homology of polynomial algebras

Σ2l−1. We also need eeven(σ′) = −∞. So let 2 ≤ a ≤ 2l−2 be even. Then we have to show
that σ′ cyclically preserves the ordering of {a− 1, a, a+1}. This amounts to σ cyclically
preserving the ordering of {a− 2, a− 1, a}, which it does as σ is an element of El−1 and
1 ≤ a − 1 ≤ 2l − 3 is odd. Next we need to show that c⃗′ is a well-defined element of
C full(2l− 1,m). If 2 ≤ a ≤ 2l is even, then 1 ≤ a/2 ≤ l, so c′a is well defined and satisfies
1 ≤ c′a ≤ m + 1. If 3 ≤ a ≤ 2l − 1 is odd, then 1 ≤ (a− 1)/2 ≤ l − 1 so that c(a−1)/2 is
defined and satisfies 1 ≤ c(a−1)/2 < cl = m+1, which implies that 1 ≤ c′a ≤ m+1. Thus
c⃗′ is an element of {1, . . . ,m + 1}2l. We also have c′2l = cl = m + 1. It remains to show
that c′1 < · · · < c′2l. This amounts to 1 < c1 < c1 + 1 < c2 < · · · < cl, which holds as
c1 > 1 by assumption on (t, σ, c⃗), and as ca + 1 ≤ ca+1 − 1 for 1 ≤ a ≤ l − 1 as c⃗ is an
element of C(l − 1,m). To show that (σ′, c⃗′) is an element of I1 it still remains to show
that eeven(c⃗′) = −∞, which amounts to showing that c′1 = 1 and that c′a+1 = c′a + 1 for
2 ≤ a ≤ 2l − 2 even, both of which is the case directly from the definition of c⃗′.

We now verify the identity that needs to be satisfied for B′′(Φ((t, σ, c⃗))).

B′′
(
Φ
(
(t, σ, c⃗)

))

= B′′

((
σ′, c⃗′

))

= sgn
(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
·

(
σtcyc,2l−1 ◦

(
id{1}∐σ

))
· T full

(
(y1, . . . , ym), c⃗′

)

Verification of the identity that is needed for B′′(Φ((t, σ, c⃗))) is now completed by the
following calculation.

T full
(
(y1, . . . , ym), c⃗′

)

=

c′1−1∏

j=1

yj ⊗

c′2−1∏

j=c′1

yj ⊗

c′3−1∏

j=c′2

yj ⊗

c′4−1∏

j=c′3

yj ⊗

c′5−1∏

j=c′4

yj ⊗ · · · ⊗

c′2l−1∏

j=c′2l−1

yj

=
0∏

j=1

yj ⊗
c1−1∏

j=1

yj ⊗
c1∏

j=c1

yj ⊗
c2−1∏

j=c1+1

yj ⊗
c2∏

j=c2

yj ⊗ · · · ⊗

cl−1∏

j=cl−1+1

yj

= 1⊗
c1−1∏

j=1

yj ⊗ yc1 ⊗
c2−1∏

j=c1+1

yj ⊗ yc2 ⊗ · · · ⊗

cl−1∏

j=cl−1+1

yj

= 1⊗ T
(
(y1, . . . , ym), c⃗

)

It remains to show that Φ is a bijection. As usual we construct an inverse Ψ. So let
(σ′, c⃗′) be an element of I1. Then we define Ψ((σ′, c⃗′)) as follows.

t := σ′(1)− 1

σ := r{2,...,2l−1}

(
σ−t
cyc,2l−1 ◦ σ

′
)

374



7.3. De Rham forms as a strict model in Mixed

ca := c′2a for 1 ≤ a ≤ l

Ψ

((
σ′, c⃗′

))
:= (t, σ, c⃗)

Again we have to check some things to verify that this is well-defined. First, as σ′ is an
element of Σ2l−1, the value of t satisfies indeed 0 ≤ t ≤ 2l − 2, and the above definition
of σ is an element of Σ2l−1. We need to show that σ is even an element of El−1. So
let 1 ≤ a ≤ 2l − 3 be an odd integer. We have to show that σ cyclically preserves
the ordering of {a − 1, a, a + 1}. But as σ−t

cyc,2l−1 cyclically preserves the ordering of
any set, the restriction means that what we have to show amounts to showing that σ′

cyclically preserves the ordering of {a, a+ 1, a+ 2}, which it does as 2 ≤ a+ 1 ≤ 2l− 2
is even and eeven(σ) = −∞. We also need to show that c⃗ is an element of C(l − 1,m)
satisfying c1 > 1. For this we note that for 1 ≤ a ≤ l we have 2 ≤ 2a ≤ 2l. Thus
1 ≤ c′1 < c′2a ≤ m+ 1, from which it follows that c⃗ is an element of {1, . . . ,m+ 1}l with
c1 > 1. Directly from the definition we have cl = c′2l = m+1, and if a < l, then we have
ca = c′2a < c′2a+1 < c′2a+2 = ca+1, from which ca + 1 ≤ ca+1 − 1 follows. This shows that
Ψ is well-defined.

To finish the proof of this propositions we are left to show that Φ◦Ψ and Ψ◦Φ are the
respective identity maps. So let (t, σ, c⃗) be an element of J , and set Φ((t, σ, c⃗)) = (σ′, c⃗′)
and Ψ((σ′, c⃗′)) = (t, σ, c⃗). Then the following calculations show that Ψ◦Φ is the identity.

t = σ′(1)− 1 = σtcyc,2l−1(1)− 1 = 1 + t− 1 = t

σ = r{2,...,2l−1}

(
σ
−t
cyc,2l−1 ◦ σ

t
cyc,2l−1 ◦

(
id{1}∐σ

))
= r{2,...,2l−1}

(
id{1}∐σ

)
= σ

ca = c′2a = ca for 1 ≤ a ≤ l

Now let (σ′, c⃗′) be an element of I1. Let Ψ((σ′, c⃗′)) = (t, σ, c⃗) and Φ((t, σ, c⃗)) = (σ′, c⃗′).
We begin by the following calculation.

(
σ−t
cyc,2l−1 ◦ σ

′
)
(1) = σ

−(σ′(1)−1)
cyc,2l−1

(
σ′(1)

)
= σ′(1)−

(
σ′(1)− 1

)
= 1

This implies the following calculation showing σ′ = σ′.

σ′ = σtcyc,2l−1 ◦
(
id{1}∐σ

)

= σtcyc,2l−1 ◦

(
id{1}∐r{2,...,2l−1}

(
σ−t
cyc,2l−1 ◦ σ

′
))

= σtcyc,2l−1 ◦ σ
−t
cyc,2l−1 ◦ σ

′

= σ′

It remains to show that c⃗′ = c⃗′. So let 1 ≤ a ≤ 2l. Then we have the following calculation.

c′a =





1 if a = 1

ca/2 if a is even
c(a−1)/2 + 1 if 1 < a is odd

375



Chapter 7. Hochschild homology of polynomial algebras

=





1 if a = 1

c′a if a is even
c′a−1 + 1 if 1 < a is odd

As eeven(c⃗′) = −∞ by definition of I1 we have c′1 = 1. Furthermore, if 3 ≤ a ≤ 2l − 1
is odd, then 2 ≤ a− 1 ≤ 2l − 2 is even, so c′a−1+1 = c′a−1 + 1 for the same reason. This
finishes the proof of Φ ◦Ψ = id.

7.3.6. Progress so far
We can sum up progress so far as in the following proposition. Our goal is to show

that the left hand side of the equation is zero.

Proposition 7.3.6.1. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered set, l ≥ 1 and m ≥ 0
integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X

(
d(y1 · · · ym)

)
+ d
(
ϵ
(l−1)
X (y1 · · · ym)

)

=
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v) +
∑

v∈I0,0,1

B(v)

−
∑

v∈Id

B′(v) +
∑

v∈I1

B′′(v) ♥

Proof. By combining Proposition 7.3.2.9 (first two lines, for ∂(ϵ(l)X (y1 · · · ym))), Propo-
sition 7.3.4.3 (third line, for −ϵ(l−1)

X (d(y1 · · · ym))) Proposition 7.3.5.1 (fourth line, for
d(ϵ(l−1)

X (y1 · · · ym))) we obtain the following.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X

(
d(y1 · · · ym)

)
+ d
(
ϵ
(l−1)
X (y1 · · · ym)

)

=
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q+2,2q

B(v) +
∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v)

+
∑

v∈I0,0,1

B(v) +
∑

v∈I2l,2,0

B(v)

−
∑

1≤i≤2l−1,
1≤p≤l−1,
v∈Ii,2p+2,2p

B(v)−
∑

v∈I2l,2,0

B(v)−
∑

v∈Id

B′(v)

+
∑

v∈I1

B′′(v)

Now some summands cancel and the result follows.

376



7.3. De Rham forms as a strict model in Mixed

7.3.7. Reindexing remaining summands from the boundary
We want to show that the left hand side of the equation in Proposition 7.3.6.1 is zero,

doing so via the right hand side. Of the terms there, the last two terms are written as
sums of summands that are obtained by applying T full to an element of C full(2l − 1,m)
and then permuting and perhaps adding a sign. The other terms are however given
differently, so in this section we reindex those sums to bring them into a similar form.

Proposition 7.3.7.1. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered set, l ≥ 1 and m ≥ 0
integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

1≤i≤2l−1,
1≤q≤l−1,
v∈Ii,2q,2q+1

B(v) +
∑

v∈I0,0,1

B(v) =
∑

v∈I∂even

B′′(v)

♥

Proof. Define the subset J of I as follows.25

J := I0,0,1 ∪
⋃

1≤i≤2l−1,
1≤q≤l−1

Ii,2q,2q+1

It then suffices to produce a bijection

Φ: J → I∂even

such that the following holds for every element v of J .

B′′
(
Φ(v)

)
= B(v)

So let (i, σ, c⃗) be an element of J . Then we make the following definitions.

q := σ−1(i)/2

σ′ := σi+1→2l ◦ σ ◦ σ2l→2q+1

c′a :=





c(a+1)/2 if 2 ∤ a and a ≤ 2q

ca/2 + 1 if 2 | a and a ≤ 2q

c(a+1)/2 + 1 if 2 ∤ a and a ≥ 2q + 1

ca/2+1 if 2 | a and a ≥ 2q + 1

for 1 ≤ a ≤ 2l

Φ
(
(i, σ, c⃗)

)
:=
(
σ′, c⃗′

)

25The definition of I0,0,1 is really the same one as for Ii,2q,2q+1 if we set i = 0 and q = 0, so we mostly
do not need to treat this as a separate case. The only difference is that Ii,0,1 is empty unless i = 0,
as σ(0) = 0 for every element σ of Σ2l.

377



Chapter 7. Hochschild homology of polynomial algebras

There are various things that we need to check to verify that this is well-defined. First,
by assumption on elements of J we have that σ−1(i+1) = σ−1(i)+1, so as 0 ≤ i ≤ 2l−1
implies 1 ≤ σ−1(i + 1) ≤ 2l we can conclude that we must have 0 ≤ σ−1(i) ≤ 2l − 1.
Furthermore, the definition of J implies that σ−1(i) is even, so q is a well-defined integer
satisfying 0 ≤ q ≤ l − 1. This makes σ′ into a well-defined element of Σ2l. Furthermore,
we have

σ′(2l) = σi+1→2l

(
σ(2q + 1)

)
= σi+1→2l

(
σ
(
σ−1(i) + 1

))

= σi+1→2l

(
σ
(
σ−1(i)

)
+ 1
)
= σi+1→2l(i+ 1)

= 2l

so that we can even consider σ′ as an element of Σ2l−1.
We next show that c⃗′ is a well-defined element of C full(2l − 1,m). Using that c⃗ is

an element of C(l,m) one easily sees that in all four cases c′a is a well-defined integer
satisfying 1 ≤ c′a ≤ m + 126. We also have c′2l = cl+1 = m + 1. It remains to show that
c′a < c′a+1 for 1 ≤ a ≤ 2l − 1. If a ≤ 2q − 1 is odd or a ≥ 2q + 2 even then is immediate.
If a ≤ 2q − 2 is even, then c′a = ca/2 + 1 and c′a+1 = ca/2+1, so c′a < c′a+1 follows from
ca/2+1 ≤ ca/2+1− 1. If a ≥ 2q+1 is odd, then c′a = c(a+1)/2+1 and c′a+1 = c(a+1)/2+1, so
that c′a < c′a+1 follows analogously. It remains to consider a = 2q. In this case c′2q = cq+1

and c′2q+1 = cq+1 + 1, so c′2q < c′2q+1 as cq < cq+1. This completes the proof that c⃗′ is a
well-defined element of C full(2l − 1,m).

We now verify the conditions required for (σ′, c⃗′) to be an element of I∂even. Concretely
we make the following claims.

eeven

(
c⃗′
)
= 2q

eeven
(
σ′
)
≤ 2q

eodd

(
c⃗′
)
≥ 2q + 3

eodd
(
σ′
)
≥ 2q + 1

To show that eeven(c⃗′) = 2q, we first note that c′2q = cq + 1 and c′2q+1 = cq+1 + 1. As c⃗
is an element of C(l,m), we have cq + 1 < cq+1, which implies that c′2q + 1 < c′2q+1, so
eeven(c⃗′) ≥ 2q. Now let 2q+2 ≤ a ≤ 2l−2 be even. Then c′a+1 = ca/2+1+1 = c′a+1, which
shows that eeven(c⃗′) = 2q. Next let 1 ≤ a ≤ 2q−1 be odd. Then c′a+1 = c(a+1)/2+1 = c′a+1,
so eodd(c⃗′) ≥ 2q+1. Furthermore, we have c′2q+1 = cq+1+1 and c′2q+2 = cq+2. By definition
of J it holds that cq+1+1 = cq+2−1, which then implies c′2q+1+1 = c′2q+2. Thus we even
get eodd(c⃗′) ≥ 2q + 3. We next show that eeven(σ′) ≤ 2q. So let 2q + 2 ≤ a ≤ 2l − 2 be
even. Then we have to show that σ′ cyclically preserves the ordering of {a− 1, a, a+1},
which amounts to σ cyclically preserving the ordering of {a, a + 1, a + 2}, which is the
26To exclude that we get m+ 2 in the two cases in which 1 is added to a component of c⃗, note that in

those cases the index is at most l, and cl < cl+1 = m+ 1.

378



7.3. De Rham forms as a strict model in Mixed

case as a+ 1 is odd and satisfies 1 ≤ a+ 1 ≤ 2l − 1. To show that eodd(σ′) ≥ 2q + 1 we
let 1 ≤ a ≤ 2q − 1 be odd, and have to show that σ′ cyclically preserves the ordering of
{a−1, a, a+1}, which it does as σ does. This completes the proof that Φ is well-defined.

Keeping the notation used so far, we now show that B′′(Φ((i, σ, c⃗))) = B((i, σ, c⃗)). We
first consider the signs.

sgn
(
σ′
)

= sgn
(
σi+1→2l ◦ σ ◦ σ2l→2q+1

)

= (−1)2l−(i+1) · sgn(σ) · (−1)2q+1−2l

= (−1)i · sgn(σ)
It thus remains to show the following.

∂i

(
σ · T

(
(y1, . . . , ym), c⃗

))
= σ′ · T full

(
(y1, . . . , ym), c⃗′

)

For this let us write T = T ((y1, . . . , ym), c⃗) and Ta for the a-th tensor factor of T .
Then we obtain the following for the a-th tensor factor of T full((y1, . . . , ym), c⃗′), with
0 ≤ a ≤ 2l − 1.

T full
(
(y1, . . . , ym), c⃗′

)
a

=





∏c′1−1
j=1 yj if a = 0

∏c′a+1−1

j=c′a
yj if a > 0

=





∏c1
j=1 yj if a = 0 = q

∏c1−1
j=1 yj if a = 0 < q

∏c(a+1)/2

j=c(a+1)/2
yj if 0 < a ≤ 2q − 1 is odd

∏ca/2+1−1

j=ca/2+1 yj if 0 < a ≤ 2q − 1 is even
∏cq+1

j=cq+1 yj if 0 < a = 2q

∏c(a+1)/2+1−1

j=c(a+1)/2+1 yj if a ≥ 2q + 1 is odd
∏ca/2+1

j=ca/2+1
yj if a ≥ 2q + 1 is even

=





∏c1
j=1 yj if a = 0 = q

∏c1−1
j=1 yj if a = 0 < q

yc(a+1)/2
if 0 < a ≤ 2q − 1 is odd

∏ca/2+1−1

j=ca/2+1 yj if 0 < a ≤ 2q − 1 is even
∏cq+1

j=cq+1 yj if 0 < a = 2q

∏c(a+1)/2+1−1

j=c(a+1)/2+1 yj if a ≥ 2q + 1 is odd
yca/2+1

if a ≥ 2q + 1 is even

379



Chapter 7. Hochschild homology of polynomial algebras

=





T0 · T1 if a = 0 = q

Ta if a = 0 < q

Ta if 0 < a ≤ 2q − 1 is odd
Ta if 0 < a ≤ 2q − 1 is even
T2q · T2q+1 if 0 < a = 2q

Ta+1 if a ≥ 2q + 1 is odd
Ta+1 if a ≥ 2q + 1 is even

=





Ta if a ≤ 2q − 1

T2q · T2q+1 if a = 2q

Ta+1 if a ≥ 2q + 1

Note that the inverse of σ′ is given by

σ′−1 = σ2q+1→2l ◦ σ
−1 ◦ σ2l→i+1

so that we have the following values for 0 ≤ a ≤ 2l − 1 (note that the cases below are
exhaustive, as 2q + 1 can not occur due to a 6= 2l).

σ′−1(a) =





σ−1(a) if a ≤ i and σ−1(a) ≤ 2q

σ−1(a)− 1 if a ≤ i and σ−1(a) ≥ 2q + 2

σ−1(a+ 1) if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q

σ−1(a+ 1)− 1 if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2

The upshot is that the a-th tensor factor of σ′ · T full((y1, . . . , ym), c⃗′) is given by




T full
(
(y1, . . . , ym), c⃗′

)
σ−1(a)

if a ≤ i and σ−1(a) ≤ 2q

T full
(
(y1, . . . , ym), c⃗′

)
σ−1(a)−1

if a ≤ i and σ−1(a) ≥ 2q + 2

T full
(
(y1, . . . , ym), c⃗′

)
σ−1(a+1)

if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q

T full
(
(y1, . . . , ym), c⃗′

)
σ−1(a+1)−1

if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2

=





Tσ−1(a) if a ≤ i and σ−1(a) ≤ 2q − 1

T2q · T2q+1 if a ≤ i and σ−1(a) = 2q

Tσ−1(a)−1+1 if a ≤ i and σ−1(a) ≥ 2q + 2

Tσ−1(a+1) if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q − 1

T2q · T2q+1 if a ≥ i+ 1 and σ−1(a+ 1) = 2q

Tσ−1(a+1)−1+1 if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2

380



7.3. De Rham forms as a strict model in Mixed

Note that σ(2q) = i and σ(2q + 1) = i+ 1.

=





Tσ−1(a) if a ≤ i and σ−1(a) ≤ 2q − 1

Tσ−1(i) · Tσ−1(i+1) if a = i

Tσ−1(a) if a ≤ i and σ−1(a) ≥ 2q + 2

Tσ−1(a+1) if a ≥ i+ 1 and σ−1(a+ 1) ≤ 2q − 1

Tσ−1(a+1) if a ≥ i+ 1 and σ−1(a+ 1) ≥ 2q + 2

=





Tσ−1(a) if a ≤ i

Tσ−1(i) · Tσ−1(i+1) if a = i

Tσ−1(a+1) if a ≥ i+ 1

=

(
∂i

(
σ · T

(
(y1, . . . , ym), c⃗

)))

a

This finishes the proof that B′′(Φ((i, σ, c⃗))) = B((i, σ, c⃗)).
We still have to show that Φ is a bijection. For this we construct an inverse Ψ. So let

(σ′, c⃗′) be an element of I∂even. Then we make the following definitions.

q := eeven

(
c⃗′
)
/2

i := σ′(2q)

σ := σ2l→i+1 ◦ σ
′ ◦ σ2q+1→2l

ca :=





c′2a−1 if a ≤ q

c′2a−1 − 1 if q + 1 ≤ a ≤ l

m+ 1 if a = l + 1

for 1 ≤ a ≤ l + 1

Ψ
(
(σ′, c⃗′)

)
:= (i, σ, c⃗)

As usual various checks are needed to show that this is indeed well-defined. To begin
with eeven

(
c⃗′
)
6= −∞ by definition of I∂even, so 0 ≤ eeven

(
c⃗′
)
≤ 2l − 2, implying that q

is a well-defined integer satisfying 0 ≤ q ≤ l − 1. This makes i a well defined integer
satisfying 0 ≤ i ≤ 2l − 1. We note here that i = 0 if and only if q = 0.

We next show that σ is an element of El. So let 1 ≤ a ≤ 2l − 1 be odd. We have to
show that σ cyclically preserves the ordering of {a − 1, a, a + 1}. If a ≤ 2q − 1, then
this amounts to showing that σ′ cyclically preserves {a − 1, a, a + 1}, which it does as
eodd(σ

′) ≥ eeven(c⃗′) + 1 = 2q + 1. If instead a ≥ 2q + 3, then this amounts to showing
that σ′ cyclically preserves {a − 2, a − 1, a}, which it does as a − 1 is even, satisfies
a− 1 ≥ 2q + 2, and eeven(σ

′) ≤ eeven(c⃗′) = 2q. The case a = 2q + 1 remains. For this we
just evaluate σ at 2q and 2q + 1 as follows

σ(2q) = i σ(2q + 1) = i+ 1

which already shows the claim, no matter what σ(2q + 2) may be. It also handles the
condition on σ required for (i, σ, c⃗) to be an element of Ii,2q,2q+1.

381



Chapter 7. Hochschild homology of polynomial algebras

Now we show that c⃗ is an element of C(l,m). We have cl+1 = m + 1 by definition,
and for 1 ≤ a ≤ l we have 1 ≤ 2a− 1 ≤ 2l − 1 so that c′2a−1 is a well-defined integer. If
furthermore a ≤ q, then, as q ≤ l − 1, we have the following chain of inequalities.

1 ≤ c′2a−1 ≤ c′2l−3 ≤ c′2l − 3 = m− 2

If instead q + 1 ≤ a as well as 2 ≤ a, then we have the following chain of inequalities.

1 ≤ c′2 ≤ c′3 − 1 ≤ c′2a−1 − 1 ≤ c′2l−1 − 1 ≤ c′2l − 2 = m− 1

Finally, if a = 1 and q = 0, then eeven(c⃗′) = 0, which implies that 1 ≤ c′1 − 1, while
c′2a−1 − 1 ≤ m− 1 as in the previous case. We have thus shown so far that cl+1 = m+ 1
while 1 ≤ ca ≤ m − 1 for 1 ≤ a ≤ l. So let 1 ≤ a ≤ l − 1. We still have to show that
ca + 1 ≤ ca+1 − 1. If a ≤ q − 1 or a ≥ q + 1 this follows from c′2a−1 < c′2a < c′2a+1. The
case a = q remains, where we have cq = c′2q−1 and cq+1 = c′2q+1− 1. But as eeven(c⃗′) = 2q,
we obtain the last inequality in the following chain c′2q−1 < c′2q < c′2q + 1 < c′2q+1, which
shows the claim. Using that c′2q+1 = c′2q+2 − 1 = c′2q+3 − 2 due to eodd(c⃗′) ≥ 2q + 3 and
eeven(c⃗′) = 2q we obtain the short calculation

cq+1 + 1 = c′2q+1 − 1 + 1 = c′2q+1 = c′2q+2 − 1 = c′2q+3 − 2 = cq+2 − 1

which finishes the proof that Ψ is well-defined as a map to J .
It remains to show that Ψ is an inverse map to Φ. So let (i, σ, c⃗) be an element of J ,

and set Φ((i, σ, c⃗)) = (σ′, c⃗′) and q = σ−1(i)/2 as in the definition of Φ. Set furthermore
Ψ((σ′, c⃗′)) = (i, σ, c⃗) and q = eeven(c⃗′)/2 as in the definition of Ψ. In the definition of Φ
it was shown that eeven(c⃗′) = 2q, so that q = q, and unpacking the definition we then
have i = σ′(2q) = i. It then follows immediately that also σ = σ, and the following
calculation shows that c⃗ = c⃗, where 1 ≤ a ≤ l.

ca =

{
c′2a−1 if a ≤ q

c′2a−1 − 1 if q + 1 ≤ a ≤ l

=

{
ca if a ≤ q

ca + 1− 1 if q + 1 ≤ a ≤ l

= ca

This shows that Ψ ◦ Φ = id.
Now let (σ′, c⃗′) be an element of I∂even. Set Ψ((σ′, c⃗′)) = (i, σ, c⃗) and let q = eeven(c⃗′)/2

be as in the definition of Ψ. Let furthermore Φ((i, σ, c⃗)) = (σ′, c⃗′) and q = σ−1(i)/2 as
in the definition of Φ. Then we have

σ(2q) =
(
σ2l→i+1 ◦ σ

′ ◦ σ2q+1→2l

)
(2q) = σ2l→i+1

(
σ′(2q)

)
= σ2l→i+1(i) = i

382



7.3. De Rham forms as a strict model in Mixed

so that q = q. It then follows that σ′ = σ′. It remains to show that c⃗′ = c⃗′. So let
1 ≤ a ≤ 2l. Then this is shown by the following calculation.

c′a =





c(a+1)/2 if 2 ∤ a and a ≤ 2q

ca/2 + 1 if 2 | a and a ≤ 2q

c(a+1)/2 + 1 if 2 ∤ a and a ≥ 2q + 1

ca/2+1 if 2 | a and a ≥ 2q + 1

=





c′a if 2 ∤ a and a ≤ 2q

c′a−1 + 1 if 2 | a and a ≤ 2q

c′a − 1 + 1 if 2 ∤ a and a ≥ 2q + 1

c′a+1 − 1 if 2 | a and 2l > a ≥ 2q + 1

m+ 1 if a = 2l

Using that eodd(c⃗′) ≥ 2q + 3 we obtain c′a−1 + 1 = c′a in the second case, and using
eeven(c⃗′) = 2q we obtain c′a = c′a+1 − 1 in the fourth case.

=





c′a if 2 ∤ a and a ≤ 2q

c′a if 2 | a and a ≤ 2q

c′a if 2 ∤ a and a ≥ 2q + 1

c′a if 2 | a and 2l > a ≥ 2q + 1

m+ 1 if a = 2l

= c′a

Proposition 7.3.7.2. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered set, l ≥ 1 and m ≥ 0
integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

1≤i≤2l−1,
0≤q≤l−1,

v∈Ii,2q+1,2q+2

B(v) = −
∑

v∈I∂odd

B′′(v)

♥

Proof. The proof is completely analogous to the proof of Proposition 7.3.7.1, so we omit
the details. The formulas used to define Φ in this case are

q :=
(
σ−1(i)− 1

)
/2

σ′ := σi→2l ◦ σ ◦ σ2l→2q+1

c′a :=





c(a+1)/2 if 2 ∤ a and a ≤ 2q + 1

ca/2 + 1 if 2 | a and a ≤ 2q + 1

c(a+1)/2 + 1 if 2 ∤ a and a ≥ 2q + 2

ca/2+1 if 2 | a and a ≥ 2q + 2

for 1 ≤ a ≤ 2l

383



Chapter 7. Hochschild homology of polynomial algebras

Φ
(
(i, σ, c⃗)

)
:=
(
σ′, c⃗′

)

and in this case eodd(c⃗′) = 2q + 1.
The special assumption on c⃗ from the definition of J has in this case, in contrast to

the proof of Proposition 7.3.7.1, a different form depending on whether q = 0 or not,
as there is no c0. Where this property was used in the proof of Proposition 7.3.7.1 was
to show that eodd(c⃗′) 6= 2q + 1. In our case here this property is needed to show that
eeven(c⃗′) 6= 2q, and the distinction between the cases q = 0 and q 6= 0 corresponds to the
analogous distinction in the definition of eeven.

That the definition of σ′ involves i instead of i+ 1 introduces an extra minus sign in
sgn(σ′), which explains the minus sign in the result.

The formulas used to define Ψ are as follows.

q :=
(
eeven

(
c⃗′
)
− 1

)
/2

i := σ′(2q + 1)

σ := σ2l→i ◦ σ
′ ◦ σ2q+1→2l

ca :=





c′2a−1 if a ≤ q + 1

c′2a−1 − 1 if q + 2 ≤ a ≤ l

m+ 1 if a = l + 1

for 1 ≤ a ≤ l + 1

Ψ
(
(σ′, c⃗′)

)
:= (i, σ, c⃗)

Again the proof that this is well-defined is analogous to the proof of Proposition 7.3.7.1
except the special treatment of q = 0 as discussed above.

We sum up our current progress.

Proposition 7.3.7.3. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1 and 7.3.4.2. Let X be a totally ordered set, l ≥ 1 and m ≥ 0
integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X

(
d(y1 · · · ym)

)
+ d
(
ϵ
(l−1)
X (y1 · · · ym)

)

=
∑

v∈I∂even

B′′(v)−
∑

v∈I∂odd

B′′(v) +
∑

v∈I1

B′′(v)−
∑

v∈Id

B′(v) ♥

Proof. Combine Propositions 7.3.6.1, 7.3.7.1 and 7.3.7.2.

7.3.8. Subdivisions of the remaining indexing sets
To continue we need to subdivide Id, I∂even, I∂odd, and I1 into a disjoint unions of subsets,

which we do in this section.

384



7.3. De Rham forms as a strict model in Mixed

Definition 7.3.8.1. In this definition we use notation from Construction 7.3.1.1 and Def-
initions 7.3.4.1 and 7.3.4.2. Let l ≥ 1 and m ≥ 0 be integers. We define the following
subsets of Id.

I
d,cancel
> :=

{
(σ, c⃗, p) ∈ Id

∣∣ eeven(σ) > eodd(σ)
}

Id< :=
{
(σ, c⃗, p) ∈ Id

∣∣ eeven(σ) < eodd(σ)
}

Id<,top :=
{
(σ, c⃗, p) ∈ Id<

∣∣ if eodd(σ) 6=∞ then p = eodd(σ), else p = 2l − 1
}

I
d,cancel
<,top :=

{
(σ, c⃗, p) ∈ Id<,top

∣∣ eeven(σ) 6= −∞ and eeven(c⃗) < eeven(σ)
}

Id<,top,∂ :=
{
(σ, c⃗, p) ∈ Id<,top

∣∣ eeven(c⃗) 6= −∞ and eeven(c⃗) ≥ eeven(σ)
}

Id<,top,1 :=
{
(σ, c⃗, p) ∈ Id<,top

∣∣ eeven(c⃗) = −∞ and eeven(σ) = −∞
}

Id<,bottom :=
{
(σ, c⃗, p) ∈ Id<

∣∣ p = eeven(σ)
}

I
d,cancel
<,bottom :=

{
(σ, c⃗, p) ∈ Id<,bottom

∣∣ if eodd(σ) =∞ then eodd(c⃗) =∞,

else eodd(σ) < eodd(c⃗)
}

Id<,bottom,∂ :=
{
(σ, c⃗, p) ∈ Id<,bottom

∣∣ eodd(c⃗) 6=∞ and eodd(σ) ≥ eodd(c⃗)
}

The following subset is to be defined for 1 ≤ p ≤ 2l − 2.
I
d,cancel
<,mid,p :=

{(
σ, c⃗, p′

)
∈ Id<

∣∣ p′ = p and eeven(σ) < p < eodd(σ)
}

We also define the following subsets of Σ2l−1 × C
full(2l − 1,m).

I∂even,d :=
{
(σ, c⃗) ∈ I∂even

∣∣ if eodd(σ) =∞ then eodd(c⃗) =∞,

else eodd(σ) < eodd(c⃗)
}

I∂odd,d :=
{
(σ, c⃗) ∈ I∂odd

∣∣ eeven(σ) 6= −∞ and eeven(c⃗) < eeven(σ)
}

I∂odd−even :=
{
(σ, c⃗) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eeven(c⃗) 6= −∞ and eodd(c⃗) 6=∞ and

eeven(σ) ≤ eeven(c⃗) ≤ eodd(c⃗)− 3 ≤ eodd(σ)− 3
}

I∂odd,1 :=
{
(σ, c⃗) ∈ Σ2l−1 × C

full(2l − 1,m)
∣∣ eeven(c⃗) = −∞ and eodd(c⃗) 6=∞ and

eeven(σ) = −∞ and eodd(c⃗) ≤ eodd(σ)
}

I1d :=
{
(σ, c⃗) ∈ I1

∣∣ if eodd(σ) =∞ then eodd(c⃗) =∞, else eodd(σ) < eodd(c⃗)
}

♦

Proposition 7.3.8.2. In this definition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let l ≥ 1 and m ≥ 0 be integers. Then the
set Id is the disjoint union of the following subsets.

385



Chapter 7. Hochschild homology of polynomial algebras

• I
d,cancel
>

• I
d,cancel
<,mid,p for 1 ≤ p ≤ 2l − 2

• I
d,cancel
<,top

• I
d,cancel
<,bottom

• Id<,top,∂

• Id<,top,1

• Id<,bottom,∂ ♥

Proof. As eeven(σ) = eodd(σ) is never possible for parity reasons, we must always either
have eeven(σ) < eodd(σ) or eeven(σ) > eodd(σ), showing that Id is the disjoint union of
I
d,cancel
> and Id<.

Now assume that (σ, c⃗, p) is an element of Id<. We will show that then

eeven(σ) ≤ p ≤ eodd(σ)

which implies that Id< is the disjoint union of the subsets Id,cancel<,mid,q for 1 ≤ q ≤ 2l − 2,
Id<,top, and Id<,bottom. By definition of Id we must have

eeven(σ)− 1 ≤ p ≤ eodd(σ) + 1

so that we only must rule out that p = eeven(σ)− 1 and p = eodd(σ) + 1. For this, note
that by definition of eeven(σ) the permutation σ does not cyclically preserve the ordering
of {eeven(σ)− 1, eeven(σ), eeven(σ) + 1}, which means that

eeven(σ)− 1, eeven(σ) + 1, eeven(σ)

will be cyclically ordered. As eeven(σ) < eodd(σ) by definition of Id<, we also know that

eeven(σ)− 2, eeven(σ)− 1, eeven(σ)

is cyclically ordered. Combining both we obtain that

eeven(σ)− 2, eeven(σ)− 1, eeven(σ) + 1, eeven(σ)

is cyclically ordered. But this means that

eeven(σ)− 2, eeven(σ), eeven(σ) + 1

is not cyclically ordered, which rules out p = eeven(σ)− 1. Analogously one can rule out
p = eodd(σ) + 1.

We have now shown that Id is the disjoint union of the following subsets.

• I
d,cancel
>

386



7.3. De Rham forms as a strict model in Mixed

• I
d,cancel
<,mid,p for 1 ≤ p ≤ 2l − 2

• Id<,top

• Id<,bottom

It thus remains to show the following two claims. Firstly that Id<,top is a disjoint union
of the following subsets.

• I
d,cancel
<,top

• Id<,top,∂

• Id<,top,1

And secondly that Id<,bottom is a disjoint union of the following subsets.

• I
d,cancel
<,bottom

• Id<,bottom,∂

For the first claim we begin by noting that clearly the three subsets are pairwise
disjoint. So now let (σ, c⃗, p) be an element of Id<,top. First assume that eeven(σ) 6= −∞.
If eeven(c⃗) < eeven(σ) then (σ, c⃗, p) is an element of Id,cancel<,top . If instead eeven(c⃗) ≥ eeven(σ)
then it follows from eeven(σ) 6= −∞ that also eeven(c⃗) 6= −∞ and (σ, c⃗, p) is an element
of Id<,top,∂. Next assume that eeven(σ) = −∞. If also eeven(c⃗) = −∞, then (σ, c⃗, p) is an
element of Id<,top,1, and otherwise it will be an element of Id<,top,∂.

For the second claim we can again note immediately that the two subsets are disjoint.
So now let (σ, c⃗, p) be an element of Id<,bottom and assume it is not an element of Id,cancel<,bottom.
If eodd(σ) =∞, then this means eodd(c⃗) 6=∞, and this implies that (σ, c⃗, p) is an element
of Id<,bottom,∂. If instead eodd(σ) 6=∞, then this implies eodd(σ) ≥ eodd(c⃗), so in particular
eodd(c⃗) 6=∞, and thus (σ, c⃗, p) is again an element of Id<,bottom,∂.

Proposition 7.3.8.3. In this definition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let l ≥ 1 and m ≥ 0 be integers. Then the
set I∂odd is the disjoint union of the following subsets.

• I∂odd,d

• I∂odd−even

• I∂odd,1

Furthermore the set I∂even is the disjoint union of the following subsets.

• I∂even,d

• I∂odd−even ♥

387



Chapter 7. Hochschild homology of polynomial algebras

Proof. While I∂odd,d was defined as a subset of I∂odd and I∂even,d as a subset of I∂even, the
other two relevant sets have only be defined as a subset of Σ2l−1×C

full(2l−1,m). However
it follows easily from the definition that c⃗ and σ have the necessary properties for the
required subset inclusions.

We first discuss I∂odd. So let (σ, c⃗) be an element of I∂odd. If eeven(c⃗) = −∞ as well as
eeven(σ) = −∞, then (σ, c⃗) could (out of the three subsets in question) only possibly
be an element of I∂odd,1, and indeed it is, as the other two required properties are part
of the definition of I∂odd. If instead eeven(c⃗) = −∞ and eeven(σ) > −∞, then (σ, c⃗) is an
element of (only) I∂odd,d. If we have eeven(c⃗) 6= −∞, and eeven(σ) > eeven(c⃗), then (σ, c⃗) is
also only element of I∂odd,d. The last case is when eeven(c⃗) 6= −∞, and eeven(σ) ≤ eeven(c⃗),
in which case (σ, c⃗) is an element of precisely I∂odd−even, with the remaining inequalities
arising from the definition of I∂odd.

We now discuss I∂even. It is easy to see that elements of I∂even,d are not elements of
I∂odd−even, so the two subsets are disjoint. Now let (σ, c⃗) be an element of I∂even that is
not in I∂even,d. If eodd(σ) =∞ this means that eodd(c⃗) 6=∞, and then (σ, c⃗) is an element
of I∂odd−even, with the other inequalities being part of the definition of I∂even. If instead
eodd(σ) 6=∞, then eodd(σ) ≥ eodd(c⃗), which implies eodd(c⃗) 6=∞, and combined with the
properties arising from the definition of I∂even this again shows that (σ, c⃗) is an element
of I∂odd−even.

Proposition 7.3.8.4. In this definition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let l ≥ 1 and m ≥ 0 be integers. Then the
set I1 is the disjoint union of the following subsets.

• I1d

• I∂odd,1 ♥

Proof. While I1d was defined as a subset of I1, this is not the case for I∂odd,1, but that it
is a subset is clear from the definition. It is also straightforward that the two subsets
are disjoint. Now let (σ, c⃗) be an element of I1. Assume eodd(σ) = ∞. Then either
eodd(c⃗) =∞, in which case (σ, c⃗) is an element of I1d, or eodd(c⃗) ≤ eodd(σ), in which case
(σ, c⃗) is an element of I∂odd,1. Now assume eodd(σ) 6=∞. Then either eodd(c⃗) > eodd(σ), in
which case (σ, c⃗) is an element of I1d, or eodd(c⃗) ≤ eodd(σ), which implies eodd(c⃗) 6=∞, so
that (σ, c⃗) is an element of I∂odd,1.

7.3.9. Canceling of some summands of ϵ(l−1)X ◦ d
Several of the subsets we defined for Id are such that the relevant sums over them

cancel (which we indicated by naming them Id,cancel with some subscript). This is what
we show in this subsection.

Proposition 7.3.9.1. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally ordered set, l ≥ 1 and

388



7.3. De Rham forms as a strict model in Mixed

m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.
∑

v∈Id,cancel
>

B′(v) = 0 ♥

Proof. Let (σ, c⃗, p) be an element of Id,cancel> . Then

eodd(σ) ≤ eeven(σ)− 1 ≤ p ≤ eodd(σ) + 1 ≤ eeven(σ)

holds, where the middle inequality is from the definition of Id and the other two are
from the definition of Id,cancel> . This implies that27

eodd(σ) + 1 = eeven(σ)

and either p = eodd(σ) or p = eodd(σ) + 1.
It thus suffices to show that the map

Φ:
{
(σ, c⃗, p) ∈ Id,cancel>

∣∣∣ p = eodd(σ)
}
→
{
(σ, c⃗, p) ∈ Id,cancel>

∣∣∣ p = eodd(σ) + 1
}

(σ, c⃗, p) 7→ (σ, c⃗, p+ 1)

is a well-defined bijection and that for every element (σ, c⃗, p) of Id,cancel> with p = eodd(σ)
it holds that B′((σ, c⃗, p + 1)) = −B′((σ, c⃗, p)). This property of B′ is obvious from the
definition, so it only remains to show that Φ is a well-defined bijection.

So let (σ, c⃗, p) be an element of Id,cancel> with p = eodd(σ). Note that this implies that
p is odd with p ≤ 2l − 3. Thus 1 ≤ p+ 1 ≤ 2l − 2. We have to show that (σ, c⃗, p+ 1) is
again an element of Id. It follows from

eeven(c⃗) < p < eodd(c⃗)

that also
eeven(c⃗) < p+ 1 < eodd(c⃗)

for parity reasons. The discussion at the start of this proof shows that

eeven(σ)− 1 ≤ p+ 1 ≤ eodd(σ) + 1

holds as well. It thus remains to show that

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ)

)
, σ

(
eodd(σ) + 2

)

is cyclically ordered. But as (σ, c⃗, p) is an element of Id we know that

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ) + 2

)

is cyclically ordered, and the definition of eeven(σ) = eodd(σ) + 1 implies that

σ
(
eodd(σ)

)
, σ

(
eodd(σ) + 2

)
, σ

(
eodd(σ) + 1

)

27eeven(σ)− 1 ≤ eodd(σ)+1 ≤ eeven(σ) but for parity reasons eodd(σ)+1 = eeven(σ)− 1 is not possible.

389



Chapter 7. Hochschild homology of polynomial algebras

is cyclically ordered. Rotating the first of these two we can phrase this as the following
two lines each being cyclically ordered

σ
(
eodd(σ) + 2

)
, σ

(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)

σ
(
eodd(σ)

)
, σ

(
eodd(σ) + 2

)
, σ

(
eodd(σ) + 1

)

which combines to

σ
(
eodd(σ)

)
, σ

(
eodd(σ) + 2

)
, σ

(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)

being cyclically ordered, from which the claim follows, so Φ is well-defined.
To show that Φ is a bijection, we let (σ, c⃗, p) be an element of Id,cancel> with p = eodd(σ)+1.

We have to show that (σ, c⃗, p− 1) is again an element of Id. The first two properties for
this are shown completely analogously to the argument above. It thus remains to show
that

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ) + 2

)

is cyclically ordered. Similarly to the argument above one finds that the following two
lines are each being cyclically ordered, the first arising from (σ, c⃗, p) being an element of
Id, the second from the definition of eodd.

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ)

)
, σ

(
eodd(σ) + 2

)

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ)

)

which combines to

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ)

)
, σ

(
eodd(σ) + 2

)

being cyclically ordered, from which the claim follows.

Proposition 7.3.9.2. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Let 1 ≤ p ≤ 2l − 3 be odd.
Then the following holds.

∑

v∈Id,cancel
<,mid,p

B′(v) +
∑

v∈Id,cancel
<,mid,p+1

B′(v) = 0 ♥

Proof. Let σ be an element of Σ2l−1 and c⃗ an element of C full(2l − 1,m). It suffices to
show that (σ, c⃗, p) is an element of Id,cancel<,mid,p if and only if (σ, c⃗, p + 1) is an element of
I
d,cancel
<,mid,p+1, and that in this case it holds that B′((σ, c⃗, p+1)) = −B′((σ, c⃗, p)). This latter

property is clear from definition.
Purely for parity reasons we immediately have that

eeven(c⃗) < p < eodd(c⃗) and eeven(σ) < p < eodd(σ)

390



7.3. De Rham forms as a strict model in Mixed

if and only if

eeven(c⃗) < p+ 1 < eodd(c⃗) and eeven(σ) < p+ 1 < eodd(σ)

It thus remains to show that σ cyclically preserves the ordering of {p− 1, p+1, p+2} if
and only if σ cyclically preserves the ordering of {p− 1, p, p+2}. So assume first that σ
cyclically preserves the ordering of {p− 1, p+ 1, p+ 2}. As p < eodd(σ) is odd, we know
that σ cyclically preserves the ordering of {p − 1, p, p + 1}, which combined with the
assumption yields the claim. For the other direction we combine the assumption with
p + 1 > eeven(σ) being even, which means that σ cyclically preserves the ordering of
{p, p+ 1, p+ 2}.

Proposition 7.3.9.3. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈Id,cancel
<,top

B′(v) +
∑

v∈Id,cancel
<,bottom

B′(v) = 0 ♥

Proof. It suffices to show that

Φ: Id,cancel<,top → I
d,cancel
<,bottom

(σ, c⃗, p) 7→
(
σ, c⃗, eeven(σ)

)

is a well-defined bijection that satisfies B′(Φ(v)) = −B′(v) for every element v of Id,cancel<,top .
So let (σ, c⃗, p) be an element of Id,cancel<,top . We first handle the property for B′. We have

B′
((
σ, c⃗, eeven(σ)

))
= (−1)eeven(σ)+1B′′

(
(σ, c⃗)

)
= −B′′

(
(σ, c⃗)

)

= −(−1)p+1B′′
(
(σ, c⃗)

)
= −B′

(
(σ, c⃗, p)

)

where we used that p is odd.
Next we need to show that (σ, c⃗, eeven(σ)) is an element of Id,cancel<,bottom. First we show that

this is an element of Id. For this we first show the following inequality.

eeven(c⃗) < eeven(σ) < eodd(c⃗)

The inequality on the left holds by definition of Id,cancel<,top . By definition of Id< we have
eeven(σ) < eodd(σ), which together with eodd(σ) ≤ eodd(c⃗) due to what p is (and (σ, c⃗, p)
being an element of Id) implies the inequality on the right. Next we show the following
inequality.

eeven(σ)− 2 < eeven(σ) < eodd(σ) + 2

The left inequality is clear, and the right inequality follows from eeven(σ) < eodd(σ),
which holds by definition of Id<. To finish showing that (σ, c⃗, eeven(σ)) is an element of Id
it remains to show that

σ
(
eeven(σ)− 2

)
, σ

(
eeven(σ)− 1

)
, σ

(
eeven(σ) + 1

)

391



Chapter 7. Hochschild homology of polynomial algebras

is cyclically ordered For this we use that the following two lines are cyclically or-
dered, where the first one arises from the definition of eeven(σ), and the second from
eeven(σ)− 1 < eodd(σ) being odd.

σ
(
eeven(σ)− 1

)
, σ

(
eeven(σ) + 1

)
, σ

(
eeven(σ)

)

σ
(
eeven(σ)− 2

)
, σ

(
eeven(σ)− 1

)
, σ

(
eeven(σ)

)

Combining these two we obtain that

σ
(
eeven(σ)− 2

)
, σ

(
eeven(σ)− 1

)
, σ

(
eeven(σ) + 1

)
, σ

(
eeven(σ)

)

is cyclically ordered, from which the claim follows. We have now shown that (σ, c⃗, eeven(σ))
is an element of Id. That (σ, c⃗, eeven(σ)) is then an element of Id<,bottom is clear. To show
that it is even an element of Id,cancel<,bottom, we have to show that either eodd(σ) = eodd(c⃗) =∞

or eodd(σ) < eodd(c⃗). But this follows from what p must be from the definition of Id,cancel<,top
together with the inequalities p must satisfy in the definition of Id.

So far we have shown that Φ is a well-defined map, and it is clearly an injection, as σ
and c⃗ already determine the value of p if (σ, c⃗, p) is an element of Id,cancel<,top . It remains to
show that Φ is surjective. So let (σ, c⃗, eeven(σ)) be an element of Id,cancel<,bottom. If eodd(σ) =∞
set p = 2l−1, otherwise let p = eodd(σ). Then we have to show that (σ, c⃗, p) is an element
of Id,cancel<,top . From (σ, c⃗, eeven(σ)) being an element of Id we can immediately conclude that
eeven(σ) 6= −∞ and that eeven(c⃗) < eeven(σ). It thus only remains to show that (σ, c⃗, p)
is an element of Id. For this we first show the following inequalities.

eeven(c⃗) < p < eodd(c⃗)

That (σ, c⃗, eeven(σ)) is an element of Id implies that eeven(c⃗) < eeven(σ), which together
with eeven(σ) < eodd(σ) from the definition of Id< implies the left inequality. The right
inequality follows instead from the definition of Id,cancel<,bottom. We next show the following
inequalities.

eeven(σ)− 2 < p < eodd(σ) + 2

Here the left inequality follows from eeven(σ) < eodd(σ) from the definition of Id<, and
the right inequality is clear. It remains to show that σ cyclically preserves the ordering
of {p− 1, p+ 1, p+ 2}, as long as p ≤ 2l − 3. So assume that p ≤ 2l − 3, which implies
that we are in the case in which p = eodd(σ) 6= ∞. Then we use that the following two
lines are cyclically ordered, where the first one arises from the definition of eodd(σ), and
the second from eodd(σ) + 1 > eeven(σ) being odd.

σ
(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ)

)

σ
(
eodd(σ)

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ) + 2

)

Combining these two we obtain that

σ
(
eodd(σ)

)
, σ

(
eodd(σ)− 1

)
, σ

(
eodd(σ) + 1

)
, σ

(
eodd(σ) + 2

)

from which the claim follows.

392



7.3. De Rham forms as a strict model in Mixed

7.3.10. Matching up of the remaining summands
In this section we show how the sums over various subsets of Id, I1, I∂even, and I∂odd

match up.

Proposition 7.3.10.1. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈Id
<,top,∂

B′(v) =
∑

v∈I∂even,d

B′′(v) ♥

Proof. Let (σ, c⃗, p) be an element of Id<,top,∂. Then p is odd, so

B′
(
(σ, c⃗, p)

)
= B′′

(
(σ, c⃗)

)

so that it suffices to show that

Φ: Id<,top,∂ → I∂even,d

Φ: (σ, c⃗, p) 7→ (σ, c⃗)

is a well-defined bijection.
So let (σ, c⃗, p) be an element of Id<,top,∂. We first show that (σ, c⃗) is an element of I∂even.

For this we need that eeven(c⃗) 6= ∞ and eeven(σ) ≥ eeven(c⃗), both properties that are
part of the definition of Id<,top,∂, and we need that eodd(c⃗) ≥ eeven(c⃗) + 3, which follows
from the condition eeven(c⃗) < p < eodd(c⃗) from the definition of Id together with the
parities, and finally we need that eodd(σ) ≥ eeven(c⃗) + 1, which follows from left part
of the inequalities just used together with the definition of p in Id<,top. So now we have
shown that (σ, c⃗) is an element of I∂even. The properties that σ needs to satisfy for (σ, c⃗)
to even be an element of I∂even,d follow from what p is by the definition of Id<,top and that
p < eodd(c⃗) by the definition of Id. This shows that Φ is well-defined. As p is uniquely
determined by σ and c⃗ in the definition of Id<,top, we can also conclude that Φ is injective.

It remains to show that Φ is surjective. So let (σ, c⃗) be an element of I∂even,d. If
eodd(σ) = ∞ set p = 2l − 1, otherwise let p = eodd(σ). Then we have to show that
(σ, c⃗, p) is an element of Id<,top,∂. We can first note that the two inequalities in the defini-
tion of Id<,top,∂ also occur in the definition of I∂even, so that it suffices to show that (σ, c⃗, p)
is an element of Id<. By the definition of I∂even we have

eeven(σ) ≤ eeven(c⃗) < eodd(σ)

so that is only remains to show that (σ, c⃗, p) is an element of Id. For this we note that

eeven(c⃗) < p < eodd(c⃗)

follows from the definition of I∂even for the left inequality and from the definition of I∂even,d
for the right inequality. Next we consider the following inequalities.

eeven(σ)− 2 < p < eodd(σ) + 2

393



Chapter 7. Hochschild homology of polynomial algebras

The left inequality follows from eeven(σ) < eodd(σ), which we already showed above, and
the right inequality is clear. Finally, we have to show that σ cyclically preserves the
ordering of {p−1, p+1, p+2} as long as p ≤ 2l−3, which implies that p = eodd(σ) 6=∞.
The argument for this is identical to the argument used at the end of the proof of
Proposition 7.3.9.3.
Proposition 7.3.10.2. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈Id
<,bottom,∂

B′(v) = −
∑

v∈I∂odd,d

B′′(v) ♥

Proof. Let (σ, c⃗, p) be an element of Id<,bottom,∂. Then p is even, so

B′
(
(σ, c⃗, p)

)
= −B′′

(
(σ, c⃗)

)

so that it suffices to show that

Φ: Id<,bottom,∂ → I∂odd,d

Φ: (σ, c⃗, p) 7→ (σ, c⃗)

is a well-defined bijection.
So let (σ, c⃗, p) be an element of Id<,bottom,∂. We first show that (σ, c⃗) is an element of

I∂odd. For this we need that eodd(c⃗) 6=∞ and eodd(σ) ≥ eodd(c⃗), both properties that are
part of the definition of Id<,bottom,∂. We also need that eeven(c⃗) ≤ eodd(c⃗)−3, which follows
from the condition eeven(c⃗) < p < eodd(c⃗) from the definition of Id together with parities.
Finally, we need that eeven(σ) ≤ eodd(c⃗) − 1, which follows from p < eodd(c⃗) together
with p = eeven(σ) from the definition of Id<,bottom. This finishes the proof that (σ, c⃗) is
an element of I∂odd. The properties that (σ, c⃗) needs to satisfy to also be an element of
the subset I∂odd,d follow from p = eeven(σ) and the definition of Id. This shows that Φ is
well-defined. As p is uniquely determined by σ and c⃗ in the definition of Id<,bottom we can
also conclude that Φ is injective.

It remains to show that Φ is surjective. So let (σ, c⃗) be an element of I∂odd,d. We
have to show that (σ, c⃗, eeven(σ)) is an element of Id<,bottom,∂. We first note that the two
inequalities in the definition of Id<,bottom,∂ also occur in the definition of I∂odd, so that it
suffices to show that (σ, c⃗, eeven(σ)) is an element of Id<. By the definition of I∂odd we have

eeven(σ) < eodd(c⃗) ≤ eodd(σ)

so that is only remains to show that (σ, c⃗, eeven(σ)) is an element of Id. For this we note
that

eeven(c⃗) < eeven(σ) < eodd(c⃗)

follows from the definition of I∂odd,d for the left inequality and from the definition of I∂odd
for the right inequality. Next we consider the following inequalities.

eeven(σ)− 2 < eeven(σ) < eodd(σ) + 2

394



7.3. De Rham forms as a strict model in Mixed

The left inequality is clear and the right inequality follows from eeven(σ) < eodd(σ),
which we already showed above. Finally, we have to show that σ cyclically preserves the
ordering of {eeven(σ)− 2, eeven(σ)− 1, eeven(σ) + 1} The argument for this is identical to
the argument used at the middle of the proof of Proposition 7.3.9.3, where it is shown
that the map Φ used there is well-defined.

Proposition 7.3.10.3. In this proposition we use notation from Construction 7.3.1.1
and Definitions 7.3.4.1, 7.3.4.2 and 7.3.8.1. Let X be a totally ordered set, l ≥ 1 and
m ≥ 0 integers, and y1, . . . , ym as in Construction 7.3.1.1. Then the following holds.

∑

v∈Id
<,top,1

B′(v) =
∑

v∈I1d

B′′(v) ♥

Proof. Let (σ, c⃗, p) be an element of Id<,top,1. Then p is odd, so

B′
(
(σ, c⃗, p)

)
= B′′

(
(σ, c⃗)

)

so that it suffices to show that

Φ: Id<,top,1 → I1d

Φ: (σ, c⃗, p) 7→ (σ, c⃗)

is a well-defined bijection.
So let (σ, c⃗, p) be an element of Id<,top,1. That (σ, c⃗) is an element of I1 then follows

directly from the definition of Id<,top,1. Suppose now that eodd(σ) = ∞. Then we must
have p = 2l − 1 by the definition of Id<,top, which by the definition of Id implies that
eodd(c⃗) > 2l−1 so that we can conclude that eodd(c⃗) =∞ as well. If instead eodd(σ) 6=∞
Then we must have p = eodd(σ) by the definition of Id<,top, which by the definition of
Id implies that eodd(σ) < eodd(c⃗). This finishes the proof that Φ is well-defined. As p
is uniquely determined by σ and c⃗ in the definition of Id<,top we also obtain that Φ is
injective.

It remains to show that Φ is surjective. So let (σ, c⃗) be an element of I1d. Assume
first that eodd(σ) = ∞. Then the definition of I1d implies that eodd(c⃗) = ∞ as well,
and by the definition of I1 we have that eeven(c⃗) = ∞ = eeven(σ). This directly implies
all the properties needed for (σ, c⃗, 2l − 1) to be an element of Id<,top,1. Assume now
that eodd(σ) 6=∞. Then the definition of I1d implies that eodd(σ) < eodd(c⃗). This time all
properties needed for (σ, c⃗, eodd(σ)) to be an element of Id<,top,1 are directly implies except
that σ must cyclically preserve the ordering of {eodd(σ)−1, eodd(σ)+1, eodd(σ)+2}, which
follows with the same argument used at the end of the proof of Proposition 7.3.9.3.

7.3.11. Conclusion
We can now put everything together to show that ϵ(•)X forms a strongly homotopy

linear morphism. As an intermediate step we first show that the identity required for
this holds on elements of degree 0.

395



Chapter 7. Hochschild homology of polynomial algebras

Proposition 7.3.11.1. Let X be a totally ordered set and l ≥ 1 an integer. Then

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

holds on elements of Ω0
k[X]/k, where ϵ(•)X defined as in Construction 7.3.1.1. ♥

Proof. The equation we have to show is k-linear on both sides, so it suffices to show it for
a set of generators. So letm ≥ 0 be an integer and y1, . . . , ym be as in Construction 7.3.1.1.
It suffices to show that

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X

(
d(y1 · · · ym)

)
+ d
(
ϵ
(l−1)
X (y1 · · · ym)

)
= 0

This is done by combining various previous results as follows.

∂
(
ϵ
(l)
X (y1 · · · ym)

)
− ϵ

(l−1)
X

(
d(y1 · · · ym)

)
+ d
(
ϵ
(l−1)
X (y1 · · · ym)

)

Applying Proposition 7.3.7.3.
=
∑

v∈I∂even

B′′(v)−
∑

v∈I∂odd

B′′(v) +
∑

v∈I1

B′′(v)−
∑

v∈Id

B′(v)

Applying Proposition 7.3.8.3 for I∂even (first line) and I∂odd (second line), Proposition 7.3.8.4
for I1 (third line), and Proposition 7.3.8.2 for Id (rest).

=
∑

v∈I∂even,d

B′′(v) +
∑

v∈I∂odd−even

B′′(v)

−
∑

v∈I∂odd,d

B′′(v)−
∑

v∈I∂odd−even

B′′(v)−
∑

v∈I∂odd,1

B′′(v)

+
∑

v∈I1d

B′′(v) +
∑

v∈I∂odd,1

B′′(v)

−
∑

v∈Id,cancel
>

B′(v)−
∑

1≤p≤2l−q

v∈Id,cancel
<,mid,p

B′(v)

−




∑

v∈Id,cancel
<,top

B′(v) +
∑

v∈Id,cancel
<,bottom

B′(v)




−
∑

v∈Id
<,top,∂

B′(v)−
∑

v∈Id
<,top,1

B′(v)−
∑

v∈Id
<,bottom,∂

B′(v)

The terms involving I∂odd−even in the first and second line cancel. Similarly, the terms
involving I∂odd,1 in the second and third line cancel. Furthermore the terms in the fourth
and fifth line are zero by Propositions 7.3.9.1, 7.3.9.2 and 7.3.9.3.

=
∑

v∈I∂even,d

B′′(v)−
∑

v∈I∂odd,d

B′′(v) +
∑

v∈I1d

B′′(v)

−
∑

v∈Id
<,top,∂

B′(v)−
∑

v∈Id
<,top,1

B′(v)−
∑

v∈Id
<,bottom,∂

B′(v)

396



7.3. De Rham forms as a strict model in Mixed

Applying Proposition 7.3.10.1 for the term involving Id<,top,∂, Proposition 7.3.10.3 for the
term involving Id<,top,1, and Proposition 7.3.10.2 for the term involving Id<,bottom,∂.

=
∑

v∈I∂even,d

B′′(v)−
∑

v∈I∂odd,d

B′′(v) +
∑

v∈I1d

B′′(v)

−
∑

v∈I∂even,d

B′′(v)−
∑

v∈I1d

B′′(v) +
∑

v∈I∂odd,d

B′′(v)

= 0

Proposition 7.3.11.2. Let X be a totally ordered set. Then the quasiisomorphism of
chain complexes

ϵX : Ω•
k[X]/k → C

(
k[X]

)

from Construction 7.2.2.1 and Proposition 7.2.2.2 can be upgraded to a strongly homotopy
linear quasiisomorphism by equipping it with ϵ(•)X as defined in Construction 7.3.1.1. ♥

Proof. By Definition 4.2.3.1 we have to show that

∂ ◦ ϵ
(l)
X = ϵ

(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

holds for l > 028. As both sides of the above equation are k-linear it suffices to show this
on a set of generators of Ω•

k[X]/k. So let f be an element of k[X] and y1, . . . , yn elements
of X. Then the following calculation shows that the above identity is satisfied on the
element f · d y1 · · · d ym.

(
∂ ◦ ϵ

(l)
X

)
(f · d y1 · · · d ym)

= ∂
(
ϵ
(l)
X (f · d y1 · · · d ym)

)

Applying the definition of ϵ(l)X from Construction 7.3.1.1.
= ∂

(
ϵ
(l)
X (f) · ϵX(d y1 · · · d ym)

)

Applying Proposition 7.2.2.2 (1).
= ∂

(
ϵ
(l)
X (f) · d y1 · · · d ym

)

Applying the Leibniz rule for ∂, and using that ∂(dx) = 0 in C(k[X]) for every element x
ofX, which can be seen either by direct calculation or by using that ∂(dx) = − d(∂x) = 0
for degree reasons.

= ∂
(
ϵ
(l)
X (f)

)
· d y1 · · · d ym

Applying Proposition 7.3.11.1.

=

(
ϵ
(l−1)
X

(
d(f)

)
− d
(
ϵ
(l−1)
X (f)

))
· d y1 · · · d ym

= ϵ
(l−1)
X

(
d(f)

)
· d y1 · · · d ym − d

(
ϵ
(l−1)
X (f)

)
· d y1 · · · d ym

28The case l = 0 is equivalent to ϵX being a morphism of chain complexes, which we already know.

397



Chapter 7. Hochschild homology of polynomial algebras

Using Proposition 7.2.2.2 (1) for the first summand and Proposition 6.3.2.14 for the
second summand.

= ϵ
(l−1)
X

(
d(f)

)
· ϵX(d y1 · · · d ym)− d

(
ϵ
(l−1)
X (f) · d y1 · · · d ym

)

Also using Proposition 7.2.2.2 (1) for the second summand.
= ϵ

(l−1)
X

(
d(f)

)
· ϵX(d y1 · · · d ym)− d

(
ϵ
(l−1)
X (f) · ϵX(d y1 · · · d ym)

)

Using the definition of ϵ(l−1)
X from Construction 7.3.1.1.

= ϵ
(l−1)
X

(
d(f) · d y1 · · · d ym

)
− d
(
ϵ
(l−1)
X (f · d y1 · · · d ym)

)

Using the Leibniz rule for d in Ω•
k[X]/k (and that d ◦ d = 0).

= ϵ
(l−1)
X

(
d(f · d y1 · · · d ym)

)
− d
(
ϵ
(l−1)
X (f · d y1 · · · d ym)

)

=
(
ϵ
(l−1)
X ◦ d− d ◦ ϵ(l−1)

X

)
(f · d y1 · · · d ym)

This shows that ϵX can be upgraded to a strongly homotopy linear quasiisomorphism
using ϵ(•)X constructed in Construction 7.3.1.1.

As the end result of this section we can now use Proposition 7.3.11.2 to obtain an
equivalence between HHMixed(k[X]) and γMixed(Ω

•
k[X]/k) in Mixed, showing that Ω•

k[X]/k

is a strict mixed model for HHMixed(k[X]).

Construction 7.3.11.3. Let X be a totally ordered set. The strongly homotopy linear
quasiisomorphism ϵX from Proposition 7.3.11.2 induces by Proposition 7.2.2.2 (4) and
Construction 4.4.4.1 a morphism

γMixed

(
Ω•
k[X]/k

)
→ γMixed

(
C
(
k[X]

))

in Mixed, which is even an equivalence by Remark 4.4.4.2. Composing this equivalence
with the equivalences from Proposition 6.3.4.1 and Proposition 6.3.1.10 yields an equiv-
alence

HHMixed
(
k[X]

)
≃ γMixed

(
Ω•
k[X]/k

)

in the ∞-category Mixed. ♦

7.4. De Rham forms as a strict model in Alg(Mixed)
In Sections 7.2 and 7.3 we showed that Ω•

k[X]/k, which is an object in CAlg(Mixedcof),
is a model for both HH(k[X]) considered as an object in CAlg(D(k)), by forgetting the
strict mixed structure, and of HHMixed(k[X]) as an object in Mixed, by forgetting the
algebra structure. An improved version of the latter result would be to show that Ω•

k[X]/k

is also a model for HHMixed(k[X]) as an object in Alg(Mixed). While it seems reasonable
to expect this to hold, we will unfortunately not be able to show this in general, so we
first formulate this as the following conjecture.

398



7.4. De Rham forms as a strict model in Alg(Mixed)

Conjecture B. Let X be a set. Then there exists an equivalence

HHMixed
(
k[X]

)
≃ Alg(γMixed)

(
Ω•
k[X]/k

)

in Alg(Mixed).
We will often refer to the existence of such an equivalence for a specific set X as

“Conjecture B holds for X”. ♧

While we will not be able to show Conjecture B in general, we will be able to show
that it holds for sets X with |X| ≤ 2, and this is the goal of this section.

Let us now give an overview of the strategy to prove Conjecture B for |X| ≤ 2. The
very rough idea is to lift HHMixed(k[X]) to some cofibrant strict model in Alg(Mixed), use
the previous results to obtain two equivalences from this model to Ω•

k[X]/k, one respecting
the strict mixed structure and one respecting the algebra structure, and finally use this
to construct an equivalence between Ω•

k[X]/k and our generic lift that respects both.
To implement this plan we begin in Section 7.4.1 by lifting HHMixed(k[X]) to a cofibrant

object C̃
′′
(X) of Alg(Mixed).

As the underlying differential graded algebra of C̃
′′
(X) is also cofibrant, we could then

already lift the equivalence from Corollary 7.2.2.3 to a multiplicative quasiisomorphism
as follows.

Alg(evm)
(

C̃
′′
(X)

)
→ Ω•

k[X]/k

However, we can not carry out the same argument to obtain such a quasiisomorphism
that is compatible with the strict mixed structure from the equivalence from Construc-
tion 7.3.11.3, as the underlying strict mixed complex evMixed

a (C̃
′′
(X)) of C̃

′′
(X) need not

be cofibrant. This problem is related to the fact that the monoidal unit k of Mixed is
not cofibrant as a strict mixed complex. To deal with this issue we will thus not actually
use C̃

′′
(X), but replace it along a quasiisomorphism

C̃(X)→ C̃
′′
(X)

in Alg(Mixed) by C̃(X), which is also cofibrant and constructed so as to satisfy some
specific properties that we will need. In particular, evMixed

a (C̃(X)) will be given by a
coproduct k⊕C̃

′
(X), with the inclusion of the first summand given by the unit morphism,

and such that C̃
′
(X) is cofibrant as a strict mixed complex. The construction of C̃(X)

will be carried out in Section 7.4.2.
Now we can lift the equivalence from Corollary 7.2.2.3 to a quasiisomorphism

Φ′
X : Alg(evm)

(
C̃(X)

)
→ Ω•

k[X]/k

in Alg(Ch(k)), and the equivalence from Construction 7.3.11.3 to a quasiisomorphism

kcof ⊕ C̃
′
(X)→ Ω•

k[X]/k

399



Chapter 7. Hochschild homology of polynomial algebras

in Mixed, and we only need to verify that the restriction to kcof factors over k to obtain
a quasiisomorphism

ΨX : evMixed
a

(
C̃(X)

)
→ Ω•

k[X]/k

in Mixed as desired. This will be done in Section 7.4.3.
So now let us get back to what we actually want to show, that C̃(X) is equivalent to

Ω•
k[X]/k in Alg(Mixed). As C̃(X) is cofibrant such an equivalence could be realized by a

quasiisomorphism
C̃(X)→ Ω•

k[X]/k

in Alg(Mixed). However, we know little about the elements of C̃(X), apart from those
that must exist by virtue of the quasiisomorphisms discussed above, so it would be easier
to construct morphisms into rather than out of C̃(X). As Ω•

k[X]/k is not cofibrant as an
object in Alg(Mixed), we can not hope for there to be an actual strict morphism

Ω•
k[X]/k → C̃(X)

in Alg(Mixed), so instead we will attempt to construct a morphism ΞX from a cofibrant
replacement of Ω•

k[X]/k to C̃(X).
To be able to actually construct ΞX will require good control over the (low-degree)

generators of said cofibrant replacement, so we construct a specific cofibrant replacement
Ω′•
k[X]/k of Ω•

k[X]/k in Section 7.4.5.
The set X will occur as free generators of Ω′•

k[X]/k in degree 0, so the construction of
ΞX will begin by defining ΞX(x) to be such that (Φ′

X ◦ ΞX)(x) = x for elements x in X.
As Φ′

X is a quasiisomorphism it suffices to check that Φ′
X ◦ΞX is a quasiisomorphism to

conclude that ΞX is one. The information mentioned so far would suffice to show that
ΞX induces an isomorphism on H0, but to handle the other homology groups we also
need control over where Φ′

X ◦ ΞX maps dx for x an element in X.
Thus we need to study how Φ′

X interacts with d. In Section 7.4.4 we will begin with
the one variable case Φ{t}. We will not quite be able to show that the Φ′

{t} is compatible
with d, but we find that this holds up to sign. By postcomposing with an automorphism
that tweaks signs we can thus define new morphisms ΦX to replace the usage of Φ′

X such
that Φ{t} is compatible with d.

To deduce from this that ΦX is also compatible with d on elements of degree 0, as
long as |X| ≤ 2, we need a naturality statement for Φ. We show the required statement
in Section 7.4.7, after we showed a similar naturality statement for ϵ in Section 7.4.6.
The reason we only show this naturality statement for ϵ in Section 7.4.6 rather than
earlier is that the proof uses the cofibrant resolution of Ω•

k[t]/k that was constructed in
Section 7.4.5. After having handled the required naturality of Φ we can then show that
ΦX is compatible with d on degree 0 elements in Section 7.4.8.

Finally, in Section 7.4.9 we will put everything together and actually construct the
quasiisomorphism

ΞX : Ω′•
k[X]/k → C̃(X)

400



7.4. De Rham forms as a strict model in Alg(Mixed)

that is a morphism in Alg(Mixed), and thereby prove Conjecture B for |X| ≤ 2. To do
so it will be very relevant to use the comparison morphisms ΦX as well as ΨX ; to begin
with we need to prescribe the images of the generators X as we mentioned before, which
we do by lifting elements along ΦX , and in later steps there will be obstructions in the
form of cycles that need to be boundaries, which we can verify by checking that the
homology class represented by the cycle maps to zero along one of the two comparison
morphisms.

7.4.1. A first cofibrant model
In this section we lift HHMixed(k[X]) to a first cofibrant model C̃

′′
(X) in Alg(Mixed).

We actually need slightly more and lift not only HHMixed(k[X]), but the morphism
HHMixed(k) → HHMixed(k[X]) that is induced by the unit morphism. We need this
relative version in order to carry out the identification of the restriction to k that is
needed for the strict mixed comparison morphism, as was explained in the introduction
to Section 7.4.

Proposition 7.4.1.1. Let X be a set. Then there exists a morphism

ι̃′′ : C̃
′′(
∅
)
→ C̃

′′
(X)

in Alg(Mixed), such that C̃
′′(
∅
)

and C̃
′′
(X) are cofibrant, together with a commutative

square

HHMixed(k) Alg(γMixed)
(

C̃
′′(
∅
))

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃

′′
(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)(ι̃′′)

≃

(7.5)

in Alg(Mixed), where the left morphism is induced by the unit morphism ιk[X] : k → k[X]
and the horizontal morphisms are equivalences. ♥

Proof. By Propositions 4.4.1.7 and 4.4.2.3 the∞-category Alg(Mixed) is the underlying
∞-category of the combinatorial model category Alg(Mixed), where Alg(Mixed) carries
the model structure from Proposition 4.2.2.9. As [1] is a small category29, we can apply
[HA, 1.3.4.25] to lift functors [1] → Alg(Mixed) to functors [1] → Alg(Mixed) that are
cofibrant with respect to the projective model structure.

Let us for the moment denote the functor [1] → Alg(Mixed) that is encoded by the
morphism HHMixed

(
ιk[X]

)
by θ. Applying [HA, 1.3.4.25] to θ we thus obtain a functor

Θ: [1]→ Alg(Mixed)
29By [1] we mean the 1-category with two objects 0 and 1, and a unique non-identity morphism 0→ 1.

401



Chapter 7. Hochschild homology of polynomial algebras

that is cofibrant with respect to the projective model structure on the functor category
Fun([1],Alg(Mixed)), and that lifts θ in the sense that there is a commutative diagram
as follows.

[1] Alg(Mixed)

Alg(Mixed)

θ

Θ

Alg(γMixed)

The functor Θ corresponds to a morphism in Alg(Mixed) that we are going to denote by

ι̃′′ : C̃
′′(
∅
)
→ C̃

′′
(X)

so that the commutative triangle above corresponds exactly to the commuting square
(7.5).

It remains to show that C̃
′′(
∅
)

and C̃
′′
(X) are cofibrant objects. As Θ is cofibrant with

respect to the projective model structure, it is also cofibrant with respect to the injective
model structure by [HTT, A.2.8.5], which by definition30 means that it is pointwise
cofibrant.

We can directly improve Proposition 7.4.1.1 by showing that we can replace C̃
′′
(∅) by

k, which we do in the following proposition.

Proposition 7.4.1.2. Let X be a set. Then there exists a cofibrant object C̃
′′
(X) in

Alg(Mixed) so that there is a commutative square

HHMixed(k) Alg(γMixed)(k)

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃

′′
(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)

(
ιC̃′′

(X)

)

≃

(7.6)

in Alg(Mixed), where the left morphism is induced by the unit morphism ιk[X] : k → k[X],
the right morphism is induced by the unit morphism ιC̃′′

(X)
: k → C̃

′′
(X), and the hori-

zontal morphisms are equivalences. ♥

Proof. Let
ι̃′′ : C̃

′′(
∅
)
→ C̃

′′
(X)

30See [HTT, A.2.8.1 and A.2.8.2].

402



7.4. De Rham forms as a strict model in Alg(Mixed)

be as in Proposition 7.4.1.1. Then C̃
′′
(X) is cofibrant and the diagram

HHMixed(k) Alg(γMixed)
(

C̃
′′(
∅
))

Alg(γMixed)(k)

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃

′′
(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)(ι̃′′)

Alg(γMixed)

(
ιC̃′′

(∅)

)

Alg(γMixed)

(
ιC̃′′

(X)

)

≃

in Alg(Mixed) commutes, where ιC̃′′
(∅)

: k → C̃
′′
(∅) is the unit morphism and the square

is the one supplied by Proposition 7.4.1.1. It thus suffices to show that ιC̃′′
(∅)

: k → C̃
′′
(∅)

is a quasiisomorphism.
As quasiisomorphisms are detected on underlying morphisms of chain complexes, we

can forget about the strict mixed structure and only consider the unit morphism of the
differential graded algebra Alg(evm)(C̃

′′
(∅)). There is a composite equivalence

Alg(γ)
(

Alg(evm)
(

C̃
′′
(∅)
))
≃ HH(k) ≃ Alg(γ)

(
Ω•
k/k

)
≃ Alg(γ)(k)

in Alg(D(k)), where the first equivalence is obtained by applying the forgetful functor
Alg(evm) to the equivalence at the top left in the diagram above combined with compat-
ibility of Alg(evm) with Alg(γMixed) from Construction 4.4.1.1, the second equivalence is
the one from Corollary 7.2.2.3, and the third equivalence arises from the isomorphism
Ω•
k/k
∼= k.

As initial object k is cofibrant in Alg(Ch(k)), so as every object in Alg(Ch(k)) is fibrant,
the above equivalence in Alg(D(k)) can be lifted to a quasiisomorphism

k → Alg(evm)
(

C̃
′′
(∅)
)

in Alg(Ch(k)). But as k is the initial object in this category, this morphism must be
exactly ιC̃′′

(∅)
, which has thus been proven to be a quasiisomorphism.

7.4.2. An improved cofibrant model

C̃
′′
(X) as in Proposition 7.4.1.1 is a cofibrant model in Alg(Mixed) for HHMixed(k[X]),

but apart from that we know nothing about C̃
′′
(X). In this section we will use C̃

′′
(X)

to construct a new cofibrant model C̃(X) over which we will have more control.
Before we state the result of this section we begin with some notation and a remark

on pushouts of certain free algebras in strict mixed complexes.

403



Chapter 7. Hochschild homology of polynomial algebras

Notation 7.4.2.1. In this section we are often going to use free associative algebras in
strict mixed complexes that are generated by strict mixed complexes that are themselves
free. To simplify notation, we thus define

FreeAlg(Mixed) := FreeAlg(Mixed)
Mixed ◦ FreeMixed

where FreeAlg(Mixed)
Mixed and FreeMixed are as in Notation 4.2.2.10. ♦

Remark 7.4.2.2. Let X be an object in Alg(Mixed), let E be a Z-graded set, and let
i′ : E → X be a map of Z-graded sets. Assume that the image of i′ consists only of
cycles in X. Define B′ to be the chain complex whose underlying graded k-module is
k ·E (i. e. the free one on E), equipped with the zero boundary operator. We also define
a Z-graded k-module B′ := B′ ⊕ B′[1]. Then B′ has two generators corresponding to
every element e of E; the one in the left summand is in the same degree as e, and we
will also denote this generator by e, and the one in the right summand has degree one
higher than e, and we will denote this generator by e. We can upgrade B′ to a chain
complex by defining ∂(e) = e and ∂(e) = 0 for every element e of E. There is an obvious
morphism of chain complexes j′ : B′ → B′ that maps e to e.

We will consider the pushout diagram

FreeAlg(Mixed)(B′) FreeAlg(Mixed)(B′
)

X X

FreeAlg(Mixed)(j′)

i i

ι

(∗)

in Alg(Mixed), where i is the morphism that is determined by the morphism of chain
complexes B′ → X that is given by mapping e to i′(e) for every element e of E (this is
a morphism of chain complexes by the assumption that i′(e) is a cycle).

Let Y be a chain complex. Then the underlying graded k-algebra of FreeAlg(Mixed)(Y ) is
given by the free graded k-algebra generated by the graded k-module D⊗Y ∼= Y ⊕Y [1].
This follows from Proposition 4.2.2.11 and the analogous statement proven with Propo-
sition E.7.2.2 (2) in the same manner by using that the forgetful functor from Ch(k) to
the category of Z-graded k-modules is symmetric monoidal and preserves colimits.

As the forgetful functor from Alg(Mixed) to Alg(Ch(k)) preserves colimits by Propo-
sition 4.2.2.12 and the forgetful functor from Alg(Ch(k)) to the category of Z-graded
k-algebras does so as well by Proposition E.7.3.1, we then obtain that diagram (∗) is on
underlying graded k-algebras given by a pushout31

Free(k · E ⊕ k · dE) Free(k · E ⊕ k · dE)∐ Free(k · E ⊕ k · dE)

X X

i i

ι

31We denote by dE a Z-graded set that consists of an element that we denote by d e of degree one
higher than e for each element e of E. We use a similar convention for E.

404



7.4. De Rham forms as a strict model in Alg(Mixed)

where Free is ad hoc notation for the free associative Z-graded k-algebra on a Z-graded
k-module32, ∐ refers to the coproduct in the category of Z-graded k-algebras, i. e. the
free product, and the top morphism is the inclusion of the first summand. From this it
follows that the underlying graded k-algebra of X is given by the coproduct (in graded
k-algebras) of X and the free graded k-algebra on elements e and d e for e ∈ E. ♦

Proposition 7.4.2.3. Let Y be an object in Alg(Mixed) and Y ′ a sub-Z-graded-k-module
of H∗(Y ) such that H∗(Y ) is the direct sum of Y ′ with a copy of k generated by the homol-
ogy class [1] that is represented by the multiplicative unit 1 of Y 33. Assume furthermore
that the homology of Y is concentrated in non-negative degrees.

Then there exists a quasiisomorphism

Θ: X → Y

in Alg(Mixed) such that X is cofibrant, concentrated in nonnegative degrees, and satisfies
the following additional property. There must exist a sub-strict-mixed-complex X ′ of
evMixed

a (X) that is cofibrant as an object of Mixed such that the morphism of strict mixed
complexes

k ⊕X ′ → evMixed
a (X)

that is induced by the unit k → X and the inclusion X ′ → evMixed
a (X) is an isomorphism.

Furthermore, the restriction of H∗(Θ) to H∗(X
′) must corestrict to an isomorphism

H∗(X
′)

∼=
−→ Y ′. ♥

Proof. We will inductively construct a diagram in Alg(Mixed) as indicated below, satis-
fying properties (a), (b), (c), (d), (e), (f) and (g) that will be explained below.

k

X−1 X0 X1 X2 · · ·

Y

ι0−1

Θ−1

p−1

ι10

Θ0

p0

ι21

Θ1

p1

Θ2

p2

(∗)

Beyond the notation indicated in the diagram, we will denote the morphism from Xn to
Xm for −1 ≤ n ≤ m by ιmn := ιmm−1◦· · ·◦ι

n+1
n . All morphisms ιmn are going to be levelwise

injective, so if x is an element of Xn, we will also just write x for the element ιmn (x) of
Xm. Finally, we define Kn := Ker(pn) for n ≥ −1. Note that as pn is a morphism of
chain complexes Kn will be closed under ∂.

Now we can formulate the properties that (7.4.2.3) needs to satisfy.
32We also use that Free preserves coproducts to rewrite the top right object as a coproduct.
33This element is a cycle and satisfies d(1) = 0 due to the Leibniz rule that is satisfied by both ∂ as

well as d.

405



Chapter 7. Hochschild homology of polynomial algebras

(a) X−1 = k.

(b) Xn is concentrated in non-negative degrees for all n ≥ −1.

(c) H∗(Θn) is an isomorphism for ∗ < n if n ≥ −1 and surjective for all ∗ if n ≥ 0.

(d) H∗(Θn) maps H∗(Kn) into Y ′ for all n ≥ −1.

(e) Let n ≥ −1. Then there is a Z-graded set En and a morphism of Z-graded sets
i′n : En → Xn satisfying the following properties. Let e be an element of En. Then
the image i′n(e) in Xn must be a cycle as well as lie in Kn. We denote by B′

n := k·En
the chain complex with zero boundary operator whose underlying Z-graded k-
module is freely generated by En. We furthermore denote by B′

n the Z-graded
k-module that is given by (k · En)⊕ (k · En)[1]. If e is an element of En, then we
will also use e to refer to e as en element of the left summand, and e to refer to e
as an element of the right summand. Note that e has degree 1 higher than e. We
can then make B′

n into a chain complex by defining ∂(e) = e and ∂(e) = 0 for
every element e of En. There is a morphism of chain complexes j′n : B′

n → B′
n that

maps e to e. Now we can finally formulate the property that En needs to satisfy.
We require that there is a pushout diagram

FreeAlg(Mixed)(B′
n) FreeAlg(Mixed)(B′

n

)

Xn Xn+1

FreeAlg(Mixed)(j′n)

in in

ιn+1
n

(∗∗)

in Alg(Mixed), where in is the morphism that is determined by the morphism of
chain complexes B′

n → Xn that is given by mapping e to i′n(e) for e an element of
En (this is a morphism of chain complexes by the assumption that every element
of En be a cycle in Xn).

(f) ιn+1
n is a cofibration in Alg(Mixed) for n ≥ −1.

(g) evMixed
a (ιn+1

n ) is a cofibration in Mixed for n ≥ −1.

Before we construct diagram (∗) with these properties, let us first explain how to
deduce the claim from it. We define

X := colim
n≥−1

Xn

with the colimit taken in Alg(Mixed), and let p : X → k and Θ: X → Y be the morphisms
induced by pn and Θn. We furthermore define

X ′ := Ker
(

evMixed
a (p)

)

406



7.4. De Rham forms as a strict model in Alg(Mixed)

which is a sub-strict-mixed-complex of evMixed
a (X) as evMixed

a (p) is a morphism of strict
mixed complexes. It remains to check the properties that X and Θ need to satisfy.
Before we go through the individual claims, let us first note that the forgetful functors
from Alg(Mixed) to Alg(Ch(k)), Mixed, as well as Ch(k) all detect filtered colimits by
Proposition 4.2.2.12, so in particular every element of X already occurs in Xn for some
n ≥ −1. That X is concentrated in nonnegative degrees then follows directly from (b).

We continue by showing that Θ is a quasiisomorphism. It follows immediately from
(c) that Hm(Θ) is surjective for any integer m. Now assume that m is an integer and z is
a cycle of chain degree m in X such that Θ(z) is a boundary. There must be an n ≥ −1
such that z is an element of Xn, and we may assume that n > m. Then (c) implies that
Hm(Θn) is an isomorphism, so z must be a boundary in Xn and hence in X. Thus Θ is
a quasiisomorphism.

Next we need to show that X is a cofibrant object in Alg(Mixed). This means that the
morphism from the initial object k must be a cofibration. By (a) we can identify this
morphism with the inclusion X−1 → X, which is a transfinite composition of

X−1 X0 X1 · · ·
ι0−1 ι10

so that the claim follows from each ιn+1
n being a cofibration in Alg(Mixed) by (f), as

cofibrations are closed under transfinite compositions.
We now turn towards the properties X ′ needs to satisfy. As p is a morphism in

Alg(Mixed), it must be compatible with the respective unit morphisms, so that the com-
position of the unit morphism k → X with p must be the identity. The splitting lemma
now implies that the morphism of strict mixed complexes k ⊕X ′ → evMixed

a (X) that is
induced by the unit k → X and the inclusion X ′ → X is an isomorphism. Let m be an
integer. Using the just mentioned isomorphism and the one from the statement of the
proposition we obtain a composition

Hm(k)⊕ Hn(X
′) Hm(X) Hm(Y ) Hm(k · {[1]})⊕ Y

′∼= Hm(Θ) ∼=

that we can write as a 2 × 2 matrix (thinking of the direct sums as column vectors),
and showing that the restriction of H∗(Θ) to H∗(X

′) corestricts to an isomorphism
H∗(X

′)
∼=
−→ Y ′ means showing the the component Hn(X

′)→ Hm(k · {[1]}) is zero and the
component Hn(X

′) → Y ′ is an isomorphism. (d) implies that the restriction of Hm(Θ)
to Hm(X

′) factors over Y ′, which handles the former. As Θ is a morphism in Alg(Mixed)
we also know that the composition of Θ with the unit morphism k → X is given by the
unit morphism k → Y , which shows that matrix is of the form

[
∼= 0
0 ?

]

Combining this with the fact that Hm(Θ) is an isomorphism as we already showed above
we can conclude that the component Hn(X

′) → Y ′ (indicated with a question mark
above) must be an isomorphism as well.

407



Chapter 7. Hochschild homology of polynomial algebras

It remains to show that X ′ is a cofibrant strict mixed complex. Using that the forgetful
functor evMixed

a from Alg(Mixed) to Mixed preserves transfinite compositions we can show,
using the same argument as when we showed that X was cofibrant in Alg(Mixed), only
this time using (g) instead of (f), that the unit morphism k → evMixed

a (X) is a cofibration
in Mixed. We can identify this unit morphism with the inclusion of the first summand
k → k ⊕X ′. This means that the top horizontal morphism in the pushout diagram

k k ⊕X ′

0 X ′

idk ×0

0∐idX′ (∗ ∗ ∗)

in Mixed is a cofibration, and hence so is the bottom horizontal morphism, i. e. X ′ is
cofibrant as an object of Mixed.

We have shown that constructing diagram (∗) satisfying properties (a), (b), (c), (d),
(e), (f) and (g) will imply the statement of the proposition, so we now turn towards ac-
tually constructing this diagram. This has two main parts. We will inductively construct
Xn together with ιnn−1, pn and Θn satisfying (a), (b), (c), (d) and (e), and separately
show that this implies that (f) and (g) hold as well.

We first get this latter part out of the way. So assume that we are given a diagram (∗)
satisfying properties (a), (b), (c), (d) and (e). Then the morphisms j′n defined in (e) for
n ≥ −1 are cofibrations of chain complexes as they are coproducts of generating cofibra-
tions, see [Hov99, 2.3.3 and 2.3.11]34. The functor FreeAlg(Mixed) is a left Quillen functor
by Theorem 4.2.2.1, so the morphisms FreeAlg(Mixed)(j′n) in Alg(Mixed) are cofibrations
as well, and hence so are the morphisms ιn+1

n by the pushout diagram that is part of (e).
This proves (f).

Showing (g) requires a more detailed analysis of the underlying objects of pushouts
in associative algebras. Luckily, Schwede and Shipley already did most of the work for
us in the proof of [SS00, 6.2], and the following argument assumes that the reader
has familiarized themselves with the proof of [SS00, 6.2]. We prove (g) by induction,
letting n ≥ −1, assuming that evMixed

a (ι0−1), . . . , evMixed
a (ιnn−1) are cofibrations in Mixed,

and proving that then also evMixed
a (ιn+1

n ) is a cofibration in Mixed. By (e) the morphism
ιn+1
n is given by a pushout

FreeAlg(Mixed)
Mixed

(
FreeMixed(B′

n)
)

FreeAlg(Mixed)
Mixed

(
FreeMixed(B′

n

))

Xn Xn+1

FreeAlg(Mixed)
Mixed

(
FreeMixed(j′n)

)

in in

ιn+1
n

in Alg(Mixed). This is also the situation considered in the proof of [SS00, 6.2], with
their functor T being given by FreeAlg(Mixed)

Mixed , and the the pushout diagram above then
34The relevant generating cofibrations are denoted by Sm−1 → Dm in [Hov99, 2.3.3].

408



7.4. De Rham forms as a strict model in Alg(Mixed)

corresponding to the pushout diagram

T (K) T (L)

X P

that is considered at the start of the proof of [SS00, 6.2]. The proof then shows (using
their notation for the intermediate steps, but ours for the end points) that evMixed

a (ιn+1
n )

is a transfinite composition of a sequence

evMixed
a (Xn) = P0 P1 · · · Pm · · ·

in Mixed. As cofibrations are closed under transfinite compositions, it thus suffices to
show that the morphism Pm−1 → Pm is a cofibration for every m ≥ 1. This morphism
is defined as a pushout

Qm

(
evMixed

a (Xn)⊗ FreeMixed(B′
n

))⊗m
⊗ evMixed

a (Xn)

Pm−1 Pm

in Mixed, so that it suffices to show that the morphism

Qm →
(

evMixed
a (Xn)⊗ FreeMixed(B′

n

))⊗m
⊗ evMixed

a (Xn)

is a cofibration in Mixed. This morphism is in turn isomorphic to a morphism

Qm ⊗ evMixed
a (Xn)

⊗(m+1) → FreeMixed(B′
n

)⊗m
⊗ evMixed

a (Xn)
⊗(m+1)

that is given as a tensor product of a morphism Qm → FreeMixed(B′
n

)⊗m and the identity
of evMixed

a (Xn)
⊗(m+1). Now Qm is the colimit of a punctured hypercube built up from

FreeMixed(j′n). As j′n is a cofibration of chain complexes35 and FreeMixed is a left Quillen
functor by Theorem 4.2.2.1, FreeMixed(j′n) is a cofibration in Mixed. Just like in the proof
of [SS00, 6.2] one can now conclude by iterated application of the pushout-product that
the morphism Qm → FreeMixed(B′

n

)⊗m is a cofibration in Mixed.
Where we have to deviate from the proof of [SS00, 6.2] is in how we conclude from

this that the morphism

Qm ⊗ evMixed
a (Xn)

⊗(m+1) → FreeMixed(B′
n

)⊗m
⊗ evMixed

a (Xn)
⊗(m+1)

35This was shown above when we proved (f).

409



Chapter 7. Hochschild homology of polynomial algebras

is a cofibration as well. While evMixed
a (Xn) is assumed to be cofibrant in the context of

[SS00, 6.2], evMixed
a (Xn) actually not cofibrant in our situation. However, with arguments

completely analogous to the proof that the statement of the proposition follows from
the existence of a diagram (∗) satisfying properties (a), (b), (c), (d), (e), (f) and (g),
we can see that evMixed

a (Xn) is given by the direct sum of the sub-strict-mixed-complex
Kn and the image of unit morphism k → Xn. That unit morphism can furthermore be
identified with the morphism evMixed

a (ιn−1), which is a cofibration in Mixed by the induction
assumption. Using a pushout diagram analogous to (∗ ∗ ∗) we can then conclude that
Kn is cofibrant as an object of Mixed. Let us now return to showing that

Qm ⊗ evMixed
a (Xn)

⊗(m+1) → FreeMixed(B′
n

)⊗m
⊗ evMixed

a (Xn)
⊗(m+1)

is a cofibration. The tensor product evMixed
a (Xn)

⊗(m+1) ∼= (k ⊕Kn)
⊗(m+1) is isomorphic

to a direct sum of terms of the form K⊗i
n ⊗ k

⊗(m+1−i) ∼= K⊗i
n . As cofibrations are closed

under coproducts, it thus suffices to show that

Qm ⊗K
⊗i
n → FreeMixed(B′

n

)⊗m
⊗K⊗i

n

is a cofibration in Mixed for any i ≥ 0. Here we need to distinguish two cases. If i > 0,
then K⊗i

n is cofibrant in Mixed as Kn is cofibrant as just shown, and combining this with
Qm → FreeMixed(B′

n

)⊗m being a cofibration and the pushout-product axiom we obtain
that the morphism above is indeed a cofibration. If instead i = 0, then K⊗i

n
∼= k. This is

not cofibrant as a strict mixed complex, but as it is the monoidal unit, we obtain that
the above morphism in question is isomorphic to Qm → FreeMixed(B′

n

)⊗m and hence
nevertheless a cofibration.

We have now shown that given a diagram (∗) satisfying properties (a), (b), (c), (d)
and (e) also properties (f) and (g) hold. So now it remains to actually construct a diagram
(∗) satisfying properties (a), (b), (c), (d) and (e), which we do inductively.

We begin by setting X−1 := k, p−1 := idk, and Θ−1 : k → Y the unit morphism of
Y . Then (a) is handled, and (b) clearly holds for n = −1. As Y was assumed to have
homology concentrated in non-negative degrees, and k has the same property we also
have (c) for n = −1. Finally, K−1 = 0, so (d) is clear for n = −1.

Now let Z be the graded subset of Y that is given by cycles that represent a non-zero
homology class in Y ′. We let E−1 be Z[−1], i. e. the Z-graded set in which the elements
of Z are all given a degree that has been lowered by 1, and define i′n : E−1 → X−1 = k

as the map that maps every element to 0. As the element 0 in every degree of k is an
element of K−1 as well as a cycle we can now define X0 via the pushout diagram (∗∗),
so that (e) is satisfied for n = −1. We also need to define p0 and Θ0, which we do using
the universal property of the pushout, which ultimately amounts to prescribing a cycle
of the appropriate degree in k and Y to the elements e of B′

−1 for each element e of E−1.
For p0 we simply let e map to 0. For Θ0 we note that an element e of E−1 corresponds
to a cycle z in Y , and the degrees of e and z agree. We can thus define Θ0 by mapping
e to the corresponding cycle z.

We now need to show that (b), (c) and (d) hold for n = 0. By assumption Y has
homology concentrated in non-negative degrees, so by construction of E−1 every element

410



7.4. De Rham forms as a strict model in Alg(Mixed)

e of E−1 is of degree bigger or equal to −1, which means that the corresponding elements
e are all of non-negative degrees. Applying Remark 7.4.2.2 we can thus conclude that X0

is concentrated in non-negative degrees, which shows (b) for n = 0. By construction of
E−1 and Θ0 it is clear that Y ′ is contained in the image of H∗(Θ0). As 1 must also be in
the image by virtue of Θ0 being multiplicative, we can conclude from the assumption that
H∗(Y ) ∼= k · {[1]}⊕ Y ′ that H∗(Θ0) is surjective. As both X0 and Y have homology that
is concentrated in non-negative degrees it is also clear that H∗(Θ0) is an isomorphism
for ∗ < 0. Thus (c) follows for n = 0. Finally, it is clear from the definitions and
Remark 7.4.2.2 that a basis for K0 is given by non-empty words in the multiplicative
generators e and d e of X0 for e elements of E−1. As Θ0 maps every element of the form
e to a cycle that represents a homology class in Y ′, the same is true for elements of the
form d e, as Y ′ is closed under d for degree reasons36. Multiplicativity of Θ0 now implies
that H∗(Θ0) maps H∗(K0) into Y ′, showing (d) for n = 0.

We now define the remainder of diagram (∗) by induction. So we assume that m > 0
such that X−1, . . . , Xm−1 as well as p−1, . . . , pm−1 and Θ−1, . . . ,Θm−1 have already been
defined in such a way that (e) holds for n = −1, . . . ,m− 2 and (b), (c) and (d) hold for
n = −1, . . . ,m − 1. We then define Xm, pm, and Θm in such a way that (e) holds for
n = m− 1 and (b), (c) and (d) hold for n = m.

Let L := Ker(Hm−1(Θm−1)). We want to define Em−1 as a Z-graded subset of Km−1

whose elements are cycles representing nonzero homology classes in L, and which contains
at least one such cycle for each nonzero homology class in L. Note that Em−1 will then
be concentrated in degree m− 1. We have to show that this is in fact possible, i. e. that
every homology class in L is represented by a cycle that lies in Km−1. Note that, as we
already mentioned before, Xm−1 decomposes as a direct sum of k · {1} and Km−1. If
m > 1, then this immediately implies the claim, as k · {1} is then concentrated in degree
0 < m−1 so that every cycle of degree m−1 in Xm−1 will be in Km−1. If instead m = 1,
then a cycle representing a homology class in L is given by a sum a · 1 + l, with a an
element of k and l a cycle in K0 of degree 0. That Θ0 is an algebra morphism as well as
(d) for n = m− 1 imply that

H0(Θ0)
(
[a · 1] + [l]

)
= a · [1] + H0(Θ0)

(
[l]
)

with H0(Θ0)([l]) an element of Y ′. The assumption that H∗(Y ) is the direct sum of
k · {[1]} and Y ′ then implies that we must have a = 0. Thus a Z-graded subset Em−1 of
Km−1 of the form described above exists.

We let i′m−1 : Em−1 → Xm−1 be the inclusion map and define ιmm−1 and Xm via the
pushout diagram (∗∗), so that (e) is satisfied for n = m − 1. We next define pm and
Θm using the universal property of the pushout. We define pm by extending pm−1 by
mapping e to 0 for every element e of Em−1, which is compatible as pm−1 ◦ im−1 maps
every element of Em−1 to 0 as Em−1 is a subset of Km−1.

We also define Θm as follows. Let e be an element of Em−1. By definition i′m−1(e) is a
cycle that represents a homology class that is in the kernel of Hm−1(Θm−1). There thus
36Y ′ is concentrated in nonnegative degrees, so the images of d applied to elements of Y ′ lie in degrees

greater or equal to 1, and in those degrees Y ′ is equal to H∗(Y ), as k is concentrated in degree 0.

411



Chapter 7. Hochschild homology of polynomial algebras

exists an element in degree m of Y whose boundary is Θm−1(i
′
m−1(e)), and we can thus

define Θm as an extension of Θm−1 by mapping e to one such element. It now remains
to show that with these definitions (b), (c) and (d) hold for n = m.

Combining that Em−1 is concentrated in degree m − 1 ≥ 0 with Remark 7.4.2.2 we
obtain that the underlying Z-graded k-algebra of Xm is multiplicatively generated by
Xm−1 and elements of the form e of degree m and d e of degree m + 1 for e ∈ Em−1.
Combining this with (b) for n = m− 1 we obtain (b) for n = m.

This also implies that ιmm−1 is an isomorphism in degrees less than or equal to m− 137,
and thus an isomorphism in homology in degrees less than or equal to m−2. Combining
this with (c) for n = m − 1 we obtain that H∗(Θm) is an isomorphism for ∗ < m − 1.
That H∗(Θm) is surjective for all ∗ follows directly from H∗(Θm−1) being surjective for
all ∗ by (c) for n = m−1. To show (c) for n = m it thus remains to show that Hm−1(Θm)
is injective. As we noted that ιmm−1 is an isomorphism in degrees less than or equal to
m − 1, any homology class in the kernel of Hm−1(Θm) must already lie in the kernel of
Hm−1(Θm−1) and hence in L. But the construction of Xm then directly implies that that
homology class is zero in Hm−1(Xm). This shows (c) for n = m.

Finally, ιmm−1 being an isomorphism in degrees less than or equal to m−1 implies that
the restriction and corestriction of ιmm−1 to a morphism of chain complexes Km−1 → Km

is also an isomorphism in those degrees. As m− 1 ≥ 0 this implies that the image of the
restriction of H0(Θm) to H0(Km) is contained in the image of the restriction of H0(Θm−1)
to H0(Km−1), which together with (d) for n = m− 1 shows that H0(Θm) maps H0(Km)
into Y ′. As Y ′ is equal to H∗(Y ) in degrees ∗ 6= 0, this shows (d) for n = m.

We can now apply Proposition 7.4.2.3 to improve the cofibrant model for HHMixed(k[X])
from Proposition 7.4.1.2.

Proposition 7.4.2.4. Let X be a set. Then there exists a cofibrant object C̃(X) in
Alg(Mixed) that is concentrated in nonnegative degrees satisfying the following properties.

Firstly, there has to a be a commutative square

HHMixed(k) Alg(γMixed)(k)

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)
(
ιC̃(X)

)

≃

(7.7)

in Alg(Mixed), where the left morphism is induced by the unit morphism ιk[X] : k → k[X],
the right morphism is induced by the unit morphism ιC̃(X) : k → C̃(X), and the horizontal
morphisms are equivalences.
37This is one reason why (b) is part of the properties that we need to require of diagram (∗) even if we

did not need this property to conclude the statement of the proposition; without assuming it in the
induction each new multiplicative generator also causes new elements of potentially arbitrary low
degree.

412



7.4. De Rham forms as a strict model in Alg(Mixed)

Secondly, there must exists a sub-strict-mixed-complex C̃
′
(X) of evMixed

a (C̃(X)) that is
cofibrant as an object of Mixed and such that the morphism of strict mixed complexes

k ⊕ C̃
′
(X)→ evMixed

a

(
C̃(X)

)

that is induced by the unit k → evMixed
a (C̃(X)) and inclusion C̃

′
(X) → evMixed

a (C̃(X)) is
an isomorphism. ♥

Proof. Let C̃
′′
(X) be as in Proposition 7.4.1.2. Then there is a composite equivalence

Alg(γ)
(

Alg(evm)
(

C̃
′′
(X)

))
≃ HH

(
k[X]

)
≃ Alg(γ)

(
Ω•
k[X]/k

)

in Alg(D(k)), where the first equivalence is obtained by applying the forgetful func-
tor Alg(evm) to the equivalence at the bottom of diagram (7.6) supplied by Proposi-
tion 7.4.1.2 combined with compatibility of Alg(evm) with Alg(γMixed) from Construc-
tion 4.4.1.1, and the second equivalence is the one from Corollary 7.2.2.3. This implies
that there is an isomorphism of Z-graded k-algebras as follows.

H∗

(
C̃

′′
(X)

)
∼= H∗

(
Ω•
k[X]/k

)
∼= Ω•

k[X]/k

As Ω•
k[X]/k is concentrated in nonnegative degrees and can be written as a direct sum of

a copy of k generated by the multiplicative unit 1 and some complement we can transfer
this sum decomposition to the homology of C̃

′′
(X) and use it to apply Proposition 7.4.2.3.

This yields a quasiisomorphism

Θ: C̃(X)→ C̃
′′
(X)

in Alg(Mixed) such that C̃(X) is cofibrant, concentrated in nonnegative degrees, and
such that there exists a cofibrant sub-strict-mixed-complex C̃

′
(X) of evMixed

a (C̃(X)) such
that the morphism of strict mixed complexes

k ⊕ C̃
′
(X)→ evMixed

a (C̃(X))

that is induced by the unit and inclusion is an isomorphism. This already shows the
second property that C̃(X) needs to satisfy.

It remains to show the existence of a commutative square (7.7) in Alg(Mixed). This
is obtained as the outer square of the commutative diagram

HHMixed(k) Alg(γMixed)(k)

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃

′′
(X)

)
Alg(γMixed)

(
C̃(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)

(
ιC̃′′

(X)

) Alg(γMixed)
(
ιC̃(X)

)

≃ Alg(γMixed)(Θ)

≃

in Alg(Mixed), with the left commutative square being the one supplied by Proposi-
tion 7.4.1.2 and the right triangle commuting because k is initial in Alg(Mixed).

413



Chapter 7. Hochschild homology of polynomial algebras

As it will later be relevant to keep using the same equivalences as in diagram (7.7) of
Proposition 7.4.2.4, we now fix C̃ once and for all.

Construction 7.4.2.5. Let X be set. Then we define C̃Z(X) to be a cofibrant object
of Alg(MixedZ) satisfying the conditions of Proposition 7.4.2.4. Together with C̃Z(X) we
fix once and for all a commutative square

HHMixed(Z) Alg(γMixed)(Z)

HHMixed
(
Z[X]

)
Alg(γMixed)

(
C̃Z(X)

)

≃

HHMixed(ιZ[X]) Alg(γMixed)

(
ιC̃

Z
(X)

)

≃

(7.8)

in Alg(MixedZ) and a cofibrant sub-strict-mixed-complex C̃
′

Z(X) of evMixed
a (C̃Z(X)) as

supplied by Proposition 7.4.2.4.
For other commutative rings k we then define

C̃k(X) := k ⊗Z C̃Z(X)

which is a cofibrant object of Alg(Mixedk) by Proposition 4.2.2.13. It also follows directly
from C̃Z(X) being concentrated in nonnegative degrees that the same holds true for
C̃k(X). Applying k ⊗Z − to the inclusion of C̃

′

Z(X) into evMixed
a (C̃Z(X)) we obtain an

injection into a strict mixed complex that we can identify with evMixed
a (C̃k(X)). We define

C̃
′

k(X) to be the image of that injection, as a sub-strict-mixed-complex of evMixed
a (C̃k(X)).

It then follows immediately from the analogous property for C̃
′

Z that the morphism of
strict mixed complexes

k ⊕ C̃
′

k(X)→ evMixed
a

(
C̃k(X)

)

that is induced by the unit and inclusion is then an isomorphism. Furthermore, as the
functor

k ⊗Z − : MixedZ → Mixedk

preserves cofibrations by Proposition 4.2.2.3 we can also conclude that C̃
′

k(X) is cofibrant
as an object of Mixedk.

414



7.4. De Rham forms as a strict model in Alg(Mixed)

We also obtain the following diagram in Alg(Mixedk)

HHMixed(k) HHMixed
(
k[X]

)

k ⊗Z HHMixed(Z) k ⊗Z HHMixed
(
Z[X]

)

k ⊗Z Alg(γMixed)(Z) k ⊗Z Alg(γMixed)
(

C̃Z(X)
)

Alg(γMixed)(k) Alg(γMixed)
(

C̃k(X)
)

≃

HHMixed(ιk[X])

≃

≃

k⊗ZHHMixed(ιZ[X])

≃

k⊗ZAlg(γMixed)

(
ιC̃

Z
(X)

)

≃ ≃

Alg(γMixed)

(
ιC̃k(X)

)

where the top square arises from compatibility of HHMixed with extension of scalars as in
Remark 6.2.1.6 (plus using the obvious isomorphisms k⊗Z Z ∼= k and k⊗Z Z[X] ∼= k[X]
that are given by including both tensor factors into the codomain and then multiplying),
the middle square is obtained by applying k ⊗Z − to the transpose of diagram (7.8),
and the bottom square arises from compatibility of Alg(γMixed) with extension of scalars
by Remark 4.4.1.3 (together again with the isomorphism k ⊗Z Z ∼= k). Transposing the
outer commutative rectangle we obtain a commutative square

HHMixed(k) Alg(γMixed)(k)

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃k(X)

)

≃

HHMixed(ιk[X]) Alg(γMixed)

(
ιC̃k(X)

)

≃

(7.9)

which we fix once and for all. With the chosen diagram (7.9) and sub-strict-mixed-
complex C̃

′

k(X) of evMixed
a (C̃k(X)) we have thus provided the data that shows that C̃k(X)

as we defined it here satisfies the conclusion of Proposition 7.4.2.4.
If the base ring is clear from context we will as usual omit it from the notation and

just write e. g. C̃(X) instead of C̃k(X).
Now let X and Y be two sets and F : k[X] → k[Y ] a morphism of commutative

k-algebras. Then the composite morphism

Alg(γMixed)
(

C̃(X)
)

HHMixed
(
k[X]

)
HHMixed

(
k[Y ]

)
Alg(γMixed)

(
C̃(Y )

)
≃ HHMixed(F ) ≃

in Alg(Mixed), where the first and third equivalences are the ones from (7.9), can be
lifted38 to a morphism C̃(F ) in Alg(Mixed), which we chose once and for all. C̃(F ) comes
38As C̃(X) is cofibrant and C̃(Y ) fibrant in Alg(Mixed).

415



Chapter 7. Hochschild homology of polynomial algebras

together with a commutative diagram

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃(X)

)

HHMixed
(
k[Y ]

)
Alg(γMixed)

(
C̃(Y )

)

HHMixed(F )

≃

Alg(γMixed)(C̃(F ))

≃

(7.10)

in Alg(Mixed), where the horizontal equivalences are those from (7.9). ♦

7.4.3. Comparing the algebra and mixed structure separately
Construction 7.4.2.5 provides a reasonably nice strict model C̃(X) for HHMixed(k[X])

as an algebra in mixed complexes. In this section we will construct comparison mor-
phisms from the underlying differential graded algebra and strict mixed complex of
C̃(X) to Ω•

k[X]/k.
Construction 7.4.3.1. Let X be a set. We will construct a quasiisomorphism

Φ′
k,X : Alg(evm)

(
C̃k(X)

)
→ Ω•

k[X]/k

in Alg(Ch(k)). If the base ring is clear from context we will also write Φ′
X , and even Φ′

if the set X is clear as well.
As in Construction 7.4.2.5 we first construct Φ′

Z,X and then extend scalars for Φ′
k,X .

There is a composite equivalence

Alg(γ)
(

Alg(evm)
(

C̃Z(X)
))
≃ HH

(
Z[X]

)
≃ Alg(γ)

(
Ω•

Z[X]/Z

)

in Alg(D(Z)), where the first equivalence is obtained by applying the forgetful func-
tor Alg(evm) to the equivalence at the bottom of diagram (7.8) in Construction 7.4.2.5
combined with compatibility of Alg(evm) with Alg(γMixed) from Construction 4.4.1.1,
and the second equivalence is the one from Corollary 7.2.2.3. By Proposition 4.2.2.12
Alg(evm) preserves cofibrant objects, so Alg(evm)(C̃Z(X)) is cofibrant as an object in
Alg(Ch(Z)). As Ω•

Z[X]/Z is fibrant (like every object), we can thus lift the above equiv-
alence in Alg(D(Z)) to a quasiisomorphism Φ′

Z,X (see [Hov99, 1.2.10 (ii)] and Proposi-
tion A.1.0.1) as claimed.

We now define
Φ′
k,X : Alg(evm)

(
C̃k(X)

)
→ Ω•

k[X]/k

as the composition

Alg(evm)
(

C̃k(X)
)
= Alg(evm)

(
k ⊗Z C̃Z(X)

)
k ⊗Z Alg(evm)

(
C̃Z(X)

)
∼=

k ⊗Z Ω
•
Z[X]/Z Ω•

k[X]/k

k⊗ZΦ
′
Z,X ∼=

416



7.4. De Rham forms as a strict model in Alg(Mixed)

in Alg(Ch(k)), where the first equality is by definition, the isomorphism on the first
line the one from compatibility of evm with extension of scalars as in Remark 4.2.1.3,
and the isomorphism in the second line is given by applying the unit in the first tensor
factor and Ω•

ιk[X]/k in the second, and then multiplying. To see that Φ′
k,X is indeed a

quasiisomorphism we only need to argue that k ⊗Z Φ′
Z,X is a quasiisomorphism. Note

that the underlying morphism of chain complexes can be identified with k⊗Z eva(Φ
′
Z,X),

and the functor

k ⊗Z − : Ch(Z)→ Ch(k)

is a left Quillen functor by Fact 4.1.5.1 and so preserves weak equivalences between
cofibrant objects. By Proposition 4.2.2.12 C̃Z(X) has cofibrant underlying chain complex,
and by the discussion surrounding Definition 7.1.0.1 Ω•

Z[X]/Z has cofibrant underlying
chain complex as well, so as Φ′

Z,X is a quasiisomorphism we obtain that Φ′
k,X is one as

well. ♦

Proposition 7.4.3.2. Let X be a set. Then there is a commutative triangle

Alg(γ)
(

Alg(evm)
(

C̃k(X)
))

Alg(γ)
(
Ω•
k[X]/k

)

HH
(
k[X]

)

Alg(γ)(Φ′
k,X)

≃ ≃

in Alg(D(k)), where the left diagonal equivalence is obtained by applying the forgetful
functor evMixed

a to the equivalence at the bottom of diagram (7.9) in Construction 7.4.2.5
combined with compatibility of evMixed

a with Alg(γMixed) from Construction 4.4.1.1, and
the right diagonal equivalence is the one from Corollary 7.2.2.3. ♥

Proof. We drop the forgetful functor Alg(evm) from the notation in this proof to improve

417



Chapter 7. Hochschild homology of polynomial algebras

readability. Consider the following diagram in Alg(D(k)) that will be explained below.

Alg(γ)
(

C̃k(X)
)

Alg(γ)
(
Ω•
k[X]/k

)

Alg(γ)
(
k ⊗Z C̃Z(X)

)
Alg(γ)

(
k ⊗Z Ω

•
Z[X]/Z

)

k ⊗Z Alg(γ)
(

C̃Z(X)
)

k ⊗Z Alg(γ)
(
Ω•

Z[X]/Z

)

k ⊗Z HH
(
Z[X]

)
k ⊗Z Alg(γ)

(
Ω•

Z[X]/Z

)

HH
(
k ⊗Z Z[X]

)
Alg(γ)

(
k ⊗Z Ω

•
Z[X]/Z

)

HH
(
k[X]

)
Alg(γ)

(
Ω•
k[X]/k

)

id

Alg(γ)(Φ′
k,X)

≃

Alg(γ)(k⊗ZΦ
′
Z,X)

≃ ≃

k⊗ZAlg(γ)(Φ′
Z,X)

≃ id

≃

≃ ≃

≃ ≃

≃

The first square from the top is built from the composition Φ′
k,X is defined as in Con-

struction 7.4.3.1. The second square is the naturality square for the equivalence in
Remark 4.4.1.3. The third square is obtained from the definition of Φ′

Z,X by apply-
ing k ⊗Z Alg(γ)(−), the left equivalence is obtained by applying the forgetful functor
Alg(evm) to the equivalence at the bottom of diagram (7.8) in Construction 7.4.2.5 com-
bined with compatibility of Alg(evm) with Alg(γMixed) from Construction 4.4.1.1 and at
the end tensoring with k, and the bottom equivalence is obtained by tensoring the equiv-
alence from Corollary 7.2.2.3 (for base ring Z) with k. Finally, the bottom rectangle is
the one from Proposition 7.2.2.4, so that in particular the bottom equivalence of the full
rectangle is the one from Corollary 7.2.2.3.

Now note that on the right the top two equivalences are the same as the bottom two
equivalences, so the composition of the right column is the identity. The bottom equiv-
alence is exactly the one occurring as the right diagonal equivalence in the statement.
Finally, the composition on the left is exactly the definition of the equivalence at the
bottom of diagram (7.9) in Construction 7.4.2.5.

Proposition 7.4.3.3. Let X be a totally ordered set. Then there exists a quasiisomor-
phism

Ψ: evMixed
a

(
C̃(X)

)
→ Ω•

k[X]/k

in Mixed. ♥

418



7.4. De Rham forms as a strict model in Alg(Mixed)

Proof. Some parts of this proof will be analogous to Construction 7.4.3.1, but we need
some additional arguments as evMixed

a

(
C̃(X)

)
is not a cofibrant object of Mixed. Propo-

sition 7.4.2.4 and Construction 7.4.2.5 isolate this problem to the non-cofibrancy of the
summand k. So let j : kcof → k be a cofibrant replacement of k in Mixed. It then follows
from Construction 7.4.2.5 that kcof⊕ C̃

′
(X) is a cofibrant strict mixed complex and that

the composition

kcof ⊕ C̃
′
(X) k ⊕ C̃

′
(X) evMixed

a

(
C̃(X)

)
j⊕id ∼= (∗)

is a quasiisomorphism, where the second morphism is induced by the unit and inclusion.
There is a composite equivalence

γMixed

(
kcof ⊕ C̃

′
(X)

)
≃ γMixed

(
evMixed

a

(
C̃(X)

))
≃ HHMixed

(
k[X]

)
≃ γMixed

(
Ω•
k[X]/k

)
(∗∗)

in Mixed, where the first equivalences arises from the composite quasiisomorphism (∗),
the second equivalence is obtained by applying the forgetful functor evMixed

a to the equiva-
lence at the bottom of diagram (7.9) in Construction 7.4.2.5 combined with compatibility
of evMixed

a with Alg(γMixed) from Construction 4.4.1.1, and the third equivalence is the
one from Construction 7.3.11.3.

Using that kcof ⊕ C̃
′
(X) is a cofibrant object of Mixed and that every object, so in

particular Ω•
k[X]/k, is fibrant, we can now lift the composite equivalence from (∗∗) to a

quasiisomorphism
Ψ′ : kcof ⊕ C̃

′
(X)→ Ω•

k[X]/k

in Mixed.
In the following we will use the notation i1 and i2 for the inclusions of the first and

second summands of the sums kcof ⊕ C̃
′
(X) and k ⊕ C̃

′
(X), with the context making

clear which of the two sums we are including into. We now claim the following.
Claim 1: There exist morphisms

Ψ′′ : kcof → k and Ψ′′′ : k → Ω•
k[X]/k

in Mixed such that Ψ′′ is a quasiisomorphism and such that there exists a commutative
square

γMixed
(
kcof
)

γMixed

(
kcof ⊕ C̃

′
(X)

)

γMixed(k) γMixed

(
Ω•
k[X]/k

)

γMixed(i1)

γMixed(Ψ′′) γMixed(Ψ′)

γMixed(Ψ′′′)

(∗ ∗ ∗)

in Mixed.

419



Chapter 7. Hochschild homology of polynomial algebras

Before showing the claim we discuss how the claim implies the statement of the propo-
sition. We define Ψ as the composition

evMixed
a

(
C̃(X)

)
k ⊕ C̃

′
(X) Ω•

k[X]/k

∼= Ψ′′′∐(Ψ′◦i2)

in Mixed, where the first morphism is the inverse isomorphism of the second morphism
in (∗). It remains to show that the morphism

Ψ′′′ ∐
(
Ψ′ ◦ i2

)
: k ⊕ C̃

′
(X)→ Ω•

k[X]/k

is a quasiisomorphism. But as Ψ′′ and hence Ψ′′⊕idC̃′
(X)

is a quasiisomorphism, it suffices
for this to show that

(
Ψ′′′ ◦Ψ′′

)
∐
(
Ψ′ ◦ i2

)
: kcof ⊕ C̃

′
(X)→ Ω•

k[X]/k

is a quasiisomorphism. We know that Ψ′ = (Ψ′ ◦ i1)∐ (Ψ′ ◦ i2) is a quasiisomorphism, so
it would suffice to show that (Ψ′′′◦Ψ′′)∐(Ψ′◦i2) is chain homotopic to (Ψ′◦i1)∐(Ψ

′◦i2),
for which it in turn suffices to show that (Ψ′′′ ◦Ψ′′) is chain homotopic to (Ψ′ ◦ i1). But
this follows from existence of commutative diagram (∗ ∗ ∗), using that the underlying
chain complex of kcof is cofibrant by Proposition 4.2.2.12, while Ω•

k[X]/k is a fibrant chain
complex, together with [Hov99, 1.2.10 (ii)] and Propositions A.1.0.1 and 4.1.4.2.

So to finish the proof it remains to show Claim 1, for which we need to unpack and
rewrite the composition γMixed(Ψ

′) ◦ γMixed(i1) that occurs in the square (∗ ∗ ∗) that we
are to construct. Using the definition of Ψ′ and (∗) and (∗∗) to unpack this composition
we obtain that γMixed(Ψ

′)◦γMixed(i1) is homotopic to the composition from the top left to
the bottom right along the top row and right column of the following diagram in Mixed,
which will be explained below.

γMixed
(
kcof
)

γMixed

(
kcof ⊕ C̃

′
(X)

)

γMixed(k) γMixed

(
k ⊕ C̃

′
(X)

)

γMixed(k) γMixed

(
evMixed

a

(
C̃(X)

))

HHMixed(k) HHMixed
(
k[X]

)

γMixed

(
Ω•
k[X]/k

)

γMixed(i1)

γMixed(j) γMixed(j⊕id)

γMixed(i1)

id ≃

γMixed
(
ιC̃(X)

)

≃ ≃

HHMixed(ιk[X])

≃

420



7.4. De Rham forms as a strict model in Alg(Mixed)

The top square is obtained by applying γMixed to a commuting square in Mixedcof. In the
middle square we define the vertical morphism on the right as the equivalence induced by
the isomorphism occurring in (∗). By definition this isomorphism is given on k by the unit
morphism, which implies that this square also has a filler as it is given by γMixed applied
to a commuting square in Mixedcof. The bottom square is given by applying the forgetful
functor evMixed

a to diagram (7.9) in Construction 7.4.2.5. Finally, the vertical equivalence
at the bottom right is the one from Construction 7.3.11.3, which also occurs in (∗∗).
Commutativity of the above diagram means that γMixed(Ψ

′) ◦ γMixed(i1) is homotopic to
the composition from the top left to the bottom right along the left column.

We now consider the following commutative diagram in Mixed, which we again explain
below. The composition that we just showed is homotopic to γMixed(Ψ

′)◦γMixed(i1) occurs
as the composition from the top left to the bottom right while staying on the top and
right side.

γMixed
(
kcof
)

γMixed(k)

HHMixed(k) HHMixed
(
k[X]

)

γMixed
(
C(k)

)
γMixed

(
C
(
k[X]

))

γMixed

(
C(k)

)
γMixed

(
C
(
k[X]

))

γMixed

(
Ω•
k[X]/k

)

γMixed(j) ≃

≃ψ′′

≃

≃

HHMixed(ιk[X])

≃

≃

γMixed(C(ιk[X]))

≃ ≃

γMixed(C(ιk[X]))

≃γMixed
(
ϵ
(•)
X

)

We start by just defining ψ′′ as the composition of the equivalences in the left column
(which will be explained in a moment); this shorthand will be useful to shorten notation
later. The second morphism in the left column is obtained by applying the forgetful func-
tor evMixed

a to the top horizontal equivalence in diagram (7.9) in Construction 7.4.2.5. The
top square arises from naturality of the equivalence between HHMixed and the standard
Hochschild complex in Proposition 6.3.4.1. The bottom square arises from naturality of
the quotient morphism from the standard Hochschild complex to the normalized stan-
dard Hochschild complex, see Proposition 6.3.1.10. The lower right vertical equivalence

421



Chapter 7. Hochschild homology of polynomial algebras

is the one induced by the strongly homotopy linear quasiisomorphism ϵ
(•)
X , see Propo-

sition 7.3.11.2 and Construction 4.4.4.1. Finally, the long equivalence on the right is
the one of Construction 7.3.11.3, which also occurs in (∗∗), and the right rectangle is
obtained by unpacking its definition.

We have now shown that γMixed(Ψ
′) ◦ γMixed(i1) is homotopic to the composition from

the top left to the bottom right in the diagram above while staying to the left and
bottom. Note that C(k) is isomorphic to k as a strict mixed complex (as k = 0), with
an isomorphism given by the unit ιC(k) of C(k). As C(ιk[X]) is a morphism of differential
graded algebras and equality of morphisms of strict mixed complex can be checked on
the underlying morphisms of chain complexes we can conclude that

C
(
ιk[X]

)
◦ ιC(k) = ιC(k[X])

holds. We should comment here on why ιC(k) and ιC(k[X]) are morphisms of strict mixed
complexes. As C(R) for a commutative k-algebra R is not in general an algebra in strict
mixed complexes, it is not a purely formal fact that the unit morphism k → C(R) of
the differential graded algebra structure is a morphism of strict mixed complexes rather
than just a morphism of chain complexes. However, this is indeed the case, as one can
check using the formula for d from Proposition 6.3.1.10.39

The upshot of the discussion so far is that there is a commutative diagram as follows
in Mixed.

γMixed
(
kcof
)

γMixed

(
C(k)

)
γMixed

(
C(k[X])

)
γMixed

(
Ω•
k[X]/k

)

γMixed(k)

γMixed(Ψ′)◦γMixed(i1)

ψ′′ ≃

γMixed(C(ιk[X])) γMixed
(
ϵ
(•)
X

)

≃

γMixed
(
ιC(k)

)
≃ γMixed

(
ιC(k[X])

)

As kcof is a cofibrant object in Mixed we can lift the composition of the two equivalences
on the left to a quasiisomorphism Ψ′′ : kcof → k in Mixed, and it remains to show that we
can up to homotopy find a lift of the dashed composition in Mixed to a strict morphism
Ψ′′′ : k → Ω•

k[X]/k (that such a lift exists is not automatic as k is not cofibrant in Mixed).
We define Ψ′′′ as the unit morphism

Ψ′′′ := ιΩ•
k[X]/k

: k → Ω•
k[X]/k

39That this is not automatic is underlined by the fact that the analogous property does not hold if
we had used C(R) instead of C(R) – this is one of the reasons the normalized standard Hochschild
complex is more convenient to work with.

422



7.4. De Rham forms as a strict model in Alg(Mixed)

which can be seen to be a morphism of strict mixed complexes from the definition of d
on Ω•

k[X]/k. It then suffices to show that the triangle

γMixed

(
Ω•
k[X]/k

)
γMixed

(
C
(
k[X]

))

γMixed(k)

≃

γMixed
(
ϵ
(•)
X

)

γMixed
(
ιC(k[X])

)
γMixed(Ψ′′′)

commutes in Mixed.
For this we unpack the definition of the lower horizontal equivalence γMixed(Ω

•
k[X]/k)

from Construction 4.4.4.1. As ad hoc notation, let us denote the natural transformation
coming with the functorial cofibrant replacement on Mixed by q : −cof → idMixed. We will
also use the notation that was in use in Construction 4.4.4.1. We need to show that there
is a filler for the triangle at the bottom of the following diagram, where the top is the
commutative rectangle from Construction 4.4.4.1. To make the diagram a bit cleaner we
abbreviate γMixed by γM, as well as Ω•

k[X]/k and C(k[X]) by Ω and C.

γM
(
Ωcof) γM

((
Cshl)cof)

γM

(
Ccof)

γM(Ω) γM

(
C
)

γM(k)

≃γM(qΩ)

γM

(
(ϵstrict
X )

cof
)

≃ ≃

γM

((
ιshl
C

)cof
)

≃ γM(qC)

≃

γM
(
ϵ
(•)
X

)

γM(ιC)γM(Ψ′′′)

As all the morphism in the top rectangle are equivalences we can also partition the
diagram differently and instead show that there is a morphism from γMixed(k) to the
object in the top middle such that the two shapes in the diagram below have a filler.

γM
(
Ωcof) γM

((
Cshl)cof)

γM

(
Ccof)

γM(Ω) γM

(
C
)

γM(k)

≃γM(qΩ)

γM

(
(ϵstrict
X )

cof
)

≃ ≃

γM

((
ιshl
C

)cof
)

≃ γM(qC)

γM(ιC)γM(Ψ′′′)

423



Chapter 7. Hochschild homology of polynomial algebras

Next we use that qk : kcof → k is a quasiisomorphism to reduce to showing that there
exists a dashed morphism as indicated in the diagram below such that the top two
triangles have a filler, with the two squares having a filler by naturality of q.

γM
(
Ωcof) γM

((
Cshl)cof)

γM

(
Ccof)

γM(Ω) γM
(
kcof
)

γM

(
C
)

γM(k)

≃γM(qΩ)

γM

(
(ϵstrict
X )

cof
)

≃ ≃

γM

((
ιshl
C

)cof
)

≃ γM(qC)

γM(qk) ≃

γM(Ψ′′′cof) γM
(
ιcof
C

)

γM(ιC)γM(Ψ′′′)

To show that the square formed by the two triangles has a filler in Mixed it suffices to
show that the square

kcof
(
Ω•
k[X]/k

)cof

C
(
k[X]

)cof (
C
(
k[X]

)shl)cof

Ψ′′′cof

ιcof
C(k[X]) (ϵstrict

X )
cof

(
ιshl
C(k[X])

)cof

commutes in Mixed, for which it in turn suffices to show that the diagram

k Ω•
k[X]/k

C
(
k[X]

)
C
(
k[X]

)shl

Ψ′′′

ιC(k[X]) ϵstrict
X

ιshl
C(k[X])

commutes. This we can now check directly. As all morphisms are k-linear it suffices to
check the image of the element 1 of k along the two compositions. We first consider the

424



7.4. De Rham forms as a strict model in Alg(Mixed)

composition along the bottom left. ιC(k[X]) maps 1 to 1, which is then mapped by ιshlC(k[X])

to the tuple (1, 0, 0, . . .) of C
(
k[X]

)shl, see Definition 4.2.3.3. In the composition along
the top right Ψ′′′ maps 1 to 1, which is then mapped by ϵstrictX to the tuple ϵstrictX (1) that
is defined as follows for i ≥ 0, see Proposition 4.2.3.7 and Definition 4.2.3.8.

ϵstrictX (1)2i = ϵ
(i)
X (1)

ϵstrictX (1)2i+1 =
(
∂ϵ

(i+1)
X − ϵ

(i+1)
X ∂

)
(1)

As ∂(1) = 0 we can simplify the odd case to ϵstrictX (1)2i+1 = ∂(ϵ
(i+1)
X (1)). It thus suffices to

show that ϵ(0)X (1) = 1 and ϵ
(i)
X (1) = 0 for i > 0. The former is clear as ϵ(0)X is a morphism

of differential graded algebras by Proposition 7.2.2.2 (2). For the latter we check the
definition of ϵ(i)X in Construction 7.3.1.1. Using the notation there, the element 1 implies
that m = 0, and then C(i,m) is empty40, implying the claim. This finishes the proof.

Definition 7.4.3.4. Let X be a totally ordered set. Then we choose once and for all a
quasiisomorphism

ΨX : evMixed
a

(
C̃(X)

)
→ Ω•

k[X]/k

in Mixed, as exists by Proposition 7.4.3.3. ♦

7.4.4. Compatibility of Φ with d in the case of a single variable
In Section 7.4.3 we constructed two different comparison quasiisomorphisms between

C̃(X) and Ω•
k[X]/k; one compatible with the strict mixed structure, and one compatible

with the multiplicative structure. In this section we show that after possibly tweaking it
slightly, the multiplicative morphism also preserves d in the special case of X = {t}.

Proposition 7.4.4.1. There exists an element ν of {+1,−1} such that the morphism

Φ′
k,{t} : Alg(evm)

(
C̃k

(
{t}
))
→ Ω•

k[t]/k

from Construction 7.4.3.1 satisfies

Φ′
k,{t}(d y) = ν · d

(
Φ′
k,{t}(y)

)
(7.11)

for every element y of C̃k({t}). ♥

Proof. By definition we can identify Φ′
k,{t} with k ⊗Z Φ′

Z,{t}, and as the isomorphism
(actually equality) C̃k({t}) ∼= k⊗Z C̃Z({t}) is compatible with the strict mixed structure
by definition and the isomorphism Ω•

k[t]/k
∼= k ⊗Z Ω•

Z[t]/Z that occurs in the definition
of Φ′

k,{t} is compatible with the strict mixed structure by Remark 7.1.0.2, it suffices to
40As i > 0 we have that 1 ≤ 1 ≤ i. Thus any element c⃗ of C(i,m) must satisfy c1 + 1 ≤ c2 − 1 while

1 ≤ c1, c2 ≤ 0 + 1 = 1, which is not possible.

425



Chapter 7. Hochschild homology of polynomial algebras

prove that there exists an element ν of {+1,−1} such that (7.11) holds in the case of
base ring Z.

We next note that as Ω•
Z[t]/k is concentrated in degrees 0 and 1, equation (7.11) is

automatic no matter what we choose for ν if y is an element of a degree other than
−1 or 0. As C̃Z({t}) is concentrated in nonnegative degrees the equation also holds
automatically for elements of degree −1, and every element of C̃Z({t}) of degree 0 is a
cycle. We are thus left showing that there exists an element ν of {+1,−1} such that
(7.11) holds for cycles y of degree 0 of C̃Z({t})

As Φ′
Z,{t} is a quasiisomorphism and Ω•

Z[t]/Z has zero boundary operator, Φ′
Z,{t} must be

surjective. We can thus lift the element t of Ω•
Z[t]/Z to an element t of C̃Z({t}) of degree

0 such that Φ′
Z,{t}(t) = t. As Φ′

Z,{t} is multiplicative we then also have Φ′
Z,{t}(t

n
) = tn

for n ≥ 0, so that we can conclude that the elements [t
n
] for n ≥ 0 form a Z-basis

for H0(C̃Z({t})). Let us assume for the moment that we found an element ν such that
(7.11) holds for the elements y = t

n for n ≥ 0. Then we claim (7.11) holds for all
cycles y in degree 0. Indeed, any cycle y of degree 0 of C̃Z({t}) must be of the form
y =

∑
0≤n cn · t

n
+∂z for some element z of degree 1 and elements cn in Z for n ≥ 0, only

finitely many of which are nonzero. But then we have the following calculation, using
that Ω•

Z[t]/Z has zero boundary operator and thus Φ′
Z,{t} maps boundaries to zero.

Φ′
Z,{t}(d y) = Φ′

Z,{t}


∑

0≤n

cn · d
(
t
n)
− ∂(d z)


 =

∑

0≤n

cn · Φ
′
Z,{t}

(
d
(
t
n))

=
∑

0≤n

cn · ν · d
(
Φ′

Z,{t}

(
t
n))

= ν · d


Φ′

Z,{t}


∑

0≤n

cn · t
n







= ν · d


Φ′

Z,{t}


∑

0≤n

cn · t
n
+ ∂z





 = ν · d

(
Φ′

Z,{t}(y)
)

It thus suffices to show that there exists an element ν of {+1,−1} such that (7.11) holds
for elements y = t

n for n ≥ 0.
We now need some input on properties that d must satisfy on the homology of C̃Z({t}).

For this equip {t} with the unique total order and let Ψ be as in Definition 7.4.3.4.
Then Ψ being a quasiisomorphism as well as compatible with d, and Ω•

Z[t]/Z having zero
boundary operator, implies that there is a commutative diagram

Ω1
Z[t]/Z H1

(
C̃Z({t})

)

Ω0
Z[t]/Z H0

(
C̃Z({t})

)

∼=

∼=

d d

426



7.4. De Rham forms as a strict model in Alg(Mixed)

of abelian groups where the two horizontal morphisms are isomorphisms41. A Z-basis of
Ω0

Z[t]/Z is given by tn for n ≥ 0, and a Z-basis of Ω1
Z[t]/Z is given by tn · d t for n ≥ 0.

Combining this with d(tn) = n·tn−1·d t for n ≥ 0 one obtains the following two properties
for d on Ω•

Z[t]/Z.

(1) The morphism
Q⊗Z d : Q⊗Z Ω

0
Z[t]/Z → Q⊗Z Ω

1
Z[t]/Z

is surjective.

(2) The morphism
d : Ω0

Z[t]/Z → Ω1
Z[t]/Z

is only divisible by units, i. e. if d = c ·d′ for another morphism d′ : Ω0
Z[t]/Z → Ω1

Z[t]/Z
and element c in Z, then c must be a unit (so either +1 or −1).

Using the above commutative square we can conclude that the analogous properties
hold for the homology C̃Z({t}).

(1) The morphism

Q⊗Z d : Q⊗Z H0

(
C̃Z({t})

)
→ Q⊗Z H1

(
C̃Z({t})

)

is surjective.

(2) The morphism
d : H0

(
C̃Z({t})

)
→ H1

(
C̃Z({t})

)

is only divisible by units, i. e. if d = c · d′ for another morphism

d′ : H0

(
C̃Z({t})

)
→ H1

(
C̃Z({t})

)

and element c in Z, then c must be a unit (so either +1 or −1).

We now use property (1) to show that Φ′
Z,{t}(d t) = ν · d t for a nonzero element ν in

Z. For this let am for 0 ≤ m ≤ s be elements of Z such that

Φ′
Z,{t}(d t) =

∑

0≤m≤s

am · t
m · d t

holds in Ω1
Z[t]/Z. We already noted that the elements [t

n
] for n ≥ 0 form a Z-basis for

H0(C̃Z({t})). Combining this with (1) we obtain that the elements [tn ·d t] for n ≥ 0 form
a Q-generating set for Q⊗Z H1(C̃Z({t})). As Φ′

Z,{t} is a multiplicative quasiisomorphism
it follows that the elements

Φ′
Z,{t}

(
t
n
· d t
)
= tn ·


 ∑

0≤m≤s

am · t
m · d t


 =

∑

0≤m≤s

am · t
n+m · d t

41Induced by Ψ, but we do not actually care beyond them being isomorphisms.

427



Chapter 7. Hochschild homology of polynomial algebras

for n ≥ 0 form a Q-linear generating set for Q⊗Z Ω
1
Z[t]/Z. In particular, there must exist

elements bn of Q for 0 ≤ n ≤ u, such that

d t =
∑

0≤n≤u

bn ·


 ∑

0≤m≤s

am · t
n+m · d t




holds in Q ⊗Z Ω1
Z[t]/Z. Note that if all am are zero or all bn are zero, then the right

hand side vanishes, which contradicts the equality, so we can without loss of generality
assume that 0 ≤ u and 0 ≤ s are such that bu 6= 0 and as 6= 0. But then rewriting the
right hand side in terms of the Q-basis tl · d t for l ≥ 0 of Q ⊗Z Ω1

Z[t]/Z we will have a
nonzero coefficient bu · as for the summand associated to tu+s · d t. This can only happen
if u+ s = 0, so in particular s = 0 so that we must have

Φ′
Z,{t}

(
d t
)
= a0 · d t

in Ω1
Z[t]/Z for a0 a nonzero element of Z.

Set ν = a0. Then we obtain the following calculation for n ≥ 0.

Φ′
Z,{t}

(
d
(
t
n))

= Φ′
Z,{t}

(
n · t

n−1
· d t
)
= n · tn−1 · (ν · d t)

= ν ·
(
n · tn−1 · d t

)
= ν · d(tn) = ν · d

(
Φ′

Z,{t}

(
t
n))

We have thus shown that (7.11) holds for this choice of ν for the elements y = t
n for

n ≥ 0, but we still have to show that ν is an element of {+1,−1}. But note that as [t
n
]

for n ≥ 0 is a Z-basis for H0(C̃Z({t})), the calculation we just made implies that the
composition

H0

(
C̃Z({t})

)
H1

(
C̃Z({t})

)
H1

(
Ω1

Z[t]/Z

)
d H1

(
Φ′

Z,{t}

)

is ν times the composition d ◦H0(Φ
′
Z,{t}), so the above composition is divisible by ν. As

H1(Φ
′
Z,{t}) is an isomorphism this implies that also the morphism

d : H0

(
C̃Z({t})

)
→ H1

(
C̃Z({t})

)

is divisible by ν. Finally, (2) implies that ν must then be either +1 or −1.

Definition 7.4.4.2. Let X be a set. We define a quasiisomorphism

Φk,X : Alg(evm)
(

C̃k(X)
)
→ Ω•

k[X]/k

in Alg(Ch(k)) by
y 7→ νdegCh(y) · Φ′

k,X(y)

where Φ′
k,X is as in Construction 7.4.3.1 and ν as in Proposition 7.4.4.1. If k is clear from

context we will also denote Φk,X by Φx. ♦

428



7.4. De Rham forms as a strict model in Alg(Mixed)

Proposition 7.4.4.3. The morphism

Φk,{t} : Alg(evm)
(

C̃k

(
{t}
))
→ Ω•

k[t]/k

from Definition 7.4.4.2 is compatible with d and can thus be lifted to a morphism in
Alg(Mixed). ♥

Proof. Follows directly from the definition in combination with Proposition 7.4.4.1.

7.4.5. A free resolution for de Rham forms
In this section we construct a cofibrant replacement of Ω•

k[X]/k in Alg(Mixed) for totally
ordered sets X with |X| ≤ 2, and prove some properties it satisfies. We know abstractly
that a cofibrant replacement exists, but it will be crucial for applications that we have
good control over the low degrees of the the cofibrant replacement that we use.

We will begin in Section 7.4.5.1 by giving a construction of a cofibrant replacement42
that depends on the choice of certain sets Y0, Y1, . . . . For our application we will need
to make a specific choice for Y0, Y1, and Y2, and we will describe those choices and show
that they have the necessary properties in Section 7.4.5.2. Finally Section 7.4.5.3 will
be concerned with proving that the object constructed in Section 7.4.5.1 actually is a
cofibrant replacement of Ω•

k[X]/k.

7.4.5.1. The general construction

In this section we give a general construction of a morphism Ω′•
k[X]/k → Ω•

k[X]/k in
Alg(Mixed) that depends on the choice of certain sets Y0, Y1, . . . .

Construction 7.4.5.1. Let X be a set. We will construct a commutative diagram

A0 A1 A2 . . . Ω′•
k[X]/k

Ω•
k[X]/k

ι10

Θ0

ι21

Θ1 Θ2 Θ

in Alg(Mixed), where the first line is a Z≥0-diagram and its colimit Ω′•
k[X]/k. Beyond the

notation indicated in the diagram, we will denote the morphism from An to Ω•
k[X]/k by

ιn, and the morphism from An to Am for m ≥ n by ιmn . The objects An are going to
be built up using free associative algebras in strict mixed complexes that are generated
by strict mixed complexes that are themselves free, so to simplify notation we will use
Notation 7.4.2.1. All morphisms ιmn are going to be levelwise injective, so if y is an
element of An, we will also just write y for the element ιmn (y) of Am.
42We will only construct the object and morphism to Ω•

k[X]/k, but will not yet show that it indeed is a
cofibrant replacement.

429



Chapter 7. Hochschild homology of polynomial algebras

We begin by defining
A0 := FreeAlg(Mixed)(k ·X)

where by k ·X we mean the chain complex that is free as a graded k-module on the set
X, where we give every element of X chain degree 0.

Using the universal property of FreeAlg(Mixed) and k ·X, we can now define Θ0 as the
unique morphism in Alg(Mixed) that maps an element x of X, considered as a basis
element of k · X, to the element x, considered as an element of k[X] and thereby of
Ω0
k[X]/k.
We next describe how to construct An+1 from An, for n ≥ 0. This will depend on the

choice of a subset Yn of (An)n, i. e. elements of degree n in An. We note that we will
later show that we can make some particular choices for some of these sets. The set Yn
has to satisfy the following conditions for every n ≥ 0.

(a) Every element y of Yn is a cycle in An.

(b) Every element y of Yn is mapped to 0 by Θn.

(c) Let I be the graded ideal43 in the graded k-algebra H∗(An) that is generated by the
homology classes represented by elements of Yn ∪ { d y | y ∈ Yn }. Then we must
have In = Ker(Hn(Θn))

44.

Note that it is always possible to find a set Yn satisfying all three requirements above,
by starting with a generating set of Ker(Hn(Θn))

45, and then for each of those homology
classes choosing a cycle representing it. Note that as the boundary operator of Ω•

k[X]/k

is zero, a cycle representing a homology class in the kernel of H∗(Θ) must already be
mapped to 0 by Θ, so (b) is then satisfied, and (a) and (c) hold by construction.

The idea behind the above requirements is that we want to divide out Ker(Hn(Θn))
from An, but want to do so in an efficient fashion that does not create excessive new
elements in homology. In particular, the assumption that the elements of Yn all have
degree n is needed to ensure that the connectivity of Θn increases with n.

Now let B′
n be the chain complex B′

n := k · Yn, where we give elements of Yn the the
same chain degree as in An. If y is an element of Yn, then we will denote the corresponding
basis element of B′

n by y as well. Let B′
n the chain complex whose underlying graded

k-module is given by (k ·Yn)⊕(k ·Yn)[1], where if y is an element of Yn we will denote the
corresponding basis element from the first summand by y again and the corresponding
shifted46 basis element of the second summand by y, and where the boundary operator is
determined by ∂(y) = y. There is an evident morphism of chain complexes jn : B′

n → B′
n

that maps y to y.

43That is, a subset that is closed under k-linear combinations as well as multiplication with any element
of H∗(An) on either side.

44Note that (b) already implies that I ⊆ Ker(H∗(Θn)).
45For example the very inefficient choice of all elements of Ker(Hn(Θn)) works.
46One degree higher, see Definition 4.1.1.2.

430



7.4. De Rham forms as a strict model in Alg(Mixed)

We can now define An+1 and ιn+1
n as in the following pushout diagram in Alg(Mixed)

Bn := FreeAlg(Mixed)(B′
n) Bn := FreeAlg(Mixed)(B′

n

)

An An+1

FreeAlg(Mixed)(jn)

in in

ιn+1
n

(7.12)

where in is the morphism in Alg(Mixed) that extends the morphism of chain complexes
B′
n → An given by mapping y considered as an element of B′

n to y considered as an
element of An, for every element y of Yn. The latter is a morphism of chain complexes
due to (a).

We can define a morphism Θn : Bn → Ω•
k[X]/k in Alg(Mixed) as the one adjoint to the

morphism of chain complexes 0: B′
n → Ω•

k[X]/k that maps y and y to 0 for every y in Yn. If
y is an element of Yn, then by (b), Θn(in(y)) = 0, so that Θn ◦ in = Θn ◦FreeAlg(Mixed)(jn),
and hence, by the universal property of the pushout diagram in Alg(Mixed) above, we
obtain a morphism Θn+1 : An+1 → Ω•

k[X]/k such that Θn+1◦ι
n+1
n = Θn and Θn+1◦in = Θn.

Finally, Ω′•
k[X]/k is defined as the colimit of the Z≥0-diagram

A0 A1 A2 . . .
ι10 ι21 ι32

in Alg(Mixed), and Θ: Ω′•
k[X]/k → Ω•

k[X]/k is defined using the universal property of the
colimit such that Θ ◦ ιn = Θn for every n ≥ 0. ♦

Remark 7.4.5.2. This remark concerns the situation of Construction 7.4.5.1. Let n ≥ 0
be an integer. From Remark 7.4.2.2 it follows that the underlying graded k-algebra of
An+1 is given by the coproduct (in graded k-algebras) of An and the free graded k-algebra
on elements y and d y for y ∈ Yn.

Inductively we can conclude that the underlying graded k-algebra of An is free on the
elements x and d x for x ∈ X, and y and d y for y ∈ Ym with m < n. As the forgetful
functor from Alg(Mixed) to Alg Ch(k) preserves filtered colimits by Proposition 4.2.2.12
we can also conclude that the colimit Ω′•

k[X]/k has an underlying graded k-algebra that is
free on the elements x and d x for x ∈ X and y and d y for y ∈ Ym for m ≥ 0.

Note that elements y of Ym being of degree m implies that y is then of degree m+ 1,
which is always positive. The only multiplicative generators of degree 0 are thus those of
the form x for x ∈ X, and Am is concentrated in nonnegative degrees for every m ≥ 0.
The above also implies that the morphisms ιn′

n are isomorphisms in degrees smaller to
or equal to n. ♦

7.4.5.2. Specific choices for Y0, Y1, and Y2

In this section we discuss specific choices that we make for Y0, Y1, and Y2 in Con-
struction 7.4.5.1. We begin with a general remark explaining the maneuvers that we will
make in all the proofs.

431



Chapter 7. Hochschild homology of polynomial algebras

Remark 7.4.5.3. This remark concerns the situation of Construction 7.4.5.1, and we
will use notation from there. In the proofs of Propositions 7.4.5.6, 7.4.5.7 and 7.4.5.8 we
will for some n ≥ 0 have defined sets Y0, . . . , Yn−1 as in Construction 7.4.5.1 and shown
that they satisfy (a), (b) and (c), and defined a set Yn of elements of degree n in An
for which we already showed that (a) and (b) holds, but we still have to show that (c)
holds, i. e. that In = Ker(Hn(Θn)), for I the graded ideal in H∗(An) that is generated
by the homology classes represented by elements of Yn ∪ { d y | y ∈ Yn }. In this remark
we explain the general approach to proving this, in order to avoid repetition. Before we
continue let us define J as the graded ideal in the graded k-algebra of cycles of An47
that is generated by the elements y and d y for y ∈ Yn48.

Property (b) implies that In ⊆ Ker(Hn(Θn)), so to show equality it only remains to
show that every element in Ker(Hn(Θn)) lies in In. Note that the set of homology classes
represented by elements of J is exactly I. As Ω•

k[X]/k has zero boundary operator it also
follows that a cycle in An represents a homology class in Ker(Hn(Θn)) if and only if Θn

maps it to 0. These two facts together imply that it suffices to show that every cycle in
An of degree n that lies in the kernel of Θn is given as a sum of an element in J and a
boundary.

The strategy we will employ to prove this will be by reducing step by step to the case
of such cycles lying in increasingly restrictive submodules, by eliminating basis elements,
as we now make more precise.

By Remark 7.4.5.2 the underlying Z-graded k-algebra of An is free on the generators
x and d x for x ∈ X, and y and d y for y ∈ Yn′ with n′ < n. Let G be the set of generators
just described, as a Z-graded subset of An, and B the set of all words of degree n in G.
Then B is a k-basis of the underlying Z-graded k-module of An. We will use a sequence
of subsets

B = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bl

up to some subset Bl of B for l > 0 an integer. Suppose that we can show that one of
the following two holds for every 0 ≤ i < l.

(I) For every element w of Bi \ Bi+1 there is a boundary in An or an element of J
that, written in the basis B, only has non-zero coefficients corresponding to the
basis elements in Bi+1, except for the basis element w, for which the coefficient is
a unit in k. This implies that every element z of An of degree n that lies in the
k-submodule generated by Bi is a sum of an element of J , a boundary, and an
element z′ in the k-submodule generated by Bi+1. Note that every element of J
and every boundary is a cycle, so z is a cycle if and only if z′ is. Furthermore every
element of J and every boundary is in the kernel of Θn, so z is in the kernel of Θn

if and only if z′ is.

(II) Every cycle z in An of degree n that satisfies Θn(z) = 0 and that lies in the
k-submodule generated by Bi already lies in the k-submodule generated by Bi+1.

47Note that the Leibniz rule for ∂ implies that 1 is a cycle and that products of cycles are again cycles,
so cycles form a sub-k-algebra of An.

48By (a) these elements are cycles.

432



7.4. De Rham forms as a strict model in Alg(Mixed)

In both cases this implies that if we can show that every cycle in An of degree n that
lies in the kernel of Θn and also lies in the k-submodule generated by Bi+1 is a sum of
an element of J and a boundary, then the same statement follows for such cycles that
lie in the k-submodule generated by Bi. Inductively it then thus suffices to show that
cycles in An that lie in the k-submodule generated by Bl and lie in the kernel of Θn are
a sum of an element in J and a boundary. Usually Bl will be of such a form that we can
already show that such a cycle must be zero, and we will explain how we usually show
this further below.

In the propositions below we will not usually define Bi explicitly. Instead we will step
by step describe the difference Bi\Bi+1 and explain how to eliminate those basis elements
using an element of J or boundary in An in the manner described above.

We make one remark about the elements of B. It follows from Remark 7.4.5.2 G
consists only of elements of nonnegative degree, with the only elements of degree 0 being
the elements of X. A concrete implication of this that we will often use is that the
number of factors that are not in X that can occur in a word in G of specified degree is
bounded. For example words in G of degree 1 need to consists of precisely one factor of
the form dx or y with y an element of Y0, with the other factors all from X.

We will call products of elements of X, considered as elements of An, words in
X. If we are given a total order on the set X then we say that a word in X is or-
dered if it is of the form xi11 · · · x

ia
a with a ≥ 0 an integer, i1, . . . , ia ≥ 1 integers, and

x1 < x2 < · · · < xa elements of X. Similarly we will call products of elements of the
form x and d x for x ∈ X words in X and dX, and call such a word ordered if it is of
the form xi11 · · · x

ia
a · dx′1 · · · dx′b with a, b ≥ 0 an integers, i1, . . . , ia ≥ 1 integers, and

x1 < x2 < · · · < xa and x′1 < · · · < x′b elements of X. We let BX be the set of words in
X and BordX the set of ordered words in X. Analogously, we let BX,dX be the (Z-graded)
set of words in X and dX, and BordX,dX the (Z-graded) set of ordered words in X and
dX. We will often refer to the number of factors in a word w as its length, and denote
it by len(w).

Now suppose that Bl is a subset of BordX,dX . Then the restriction of Θn to the sub-
k-module with basis Bl is injective, so any element in the kernel of that restriction is
already 0. The upshot is that if we can find

B = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bl

such that (I) or (II) holds for every 0 ≤ i < l and such that Bl is a subset of BordX,dX , then
this will complete the proof that In = Ker(Hn(Θn)). ♦

Remark 7.4.5.4. Let X be a totally ordered set that is either X = ∅, X = {x1}, or
X = {x1, x2} with x1 < x2. For reference we provide here a table with the multiplicative
generators of A0, A1, A2, A3 with Y0, Y1, Y2 as defined in Propositions 7.4.5.6, 7.4.5.7
and 7.4.5.8 below. The generators are given as for the case X = {x1, x2}, and to read off
the case X = {x1} (the case X = ∅) one leaves out any element that involves x2 (that
involves x1 or x2) The first column contains the chain degree of the elements, the second
lists their names, and the third column contains the first of A0, A1, A2, A3 that contains
the element.

433



Chapter 7. Hochschild homology of polynomial algebras

Deg. Elements In
0 x1 A0

0 x2 A0

1 dx1 A0

1 dx2 A0

1 x1x2 − x2x1 A1

2 dx1x2 − x2x1 A1

2 x1 · dx1 − dx1 · x1 A2

2 x2 · dx2 − dx2 · x2 A2

2 x1 · dx2 − dx2 · x1 A2

2 x2 · dx1 − dx1 · x2 A2

3 dx1 · dx1 − dx1 · x1 A2

3 dx2 · dx2 − dx2 · x2 A2

3 dx1 · dx2 − dx2 · x1 A2

3 dx2 · dx1 − dx1 · x2 A2

3 dx1 · dx1 A3

3 dx2 · dx2 A3

3 dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2 A3

3 dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2 . . . A3

. . .− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1 . . .
. . .+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

3 dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1 . . . A3

. . .− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1 . . .
. . .+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

4 d d x1 · dx1 A3

4 d d x2 · dx2 A3

4 d d x1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2 A3

4 d d x2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2 . . . A3

. . .− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1 . . .
. . .+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

4 d d x1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1 . . . A3

. . .− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1 . . .
. . .+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

This table is intended to be used to determine what the k-basis for An in a specific
degree is. ♦

Before we actually define Y0, Y1, and Y2, we first show a helper statement.
Proposition 7.4.5.5. This proposition concerns Construction 7.4.5.1, and we use some
notation from Remark 7.4.5.3.

Let X = {x1, x2}. Then the elements
xa11 x

a2
2 · (x1x2 − x2x1) · w

434



7.4. De Rham forms as a strict model in Alg(Mixed)

in A0, with a1, a2 ≥ 0 and w ∈ BX , are all pairwise distinct, and the set of all such
elements is k-linearly independent. ♥

Proof. Suppose that a1, a2, a′1, a′2 ≥ 0 and w,w′ ∈ BX such that

xa11 x
a2
2 · (x1x2 − x2x1) · w = x

a′1
1 x

a′2
2 · (x1x2 − x2x1) · w

′

Then as BX is k-linearly independent and the left hand side has two summands in the
basis BX that both begin with xa11 xa22 , but where the next factor differs, the same must be
true for the two summands of the right hands side, and vice versa. This implies a′1 = a1
and a′2 = a2, which in turn implies that w′ = w.

Now suppose that

0 =
∑

a1,a2≥0,
w∈BX

ba1,a2,w · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

with ba1,a2,w elements of k, all but finitely many zero. We have to show that all coefficients
ba1,a2,w are already zero. If this is already the case, then we are done. So assume that
there is a coefficient ba1,a2,w that is nonzero. Then let ã1 ≥ 0 and ã2 ≥ 0 and w̃ ∈ BX
be such that bã1,ã2,w̃ 6= 0 while first minimizing ã1 and then (for that already fixed ã1)
maximizing ã2.

Then it suffices to show that

xã11 x
ã2
2 · (x1x2 − x2x1) · w̃

is k-linearly independent of the k-submodule spanned by elements

xa11 x
a2
2 · (x1x2 − x2x1) · w

for a1, a2 ≥ 0 and w ∈ BX such that (a1, a2, w) 6= (ã1, ã2, w̃) and a1 ≥ ã1, and a2 ≤ ã2 if
a1 = ã1.

So assume that

c ·
(
xã11 x

ã2
2 · x1x2 · w̃ − x

ã1
1 x

ã2
2 · x2x1 · w̃

)
(∗)

=
∑

a1,a2≥0,
w∈BX ,
a1≥ã1,

a2≤ã2 if a1=ã1,
(a1,a2,w) 6=(ã1,ã2,w̃)

ca1,a2,w · (x
a1
1 x

a2
2 · x1x2 · w − x

a1
1 x

a2
2 · x2x1 · w)

for c a nonzero element of k and ca1,a2,w elements of k, only finitely many of which are
nonzero. We consider for which (a1, a2, w) as in the indexing set we can have that one
of the following two equations holds.

xã11 x
ã2
2 · x2x1 · w̃ = xa11 x

a2
2 · x1x2 · w or xã11 x

ã2
2 · x2x1 · w̃ = xa11 x

a2
2 · x2x1 · w

435



Chapter 7. Hochschild homology of polynomial algebras

We first note that the on left hand side of the equations the first ã1 factors of x1 are
always followed by at least one factor of x2. Thus it is not possible to have a1 > ã1. As by
assumption a1 ≥ ã1 we can thus conclude that a1 = ã1. Thus we must have a2 ≤ ã2. The
factor number a1+a2+1 or a1+a2+2 on the right hand side of the two equations is x1.
As factors a1+1 up to a1+ ã2+1 on the left hand side are x2 we must thus have a2 ≥ ã2.
As factor number a1+ ã2+2 on the left hand side is x1 on the other hand we must have
a2 ≤ ã2 + 1. We are thus left with the two options a2 = ã2 and a2 = ã2 + 1. The former
would imply that w = w̃, which contradicts the assumption (a1, a2, w) 6= (ã1, ã2, w̃).
The latter contradicts the assumptions that a2 ≤ ã2 if a1 = ã1. This shows that if we
write both sides of equation (∗) in the basis BX , then the left hand side has a nonzero
coefficient for the basis element xã11 xã22 · x2x1 · w̃ while the right hand side always has
coefficient zero. This contradicts equation (∗), which implies all coefficients ba1,a2,w must
have been zero, thereby showing the k-linear independence claim in the statement.

Proposition 7.4.5.6. Let X be a totally ordered set. Then the subset Y0 of (A0)0 in
Construction 7.4.5.1 can be chosen as follows.

Y0 :=
{
x · x′ − x′ · x

∣∣ x, x′ ∈ X such that x < x′
}

♥

Proof. Condition (a): That the elements are cycles is clear as A0 has zero boundary
operator.

Condition (b): holds as Ω•
k[X]/k is commutative.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3 and also
use notation from there. Elements of B are precisely words in X, and we can use elements
of J to iteratively reorder the factors until we are left only with ordered words in X.

Proposition 7.4.5.7. Let X be a subset of the totally ordered set {x1 < x2}. This
proposition concerns Construction 7.4.5.1, and we let Y0 be as in Proposition 7.4.5.6.

Then the subset Y1 of (A1)1 in Construction 7.4.5.1 can be chosen as follows.

Y1 :=
{
x · dx′ − dx′ · x

∣∣ x, x′ ∈ X
}

♥

Proof. Condition (a): All elements of Y1 lie in A0, which has zero boundary operator.
Condition (b): Holds as Ω•

k[X]/k is commutative.
Condition (c): We are going to use the strategy explained in Remark 7.4.5.3 and also

use notation from there. The elements of B are words of one of the following two types,
with the second only occurring if |X| = 2.

(1) A word in G with precisely one factor dx with x ∈ X and the remaining factors
in X.

(2) A word in G with precisely one factor x1x2 − x2x1 and the remaining factors in X.

We first consider elements of type (1). We can first use elements of J to move the
factor d x to the very end of the product, so that we are left with elements of the form

436



7.4. De Rham forms as a strict model in Alg(Mixed)

w · dx with w a word in X. If |X| < 2 then w will already be ordered, and if |X| = 2
we can then use the boundary of elements of A1 of the form

w′ · x1x2 − x2x1 · w
′′ · dx

for w′ and w′′ words in X to reorder w, so that we can ultimately eliminate all basis
elements of type (1) except those of the form w · dx with w an ordered word in X and
x an element of X.

We are thus left with basis elements of the following two types, with the second only
occurring if |X| = 2.

(1’) An element of BordX,dX .

(2’) A word in G with precisely one factor x1x2 − x2x1 and the remaining factors in X.

If |X| < 2 we are thus done per Remark 7.4.5.3. So now assume that |X| = 2.
Then let w · x1x2 − x2x1 · w′ be an element of B of type (2’), with w and w′ words in

X. Assume that w is not ordered. It is then possible to order w in a finite number of
steps by swapping neighboring (nonequal) factors, and there also is a minimum number
of such steps required, which in this case must be positive as we assumed that w is not
already ordered. Then we can write w as w = v · x2 · x1 · v

′ such that v and v′ are words
in X, and such that the minimum number of swappings to order v · x1 · x2 · v′ is smaller
than the minimum number of swappings to order w. Consider the following boundary.

∂
(
v · x1x2 − x2x1 · v

′ · x1x2 − x2x1 · w
′
)

= v · (x1x2 − x2x1) · v
′ · x1x2 − x2x1 · w

′ − v · x1x2 − x2x1 · v
′ · (x1x2 − x2x1) · w

′

= v · x1 · x2 · v
′ · x1x2 − x2x1 · w

′ − v · x2 · x1 · v
′ · x1x2 − x2x1 · w

′

− v · x1x2 − x2x1 · v
′ · x1 · x2 · w

′ + v · x1x2 − x2x1 · v
′ · x2 · x1 · w

′

Up to sign the second summand is the element we started with, the first has a word
of the same length before x1x2 − x2x1, but of smaller minimum number of swappings
to order it, and the last two summands have a word of smaller length before the first
factor x1x2 − x2x1. By induction we can thus eliminate those elements from (2’) where
the word in X appearing before the factor x1x2 − x2x1 is not ordered.

We are thus left with basis elements of the following two types.

(1”) An element of BordX,dX .

(2”) A product xa11 · xa22 · x1x2 − x2x1 · w where w is a word in X.

To finish the proof it remains to eliminate the basis elements from (2”). We do this using
method (II) from Remark 7.4.5.3. So let z′ be a cycle in A1 that is a k-linear combination
of elements of type (1”) and (2”). We have to show that z′ is then already a k-linear
combination of elements of type (1”). For this we write z′ = z′′ + z with z′′ a k-linear
combination of elements of type (1”) and z a k-linear combination of elements of type
(2”). As every element of type (1”) is a cycle this implies that z is a cycle. It now suffices
to show that z = 0.

437



Chapter 7. Hochschild homology of polynomial algebras

We can write z as

z =
∑

a1,a2≥0
w∈BX

ba1,a2,w · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

with ba1,a2,w elements of k, all but finitely many zero. The boundary of z is then given
as follows.

∂(z) =
∑

a1,a2≥0,
w∈BX

ba1,a2,w · x
a1
1 x

a2
2 · x1x2 · w − ba1,a2,w · x

a1
1 x

a2
2 · x2x1 · w

Now Proposition 7.4.5.5 directly implies that all coefficients ba1,a2,w must be zero, so
z = 0.

We are thus now left with only basis elements of type (1”), which finishes the proof
as explained in Remark 7.4.5.3.
Proposition 7.4.5.8. Let X be a subset of the totally ordered set {x1 < x2}. This
proposition concerns Construction 7.4.5.1, and we let Y0 be as in Proposition 7.4.5.6
and Y1 as in Proposition 7.4.5.7.

Then the subset Y2 of (A2)2 in Construction 7.4.5.1 can be chosen as follows. If |X| = 0
we can let Y2 = ∅, if |X| = 1 we can let Y2 = {dx1 · dx1}, and if |x| = 2 we can define
Y2 as follows.

Y2 :=
{

dx1 · dx1, dx2 · dx2
}

∪
{

dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2
}

∪
{

dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2
− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

}

∪
{

dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

}
♥

Proof. To keep the proof shorter as it would otherwise be we mostly will implicitly work
as if we had |X| = 2; the proof for |X| < 2 can be obtained by jumping over every
element or argument that involves an element of {x1, x2} \ X. To shorten notation we
also make the following definitions for this proof.

D := dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2
C2 := dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2

− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

C3 := dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

438



7.4. De Rham forms as a strict model in Alg(Mixed)

Condition (a): That the elements of Y2 are cycles can be checked by direct calculation.
For this, keep in mind the signs introduced by the Leibniz rule and ∂ ◦ d = −d ◦ ∂.

Condition (b): Θ2 maps d x1 · dx1 and d x2 · dx2 (if they are defined, depending on
what X is) to zero as dx1 and dx2 square to zero in Ω•

k[X]/k. The elements D, C2, and
C3 are mapped to zero because every summand has a factor of the form y or d y, with
y an element of Y0 or Y1, and those elements are already mapped to zero.

Condition (c): We are going to use the strategy explained in Remark 7.4.5.3 and also
use notation from there. The elements of B are words of one of the following types, with
types (3), (4) and (5) only occurring for |X| = 2.

(1) A word in G with precisely two factors d x and d x′ with x, x′ ∈ X (the case x = x′

is allowed) and the remaining factors in X.

(2) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and the remain-
ing factors in X.

(3) A word in G with precisely one factor x1x2 − x2x1, precisely one factor d x for
x ∈ X, and the remaining factors in X.

(4) A word in G with precisely two factors x1x2 − x2x1, and the remaining factors in
X.

(5) A word in G with precisely one factor d x1x2 − x2x1, and the remaining factors in
X.

As a first step the basis elements of type (5) can be eliminated using elements of J
that involve a factor of D, so that we are only left with types (1), (2), (3) and (4).

For elements of type (4) we use a similar procedure as we did for elements of type
(2’) in Proposition 7.4.5.7. So let w · x1x2 − x2x1 ·w′ · x1x2 − x2x1 ·w

′′ be an element of
type (4), with w, w′, and w′′ elements of BX . Assume that w′ is not ordered. Then we
can write w′ as w′ = v · x2 · x1 · v

′ such that v and v′ are elements of BX and such that
the minimum number of swappings to order v · x1 · x2 · v′ is smaller than the minimum
number of swappings to order w′. Consider the following boundary.

∂
(
w · x1x2 − x2x1 · v · x1x2 − x2x1 · v

′ · x1x2 − x2x1 · w
′′
)

= + w · x1x2 · v · x1x2 − x2x1 · v
′ · x1x2 − x2x1 · w

′′

− w · x2x1 · v · x1x2 − x2x1 · v
′ · x1x2 − x2x1 · w

′′

− w · x1x2 − x2x1 · v · x1x2 · v
′ · x1x2 − x2x1 · w

′′

+ w · x1x2 − x2x1 · v · x2x1 · v
′ · x1x2 − x2x1 · w

′′

+ w · x1x2 − x2x1 · v · x1x2 − x2x1 · v
′ · x1x2 · w

′′

− w · x1x2 − x2x1 · v · x1x2 − x2x1 · v
′ · x2x1 · w

′′

Up to sign the fourth summand is the element we started with, the third has a word in
X between the two factors x1x2 − x2x1 of same length as w′ but with smaller minimum
number of swappings to order it, and the remaining four summands have a word in X of

439



Chapter 7. Hochschild homology of polynomial algebras

smaller length between the two factors of x1x2 − x2x1. By induction we can thus elimi-
nate elements of type (4) where the word in X between the two factors of x1x2 − x2x1
are not ordered.

We are thus left with the following types of basis elements.

(1’) A word in G with precisely two factors d x and d x′ with x, x′ ∈ X (the case x = x′

is allowed) and the remaining factors in X.

(2’) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and the remain-
ing factors in X.

(3’) A word in G with precisely one factor x1x2 − x2x1, precisely one factor d x for
x ∈ X, and the remaining factors in X.

(4’) w · x1x2 − x2x1 · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′ with w,w′ ∈ BX .

We next show that we can also eliminate the remaining elements of type (4’) using
method (II) from Remark 7.4.5.3. For this we first note that words in G that can oc-
cur49 in the boundaries of elements of type (1’), (2’), (3’) and (4’) never have a factor
x1x2 − x2x1, but the boundary of elements of type (4’) lies in the k-submodule spanned
by words in G that have a factor x1x2 − x2x1. To eliminate (4’) it thus suffices to show
that if z is a k-linear combination of elements of type (4’), with ∂(z) = 0, then already
z = 0.

So let z be given by

z =
∑

w,w′∈BX
a1,a2≥0

bw,a1,a2,w′ · w · x1x2 − x2x1 · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′

with bw,a1,a2,w′ elements of k, only finitely many of which are nonzero, and assume that
∂(z) = 0. If all coefficients bw,a1,a2,w′ are zero, then we already have z = 0 and are
done, so assume that this is not the case. Then we can let w̃ ∈ B be such that there
exist a1, a2 ≥ 0 and w′ ∈ B such that bw̃,a1,a2,w′ 6= 0 while minimizing len(w̃) with this
property. The boundary ∂(z) has the following form.

0 = ∂(z)

=
∑

w,w′∈BX
a1,a2≥0

len(w)≥len(w̃)

bw,a1,a2,w′ · w · (x1x2 − x2x1) · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′

−
∑

w,w′∈BX
a1,a2≥0

len(w)≥len(w̃)

bw,a1,a2,w′ · w · x1x2 − x2x1 · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

′

49By this we mean that writing the respective element in terms of the k-basis given by words in G the
coefficient associated to that word is nonzero.

440



7.4. De Rham forms as a strict model in Alg(Mixed)

We now apply a k-linear morphism p to this equation. p is to be a morphism from (A2)1
to the k-submodule of (A2)1 that is spanned by words in G of degree 1 that begin with
w̃ · x1x2 − x2x1. We define p on the basis given by words in G of degree 1 by mapping
words that begin with w̃ · x1x2 − x2x1 to themselves, and all others to 0. Then the
requirement len(w) ≥ len(w̃) implies that the summands

bw,a1,a2,w′ · w · (x1x2 − x2x1) · x
a1
1 x

a2
2 · x1x2 − x2x1 · w

′

of the equation above are all mapped to 0 by p, and the summands

bw,a1,a2,w′ · w · x1x2 − x2x1 · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

′

map to 0 unless w = w̃. The upshot is that we obtain the following equality50.

0 =
∑

w′∈BX
a1,a2≥0

bw̃,a1,a2,w′ · w̃ · x1x2 − x2x1 · x
a1
1 x

a2
2 · (x1x2 − x2x1) · w

′

This implies that we must also have

0 =
∑

w′∈BX
a1,a2≥0

bw̃,a1,a2,w′ · xa11 x
a2
2 · (x1x2 − x2x1) · w

′

which by Proposition 7.4.5.5 implies that bw̃,a1,a2,w′ = 0 for all a1, a2 ≥ 0 and w′ ∈ BX .
This however contradicts the assumption on w̃, implying that z must have been zero
after all.

Thus we can eliminate elements of type (4’) and are left with basis elements of the
following types.

(1’) A word in G with precisely two factors d x and d x′ with x, x′ ∈ X (the case x = x′

is allowed) and the remaining factors in X.

(2’) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and the remain-
ing factors in X.

(3’) A word in G with precisely one factor x1x2 − x2x1, precisely one factor d x for
x ∈ X, and the remaining factors in X.

We now consider the basis elements of type (3’). We claim that we can eliminate those
elements of type (3’) that do not begin with the factor d x. We can show this by induction
on the number of factors before the factor d x. There are two main cases, depending on
what the preceding factor is. We first discuss the case in which the preceding factor is an
element of X, say x′. Then we can write the element as either w·x1x2 − x2x1·w′·x′·dx·w′′

50We also multiplied with −1.

441



Chapter 7. Hochschild homology of polynomial algebras

or w · x′ · dx · w′ · x1x2 − x2x1 · w
′′ with w,w′, w′′ ∈ BX . We only discuss the first form,

the second is completely analogous. Then consider the following boundary.

∂
(
w · x1x2 − x2x1 · w

′ · x′ · dx− dx · x′ · w′′
)

= w · x1x2 · w
′ · x′ · dx− dx · x′ · w′′

− w · x2x1 · w
′ · x′ · dx− dx · x′ · w′′

− w · x1x2 − x2x1 · w
′ · x′ · dx · w′′

+ w · x1x2 − x2x1 · w
′ · dx · x′ · w′′

Up to sign the third summand is the element we started with, the fourth is of type (3’),
but with a smaller number of factors preceding dx, and the other two are of type (2’).

The other case to consider is when the factor preceding dx is x1x2 − x2x1, so that the
element is of the form w · x1x2 − x2x1 · dx · w′ for w,w′ ∈ BX . We assume that x = x1,
the case x = x2 is completely analogous by using C2 instead of C3. Then consider the
following element in J .

w · C3 · w
′

= w · dx1 · x1 · x2 − x2 · x1 · w′ + w · x1 · x2 − x2 · x1 · dx1 · w′

− w · x1 · x2 · dx1 − dx1 · x2 · w′ + w · x2 · dx1 − dx1 · x2 · x1 · w′

+ w · x2 · x1 · dx1 − dx1 · x1 · w′ − w · x1 · dx1 − dx1 · x1 · x2 · w′

Up to sign the second summand is the element we started with, the first is of the (3’),
but with a smaller number of factors preceding d x1, and the other four are of type (2’).

We have now eliminated all elements of type (3’) except those that start with d x
as their first factor. Proceeding completely analogously to how we did with elements
of type (2’) in Proposition 7.4.5.7 we can now also eliminate those in which the word
in X between d x and the factor x1x2 − x2x1 is not ordered. We are thus left with the
following basis elements.

(1”) A word in G with precisely two factors d x and d x′ with x, x′ ∈ X (the case x = x′

is allowed) and the remaining factors in X.

(2”) A word in G with precisely one factor x · x′ − x′ · x with x, x′ ∈ X, and the remain-
ing factors in X.

(3”) dx · xa11 xa22 · x1x2 − x2x1 · w for x ∈ X, a1, a2 ≥ 0, and w ∈ BX .

We now eliminate type (2”) using method (II) from Remark 7.4.5.3. So assume that
z′′ = z′′′ + z + z′ is a cycle where z′′′ is a k-linear combination of basis elements of
type (1”), z is a k-linear combination of basis elements of type (2”) and z′ is a k-linear
combination of basis elements of type (3”). We have to show that then z = 0. We first
note that as every element of type (1”) is already a cycle we obtain that z+ z′ is a cycle.
We write

z =
∑

w,w′∈BX ,
x,x′∈X

bw,x,x′,w′ · w · x · dx′ − dx′ · x · w′

442



7.4. De Rham forms as a strict model in Alg(Mixed)

z′ =
∑

x∈X,
a1,a2≥0,
w∈BX

cx,a1,a2,w · dx · xa11 xa22 · x1x2 − x2x1 · w

with bw,x,x′,w′ and cx,a1,a2,w elements of k, only finitely many of which are nonzero. If all
coefficients bw,x,x′,w′ are zero, then we have z = 0 and are done. So assume that this is
not the case. Then let w̃, w̃′ ∈ BX and x̃, x̃′ ∈ X be such that b

w̃,x̃,x̃′,w̃′ 6= 0 and choose
w̃ to be of maximum length with this property. From ∂(z + z′) = 0 we then obtain the
following equality.

∑

w,w′∈BX ,
x,x′∈X,

len(w)≤len(w̃)

bw,x,x′,w′ · w · x · dx′ · w′ −
∑

w,w′∈BX ,
x,x′∈X,

len(w)≤len(w̃)

bw,x,x′,w′ · w · dx′ · x · w′

=
∑

x∈X,
a1,a2≥0,
w∈BX

cx,a1,a2,w · dx · xa11 xa22 · x1x2 · w −
∑

x∈X,
a1,a2≥0,
w∈BX

cx,a1,a2,w · dx · xa11 xa22 · x2x1 · w

We now apply a k-linear morphism p′ to this equation. p′ is to be a morphism from (A2)1
to the k-submodule of (A2)1 that is spanned by the word w̃ · x̃ · d x̃′ · w̃′ in G of degree 1.
We define p on the basis given by words in G of degree 1 by mapping the just mentioned
word to itself and all others to 0. Then note that all words are mapped to zero where
the length of the word preceding a factor of the form dx is unequal to len(w̃) + 1. The
condition len(w) ≤ len(w̃) on the left hand side of the above equation then implies that
the second sum on the left hand side is mapped to zero. As all words in G occurring on
the right hand side begin with an element of the form d x they are also all mapped to
zero. We thus obtain that

b
w̃,x̃,x̃′,w̃′ · w̃ · x̃ · d x̃′ · w̃′ = 0

which contradicts the assumption that b
w̃,x̃,x̃′,w̃′ 6= 0. Thus we must have z = 0 and can

thus eliminate basis elements of type (2”).
We are thus left with the following basis elements.

(1”) A word in G with precisely two factors d x and d x′ with x, x′ ∈ X (the case x = x′

is allowed) and the remaining factors in X.

(3”) dx · xa11 xa22 · x1x2 − x2x1 · w for x ∈ X, a1, a2 ≥ 0, and w ∈ BX .

We can now eliminate type (3”) in a manner that is completely analogous to the argument
as we used to eliminate (2”) in Proposition 7.4.5.7. We are thus left with only type (1”).
For this we can first use boundaries of words in G involving two factors dx and d x′
as well as a factor x1x2 − x2x1 with the other factors in X, as well as boundaries of
words in G involving one factor d x′′ and one factor x · dx′ − dx′ · x with the remaining
factors in X, to reorder the factors so that we are left with only elements of the form
xa11 x

a2
2 · dx · dx′ with a1, a2 ≥ 0 and x, x′ ∈ X. As a second step we can eliminate such

elements with x = x′ by using elements of J that involve a factor of dx · dx.
We are thus left with elements of the following two types.

443



Chapter 7. Hochschild homology of polynomial algebras

(1*) xa11 x
a2
2 · dx1 · dx2 for a1, a2 ≥ 0.

(2*) xa11 x
a2
2 · dx2 · dx1 for a1, a2 ≥ 0.

We can eliminate type (2*) using the following boundary.
∂
(
xa11 x

a2
2 · dx1 · dx2 − dx2 · x1

)
= −xa11 x

a2
2 · dx1 · dx2 − xa11 xa22 · dx2 · dx1

We are thus left with only basis elements from (1*), which form a subset of BordX,dX , so
we are done.
Definition 7.4.5.9. Let X be a totally ordered set with |X| ≤ 2. Then we define

ΘX : Ω′•
k[X]/k → Ω•

k[X]/k

to be the morphism in Alg(Mixed) constructed in Construction 7.4.5.1 where we let Y0
be as defined in Proposition 7.4.5.6, Y1 as defined in Proposition 7.4.5.7, Y2 as defined
in Proposition 7.4.5.8, and where for n > 2 we just choose some subset Yn of (An)n that
satisfies (a), (b) and (c) of Construction 7.4.5.1 (we argued in Construction 7.4.5.1 that
it is always possible to find Yn satisfying this). ♦

7.4.5.3. Proof that the construction is a cofibrant resolution

In this section we show that ΘX as defined in Definition 7.4.5.9 really is a cofibrant
replacement of Ω•

k[X]/k.
Proposition 7.4.5.10. This proposition concerns Construction 7.4.5.1. Let X be a set
and n ≥ 0 an integer. Then

Hm(Θn) : Hm(An)→ Hm

(
Ω•
k[X]/k

)

is an isomorphism for m < n and surjective for every m. ♥

Proof. Ω•
k[X]/k is generated as a graded k-algebra by the elements x and d x for x ∈ X,

so as every element of X is in the image of the morphism Θ0 in Alg(Mixed), it follows
that Θ0 is surjective. As both A0 and Ω•

k[X]/k have zero boundary operator, this implies
that H∗(Θ0) and hence also H∗(Θn) is surjective as well.

Now we show that Hm(Θn) is even an isomorphism if m < n. We prove this by
induction. The case n = 0 is clear, as both A0 and Ω•

k[X]/k are concentrated in nonnegative
degrees, so in particular have homology concentrated in nonnegative degrees.

So now assume that n > 0 and we already showed that Hm(Θn−1) is an isomorphism
for m < n−1. By Remark 7.4.5.2 ιnn−1 : An−1 → An is an isomorphism in degrees smaller
than or equal to n− 1. This implies that in the commutative diagram

Hm(An−1) Hm(An)

Hm

(
Ω•
k[X]/k

)

Hm(ιnn−1)

Hm(Θn−1) Hm(Θn)

444



7.4. De Rham forms as a strict model in Alg(Mixed)

the top morphism is an isomorphism for m ≤ n − 2, and as the left morphism is an
isomorphism in that range as well, it already follows that Hm(Θn) is an isomorphism
for m ≤ n − 2. For m = n − 1 we still obtain that Hn−1(ι

n
n−1) must be surjective51. In

order to show that Ker(Hn−1(Θn)) ∼= 0 it thus suffices to show that Hn−1

(
ιnn−1

)
maps

Ker(Hn−1(Θn−1)) to zero. But is precisely what condition (c) ensures.

Proposition 7.4.5.11. Let X be a totally ordered set with |X| ≤ 2. This proposition
concerns ΘX as defined in Definition 7.4.5.9.

The object
Ω′•
k[X]/k

of Alg(Mixed) is cofibrant, and the morphism

ΘX : Ω′•
k[X]/k → Ω•

k[X]/k

is a quasiisomorphism. ♥

Proof. FreeAlg(Mixed) is a left Quillen functor by Definition 4.2.2.2, Proposition 4.2.2.9,
and Theorem 4.2.2.1. As k · X is a cofibrant chain complex, this implies that A0 is
cofibrant in Alg(Mixed). Furthermore, for every n ≥ 0, the morphism jn is a cofibration in
Ch(k) (it is a coproduct of generating cofibrations considered in [Hov99, 2.3.3 and 2.3.11]),
so FreeAlg(Mixed)(jn) and thus also ιn+1

n are cofibrations in Alg(Mixed). As cofibrations are
closed under (transfinite) compositions, this implies that Ω′•

k[X]/k is cofibrant.
We now turn to showing that ΘX is a quasiisomorphism. Remark 7.4.5.2 implies that

ιn
′

n : An → An′ is an isomorphism in degrees smaller to or equal to n for all 0 ≤ n < n′.
Combining this with the fact that the forgetful functor from Alg(Mixed) to Ch(k) pre-
serves filtered colimits by Proposition 4.2.2.12 we obtain that ιn : An → Ω′•

k[X]/k is an
isomorphism in degrees smaller to or equal to n as well. In particular, in the diagram

Hm(An) Hm

(
Ω′•
k[X]/k

)

Hm

(
Ω•
k[t]/k

)

Hm(ιn)

Hm(Θn) Hm(ΘX)

the top morphism is an isomorphisms for m < n. As the left morphism is as isomor-
phism in that range as well by Proposition 7.4.5.10 we can conclude that Hm(ΘX) is an
isomorphism for m < n too. It follows that Hm(ΘX) is an isomorphism for all integers
m, so Θ is a quasiisomorphism.
51Given an element of Hn−1(An) we can represent it by a cycle of degree n−1 As ιnn−1 is an isomorphism

in degree n− 1, there is an element z in An−1 that is mapped to that cycle by ιnn−1. It thus remains
to show that z is also a cycle and hence represents a homology class. But

ιnn−1(∂z) = ∂
(
ιnn−1(z)

)
= 0

which implies ∂z = 0, as ιnn−1 is also an isomorphism in degree l.

445



Chapter 7. Hochschild homology of polynomial algebras

7.4.6. Naturality of ϵ
We explained in Warning 7.2.2.6 that the morphisms

ϵX : Ω•
k[X]/k → C

(
k[X]

)

of differential graded k-algebras that were defined in Construction 7.2.2.1 and Proposi-
tion 7.2.2.2 only assemble to a natural transformation of functors from Set to Alg(Ch(k)),
but not to a natural transformation of functors from CAlg(LModk(Ab)) to Alg(Ch(k)).
In this section we show that a weaker statement is at least true in special cases: If X
is a set with |X| ≤ 2 and F a morphism of commutative algebras F : k[t]→ k[X], then
there is a filler for the square

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
C
(
k[t]
))

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C
(
k[X]

))

Alg(γ)(ϵ{t})

Alg(γ)
(
Ω•
F/k

)
Alg(γ)(C(F ))

Alg(γ)(ϵX)

in Alg(D(k)).

Proposition 7.4.6.1. Let X be a totally ordered set satisfying |X| ≤ 2, and f an
element of k[X]. Denote the morphism of commutative k-algebras k[t]→ k[X] that maps
t to f by F .

Then there is a filler for the square

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
C
(
k[t]
))

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C
(
k[X]

))

Alg(γ)(ϵ{t})

Alg(γ)
(
Ω•
F/k

)
Alg(γ)(C(F ))

Alg(γ)(ϵX)

in Alg(D(k)), where ϵ is as defined in Construction 7.2.2.1 and Proposition 7.2.2.2. ♥

Proof. Let the morphism
Θ{t} : Ω

′•
k[t]/k → Ω•

k[t]/k

in Alg(Mixed) be as in Definition 7.4.5.9. By Proposition 7.4.5.11 Ω′•
k[t]/k is a cofibrant

object of Alg(Mixed), and thus has cofibrant underlying chain complex by Proposi-
tion 4.2.2.12. Furthermore, Θ{t} is a quasiisomorphism, and thus induces an equivalence

Alg(γ)
(
Θ{t}

)
: Alg(γ)

(
Ω′•
k[X]/k

)
→ Alg(γ)

(
Ω•
k[X]/k

)

446



7.4. De Rham forms as a strict model in Alg(Mixed)

in Alg(D(k)). It thus suffices to show that there is a filler for the square

Alg(γ)
(
Ω′•
k[t]/k

)
Alg(γ)

(
C
(
k[t]
))

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C
(
k[X]

))

Alg(γ)(ϵ{t}◦Θ{t})

Alg(γ)
(
Ω•
F/k

◦Θ{t}

)
Alg(γ)(C(F ))

Alg(γ)(ϵX)

in Alg(D(k)).
By Proposition 4.2.2.12 the underlying differential graded algebra of cofibrant objects

in Alg(Mixed) is cofibrant, so Ω′•
k[t]/k is cofibrant as an object in Alg(Ch(k)). Like every ob-

ject of Alg(Ch(k)) also C
(
k[X]

)
is fibrant. Combining this with Proposition A.1.0.1 and

[Hov99, 1.2.10 (ii)] it suffices to show that there exists a homotopy in the model-category-
theoretic sense between the two compositions in the following diagram in Alg(Ch(k)).

Ω′•
k[t]/k C

(
k[t]
)

Ω•
k[X]/k C

(
k[X]

)

ϵ{t}◦Θ{t}

Ω•
F/k

◦Θ{t} C(F )

ϵX

By Propositions 4.1.4.2 and 4.2.2.17 this means that we have to define a morphism of
Z-graded k-modules

h : Ω′•
k[t]/k → C

(
k[X]

)

of degree 1 that satisfies

∂
(
h(z)

)
+ h
(
∂(z)

)
=
(

C(F ) ◦ ϵ{t} ◦Θ{t}

)
(z)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t}

)
(z)

for being a chain homotopy as well as the Leibniz rule for chain homotopies

h
(
z · z′

)
= h(z) ·

(
ϵX ◦ Ω

•
F/k ◦Θ{t}

)(
z′
)
+ (−1)degCh(z)

(
C(F ) ◦ ϵ{t} ◦Θ{t}

)
(z) · h

(
z′
)

for all elements z and z′ of Ω′•
k[t]/k.

In the following we will use notation from Construction 7.4.5.1. By definition, and
using that the forgetful functor from Alg(Mixed) to Alg(Ch(k)) preserves filtered colimits
by Proposition 4.2.2.12, we can identify Ω′•

k[t]/k as the colimit of the diagram

A0 A1 A2 . . .
ι10 ι21 ι32

in Alg(Ch(k)). The forgetful functor to Z-graded k-modules also preserves filtered col-
imits by Proposition 4.2.2.12, and together this implies that we can define h as above

447



Chapter 7. Hochschild homology of polynomial algebras

by defining a compatible system of homotopies hn of morphisms of differential graded
algebras from the restriction C(F ) ◦ ϵ{t} ◦ Θ{t} ◦ ιn to ϵX ◦ Ω•

F/k ◦ Θ{t} ◦ ιn. We will do
this by induction.

We begin with some general remarks on how the induction step will work. So assume
that n ≥ 0 and we already have constructed a homotopy hn of morphisms of differential
graded algebras An → C

(
k[X]

)
from C(F ) ◦ ϵ{t} ◦ Θ{t} ◦ ιn to ϵX ◦ Ω•

F/k ◦ Θ{t} ◦ ιn. We
wish to extend hn to hn+1. For easier notation we will use the following shorthands.

φ′ := C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ιn

φ := C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ιn+1

ψ′ := ϵX ◦ Ω
•
F/k ◦Θ{t} ◦ ιn

ψ := ϵX ◦ Ω
•
F/k ◦Θ{t} ◦ ιn+1

By Remark 7.4.5.2 the underlying graded k-algebra of An+1 is free on the elements t
and d t, and y and d y for y ∈ Ym with m ≤ n, while An is free on the same generators
except the elements of Yn and dYn. Let us denote by Gn+1 the generators for An+1 that
were just mentioned, and by Gn those of An. For compatibility with hn we are forced to
define hn+1 as follows on Gn.

hn+1(g) := hn(g) for g ∈ Gn

On elements g in Gn+1\Gn we need to define hn+1 in such a way that hn+1 is a homotopy
from φ to ψ, so we must have the following.

∂
(
hn+1(g)

)
= φ(g)− ψ(g)− hn+1

(
∂(g)

)
= −hn

(
∂(g)

)
(∗)

In the simplification we used that Θ{t}◦ιn+1 is zero on g (and hence so are φ and ψ), and
that ∂(g) is an element of An. We claim that finding solutions to these lifting problems
is the only obstacle to extending hn to hn+1 as required. So assume that we can find
values for hn+1(g) for every g ∈ Gn+1 \Gn that satisfy (∗).

As we have already defined values of hn+1 on Gn+1, Proposition 4.2.2.18 implies that
there is a unique way to extend this to a morphism hn+1 of Z-graded k-modules from
An+1 to C

(
k[X]

)
of that increases degree by 1 and that satisfies the Leibniz rule for

homotopies of differential graded algebras from φ to ψ. As hn+1 agrees with hn on Gn

and hn also satisfies the analogous Leibniz rule as a homotopy of differential graded
algebras from φ′ to ψ′, and φ and ψ restrict to φ′ and ψ′, the uniqueness part of Propo-
sition 4.2.2.18 then implies that hn+1 extends hn. It remains to show that hn+1 satisfies
∂ ◦ hn+1 + hn+1 ◦ ∂ = φ − ψ. Again by Proposition 4.2.2.18 it suffices to check this on
elements of Gn+1. On elements of Gn+1 \Gn this holds by definition, and on elements of
Gn this holds because it does for hn.

We have now shown that the only obstruction to extending hn to hn+1 with all the
necessary properties is finding solutions for hn+1(g) for elements g of Gn+1 \ Gn to the
equation (∗). We claim that such a solution can always be found if n ≥ 2. So assume
that n ≥ 2 and we have already defined hn. Let g be an element of Gn+1 \Gn. Then we

448



7.4. De Rham forms as a strict model in Alg(Mixed)

first claim that the right hand side of equation (∗) is a cycle. For this we carry out the
following calculation, using that hn is a chain homotopy from φ′ to ψ′.

∂
(
−hn

(
∂(g)

))

= hn

(
∂
(
∂(g)

))
− φ′

(
∂(g)

)
+ ψ′

(
∂(g)

)

= −φ′
(
∂(g)

)
+ ψ′

(
∂(g)

)

= 0

The last step needs a comment. The element g is either of the form y or d y for y ∈ Yn.
Thus ∂(g) is either y or − d y for a y ∈ Yn, and Θ{t}, and thus also φ′ and ψ′, maps every
element of Yn (and hence also dYn) to 0.

As the right hand sides of equation (∗) is a cycle, it represents a homology class, and
finding a solution to the equation is equivalent to the homology class being zero. As the
elements of Yn are of degree n, the element g, and hence the right hand side of (∗), must
be of degree n+1 or n+2.52 Thus the obstructions to extending hn to hn+1 are homology
classes in degree n + 1 and n + 2. As ϵX is a quasiisomorphism by Proposition 7.2.2.2
(6) and Ω•

k[X]/k is concentrated in degrees less than or equal to 2 (this is where we use
the assumption |X| ≤ 2), the homology of C

(
k[X]

)
is concentrated in degrees less than

or equal to 2. Thus the homology classes obstructing extension of hn to hn+1 are all
trivially zero as we assumed n ≥ 2, so that it is always possible to extend hn to hn+1.

By the above argument it thus suffices to construct h2. Concretely, we first need to
define h0(t) and h0(d t) satisfying the following.53

∂
(
h0(t)

)
=
(

C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0
)
(t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t) (7.13)

∂
(
h0(d t)

)
=
(

C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0
)
(d t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(d t)

For the set {t} the set Y0 is empty by Proposition 7.4.5.6, so ι10 : A0 → A1 is an isomor-
phism, and hence h0 extends to h1 for trivial reasons. Finally, to extend h1 to h2 we need
to define h2(t · d t− d t · t) and h2(d t · d t− d t · t) (see Proposition 7.4.5.7) satisfying the
following.

∂
(
h2
(
t · d t− d t · t

))
= −h0

(
∂
(
t · d t− d t · t

))
(7.14)

∂
(
h2
(
d t · d t− d t · t

))
= −h0

(
∂
(
d t · d t− d t · t

))

However, the obstruction for the existence of a solution for h2(d t · d t− d t · t) is a ho-
mology class in degree 3. By the same argument as the case of extensions from An to
52Recall that if y is an element of Yn, then y is of degree n+ 1 and d y is then of degree n+ 2.
53The argument that it suffices to define h0 on t and d t satisfying the chain homotopy identity is com-

pletely analogous to the argument we gave for extending hn to hn+1, also using Proposition 4.2.2.18.
This time the analogue of (∗) has slightly different form as Θ{t} does not vanish on t and d t, but t

and d t are cycles in A0.

449



Chapter 7. Hochschild homology of polynomial algebras

An+1 for n ≥ 2 we thus already know abstractly that a solution can be found. To extend
h1 to h2 it thus suffices to find a solution for h2

(
t · d t− d t · t

)
.

We begin by evaluating the right hand sides of (7.13), where we use the definitions in
particular from Construction 7.4.5.1 and Construction 7.2.2.1. If |X| = 2 we denote the
elements of X by x1 < x2, if |X| = 1 we denote the unique element by x1.

(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t)

=
(

C(F ) ◦ ϵ{t}
)
(t)−

(
ϵX ◦ Ω

•
F/k

)
(t)

= C(F )(t)− ϵX(f)

= f − f

= 0

= ∂(0)

(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(d t)−

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(d t)

=
(

C(F ) ◦ ϵ{t}
)
(d t)−

(
ϵX ◦ Ω

•
F/k

)
(d t)

= C(F )
(
1⊗ t

)
− ϵX(d f)

= 1⊗ f − ϵX(d f)
= d(f)− ϵX(d f)
= d

(
ϵX(f)

)
− ϵX(d f)

We can now use that ϵ(•)X as defined in Construction 7.3.1.1 is a strongly homotopy linear
morphism, see Proposition 7.3.11.2.

= −∂
(
ϵ
(1)
X (f)

)

We can thus define h0(t) = 0 and h0(d t) = −ϵ(1)X (f).
Now we evaluate the right hand side of (7.14).

− h0
(
∂
(
t · d t− d t · t

))

= −h0(t · d t− d t · t)

= −h0(t) ·
(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(d t)−

(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(t) · h0(d t)

+ h0(d t) ·
(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t)−

(
C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0

)
(d t) · h0(t)

= −
(

C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0
)
(t) · h0(d t) + h0(d t) ·

(
ϵX ◦ Ω

•
F/k ◦Θ{t} ◦ ι0

)
(t)

= −
(

C(F ) ◦ ϵ{t} ◦Θ{t} ◦ ι0 − ϵX ◦ Ω
•
F/k ◦Θ{t} ◦ ι0

)
(t) · h0(d t)

= −∂
(
h0(t)

)
· h0(d t)

= 0

450



7.4. De Rham forms as a strict model in Alg(Mixed)

= ∂(0)

Thus we can define h2(t · d t− d t · t) = 0.

As a significantly easier variant we can also show a analogous result to Proposi-
tion 7.4.6.1 where we consider morphisms into k.

Proposition 7.4.6.2. Let X be a set and F : k[X] → k a morphism of commutative
k-algebras.

Then there is a filler for the square

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
C
(
k[X]

))

Alg(γ)
(
Ω•
k/k

)
Alg(γ)

(
C(k)

)

Alg(γ)(ϵX)

Alg(γ)
(
Ω•
F/k

)
Alg(γ)(C(F ))

Alg(γ)(ϵ∅)

in Alg(D(k)), where ϵ is as defined in Construction 7.2.2.1 and Proposition 7.2.2.2. ♥

Proof. It suffices to show that the diagram

Ω•
k[X]/k C

(
k[X]

)

Ω•
k/k C(k)

ϵX

Ω•
F/k C(F )

ϵ∅

commutes strictly. For this we note that as k ∼= 0, the lower right chain complex is
concentrated in degree 0, so it suffices to check that the two compositions agree on
elements of degree 0. But on degree 0 we can identify the diagram with

k[X] k[X]

k k

idk[X]

F F

idk

which commutes.

451



Chapter 7. Hochschild homology of polynomial algebras

7.4.7. Naturality of Φ

In Definition 7.4.4.2 we defined a quasiisomorphisms

ΦX : Alg(evm)
(

C̃k(X)
)
→ Ω•

k[X]/k

in Alg(Ch(k)), for every set X. While the morphisms ΦX for different sets X do not
assemble to a natural transformation from the category of commutative k-algebras to
Alg(Ch(k)), we show in this section that a weaker naturality property holds with respect
to some specific morphisms of commutative k-algebras.

Proposition 7.4.7.1. Let X and Y be totally ordered sets satisfying one of the following.

(1) |X| = 1 and |Y | ≤ 2.

(2) |Y | = 0.

Let F be a morphism of commutative k-algebras k[X]→ k[Y ].
Then there is a filler for the square

Alg(γ)
(

Alg(evm)
(

C̃k(X)
))

Alg(γ)
(
Ω•
k[X]/k

)

Alg(γ)
(

Alg(evm)
(

C̃k(Y )
))

Alg(γ)
(
Ω•
k[Y ]/k

)

Alg(γ)(ΦX)

Alg(γ)
(
Alg(evm)(C̃k(F ))

)
Alg(γ)

(
Ω•
F/k

)

Alg(γ)(ΦY )

in Alg(D(k)), where C̃ is as in Construction 7.4.2.5 and ΦX and ΦY as in Defini-
tion 7.4.4.2. ♥

Proof. In the following we will omit the forgetful functor Alg(evm) from the notation to
make diagrams more compact.

By Definition 7.4.4.2 ΦX is the composition of Φ′
X with the quasiisomorphism mapping

z to νdegCh(z) · z (where ν is as in Proposition 7.4.4.1), and analogously for ΦY . As the
diagram

Ω•
k[X]/k Ω•

k[X]/k

Ω•
k[Y ]/k Ω•

k[Y ]/k

νdegCh(−)·−

≃

Ω•
F/k

Ω•
F/k

νdegCh(−)·−

≃

452



7.4. De Rham forms as a strict model in Alg(Mixed)

commutes there is a filler for the right square in the following (non-commuting) diagram
in Alg(D(k)).

Alg(γ)
(

C̃k(X)
)

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
Ω•
k[X]/k

)

Alg(γ)
(

C̃k(Y )
)

Alg(γ)
(
Ω•
k[Y ]/k

)
Alg(γ)

(
Ω•
k[Y ]/k

)

Alg(γ)(Φ′
X)

Alg(γ)(C̃k(F )) Alg(γ)
(
Ω•
F/k

)

Alg(γ)(νdegCh(−)·−)
≃

Alg(γ)
(
Ω•
F/k

)

Alg(γ)(Φ′
Y )

Alg(γ)(νdegCh(−)·−)
≃

It thus suffices to find a filler for the left square.

We now unpack the definition of Φ′
X , with Φ′

Y of course being completely analogous.
By Proposition 7.4.3.2 Alg(γ)(Φ′

X) is homotopic to the composition

Alg(γ)
(

C̃k(X)
)
≃ HH

(
k[X]

)
≃ Alg(γ)

(
Ω•
k[X]/k

)

where the first equivalence is obtained by applying the forgetful functor evMixed
a to the

equivalence at the bottom of diagram (7.9) in Construction 7.4.2.5 combined with com-
patibility of evMixed

a with Alg(γMixed) from Construction 4.4.1.1, and the second equiva-
lence is the one from Corollary 7.2.2.3.

By definition that equivalence from Corollary 7.2.2.3 is given by the composition

HH
(
k[X]

)
Alg(γ)

(
C
(
k[X]

))
Alg(γ)

(
C
(
k[X]

))
Alg(γ)

(
Ω•
k[X]/k

)
≃ ≃ ≃

Alg(γ)(ϵX)

where the left equivalence is the one from Proposition 6.3.4.3, the middle one is in-
duced by the quotient morphism from Propositions 6.3.1.10 and 6.3.2.11, and the right
equivalence is induced from ϵX as constructed in Construction 7.2.2.1.

In the following diagram in Alg(D(k)), we let the two columns be given by the com-

453



Chapter 7. Hochschild homology of polynomial algebras

position the equivalences Φ′
X and Φ′

Y are defined as, as we just reviewed.

Alg(γ)
(

C̃k(X)
)

Alg(γ)
(

C̃k(Y )
)

HH
(
k[X]

)
HH
(
k[Y ]

)

Alg(γ)
(

C
(
k[X]

))
Alg(γ)

(
C
(
k[Y ]

))

Alg(γ)
(

C
(
k[X]

))
Alg(γ)

(
C
(
k[Y ]

))

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
Ω•
k[Y ]/k

)

≃

Alg(γ)(C̃k(F ))

≃

HH(F )

≃ ≃

Alg(γ)(C(F ))

≃ ≃

Alg(γ)(C(F ))

Alg(γ)
(
Ω•
F/k

)
≃ Alg(γ)(ϵX) Alg(γ)(ϵY ) ≃

There is a filler for the first square from the top by definition of C̃k(F ), see Construc-
tion 7.4.2.5. The second square has a filler by naturality of the equivalence between HH
and the standard Hochschild complex C in Proposition 6.3.4.3. The third square has a
filler by naturality of the quotient map from the standard Hochschild complex to the
normalized standard Hochschild complex, see Propositions 6.3.1.10 and 6.3.2.11. Finally,
the bottom square has a filler by Proposition 7.4.6.1 (and Proposition 7.2.2.2 (3)) if we
are in case (1) and by Proposition 7.4.6.2 if we are in case (2).

7.4.8. Compatibility of Φ with d in degree 0

In Section 7.4.4 we showed that Φ{t} is compatible with d (see Proposition 7.4.4.3). In
this section we use the naturality statement from the previous Section 7.4.7 to deduce
compatibility of ΦX with d on elements of degree 0 as long as |X| ≤ 2. Note that the
following proposition still has content for |X| = 1. In this case it shows that the ν

obtained in Proposition 7.4.4.1 is independent of the choices made along the way.

Proposition 7.4.8.1. Let X be a totally ordered set satisfying |X| ≤ 2. Then the
quasiisomorphism

ΦX : Alg(evm)
(

C̃k(X)
)
→ Ω•

k[X]/k

in Alg(Ch(k)) from Definition 7.4.4.2 satisfies

ΦX(d z) = d
(
ΦX(z)

)
(7.15)

for every element z of degree 0 of C̃k(X). ♥

454



7.4. De Rham forms as a strict model in Alg(Mixed)

Proof. Let z and z′ be elements of C̃k(X) of degree 0, and y an element of degree 1 such
that ∂(y) = z − z′. Assume that

ΦX(d z) = d
(
ΦX(z)

)

holds. Then we claim that
ΦX

(
d z′
)
= d

(
ΦX

(
z′
))

holds as well. Indeed, this follows from the following calculation.

ΦX

(
d z′
)
= ΦX

(
d
(
z − ∂(y)

))
= ΦX

(
d z − d

(
∂(y)

))

= ΦX(d z) + ΦX

(
∂
(
d(y)

))
= d

(
ΦX(z)

)
+ ∂
(
ΦX

(
d(y)

))

= d
(
ΦX(z)

)
= d

(
ΦX

(
z′ + ∂(y)

))
= d

(
ΦX

(
z′
)
+ ΦX

(
∂(y)

))

= d
(
ΦX

(
z′
)
+ ∂
(
ΦX(y)

))
= d

(
ΦX

(
z′
))

As C̃k(X) is concentrated in nonnegative degrees by Construction 7.4.2.5 and Proposi-
tion 7.4.2.4, every element of degree 0 is a cycle. It thus suffices to show that for each
homology class in H0(C̃k(X)) there is a cycle representing it that satisfies (7.15).

As both sides of (7.15) are k-linear in z it even suffices to verify (7.15) on one cycle
for each in a set of homology classes that generate H0(C̃k(X)) as a k-module.

As ΦX is a quasiisomorphism it is surjective, so that we can lift every element x of
X, considered as an element of Ω•

k[X]/k of degree 0, to a cycle x̃ in C̃k(X). Products54 of
elements of X form a k-basis for Ω•

k[X]/k and hence H0(Ω
•
k[X]/k). As ΦX is a multiplicative

quasiisomorphism this implies that products of elements of the form x̃ for x ∈ X are
cycles representing homology classes that together form a generating set for H0(C̃k(X))
as a k-module. It thus suffices to show that (7.15) is satisfied for products (with arbitrary
many factors) of elements of the form x̃ for x ∈ X.

Now suppose that z and z′ are elements of degree 0 in C̃k(X) that both satisfy (7.15).
Then we claim that the product z · z′ satisfies (7.15) as well. This can be shown with
the following simple calculation that uses that ΦX is multiplicative and that d satisfies
the Leibniz rule on both C̃k(X) and Ω•

k[X]/k.

ΦX

(
d
(
z · z′

))
= ΦX

(
d(z) · z′ + z · d

(
z′
))

= ΦX(d z) · ΦX

(
z′
)
+ ΦX(z) · ΦX

(
d z′
)

= d
(
ΦX(z)

)
· ΦX

(
z′
)
+ ΦX(z) · d

(
ΦX

(
z′
))

= d
(
ΦX(z) · ΦX

(
z′
))

= d
(
ΦX

(
z · z′

))

54With arbitrary (finite) number of factors, including zero factors.

455



Chapter 7. Hochschild homology of polynomial algebras

Note that the element 1 satisfies (7.15) because d(1) = 0 by the Leibniz rule in both
C̃k(X) and Ω•

k[X]/k, and ΦX(1) = 1. We are thus reduced to show that (7.15) holds for
the specific elements x̃ for x ∈ X.

So let x be an element of X and F : k[t] → k[X] the morphism of commutative
k-algebras that maps t to x. By Proposition 7.4.7.155 there is a commutative diagram

Alg(γ)
(

Alg(evm)
(

C̃k({t})
))

Alg(γ)
(
Ω•
k[t]/k

)

Alg(γ)
(

Alg(evm)
(

C̃k(X)
))

Alg(γ)
(
Ω•
k[X]/k

)

Alg(γ)(Φ{t})

Alg(γ)
(
Alg(evm)(C̃(F ))

)
Alg(γ)

(
Ω•
F/k

)

Alg(γ)(ΦX)

in Alg(D(k)). As the underlying differential graded algebra of C̃k({t}) is cofibrant by
Proposition 4.2.2.12 and every object is fibrant in Alg(Ch(k)), we obtain from [Hov99,
1.2.10 (ii)] and Proposition A.1.0.1 that the following diagram commutes up to chain
homotopy of morphisms of differential graded algebras in the sense of Propositions 4.1.4.2
and 4.2.2.17.

Alg(evm)
(

C̃k({t})
)

Ω•
k[t]/k

Alg(evm)
(

C̃k(X)
)

Ω•
k[X]/k

Φ{t}

Alg(evm)(C̃(F )) Ω•
F/k

ΦX

So let h be such a homotopy of morphisms of differential graded algebras from Ω•
F/k◦Φ{t}

to ΦX ◦ Alg(evm)(C̃(F )). Lift the element t in degree 0 of Ω•
k[t]/k to a cycle t̃ in C̃k({t}).

Then we have the following.

ΦX

(
x̃− C̃(F )

(
t̃
))

= ΦX(x̃)− ΦX

(
C̃(F )

(
t̃
))

= x+ ∂

(
h
(
t̃
))

+ h

(
∂
(
t̃
))
− Ω•

F/k

(
Φ{t}

(
t̃
))

= x+ 0 + h(0)− Ω•
F/k(t)

= x− x

= 0

Thus x̃−C̃(F )(t̃) is a cycle that represents a homology class that maps to 0 under H0(ΦX).
As ΦX is a quasiisomorphism we must thus have that x̃ − C̃(F )(t̃) is a boundary. By
55This is the part of this proof that uses the assumption that |X| ≤ 2.

456



7.4. De Rham forms as a strict model in Alg(Mixed)

the argument we gave at the start of this proof it thus suffices to show that (7.15) holds
for the element C̃(F )(t̃). For this we use the following calculation, using that Φ{t} is
compatible with d by Proposition 7.4.4.3, and that ΦX(C̃(F )(t̃)) = ΦX(x̃) by the above
calculation.

ΦX

(
d
(

C̃(F )
(
t̃
)))

= ΦX

(
C̃(F )

(
d t̃
))

= Ω•
F/k

(
Φ{t}

(
d t̃
))
− ∂

(
h
(

d t̃
))
− h

(
∂
(

d t̃
))

= Ω•
F/k

(
d
(
Φ{t}

(
t̃
)))

− 0 + h

(
d
(
∂
(
t̃
)))

= Ω•
F/k(d t) + h

(
d(0)

)

= dx

= d
(
ΦX

(
C̃(F )

(
t̃
)))

7.4.9. Proof of Conjecture B for sets of cardinality at most 2

The goal of Section 7.4 is to show that Conjecture B holds for |X| ≤ 2. This is what
we do in this subsection, by combining all the ingredients from the previous subsections.

Construction 7.4.9.1. Let X be a totally ordered set with |X| ≤ 2. We will construct
a morphism

ΞX : Ω′•
k[X]/k → C̃(X)

in Alg(Mixed), where Ω′•
k[X]/k is as defined in Definition 7.4.5.9 and Construction 7.4.5.1,

and C̃(X) is as defined in Construction 7.4.2.5.
In this construction we will in particular use notation from Construction 7.4.5.1, and

also make use of the multiplicative quasiisomorphism ΦX from Definition 7.4.4.2 and
the strict mixed quasiisomorphism ΨX from Definition 7.4.3.4.

By the universal property of the colimit it suffices to construct morphisms

Ξn : An → C̃(X)

in Alg(Mixed) for every n ≥ 0 such that Ξn+1 ◦ ι
n+1
n = Ξn. By the universal property

of pushouts and FreeAlg(Mixed) this amounts to the following. To define Ξ0 we need to
prescribe a cycle as the value Ξ0(x) for every element x of X. If n ≥ 0, then to lift Ξn
to Ξn+1 amounts to prescribing a value for Ξn+1(y) for every element y of Yn, under the
constraint that

∂

(
Ξn+1

(
y
))

= Ξn(y) (∗)

457



Chapter 7. Hochschild homology of polynomial algebras

must hold. We will require one additional property that Ξn+1(y) should satisfy, namely
that

ΨX

(
Ξn+1

(
y
))

= 0 (∗∗)

where ΨX is as in Definition 7.4.3.4.
Let n ≥ 0, let y be an element of Yn, and assume that Ξn has already been defined.

Note that Ξn(y) is a cycle, as y is a cycle by (a) in Construction 7.4.5.1. We claim that if
the homology class represented by Ξn(y) is zero, then a value for Ξn+1(y) can be found
that satisfies both (∗) and (∗∗). So let z be an element of C̃(X) so that ∂(z) = Ξn(y).
Then ΨX(z) is a cycle (as every element of Ω•

k[X]/k is), so as ΨX is a quasiisomorphism
and Ω•

k[X]/k has zero boundary operator we can lift ΨX(z) to a cycle z′ in C̃(X) such
that ΨX(z

′) = ΨX(z). Now set Ξn+1(y) := z − z′. Then we immediately obtain

ΨX

(
Ξn+1

(
y
))

= Ψx(z)−ΨX

(
z′
)
= 0

and, using that z′ is a cycle,

∂

(
Ξn+1

(
y
))

= ∂
(
z − z′

)
= ∂(z) = Ξn(y)

so that this definition of Ξn+1(y) satisfies both (∗) and (∗∗).
We now define Ξ0 and then Ξn for n > 0 by induction, in such a way that ΨX ◦ Ξn

maps y to 0 for all elements y ∈ Yn′ for n′ < n. By the argument above it suffices
for the induction step in which we extend Ξn to Ξn+1 for n ≥ 0 to show that the
homology class represented by Ξn(y) is zero for every element y of Yn. As ΦX and ΨX

are quasiisomorphisms it in turn suffices for this to show that each of those elements is
mapped to zero by ΦX ◦ Ξ0 or ΨX ◦ Ξ0.

We thus start with Ξ0. Let x be an element of X. We need to define a cycle Ξ0(x). For
this we use that as ΦX is a quasiisomorphism and Ω•

k[X]/k has zero boundary operator,
we can lift the element x of Ω0

k[X]/k to a cycle Ξ0(x) in C̃(X). This defines Ξ0 in such a
way that

(ΦX ◦ Ξ0)(x) = x (7.16)

holds for every element x of X.
To extend Ξ0 to Ξ1 and then Ξ2 we use that ΦX ◦ Ξ0 maps the elements of Y0 and Y1

(note that Y1 lies already in A0) to zero. This is the case as all elements of Y0 and Y1
are given by commutators, so as ΦX ◦Ξ0 is multiplicative those elements are mapped to
zero as Ω•

k[X]/k is commutative.
We next extend Ξ2 to Ξ3. Let us denote the element(s) of X by x1 < · · · < x|X|. Then

by Proposition 7.4.5.8 the elements of Y2 are given by the full list below for |X| = 2,
consist of the first element of the list for |X| = 1, and Y1 = ∅ for |X| = 0.

(1) dx1 · dx1

458



7.4. De Rham forms as a strict model in Alg(Mixed)

(2) dx2 · dx2

(3) dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

(4) dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2
− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

(5) dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

Elements (4) and (5) can be handled using ΦX in the same way as we did with the
elements of Y0 and Y1, as they are sums of commutators. Elements (1) and (2) can also
be handled analogously with ΦX , this time using that odd degree elements square to zero
in Ω•

k[X]/k. It remains to consider element (3). For this element we can use that ΨX ◦ Ξ2

maps it to 0, which is the case as by induction hypothesis ΨX ◦ Ξ2 maps every element
of the form y for y an element of Y0 or Y1 to zero, and ΨX ◦ Ξ2 is also compatible with
d.

Now let n ≥ 3 and assume we have already constructed Ξn. To extend Ξn to Ξn+1 it
suffices to show that ΦX ◦ Ξn maps the elements of Yn to zero. However the elements
of Yn are of degree n, and Ωn

k[X]/k
∼= 0 as |X| ≤ 2 < 3 ≤ n, so this is automatically

satisfied. ♦

Proposition 7.4.9.2. Let X be a totally ordered set with |X| ≤ 2. Then the morphism

ΞX : Ω′•
k[X]/k → C̃(X)

in Alg(Mixed) that was constructed in Construction 7.4.9.1 is a quasiisomorphism. ♥

Proof. Let us denote the element(s) of X by x1 < · · · < x|X|. The morphism

ΘX : Ω′•
k[X]/k → Ω•

k[X]/k

as defined in Definition 7.4.5.9 is a quasiisomorphism by Proposition 7.4.5.11. By con-
struction ΘX maps the cycle xa11 · · · x

a|X|

|X| · dx
b1
1 · · · dx

b|X|

|X| of Ω′•
k[X]/k with a1, . . . , a|X| ≥ 0

and b1, . . . , b|X| ∈ {0, 1}, to the element of Ω•
k[X]/k with the same name. As the homology

classes of those cycles in Ω•
k[X]/k form a k-basis for the homology, the same must be true

for Ω′•
k[X]/k, i. e. the set
{ [

xa11 · · · x
a|X|

|X| · dx
b1
1 · · · dx

b|X|

|X|

] ∣∣∣∣ a1, . . . , a|X| ≥ 0, b1, . . . , b|X| ∈ {0, 1}

}
(∗)

forms a k-basis of the Z-graded k-module H∗(Ω
′•
k[X]/k).

To show that H∗(ΞX) is an isomorphism it suffices to show that H∗(ΦX ◦ ΞX) is an
isomorphism, where ΦX is the quasiisomorphism defined in Definition 7.4.4.2. For this it

459



Chapter 7. Hochschild homology of polynomial algebras

now suffices to show that the basis (∗) of H∗(Ω
′•
k[X]/k) is mapped to a basis of H∗(Ω

•
k[X]/k)

under H∗(ΦX ◦ ΞX), and for this it is in turn enough to show that ΦX ◦ ΞX maps the
element xa11 · · · x

a|X|

|X| ·dx
b1
1 · · · dx

b|X|

|X| of Ω′•
k[X]/k for a1, . . . , a|X| ≥ 0 and b1, . . . , b|X| ∈ {0, 1}

to the element of Ω•
k[X]/k with the same name. As ΦX ◦ΞX is multiplicative we only need

to show that ΦX ◦ ΞX maps elements x to x and d x to d x, for each element x in X.
That ΦX ◦ ΞX maps elements x of X to x holds by construction of ΞX , see (7.16). We
can also deduce from this that d x is mapped to d x, as ΞX is compatible with d, and
ΦX is compatible with d on elements of degree 0 by Proposition 7.4.8.1.

We can now sum up Section 7.4 as follows.

Corollary 7.4.9.3. Let X be a totally ordered set with |X| ≤ 2. Then there is a composite
equivalence

HHMixed
(
k[X]

)
Alg(γMixed)

(
C̃(X)

)
Alg(γMixed)

(
Ω′•
k[X]/k

)

Alg(γMixed)
(
Ω•
k[X]/k

)

≃

≃

≃

Alg(γMixed)(ΞX)

Alg(γMixed)(ΘX) ≃

in Alg(Mixed), where the first equivalence is the one at the bottom of diagram (7.9) in
Construction 7.4.2.5, the second equivalence is induced by ΞX as constructed in Con-
struction 7.4.9.1, and which is a quasiisomorphism by Proposition 7.4.9.2, and the third
equivalence is induced by ΘX as defined in Definition 7.4.5.9, which is a quasiisomor-
phism by Proposition 7.4.5.11.

In particular, Conjecture B holds for X. ♥

Remark 7.4.9.4. Usage of ΨX is not really necessary in Construction 7.4.9.1, as we
could also have arranged for

ΦX

(
Ξ2

(
x1 · dx2 − dx2 · x1

))
= 0

and
ΦX

(
Ξ2

(
x2 · dx1 − dx1 · x2

))
= ΦX

(
Ξ1

(
d
(
x1 · x2 − x2 · x1

)))

instead of equation (∗∗) in Construction 7.4.9.1, and thereby also dealing with the prob-
lematic element

dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

that we used ΨX to handle in Construction 7.4.9.1, by using ΦX instead, having the
contribution from the third summand exactly cancel out the uncontrollable (under ΦX)
first summand.

The reason Construction 7.4.9.1 was nevertheless written using ΨX is that it would
not suffice to only use ΦX anymore in the case |X| = 3, as in this case we would have to

460



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

consider also obstructions to extend to generators of degree 4, and this would involve in
particular an element like

d
(
x · dx− dx · x

)
+ 2 · dx · dx

in degree 3 that can not be handled with the same idea using ΦX only unless 2 is invertible
in k. However, it is likely that the technique actually used in Construction 7.4.9.1 using
ΦX and ΨX extends to the three-variable case, so it would be an unnecessary assumption
to assume that 2 is invertible in k.

The case |X| = 5 is expected to need different techniques for base rings such as k = Z
in which 3 is not invertible, as the cofibrant resolution Ω′•

k[X]/k will have a generator in
degree 6 with boundary of the form56

x · d d x · dx− d d x · dx · x
+ dx · dx · dx− dx · x+ 2 · dx · dx− dx · dx− dx · x+ 2 · dx · dx · dx
+ dx · dx · dx+ dx · x · dx− dx · x− x · dx− dx · x · dx− dx · dx · x

+3 · dx · dx · dx+ dx · dx · dx

which involves interactions of the multiplicative and strict mixed structure in a way that
does not seem to be handleable using only ΦX or ΨX (unless 3 is invertible). ♦

7.5. De Rham forms as a strict model in Alg(Mixed)
and morphisms

In Section 7.4 we discussed Conjecture B, which asks for showing that for polynomial
k-algebras de Rham forms are a strict model for Hochschild homology as an object
in Alg(Mixed). The next upgrade of such an objectwise equivalence would be showing
that the morphism induced on de Rham forms by a morphism of polynomial k-algebras
represents the induced morphism on Hochschild homology as well. We formulate this as
the following conjecture.

Conjecture C. Let X and Y be sets and F : k[X]→ k[Y ] a morphism of commutative
k-algebras. Then there exists a commutative square

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

HHMixed
(
k[Y ]

)
Alg(γMixed)

(
Ω•
k[Y ]/k

)

≃

HHMixed(F ) Alg(γMixed)
(
Ω•
F/k

)

≃

56The generators of Ω′•
k[X]/k, in particular including this expected generator, were found using computer

calculations.

461



Chapter 7. Hochschild homology of polynomial algebras

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative square for a specific F as

“Conjecture C holds for F”. ♧

Later in this section we will show that Conjecture C holds

• if |X| = 0 and |Y | ≤ 2 by Proposition 7.5.1.1 in Section 7.5.1, and

• if |X| = 1 and |Y | ≤ 1 by Proposition 7.5.2.6 in Section 7.5.2, and

• if |X| = 1 and |Y | = 2 and 2 is invertible in k by Proposition 7.5.2.6 in Section 7.5.2,
and

• if |X| = 2 and |Y | = 0 by Proposition 7.5.4.1 in Section 7.5.4.

For applications we will need the following variant of Conjecture C, with two squares
at once, with the same equivalence in the middle (so this is stronger than just two
instances of Conjecture C).

Conjecture D. Let X be a set and f an element of k[X]. Denote by F : k[t]→ k[X] the
morphism of commutative k-algebras that maps t to f and by G : k[t]→ k the morphism
of commutative k-algebras that maps t to 0. Then there exists a commutative diagram

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed
(
k[t]
)

Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

≃

≃

HHMixed(F )

HHMixed(G)

Alg(γMixed)
(
Ω•
F/k

)

Alg(γMixed)
(
Ω•
G/k

)

≃

in Alg(Mixed) such that the horizontal morphisms are equivalences.
We will often refer to the existence of such a commutative diagram for a specific f as

“Conjecture D holds for f”. ♧

In Proposition 7.5.3.1 in Section 7.5.3 we will show that Conjecture D holds if |X| ≤ 1
or |X| = 2 and 2 is invertible in k.

We will discuss Conjecture C for |X| = 0 in Section 7.5.1, for |X| = 1 in Section 7.5.2,
and for |X| = 2 in Section 7.5.4. Conjecture D will be discussed in Section 7.5.3.

462



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

7.5.1. Conjecture C for zero variables in the domain
In this short section we prove Conjecture C in the case that the domain is a polynomial

ring in zero variables, in which case Conjecture C is true for formal reasons.

Proposition 7.5.1.1. Let X be totally ordered set satisfying |X| ≤ 2. Then there exists
a filler for the square

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

≃

HHMixed(ιk[X]) Alg(γMixed)

(
Ω•
ιk[X]/k

)

≃

(7.17)

in Alg(Mixed), where the horizontal equivalences are the ones from Corollary 7.4.9.3
(for the top horizontal equivalence applied to the empty set).

In particular, Conjecture C holds for F = ιk[X] if |X| ≤ 2. ♥

Proof. Ω•
k/k is isomorphic to k, the monoidal unit of Mixed, considered as an object of

Alg(Mixed). As γMixed is symmetric monoidal (see Construction 4.4.1.1), k is mapped by
Alg(γMixed) to an initial object of Alg(Mixed) by [HA, 3.2.1.8]. That there is a filler for
diagram (7.17) now follows purely from the universal property of initial objects.

7.5.2. Conjecture C for one variable in the domain
In this section we turn to the much more involved proof that Conjecture C holds for

morphisms F : k[t] → k[X] if |X| ≤ 1 or |X| = 2 and 2 is invertible in k. Using that
Ω′•
k[t]/k is cofibrant in Alg(Mixed) it will be possible to obtain a morphism

Ω′•
F/k : Ω

′•
k[t]/k → Ω′•

k[X]/k

in Alg(Mixed) so that there is a commutative diagram

HHMixed
(
k[t]
)

Alg(γMixed)
(
Ω′•
k[t]/k

)

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω′•
k[X]/k

)

≃

HHMixed(F ) Alg(γMixed)
(
Ω′•
F/k

)

≃

(7.18)

463



Chapter 7. Hochschild homology of polynomial algebras

in Alg(Mixed). If we could then show that the square

Ω′•
k[t]/k Ω•

k[t]/k

Ω′•
k[X]/k Ω•

k[X]/k

Θ{t}

≃

Ω′•
F/k

Ω•
F/k

ΘX

≃

(7.19)

in Alg(Mixed) commutes (perhaps up to homotopy of algebras in strict mixed complexes),
then we would be finished. If |X| ≤ 1, then it follows from Remark 7.4.5.2 that we only
need to check that the two compositions map t to the same element (as the other
generators must map to zero for degree reasons), and this is something that is actually
true, both compositions mapping t to F (t).

However, if X = { x1, x2 } (which we give the total order x1 < x2), then we also
need to check that the two compositions agree on t · d t− d t · t. Unfortunately, this
will not be the case in general. Ω•

k[t]/k is zero in degree 2, so the composition along
the top right will map t · d t− d t · t to zero, but this is not necessarily the case for
the composition along the bottom left. The idea to deal with this is to replace ΘX by
a different quasiisomorphism of algebras in strict mixed complexes λ. For λ to be a
quasiisomorphism and have the correct value on Ω′•

F/k(t) we will want to set λ(xi) := xi.
We have a lot of choice in how we define λ on the higher generators y for y ∈ Yn, which
we can choose nearly arbitrarily, the only real restriction being that the following must
hold.

d
(
λ
(
x1 · x2 − x2 · x1

))
+ λ
(
x1 · dx2 − dx2 · x1

)
− λ
(
x2 · dx1 − dx1 · x2

)
(7.20)

So how should we choose λ(y) for y ∈ Yn for n ≥ 0 in order to ensure that we have
λ(Ω′•

F/k(t · d t− d t · t)) = 0 so that the analogue of diagram (7.19) commutes?
The main tool available to understand Ω′•

F/k is naturality of Φ as we showed it in
Proposition 7.4.7.1, and we can use this to show that

ΦX

(
ΞX

(
Ω′•
F/k

(
t · d t− d t · t

)))
= 0 (7.21)

holds. As ΦX◦ΞX is a quasiisomorphism and maps xi to xi we could thus set λ to ΦX◦ΞX
if only it were a morphism in Alg(Mixed)! But unfortunately, ΦX is only multiplicative
but is not in general compatible with the strict mixed structure. What we could instead
do is to try to define λ in such a way that ΦX ◦ ΞX and λ agree on Ω′•

F/k(t · d t− d t · t).
As ΦX is multiplicative and preserves d on elements of degree 0 by Proposition 7.4.8.1,
ΦX ◦ ΞX and λ already agree on the Z-graded k-subalgebra generated by elements xi
and dxi. If we for example choose

λ
(
x1 · x2 − x2 · x1

)
:= ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))

464



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

then the two morphisms would also agree on elements like x1 · dx2 · x1 · x2 − x2 · x1.
However if terms involving d(x1 · x2 − x2 · x1) appeared in Ω′•

F/k(t · d t− d t · t), then
we would not be able to deal with this, as we have no way of accessing where ΦX ◦ ΞX
maps such an element. So as a first simplification step we need to make a particular choice
for Ω′•

F/k for which Ω′•
F/k(t · d t− d t · t) is given by a k-linear combination of products of

x1, x2, d x1, dx2, as well as elements of the form y for y ∈ Yn, but without factors of the
form d(y). This can be arranged as

d
(
x1 · x2 − x2 · x1

)
+ x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

is a boundary in Ω′•
k[X]/k.

If we now just set λ(y) := ΦX(ΞX(y)), then it would follow from (7.21) that

λ
(
Ω′•
F/k

(
t · d t− d t · t

))
= 0

holds as well, so that the analogue of diagram (7.19) commutes. However, the next hurdle
is that (7.20) needs to be satisfied. So say if λ(x1 · x2 − x2 · x1) had been defined in such
a way as to be 0, then we must have

λ
(
x1 · dx2 − dx2 · x1

)
= λ

(
x2 · dx1 − dx1 · x2

)

and can not choose the two values independently. This is where the assumption that 2
is divisible in k comes in, because combining this assumption with choosing Ω′•

F/k such
that x1 · dx2 − dx2 · x1 and x2 · dx1 − dx1 · x2 always contribute to Ω′•

F/k(t · d t− d t · t)
in a pairwise manner we will be able to average out ΦX(ΞX(x1 · dx2 − dx2 · x1)) and
ΦX(ΞX(x2 · dx1 − dx1 · x2)) between λ

(
x1 · dx2 − dx2 · x1

)
and λ

(
x2 · dx1 − dx1 · x2

)
,

and similarly deal with any possible contributions from d(x1 · x2 − x2 · x1).
We will begin putting this proof strategy into practice by first unpacking the data re-

quired to construct morphisms and homotopies with domain Ω′•
k[t]/k in Section 7.5.2.1. We

will then be able to show existence of an appropriate morphism Ω′•
F/k in Section 7.5.2.2.

Finally, we put everything together in Section 7.5.2.3 to prove that Conjecture C holds
for morphisms F : k[t]→ k[X] if |X| ≤ 1 or |X| = 2 and 2 is invertible in k.

7.5.2.1. Morphisms and homotopies out of Ω′•
k[t]/k

To put this proof strategy described in the introduction to Section 7.5.2 into practice
we first need to construct a morphism Ω′•

F/k with the required properties. The next two
propositions are helpful for that as they simplify the amount of data we need to provide
and the amount of properties we need to check in order to construct morphisms out of
Ω′•
k[t]/k, and homotopies of such morphisms.

Proposition 7.5.2.1. Let X be an object of Alg(Mixed) such that H∗(X) ∼= 0 for ∗ > 2
and such that elements of H1(X) square to zero. Let Ω′•

k[t]/k be as in Definition 7.4.5.9.
Let F ′ be a map of Z-graded sets from the subset

{
t, t · d t− d t · t

}
of Ω′•

k[t]/k to X,
and assume that F ′(t) is a cycle and that F ′ satisfies the following equality.

∂
(
F ′
(
t · d t− d t · t

))
= F ′(t) · d

(
F ′(t)

)
− d
(
F ′(t)

)
· F ′(t) (7.22)

465



Chapter 7. Hochschild homology of polynomial algebras

Then F can be extended to a morphism

F : Ω′•
k[t]/k → X

in Alg(Mixed). ♥

Proof. We are going to use notation from the construction of Ω′•
k[t]/k in Construction 7.4.5.1

in this proof.
By the universal property of FreeAlg(Mixed) and k ·− we obtain a morphism F0 : A0 → X

in Alg(Mixed) that maps t to F ′(t), where we need to use that F ′(t) is a cycle. As Y0
is empty the morphism ι10 is an isomorphism, so we immediately obtain an extension of
F0 to F1 : A1 → X. Again by the universal property of FreeAlg(Mixed) as well as pushouts
in Alg(Mixed), we can extend F1 to a morphism F2 : A2 → X in Alg(Mixed) satisfying
F2(t · d t− d t · t) = F ′(t · d t− d t · t) if and only if

∂
(
F ′
(
t · d t− d t · t

))
= F1(t · d t− d t · t)

holds. But this es precisely ensured by (7.22).
It now suffices to assume that n ≥ 2 and Fn : An → X is a morphism in Alg(Mixed),

and then to show that Fn can be extended to a morphism Fn+1 : An+1 → X. Again by
the universal property, this requires finding a value Fn+1(y) for every y ∈ Yn such that

∂

(
Fn+1

(
y
))

= Fn(y)

holds. But y is a cycle of degree n in An by Construction 7.4.5.1 (a), so Fn(y) is a
cycle in degree n of X, and such a solution exists if and only if the homology class
represented by Fn(y) is zero. If n > 2 then this must trivially be true as then Hn(X) ∼= 0
by assumption. If instead n = 2, then the only element of Y2 is d t · d t. As d t is already
a cycle, the homology class [Fn(d t · d t)] is equal to the square of [Fn(d t)] and hence
zero by assumption that elements of H1(X) square to zero.

Proposition 7.5.2.2. Let X be an object of Alg(Mixed) such that H∗(X) ∼= 0 for ∗ > 2.
and let Ω′•

k[t]/k be as in Definition 7.4.5.9.
Let

F,G : Ω′•
k[t]/k → X

be two morphisms Alg(Mixed), and assume that the elements

F (t)−G(t) and F (t · d t− d t · t)−G(t · d t− d t · t)

are boundaries in X.
Then there exists a homotopy of algebras of strict mixed complexes in the sense of

Proposition 4.2.2.20 from F to G. ♥

466



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

Proof. We are going to use notation from the construction of Ω′•
k[t]/k in Construction 7.4.5.1

in this proof.
As the forgetful functor from Alg(Mixed) to Z-graded k-modules preserves filtered

colimits by Proposition 4.2.2.12 it suffices to construct compatible homotopies of algebras
of strict mixed complexes hn from F ◦ ιn to G ◦ ιn for every n ≥ 0.

Let us begin by constructing the homotopy h0. By Construction 7.4.5.1 the underlying
Z-graded k-algebra of A0 is free on { t, d t }. Define h0 on { t } by mapping t to an element
whose boundary is F (t) − G(t) (such an element exists by assumption). As t is a cycle
Proposition 4.2.2.21 then immediately furnishes us with an extension to a homotopy of
algebras of strict mixed complexes from F ◦ ι0 to G ◦ ι0.

We now assume that hn has already been defined for n ≥ 0, and show that hn can
be extended to hn+1. By Proposition 4.2.2.21 and Remark 7.4.5.2 extending hn to hn+1

amounts to finding a value for hn+1(y) for every element y in Yn such that

∂

(
hn+1

(
y
))

= F
(
y
)
−G

(
y
)
− hn(y) (∗)

holds. We now distinguish between the case n = 0, n = 1, and n ≥ 2.
If n = 0, then Yn is empty, so nothing needs to be done. If n = 1, then we have

that Yn = { t · d t− d t · t }, so we only need to consider the element t · d t− d t · t. By
assumption F (t · d t− d t · t)−G(t · d t− d t · t) is a boundary, so that it suffices to show
that h0(t · d t− d t · t) is a boundary, which the following calculation does.

h0(t · d t− d t · t)
= h0(t) ·G(d t) + F (t) · h0(d t)− h0(d t) ·G(t) + F (d t) · h0(t)
= h0(t) · d

(
G(t)

)
− F (t) · d

(
h0(t)

)
+ d
(
h0(t)

)
·G(t) + d

(
F (t)

)
· h0(t)

= h0(t) · d
(
G(t)

)
+ d
(
F (t)

)
· h0(t) + d

(
h0(t)

)
·G(t)− F (t) · d

(
h0(t)

)

= h0(t) · d
(
G(t)

)
− h0(t) · d

(
F (t)

)
+ d
(
h0(t)

)
·G(t)− d

(
h0(t)

)
· F (t)

= −h0(t) · d
(
F (t)−G(t)

)
− d
(
h0(t)

)
·
(
F (t)−G(t)

)

= −h0(t) · d
(
∂
(
h0(t)

))
− d
(
h0(t)

)
· ∂
(
h0(t)

)

= h0(t) · ∂
(

d
(
h0(t)

))
− ∂
(
h0(t)

)
· d
(
h0(t)

)

= −∂
(
h0(t) · d

(
h0(t)

))

It remains to consider the case n ≥ 2. Note that the right hand side of equation (∗) is
in degree n+1 > 2, so as H∗(X) is concentrated in degrees ∗ ≤ 2 it suffices to show that
the right hand side of equation (∗) is a cycle. This is shown via the following calculation,
with y ∈ Yn.

∂

(
F
(
y
)
−G

(
y
)
− hn(y)

)

= F

(
∂
(
y
))
−G

(
∂
(
y
))
− ∂
(
hn(y)

)

467



Chapter 7. Hochschild homology of polynomial algebras

= F (y)−G(y)− ∂
(
hn(y)

)

= hn
(
∂(y)

)

= hn(0)

= 0

7.5.2.2. Construction of Ω′•
F/k

In this section we show the existence of a morphism Ω′•
F/k of appropriate form to put

the proof strategy described in the introduction to Section 7.5.2 into practice. In order to
be able to properly describe what kind of form Ω′•

F/k(t · d t− d t · t) is supposed to have
we need to simplify Ω′•

k[X]/k by making it commutative. We thus introduce appropriate
notation in the following definition.

Definition 7.5.2.3. Let X be a totally ordered set satisfying |X| ≤ 2, and let Ω′•
k[X]/k

be as in Definition 7.4.5.9.
Then we define

ξX : Ω′•
k[X]/k → Ω′′•

k[X]/k

to be the morphism of Z-graded k-algebras that is given by quotienting out the com-
mutator, i. e. ξX is initial among morphisms of Z-graded k-algebras with commutative
codomain. We will usually not use special notation to distinguish between elements of
Ω′•
k[X]/k and their images under ξX , but make clear from context in which of the two they

lie. It follows from Remark 7.4.5.2 that the Z-graded commutative k-algebra Ω′′•
k[X]/k is

freely generated (as a commutative Z-graded k-algebra) by the elements x and dx for
x ∈ X and y and d y for y ∈ Yn for n ≥ 0. ♦

We wish to show that there exists a morphism Ω′•
F/k fitting into a square (7.18) and

such that Ω′•
F/k(t · d t− d t · t) has a specific form57. As Ω′•

F/k has to be a morphism of
algebras of strict mixed complexes we already know that the boundary will have to be
of the following form.

∂
(
Ω′•
F/k

(
t · d t− d t · t

))
= Ω′•

F/k(t) · d
(
Ω′•
F/k(t)

)
− d
(
Ω′•
F/k(t)

)
· Ω′•

F/k(t)

The strategy to obtain Ω′•
F/k where Ω′•

F/k(t · d t− d t · t) is of a specified form will be
to first show that every commutator as on the right hand side of the equation is the
boundary of an element E of degree 2 of Ω′•

k[X]/k that is of a certain form, and then
show that, up to some small adjustments, we can construct Ω′•

k[X]/k in such a way that
Ω′•
F/k(t · d t− d t · t) is precisely given by E. While the following proposition does not yet

refer to Ω′•
F/k it is however the crucial preparatory result in its construction, ensuring

that such an E of appropriate form exists.

Proposition 7.5.2.4. Let X be the set X = { x1, x2 } equipped with the total order
x1 < x2. In this proposition we are going to use Definitions 7.4.5.9 and 7.5.2.3.
57For example not involving d

(
x1 · x2 − x2 · x1

)
.

468



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

Let J be the Z-graded subset of Ω′′•
k[X]/k that consists of elements of degree 1 of the form

g · x1 · x2 − x2 · x1 with g an element of k[X] and of elements of degree 2 of the form

gdx1 · dx1 · x1 · x2 − x2 · x1 + gdx2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2

with gdx1, gdx2, gboth, gsame,x1, and gsame,x2 elements in k[X]. Denote by I the Z-graded
subset of Ω′•

k[X]/k that is the preimage of J under ξX .
Then the following holds.

(1) Every element of the form w · w′ − w′ · w for w and w′ elements of degree 0 in
Ω′•
k[X]/k is the boundary of an element in I.

(2) Every element of the form w · d(w′)− d(w′) · w + w′ · d(w)− d(w) · w′ for w and
w′ elements of degree 0 in Ω′•

k[X]/k is the boundary of an element of I.

(3) Every element of the form w · d(w) − d(w) · w for w an element of degree 0 in
Ω′•
k[X]/k is the boundary of an element of I. ♥

Proof. In this proof we will make use of notation from Construction 7.4.5.1 as well as
repeatedly use Remark 7.4.5.2 without further comment.

Before proving the claims let us note that I is closed under k-linear combinations as
well as multiplying from either side with an element of X. Furthermore, the product of
an element of I of degree 1 with dx1 or dx2 is an element of I again.

If w and w′ are as in (1), then we will say that E is a lift associated to w and w′ as
in (1) to mean that E is an element of I such that ∂(E) = w · w′ − w′ · w. We use the
analogous convention for (2) and (3).

We now begin by proving (1). For this we note that as Ω′•
k[X]/k is concentrated in

nonnegative degrees, the element w · w′ − w′ · w of degree 0 is a cycle. As Ω•
k[X]/k is

commutative, the commutator w · w′ − w′ · w must be mapped to 0 by Θ0. H0(Θ1) is
an isomorphism by Proposition 7.4.5.10, so this implies that there is an element E ′ in
degree 1 of A1 whose boundary is w · w′ − w′ · w. By Remark 7.4.5.2 E ′ can be written
as E ′ = E ′′ + E where E ′′ is an element of A0 and E is in the k-submodule generated
by words in X with one extra factor x1 · x2 − x2 · x1, so that E is an element of I. As
∂(E ′′) = 0 we already have ∂(E) = w · w′ − w′ · w, which finishes the proof of (1).

Now we show claim (2), which we will do by reducing to more and more specific
w and w′, and using claim (1). First assume that w1, w2, w′

1 and w′
2 are elements

of degree 0 of Ω′•
k[X]/k such that (2) holds for the pair (w1, w

′
1) with associated lift

E11, for (w1, w
′
2) with associated lift E12, for (w2, w

′
1) with associated lift E21, and

for (w2, w
′
2) with associated lift E22. Let a1 and a2 be elements of k. Then we claim

that (2) also holds for the pair (a1 · w1 + a2 · w2, a1 · w
′
1 + a2 · w

′
2), with associated lift

E = a1 · a1 ·E11 + a1 · a2 ·E12 + a1 · a2 ·E21 + a2 · a2 ·E22. That E is again an element of

469



Chapter 7. Hochschild homology of polynomial algebras

I follows from the argument at the start of this proof, and that the boundary is what it
should be is verified by the following calculation.

(a1 · w1 + a2 · w2) · d
(
a1 · w

′
1 + a2 · w

′
2

)
− d
(
a1 · w

′
1 + a2 · w

′
2

)
· (a1 · w1 + a2 · w2)

+
(
a1 · w

′
1 + a2 · w

′
2

)
· d(a1 · w1 + a2 · w2)− d(a1 · w1 + a2 · w2) ·

(
a1 · w

′
1 + a2 · w

′
2

)

= a1 · a1 · w1 · d
(
w′

1

)
+ a1 · a2 · w1 · d

(
w′

2

)
+ a2 · a1 · w2 · d

(
w′

1

)
+ a2 · a2 · w2 · d

(
w′

2

)

− a1 · a1 · d
(
w′

1

)
· w1 − a1 · a2 · d

(
w′

1

)
· w2 − a2 · a1 · d

(
w′

2

)
· w1 − a2 · a2 · d

(
w′

2

)
· w2

+ a1 · a1 · w
′
1 · d(w1) + a1 · a2 · w

′
1 · d(w2) + a2 · a1 · w

′
2 · d(w1) + a2 · a2 · w

′
2 · d(w2)

− a1 · a1 · d(w1) · w
′
1 − a1 · a2 · d(w1) · w

′
2 − a2 · a1 · d(w2) · w

′
1 − a2 · a2 · d(w2) · w

′
2

= a1 · a1 · w1 · d
(
w′

1

)
− a1 · a1 · d

(
w′

1

)
· w1 + a1 · a1 · w

′
1 · d(w1)− a1 · a1 · d(w1) · w

′
1

+ a1 · a2 · w1 · d
(
w′

2

)
− a1 · a2 · d

(
w′

2

)
· w1 + a1 · a2 · w

′
2 · d(w1)− a1 · a2 · d(w1) · w

′
2

+ a1 · a2 · w2 · d
(
w′

1

)
− a1 · a2 · d

(
w′

1

)
· w2 + a1 · a2 · w

′
1 · d(w2)− a1 · a2 · d(w2) · w

′
1

+ a2 · a2 · w2 · d
(
w′

2

)
− a2 · a2 · d

(
w′

2

)
· w2 + a2 · a2 · w

′
2 · d(w2)− a2 · a2 · d(w2) · w

′
2

= ∂(a1 · a1 · E11 + a1 · a2 · E12 + a1 · a2 · E21 + a2 · a2 · E22)

By the above argument it not suffices to show claim (2) for pairs (w,w′) of elements
of degree 0 of Ω′•

k[X]/k that are in a k-basis. By Remark 7.4.5.2 it thus suffices to consider
the case in which w and w′ are words in X. If w is a word of length 0 (i. e. w = 1),
then w · d(w′) − d(w′) · w + w′ · d(w) − d(w) · w′ = 0, so that we can use 0 as an
associated lift. Now assume that we have shown (2) for pairs (w,w′) where the length
of w is smaller or equal to n, for n ≥ 1, and that w is a word of length n and x an
element of X. Then we claim that (2) also holds for (x · w,w′). Indeed, let Ew,w′ be a
lift associated to the pair (w,w′) and Ex,w′ a lift associated to the pair (x, w′) as in (2),
and let Ew′,w be a lift of w′ · w − w · w′ and Ew′,x be a lift of w′ · x − x · w′ as in (1).
Then E = x ·Ew,w′ +Ex,w′ ·w+ d(x) ·Ew′,w+Ew′,x · d(w) is again in I and the following
calculation then shows that this E is a lift associated to to the pair (x · w,w′) as in (2).

x · w · d
(
w′
)
− d
(
w′
)
· x · w + w′ · d(x · w)− d(x · w) · w′

= x · w · d
(
w′
)
− d
(
w′
)
· x · w

+ w′ · d(x) · w + w′ · x · d(w)− d(x) · w · w′ − x · d(w) · w′

= x ·
(
w · d

(
w′
)
− d
(
w′
)
· w + w′ · d(w)− d(w) · w′

)

+ x · d
(
w′
)
· w − x · w′ · d(w)− d

(
w′
)
· x · w

+ w′ · d(x) · w + w′ · x · d(w)− d(x) · w · w′

= x ·
(
w · d

(
w′
)
− d
(
w′
)
· w + w′ · d(w)− d(w) · w′

)

+
(
x · d

(
w′
)
− d
(
w′
)
· x+ w′ · d(x)− d(x) · w′

)
· w

+ d(x) · w′ · w − x · w′ · d(w) + w′ · x · d(w)− d(x) · w · w′

470



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

= x ·
(
w · d

(
w′
)
− d
(
w′
)
· w + w′ · d(w)− d(w) · w′

)

+
(
x · d

(
w′
)
− d
(
w′
)
· x+ w′ · d(x)− d(x) · w′

)
· w

+ d(x) ·
(
w′ · w − w · w′

)
+
(
w′ · x− x · w′

)
· d(w)

= ∂
(
x · Ew,w′ + Ex,w′ · w + d(x) · Ew′,w + Ew′,x · d(w)

)

= ∂(E)

It now remains to show (2) for pairs (x, w′) where x is an element of X and w′ is a
word in X. With a completely analogous argument as the one we just carried out, this
time for w′ instead of w, we can even reduce to the case of pairs (x, x′) with x and x′

elements of X. But for such pairs

E = x · d(x′)− d(x′) · x+ x′ · d(x)− d(x) · x′

works as an associated lift.
We now turn to showing claim (3), which we do using a similar strategy as (2). First

assume that w and w′ are elements of degree 0 of Ω′•
k[X]/k such that (3) holds for w with

associated lift Ew, and for w′ with associated lift Ew′ . Let a and a′ be elements of k and
let Ew,w′ be a lift associated to the pair (w,w′) as in (2). Then we claim that (3) also
holds for a ·w+ a′ ·w′ with associated lift E = a · a ·Ew+ a′ · a′ ·Ew′ + a · a′ ·Ew,w′ . That
E is again an element of I is covered by the argument at the start of the proof, and the
following calculation checks that the boundary is correct as well.

(
a · w + a′ · w′

)
· d
(
a · w + a′ · w′

)
− d
(
a · w + a′ · w′

)
·
(
a · w + a′ · w′

)

= a · a · w · d(w) + a · a′ · w · d
(
w′
)
+ a′ · a · w′ · d(w) + a′ · a′ · w′ · d

(
w′
)

− a · a · d(w) · w − a · a′ · d(w) · w′ − a′ · a · d
(
w′
)
· w − a′ · a′ · d

(
w′
)
· w′

= a · a · w · d(w)− a · a · d(w) · w + a′ · a′ · w′ · d
(
w′
)
− a′ · a′ · d

(
w′
)
· w′

+ a · a′ · w · d
(
w′
)
− a · a′ · d

(
w′
)
· w + a · a′ · w′ · d(w)− a · a′ · d(w) · w′

= ∂
(
a · a · Ew + a′ · a′ · Ew′ + a · a′ · Ew,w′

)

It now suffices to show (3) for words in X. Assume that we have already shown (3)
for words in X of length smaller or equal to n, and that n ≥ 1. Let x be an element of
X and w a word in X of length n. Let Exw,x be a lift for the pair (x ·w, x) as in (2), Ex
a lift for x as in (3), Ew a lift for w as in (3), and Ew,x a lift for the pair (w, x) as in
(1). Then E = Exw,x · w − Ex · w · w + x · x · Ew + x · Ew,x · d(w) is again in I and the
following calculation shows that E is a lift for x · w as in (3).

x · w · d(x · w)− d(x · w) · x · w
= x · w · d(x) · w + x · w · x · d(w)− d(x) · w · x · w − x · d(w) · x · w
=
(
x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x

)
· w

+ d(x) · x · w · w − x · d(x · w) · w + d(x · w) · x · w
+ x · w · x · d(w)− d(x) · w · x · w − x · d(w) · x · w

471



Chapter 7. Hochschild homology of polynomial algebras

=
(
x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x

)
· w

+ d(x) · x · w · w − x · d(x) · w · w − x · x · d(w) · w
+ d(x) · w · x · w + x · d(w) · x · w
+ x · w · x · d(w)− d(x) · w · x · w − x · d(w) · x · w

=
(
x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x

)
· w

+ d(x) · x · w · w − x · d(x) · w · w − x · x · d(w) · w + x · w · x · d(w)
=
(
x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x

)
· w

−
(
x · d(x)− d(x) · x

)
· w · w + x · x ·

(
w · d(w)− d(w) · w

)

− x · x · w · d(w) + x · w · x · d(w)
=
(
x · w · d(x)− d(x) · x · w + x · d(x · w)− d(x · w) · x

)
· w

−
(
x · d(x)− d(x) · x

)
· w · w + x · x ·

(
w · d(w)− d(w) · w

)

+ x · (w · x− x · w) · d(w)
= ∂

(
Exw,x · w − Ex · w · w + x · x · Ew + x · Ew,x · d(w)

)

It thus only remains to show (3) for the elements 1, x1, and x2. For 1 we obtain
1 · d(1) − d(1) · 1 = 0, so that we can use 0 as a lift. For x either x1 or x2 we can use
x · d(x)− d(x) · x as a lift.

With the preparation of Proposition 7.5.2.4 we can now construct a morphism Ω′•
F/k

with the required properties in the following proposition.

Proposition 7.5.2.5. Let X be a totally ordered set satisfying |X| ≤ 2, and denote
the elements of X by x1 < · · · < x|X|. Let f be an element of k[X], and denote by
F : k[t]→ k[X] the morphism of commutative k-algebras that maps t to f .

Then there exists a morphism

Ω′•
F/k : Ω

′•
k[t]/k → Ω′•

k[X]/k

in Alg(Mixed) such that there exists a commutative diagram

Alg(γMixed)
(
Ω′•
k[t]/k

)
Alg(γMixed)

(
C̃({t})

)

Alg(γMixed)
(
Ω′•
k[X]/k

)
Alg(γMixed)

(
C̃(X)

)

Alg(γMixed)
(
Ω′•
F/k

)

Alg(γMixed)(Ξ{t})
≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(ΞX)

≃

in Alg(Mixed) where Ξ{t} and ΞX are as in Construction 7.4.9.1, and such that ξX ◦Ω′•
F/k

maps t to f (see Definition 7.5.2.3 for a definition of ξX).

472



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

If |X| = 2, then Ω′•
F/k can furthermore be chosen such that there additionally exist

elements gdx1, gdx2, gboth, gsame,x1, gsame,x2, and gobs in k[X] such that

ξX

(
Ω′•
F/k

(
t · d t− d t · t

))
(7.23)

= gdx1 · dx1 · x1 · x2 − x2 · x1 + gdx2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2
+ gobs · dx1 · dx2

holds in Ω′′•
k[X]/k. ♥

Proof. As Ω′•
k[t]/k is cofibrant as an object of Alg(Mixed) by Proposition 7.4.5.11, we can

lift the composition

Alg(γMixed)(ΞX)
−1 ◦ Alg(γMixed)

(
C̃(F )

)
◦ Alg(γMixed)

(
Ξ{t}

)

to a morphism

G : Ω′•
k[t]/k → Ω′•

k[X]/k

that thus comes with a commutative diagram

Alg(γMixed)
(
Ω′•
k[t]/k

)
Alg(γMixed)

(
C̃({t})

)

Alg(γMixed)
(
Ω′•
k[X]/k

)
Alg(γMixed)

(
C̃(X)

)

Alg(γMixed)(G)

Alg(γMixed)(Ξ{t})
≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(ΞX)

≃

(7.24)

in Alg(Mixed). It now suffices by [Hov99, 1.2.10 (ii)] and Propositions A.1.0.1 and 4.2.2.20
to show that there is a homotopy of algebras of strict mixed complexes from G to a mor-
phism Ω′•

F/k that takes the required form on the elements t and t · d t− d t · t.
We begin by showing that G already maps t to an acceptable value. For this we

473



Chapter 7. Hochschild homology of polynomial algebras

consider the commutative diagram

Alg(γ)
(

Alg(evm)
(
Ω′•
k[t]/k

))
Alg(γ)

(
Alg(evm)

(
Ω′•
k[X]/k

))

Alg(γ)
(

Alg(evm)
(

C̃
(
{t}
)))

Alg(γ)
(

Alg(evm)
(

C̃(X)
))

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
Ω•
k[X]/k

)

Alg(γ)(G)

Alg(γ)
(
Alg(evm)(Ξ{t})

)
≃ Alg(γ)(Alg(evm)(ΞX)) ≃

Alg(γ)
(
Alg(evm)(C̃(F ))

)

Alg(γ)(Φ{t})≃ Alg(γ)(ΦX) ≃

Alg(γ)
(
Ω•
F/k

)

in Alg(D(k)), where the top square is obtained from the transpose of diagram (7.24) by
applying the forgetful functor Alg(evm) and using compatibility with γMixed (see Construc-
tion 4.4.1.1), and the bottom square is the one from Proposition 7.4.7.1. The underlying
differential graded k-algebra of Ω′•

k[t]/k is cofibrant by Propositions 7.4.5.11 and 4.2.2.12,
so we can conclude by [Hov99, 1.2.10 (ii)], Propositions A.1.0.1 and 4.2.2.17 that there
exists a homotopy of differential graded k-algebras h from ΦX ◦ΞX ◦G to Ω•

F/k◦Φ{t}◦Ξ{t}

(we omit forgetful functors in the notation here) in the sense of Proposition 4.2.2.17. We
can then carry out the following calculation, where we use that (Φ{t} ◦ Ξ{t})(t) = t by
definition of Ξ{t}, see around equation (7.16) of Construction 7.4.9.1.

(ΦX ◦ ΞX ◦G)(t) =
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t) + ∂

(
h(t)

)
+ h
(
∂(t)

)

= Ω•
F/k

((
Φ{t} ◦ Ξ{t}

)
(t)
)
+ 0 + h(0)

= Ω•
F/k(t)

= f

By the universal property of ξX there exists a commutative diagram

Ω′•
k[X]/k C̃(X) Ω•

k[X]/k

Ω′′•
k[X]/k

ΞX

ξX

ΦX

of Z-graded k-algebras, and as ΦX ◦ ΞX maps elements xi of X to xi by Construc-
tion 7.4.9.1, it follows from Remark 7.4.5.2 that the dashed morphism is an isomorphism
in degree 0, mapping xi to xi. That (ΦX ◦ΞX)(G(t)) = f thus implies that ξX(G(t)) = f .

474



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

If |X| < 2 we can now define Ω′•
F/k := G and are finished. So from now on we will

assume that X = { x1, x2 }. Unfortunately the value of G at t · d t− d t · t is not auto-
matically of the right form, so we will need to replace G by a homotopic morphism that
takes a different value at t · d t− d t · t, but the same one at t.

By Proposition 7.5.2.4 (3) we can let E be an element of degree 2 in Ω′•
k[X]/k satisfying

the following two properties.

(1) ∂(E) = G(t) · d
(
G(t)

)
− d
(
G(t)

)
·G(t)

(2) There exist elements gdx1 , gdx2 , gboth, gsame,x1 , and gsame,x2 in k[X] such that

ξX(E) = gdx1 · dx1 · x1 · x2 − x2 · x1 + gdx2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2

holds.

We first note that

∂
(
G
(
t · d t− d t · t

)
− E

)
= G(t) · d

(
G(t)

)
− d
(
G(t)

)
·G(t)− ∂(E) = 0

so that G
(
t · d t− d t · t

)
− E is a cycle. As Θ0 (see the construction of Ω′•

k[X]/k in Con-
struction 7.4.5.1) is surjective on homology by Proposition 7.4.5.10, we can find a cycle
z in A0 such that the homology classes represented by z and G

(
t · d t− d t · t

)
− E

map to the same homology class in Ω•
k[X]/k under ΘX . As ΘX is a quasiisomorphism by

Proposition 7.4.5.11 this implies that

G
(
t · d t− d t · t

)
− E − z (∗∗)

must be a boundary.
We now want to apply Proposition 7.5.2.1 to obtain a morphism

Ω′•
F/k : Ω

′•
k[t]/k → Ω′•

k[X]/k

in Alg(Mixed) with Ω′•
F/k(t) = G(t) and Ω′•

F/k

(
t · d t− d t · t

)
= E + z. We first note

that as H∗(ΦX ◦ ΞX) is a multiplicative isomorphism by Definition 7.4.4.2 and Proposi-
tion 7.4.9.2 it holds that H∗(Ω

′•
k[X]/k) is zero above degree 2 and that odd degree elements

square to zero. That G(t) is a cycle is clear as G is a morphism of chain complexes and t is
a cycle in Ω′•

k[t]/k. Finally, (7.22) holds in this context, as this follows from (1) above com-
bined with z being a cycle. Thus we can apply Proposition 7.5.2.1 to obtain a morphism
Ω′•
F/k with the prescribed values.
We next show that Ω′•

F/k is indeed homotopic to G. For this we use Proposition 7.5.2.2,
so that we have to show that

G(t)− Ω′•
F/k(t) and G

(
t · d t− d t · t

)
− Ω′•

F/k

(
t · d t− d t · t

)

475



Chapter 7. Hochschild homology of polynomial algebras

are boundaries. The first term is 0 by definition, and that the second is a boundary
was ensured around (∗∗) (we chose z specifically so that this would hold). Thus Propo-
sition 7.5.2.1 applies to show that there indeed exists a homotopy of algebras in strict
mixed complexes from G to Ω′•

F/k.
It remains to show that the two values of ξX ◦Ω′•

F/k are as required. For t this is clear
as

ξX

(
Ω′•
F/k(t)

)
= ξX

(
G(t)

)
= f

holds, as we discussed at the start of this proof. For t · d t− d t · t we note that the image
of ξX ◦Θ0 is generated by the multiplicative generators x1, x2, d x1, and d x2. Thus the
element z of degree 2 in A0 must map to an element of the form gobs ·dx1 ·dx2 with gobs
an element of k[x1, x2]. Then we obtain the following by combining the definition just
made with (2).

ξX

(
Ω′•
F/k

(
t · d t− d t · t

))

= ξX(E) + ξX(z)

= gdx1 · dx1 · x1 · x2 − x2 · x1 + gdx2 · dx2 · x1 · x2 − x2 · x1
+ gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2
+ gobs · dx1 · dx2

7.5.2.3. Conclusion

Having constructed Ω′•
F/k in the preceding Section 7.5.2.2 we can now use it to show

Conjecture C in certain cases using the strategy sketched in the introduction to Sec-
tion 7.5.2. Note that what we show is actually slightly stronger than Conjecture C, as
we show that there is a specific top horizontal equivalence in diagram (7.25) that is
independent of X and f . This is what allows us to even deduce Conjecture D from this,
as we do in Proposition 7.5.3.1 in Section 7.5.3.
Proposition 7.5.2.6. Let X be a set, let f be an element of k[X], and denote by
F : k[t]→ k[X] the morphism of commutative k-algebras that maps t to f . Assume that
one of the following holds.

(1) |X| ≤ 1.

(2) |X| = 2 and 2 is invertible in k.
Then there exists a commutative square

HHMixed
(
k[t]
)

Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

≃

HHMixed(F ) Alg(γMixed)
(
Ω•
F/k

)

≃

(7.25)

476



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

in Alg(Mixed) such that the top horizontal equivalence is the one from Corollary 7.4.9.3
and the bottom horizontal morphism is an equivalence58. In particular, Conjecture C
holds for F . ♥

Proof. We begin by equipping X with a total order, and will denote the elements of X
by x1 < · · · < x|X|. Consider the following (non-commuting) diagram in Alg(Mixed),
that will be explained below.

HHMixed
(
k[t]
)

HHMixed
(
k[X]

)

Alg(γMixed)
(

C̃
(
{t}
))

Alg(γMixed)
(

C̃(X)
)

Alg(γMixed)
(
Ω′•
k[t]/k

)
Alg(γMixed)

(
Ω′•
k[X]/k

)

Alg(γMixed)
(
Ω•
k[t]/k

)
Alg(γMixed)

(
Ω•
k[X]/k

)

≃

HHMixed(F )

≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)
(
Ω′•
F/k

)

Alg(γMixed)(Ξ{t}) ≃

Alg(γMixed)(Θ{t}) ≃

Alg(γMixed)(ΞX)≃

≃

Alg(γMixed)
(
Ω•
F/k

)

(∗)

The top square has a filler given by the (transpose of) commutative diagram (7.10) from
the definition of C̃(F ) in Construction 7.4.2.5, Ξ{t}, ΞX , and Θ{t} are as in Construc-
tion 7.4.9.1 and Definition 7.4.5.9, and Ω′•

F/k is as in Proposition 7.5.2.5 so that the
middle square has a filler as well.

By Corollary 7.4.9.3 the vertical composition on the left is the top horizontal equiva-
lence in diagram (7.25) from the statement. As the top and middle square have fillers it
thus suffices to construct a quasiisomorphism of algebras in strict mixed complexes

λ : Ω′•
k[X]/k → Ω•

k[X]/k

such that the diagram
Ω′•
k[t]/k Ω•

k[t]/k

Ω′•
k[X]/k Ω•

k[X]/k

Θ{t}

≃

Ω′•
F/k

Ω•
F/k

λ

≃

(∗∗)

58We do not claim that there exists a filler for such a square where also the bottom horizontal equivalence
is given by the one from Corollary 7.4.9.3.

477



Chapter 7. Hochschild homology of polynomial algebras

in Alg(Mixed) commutes strictly.
Suppose for the moment that we have defined a λ. Using notation from Construc-

tion 7.4.5.1, it follows from Remark 7.4.5.2 that for checking strict commutativity of
(∗∗) it suffices to check that the diagram commutes on the element t as well as elements
of the form y for y an element of one of the sets Ym for m ≥ 0 used in the definition of
Ω′•
k[t]/k. But elements of Ym have degree m so that y is of degree m + 1. As we assume
|X| ≤ 2, we have that Ω•

k[X]/k is concentrated in degrees at most 2, so diagram (∗∗) will
commute on elements y for y an element of Ym for m ≥ 2 automatically, and if even
|X| ≤ 1 then it will commute automatically on such elements for m ≥ 1. As Y0 is empty
by Definition 7.4.5.9 and Proposition 7.4.5.6 and Y1 has only one element t · d t− d t · t
by Definition 7.4.5.9 and Proposition 7.4.5.7, this means that it suffices to check that
the following two equations hold if |X| = 2, and only that the first one holds if |X| ≤ 1.

λ
(
Ω′•
F/k(t)

)
= Ω•

F/k

(
Θ{t}(t)

)

λ
(
Ω′•
F/k

(
t · d t− d t · t

))
= Ω•

F/k

(
Θ{t}

(
t · d t− d t · t

))

We can evaluate the right hand sides. By definition Θ{t} maps t to t and t · d t− d t · t
to 0. Thus we need to define λ such that it is a quasiisomorphism and show that both
of the following equations hold if |X| = 2, and that the first one holds if |X| ≤ 1.

λ
(
Ω′•
F/k(t)

)
= f (∗ ∗ ∗)

λ
(
Ω′•
F/k

(
t · d t− d t · t

))
= 0

We can now already show the statement under the assumption that |X| ≤ 1. In that
case, we let λ be the quasiisomorphism of algebras in strict mixed complexes ΘX from
Definition 7.4.5.9. We only need to verify that the first equation of (∗ ∗ ∗) holds for
this choice of λ. As the underlying Z-graded k-algebra of Ω•

k[X]/k is commutative, the
underlying morphism of λ factors as in the following diagram of Z-graded k-algebras.

Ω′•
k[X]/k Ω•

k[X]/k

Ω′′•
k[X]/k

λ

ξX

λ′′

As λ and ξX map the elements xi of X to xi (considered as elements of the respec-
tive Z-graded k-algebras), the same holds for λ′′, so that in particular λ′′(f) = f . By
Proposition 7.5.2.5 we know that ξX

(
Ω′•
F/k(t)

)
= f , so it follows that

λ
(
Ω′•
F/k(t)

)
= λ′′

(
ξX

(
Ω′•
F/k(t)

))
= λ′′(f) = f

478



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

holds.
We now consider the case |X| = 2, and thus assume that 2 is invertible in k. In this

case setting λ to ΘX will unfortunately not work in general. We will in the following use
notation from the construction of Ω′•

k[X]/k in Construction 7.4.5.1, as well as the concrete
choices for Y0, Y1 and Y2 in Definition 7.4.5.9. We will define λ using the universal
property of the definition of Ω′•

k[X]/k as a colimit by constructing a compatible system of
morphisms λn : An → Ω•

k[X]/k in Alg(Mixed) for every n ≥ 0.
We will begin by defining λ0 using the universal property of FreeAlg(Mixed) by prescribing

λ0(xi) = xi. We first note that the argument that we used above in the case |X| ≤ 1 to
show that the first equation of (∗ ∗ ∗) holds did not use that λ = ΘX , but only that λ
maps xi to xi, and hence this argument is still applicable. Thus it only remains to show
that λ0 can be extended to a morphism λ : Ω′•

k[X]/k → Ω•
k[X]/k in Alg(Mixed) that is a

quasiisomorphism and that is such that the second equation of (∗ ∗ ∗) holds.
We claim that any extension of λ0 to λ is automatically a quasiisomorphism. For this

we note that the Z-graded subset
{ [

xa11 · x
a2
2 · d(x1)b1 · d(x2)b2

] ∣∣∣∣ a1, a2 ≥ 0, b1, b2 ∈ {0, 1}

}

of H∗(Ω
′•
k[X]/k) forms a k-basis of H∗(Ω

′•
k[X]/k), as H∗(ΘX) is an isomorphism and maps

this set to the set with the same description (see Construction 7.4.5.1 and Proposi-
tion 7.4.5.11). As this subset is also mapped by H∗(λ) to the same subset of H∗(Ω

•
k[X]/k)

it follows that λ is a quasiisomorphism as well.
It thus suffices to show that there is some extension of λ0 to λ such that the second

equation of (∗ ∗ ∗) holds. We will now inductively assume that λn has already been
defined for n ≥ 0 and then extend λn to λn+1. By construction such an extension
amounts to defining a value for λn+1(y) for every element y of Yn, and showing that

∂
(
λn+1(y)

)
= λn(y)

holds in Ω•
k[X]/k. As Ω•

k[X]/k has zero boundary operator the left hand side is always zero
and in particular does not depend on what we chose for λn+1(y). So for an extension to
λn+1 to exist λn must map all elements of Yn to zero, and then we are free to prescribe
any value for λn+1(y) for elements y of Yn. Note that λn(y) lies in Ωn

k[X]/k, so as we
assumed |X| = 2 this is automatically zero if n ≥ 3, and hence we can already conclude
that an extension of λ3 to λ exists.

To extend λ0 to λ1 we need to check that

λ0(x1 · x2 − x2 · x1) = 0

which is clear as Ω•
k[X]/k is commutative, and can then set the following value.

λ1
(
x1 · x2 − x2 · x1

)
:= ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))

479



Chapter 7. Hochschild homology of polynomial algebras

Next, to extend λ1 to λ2 we need to check

λ1(x1 · dx1 − dx1 · x1) = 0

λ1(x1 · dx2 − dx2 · x1) = 0

λ1(x2 · dx1 − dx1 · x2) = 0

λ1(x2 · dx2 − dx2 · x2) = 0

all of which are clear as Ω•
k[X]/k is commutative, and can then prescribe the following

values.

λ2
(
x1 · dx1 − dx1 · x1

)
:= ΦX

(
ΞX
(
x1 · dx1 − dx1 · x1

))

λ2
(
x1 · dx2 − dx2 · x1

)
:=

1

2

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

−
1

2
d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

λ2
(
x2 · dx1 − dx1 · x2

)
:=

1

2

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

+
1

2
d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

λ2
(
x2 · dx2 − dx2 · x2

)
:= ΦX

(
ΞX
(
x2 · dx2 − dx2 · x2

))

Finally, we need to extend λ2 to λ3. For this we need to check the following.

λ2

(
dx1 · dx1

)
= 0

λ2

(
dx2 · dx2

)
= 0

λ2

(
dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

)
= 0

λ2

(
dx2 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx2
− x1 · x2 · dx2 − dx2 · x2 + x2 · dx2 − dx2 · x2 · x1
+ x2 · x1 · dx2 − dx2 · x1 − x1 · dx2 − dx2 · x1 · x2

)
= 0

λ2

(
dx1 · x1 · x2 − x2 · x1 + x1 · x2 − x2 · x1 · dx1
− x1 · x2 · dx1 − dx1 · x2 + x2 · dx1 − dx1 · x2 · x1
+ x2 · x1 · dx1 − dx1 · x1 − x1 · dx1 − dx1 · x1 · x2

)
= 0

The first two equations are satisfied as odd degree elements in Ω•
k[X]/k square to zero

and the last two as Ω•
k[X]/k is commutative. It remains to show that middle equation,

480



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

which is shown by the following calculation. The values for λ2(x1 · dx2 − dx2 · x1) and
λ2(x2 · dx1 − dx1 · x2) were chosen precisely so as to make this work out, and this is
why we needed that 2 is invertible in k.

λ2

(
dx1 · x2 − x2 · x1 + x1 · dx2 − dx2 · x1 − x2 · dx1 − dx1 · x2

)

= d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

+
1

2

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

−
1

2
d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

−
1

2

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

−
1

2
d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

= 0

Thus we can extend λ2 to λ3 by mapping y to 0 for y an element of Y2.
As already mentioned λ3 can be further be extended to λ. It now only remains to show

that the second equation of (∗ ∗ ∗) holds. Again as the underlying Z-graded k-algebra of
Ω•
k[X]/k is commutative, the underlying morphism of λ factors as in the following diagram

of Z-graded k-algebras.

Ω′•
k[X]/k Ω•

k[X]/k

Ω′′•
k[X]/k

λ

ξX

λ′′

as we already had above. Similarly we can factor ΦX ◦ ΞX as follows.

Ω′•
k[X]/k Ω•

k[X]/k

Ω′′•
k[X]/k

ΦX◦ΞX

ξX

Φ′′
X

We now begin with the following calculation, where we let gdx1 , gdx2 , gboth, gsame,x1 ,
gsame,x2 , and gobs be elements in k[X] as in Proposition 7.5.2.5 so that (7.23) holds. Note

481



Chapter 7. Hochschild homology of polynomial algebras

that as λ maps xi to xi and hence also dxi to d xi, the same is true for λ′′.

λ
(
Ω′•
F/k

(
t · d t− d t · t

))

= λ′′
(
ξX

(
Ω′•
F/k

(
t · d t− d t · t

)))

= λ′′
(
gdx1 · dx1 · x1 · x2 − x2 · x1 + gdx2 · dx2 · x1 · x2 − x2 · x1

+ gboth ·
(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2

+ gobs · dx1 · dx2
)

= gdx1 · dx1 · λ
(
x1 · x2 − x2 · x1

)
+ gdx2 · dx2 · λ

(
x1 · x2 − x2 · x1

)

+ gboth · λ
(
x1 · dx2 − dx2 · x1

)

+ gboth · λ
(
x2 · dx1 − dx1 · x2

)

+ gsame,x1 · λ
(
x1 · dx1 − dx1 · x1

)
+ gsame,x2 · λ

(
x2 · dx2 − dx2 · x2

)

+ gobs · dx1 · dx2
= gdx1 · dx1 · ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))
+ gdx2 · dx2 · ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))

+ gboth ·
1

2

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

− gboth ·
1

2
d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

+ gboth ·
1

2

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

+ gboth ·
1

2
d
(
ΦX

(
ΞX
(
x1 · x2 − x2 · x1

)))

+ gsame,x1 · ΦX

(
ΞX
(
x1 · dx1 − dx1 · x1

))
+ gsame,x2 · ΦX

(
ΞX
(
x2 · dx2 − dx2 · x2

))

+ gobs · dx1 · dx2
= gdx1 · dx1 · ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))
+ gdx2 · dx2 · ΦX

(
ΞX
(
x1 · x2 − x2 · x1

))

+ gboth ·

(
ΦX

(
ΞX
(
x1 · dx2 − dx2 · x1

))
+ ΦX

(
ΞX
(
x2 · dx1 − dx1 · x2

)))

+ gsame,x1 · ΦX

(
ΞX
(
x1 · dx1 − dx1 · x1

))
+ gsame,x2 · ΦX

(
ΞX
(
x2 · dx2 − dx2 · x2

))

+ gobs · dx1 · dx2

482



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

Now we use that Φ ◦ ΞX = Φ′′
X ◦ ξX .

= gdx1 · dx1 · Φ′′
X

(
ξX
(
x1 · x2 − x2 · x1

))
+ gdx2 · dx2 · Φ′′

X

(
ξX
(
x1 · x2 − x2 · x1

))

+ gboth ·

(
Φ′′
X

(
ξX
(
x1 · dx2 − dx2 · x1

))
+ Φ′′

X

(
ξX
(
x2 · dx1 − dx1 · x2

)))

+ gsame,x1 · Φ
′′
X

(
ξX
(
x1 · dx1 − dx1 · x1

))
+ gsame,x2 · Φ

′′
X

(
ξX
(
x2 · dx2 − dx2 · x2

))

+ gobs · dx1 · dx2

We now use that Φ′′
X is multiplicative and maps xi to xi and d xi to d xi. The latter two

properties follow from ΦX ◦ ΞX mapping xi to xi by construction of ΞX (see Construc-
tion 7.4.9.1), and then also mapping dxi to d xi by Proposition 7.4.8.1. Furthermore we
can evaluate ξX .

= Φ′′
X

(
gdx1 · dx1 · x1 · x2 − x2 · x1

)
+ Φ′′

X

(
gdx2 · dx2 · x1 · x2 − x2 · x1

)

+ Φ′′
X

(
gboth ·

(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

))

+ Φ′′
X

(
gsame,x1 · x1 · dx1 − dx1 · x1

)
+ Φ′′

X

(
gsame,x2 · x2 · dx2 − dx2 · x2

)

+ Φ′′
X(gobs · dx1 · dx2)

= Φ′′
X

(
gdx1 · dx1 · x1 · x2 − x2 · x1 + gdx2 · dx2 · x1 · x2 − x2 · x1

+ gboth ·
(
x1 · dx2 − dx2 · x1 + x2 · dx1 − dx1 · x2

)

+ gsame,x1 · x1 · dx1 − dx1 · x1 + gsame,x2 · x2 · dx2 − dx2 · x2

+ gobs · dx1 · dx2
)

= Φ′′
X

(
ξX

(
Ω′•
F/k

(
t · d t− d t · t

)))

= ΦX

(
ΞX

(
Ω′•
F/k

(
t · d t− d t · t

)))

It thus only remains to show that

ΦX

(
ΞX

(
Ω′•
F/k

(
t · d t− d t · t

)))
= 0

483



Chapter 7. Hochschild homology of polynomial algebras

holds. Note that we have a commutative diagram

Alg(γ)
(

Alg(evm)
(
Ω′•
k[t]/k

))
Alg(γ)

(
Alg(evm)

(
Ω′•
k[X]/k

))

Alg(γ)
(

Alg(evm)
(

C̃
(
{t}
)))

Alg(γ)
(

Alg(evm)
(

C̃(X)
))

Alg(γ)
(
Ω•
k[t]/k

)
Alg(γ)

(
Ω•
k[X]/k

)

Alg(γ)
(
Ω′•
F/k

)

Alg(γ)
(
Alg(evm)(Ξ{t})

)
≃ Alg(γ)(Alg(evm)(ΞX)) ≃

Alg(γ)
(
Alg(evm)(C̃(F ))

)

Alg(γ)(Φ{t})≃ Alg(γ)(ΦX) ≃

Alg(γ)
(
Ω•
F/k

)

in Alg(D(k)), where the top square is obtained from the transpose of the diagram from
Proposition 7.5.2.5 by applying the forgetful functor Alg(evm) and using compatibility
with γMixed (see Construction 4.4.1.1), and the bottom square is the one from Propo-
sition 7.4.7.1. The underlying differential graded k-algebra of Ω′•

k[t]/k is cofibrant by
Propositions 7.4.5.11 and 4.2.2.12, so we can conclude by [Hov99, 1.2.10 (ii)], Proposi-
tions A.1.0.1 and 4.2.2.17 that there exists a homotopy of differential graded k-algebras
h from ΦX ◦ΞX ◦Ω

′•
F/k to Ω•

F/k◦Φ{t}◦Ξ{t} (we omit forgetful functors in the notation here)
in the sense of Proposition 4.2.2.17. We can thus conclude the proof with the following
calculation.

ΦX

(
ΞX

(
Ω′•
F/k

(
t · d t− d t · t

)))

= Ω•
F/k

(
Φ{t}

(
Ξ{t}

(
t · d t− d t · t

)))
+ h
(
∂
(
t · d t− d t · t

))
+ ∂
(
h
(
t · d t− d t · t

))

t · d t− d t · t is an element of degree 2, while Ω2
k[t]/k = 0. Thus purely for degree reasons

we have Φ{t}(Ξ{t}(t · d t− d t · t)) = 0 so that the first summand is zero.
= 0 + h(t · d t− d t · t) + 0

= h(t) ·
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(d t) +

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(t) · h(d t)

− h(d t) ·
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t) +

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(d t) · h(t)

= h(t) ·
(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(d t)− h(t) ·

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(d t)

+ h(d t) ·
(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(t) · −h(d t) ·

(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t)

= h(t) ·

((
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(d t)−

(
ΦX ◦ ΞX ◦ Ω

′•
F/k

)
(d t)

)

+ h(d t) ·
((

ΦX ◦ ΞX ◦ Ω
′•
F/k

)
(t)−

(
Ω•
F/k ◦ Φ{t} ◦ Ξ{t}

)
(t)

)

484



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

= h(t) ·
(
−∂
(
h(d t)

)
− h
(
∂(d t)

))

+ h(d t) ·
(
∂
(
h(t)

)
+ h
(
∂(t)

))

= h(t) ·
(
−0− h(0)

)
+ h(d t) ·

(
0 + h(0)

)

= 0

7.5.3. Conjecture D
In this short section we deduce Conjecture D in certain cases from Proposition 7.5.2.6.

Proposition 7.5.3.1. Let X be a set and f an element of k[X]. Assume that one of
the following holds.

(1) |X| ≤ 1.

(2) |X| = 2 and 2 is invertible in k.

Then Conjecture D holds for f . ♥

Proof. Apply Proposition 7.5.2.6 for f as well as for the element 0 of k (as the polynomial
ring generated by an empty set of variables) and combine the commutative squares. Note
that it is crucial here that Proposition 7.5.2.6 constructs the commutative square (7.25)
with the top horizontal equivalence not depending on X or f , which is what allows us
to glue the two squares together.

7.5.4. Conjecture C for two variables in the domain
In this section we show Conjecture C for morphisms out of polynomial k-algebras

in two variables into k using some of the same arguments that also went into Proposi-
tion 7.5.2.6.

Proposition 7.5.4.1. Let X be a totally ordered set satisfying |X| ≤ 2 and F : k[X]→ k

a morphism of commutative k-algebras.
Then there exists a commutative square

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

≃

HHMixed(F ) Alg(γMixed)
(
Ω•
F/k

)

≃

(7.26)

in Alg(Mixed) such that the horizontal equivalences are the ones from Corollary 7.4.9.3.
In particular, Conjecture C holds for F . ♥

485



Chapter 7. Hochschild homology of polynomial algebras

Proof. The cases |X| = 0 and |X| = 1 are already contained in Proposition 7.5.1.1 and
Proposition 7.5.2.6, respectively. For the case |X| = 1 this requires a small argument for
why the lower horizontal equivalence we obtain from Proposition 7.5.2.6 is homotopic
to the one from Corollary 7.4.9.3, but as HHMixed(k) is an initial object of Alg(Mixed)
(see the proof of Proposition 7.5.1.1) this is automatic.

So now assume that |X| = 2 and denote the elements of X by x1 < x2. As in
Proposition 7.5.2.6, we begin by considering the following (non-commuting) diagram in
Alg(Mixed), that will be explained below.

HHMixed
(
k[X]

)
HHMixed(k)

Alg(γMixed)
(

C̃(X)
)

Alg(γMixed)
(

C̃
(
∅
))

Alg(γMixed)
(
Ω′•
k[X]/k

)
Alg(γMixed)

(
Ω′•
k/k

)

Alg(γMixed)
(
Ω•
k[X]/k

)
Alg(γMixed)

(
Ω•
k/k

)

≃

HHMixed(F )

≃

Alg(γMixed)(C̃(F ))

Alg(γMixed)(ΞX) ≃

Alg(γMixed)(ΘX) ≃

Alg(γMixed)(Ξ∅)≃

≃ Alg(γMixed)(Θ∅)

Alg(γMixed)
(
Ω•
F/k

)

(∗)

The top square has a filler given by the (transpose of) commutative diagram (7.10) from
the definition of C̃(F ) in Construction 7.4.2.5, and Ξ and Θ are as in Construction 7.4.9.1
and Definition 7.4.5.9. By Corollary 7.4.9.3 the vertical compositions are the horizontal
equivalences in diagram (7.26) from the statement, so that it suffices to find a filler for
the lower rectangle in the above diagram.

As Ω′•
k[X]/k is cofibrant as an object of Alg(Mixed) by Proposition 7.4.5.11, we can lift

the composition

Alg(γMixed)(Ξ∅)
−1 ◦ Alg(γMixed)

(
C̃(F )

)
◦ Alg(γMixed)(ΞX)

to a morphism

Ω′•
F/k : Ω

′•
k[X]/k → Ω′•

k/k

so that if we let the dashed morphism in the above diagram be Alg(γMixed)(Ω
′•
F/k) there

486



7.5. De Rham forms as a strict model in Alg(Mixed) and morphisms

will be a filler for the middle square of diagram (∗). It thus suffices to show that

Ω′•
k[X]/k Ω′•

k/k

Ω•
k[X]/k Ω•

k/k

Ω′•
F/k

ΘX Θ∅

Ω•
F/k

commutes strictly. Note that as Ω•
k/k is concentrated in degree 0, it suffices to check

that the two compositions agree on elements of degree 0, and as both compositions are
multiplicative it even suffices to check the values on elements x in X. The composition
over the bottom left maps x to F (x), so this boils down to showing that Ω′•

k[X]/k(x) = F (x)
for every element x in X.

For this we consider the commutative diagram

Alg(γ)
(

Alg(evm)
(
Ω′•
k[X]/k

))
Alg(γ)

(
Alg(evm)

(
Ω′•
k/k

))

Alg(γ)
(

Alg(evm)
(

C̃(X)
))

Alg(γ)
(

Alg(evm)
(

C̃
(
∅
)))

Alg(γ)
(
Ω•
k[X]/k

)
Alg(γ)

(
Ω•
k/k

)

Alg(γ)
(
Ω′•
k[X]/k

)

Alg(γ)(Alg(evm)(ΞX))≃ Alg(γ)
(
Alg(evm)(Ξ∅)

)
≃

Alg(γ)
(
Alg(evm)(C̃(F ))

)

Alg(γ)(ΦX)≃ Alg(γ)(Φ∅) ≃

Alg(γ)
(
Ω•
F/k

)

in Alg(D(k)), where the top square is obtained from the middle square of diagram (∗)
by applying the forgetful functor Alg(evm) and using compatibility with γMixed (see Con-
struction 4.4.1.1), and the bottom square is (the transpose of) the one from Propo-
sition 7.4.7.1. The underlying differential graded k-algebra of Ω′•

k[t]/k is cofibrant by
Propositions 7.4.5.11 and 4.2.2.12, so we can conclude by [Hov99, 1.2.10 (ii)], Proposi-
tions A.1.0.1 and 4.2.2.17 that there exists a homotopy of differential graded k-algebras
h from Φ∅ ◦ Ξ∅ ◦ Ω

′•
k[X]/k to Ω•

F/k ◦ ΦX ◦ ΞX (we omit forgetful functors in the notation
here) in the sense of Proposition 4.2.2.17.

We can then carry out the following calculation for x an element of X, where we use
that ΦX ◦ ΞX by definition in Construction 7.4.9.1 maps x to x.

(Φ∅ ◦ Ξ∅)
(
Ω′•
k[X]/k(x)

)
= Ω•

F/k

(
(ΦX ◦ ΞX)(x)

)
+ h
(
∂(x)

)
+ ∂
(
h(x)

)

= Ω•
F/k(x) + h(0) + 0

487



Chapter 7. Hochschild homology of polynomial algebras

= F (x)

Note that Ω′•
k/k is by Remark 7.4.5.2 given by k · {1} in degree 0, so that also using the

analogous identification for degree 0 of Ω•
k/k we obtain that Φ∅◦Ξ∅ is given by the identity

in degree 0. Hence we can conclude that Ω′•
k[X]/k(x) = F (x) holds for every element x in

X.

488



Chapter 8.

Hochschild homology of certain
quotients of commutative algebras

The goal of this chapter can be roughly summarized as giving a concrete formula
for a strict model for HHMixed(R/(x1, . . . , xn)) as an object of Mixed, where R is a
commutative k-algebra and x1, . . . , xn elements of R satisfying some conditions, given a
strict model for HHMixed(R).

More specifically, we require Conjecture C to hold for the morphism of k-algebras
k[t1, . . . , tn] → k mapping ti to 01. Furthermore we need as input an object M in
RModΩ•

k[t1,...,tn]/k
(Mixedcof) that represents HHMixed(R) as an object in the ∞-category

RModHHMixed(k[t1,...,tn])(Mixed), where the action is induced by the action of k[t1, . . . , tn]
on R, where ti acts by multiplication by xi. Assuming Conjecture C as above and given
such an object M , Proposition 8.3.0.1 can be roughly summarized as saying that (under
some further conditions on R and x1, . . . , xn), HHMixed(R/(x1, . . . , xn)) is represented by
a strict mixed complex that can be described as

M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

with si of degree 1, d si of degree 2, and ∂ and d described by formulas given in Propo-
sition 8.3.0.1. In particular, if m is a cycle in M0 representing the unit 1 of R, then
∂(m ⊗ si) = (m · ti) ⊗ 1 and ∂(m ⊗ d s[1]i ) = −(m · d ti) ⊗ 1, so we can think of si and
d s[1]i as adding the relations that make xi and dxi zero.

To obtain such a formula, we proceed as follows. In Section 8.1 we start by showing
that – under some conditions – we can write the quotient R/(x1, . . . , xn) as a derived
tensor product R⊗k[t1,...,tn] k, with ti acting by multiplication with xi on the left and by
multiplication with 0 on the right. Using that HHMixed is compatible with relative tensor
products we then obtain an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ HHMixed(R)⊗HHMixed(k[t1,...,tn]) HHMixed(k)

so that the task becomes to find strict models for HHMixed(k[t1, . . . , tn]) (as an algebra
in Mixed) as well as for HHMixed(R) and HHMixed(k) (the latter two as modules over the
strict model for HHMixed(k[t1, . . . , tn])), and then calculating the derived relative tensor
product. Assuming Conjecture B for {t1, . . . , tn} we can use Ω•

k[t1,...,tn]/k
as a strict model

1This is the case for n ≤ 2 by Proposition 7.5.4.1.

489



Chapter 8. Hochschild homology of certain quotients of commutative algebras

for HHMixed(k[t1, . . . , tn]), and assuming that even Conjecture C holds for the morphism
of commutative k-algebras k[t1, . . . , tn]→ k that maps ti to 0 we can also use Ω•

k/k as a
module over Ω•

k[t1,...,tn]/k
as a model for HHMixed(k). In order to be able to calculate the

derived tensor product as an ordinary, underived tensor product, it will then be useful
to replace Ω•

k/k with a weakly equivalent module over Ω•
k[t1,...,tn]/k

that is sufficiently
cofibrant. Constructing such a module will be the goal of Section 8.2, and we will put
everything together in Section 8.3.

8.1. Hochschild homology of certain quotients as
relative tensor products

In Section 8.1.1 we will show that if R is a commutative k-algebra and x1, . . . , xn
are elements of R satisfying some conditions2, then γ(R/(x1, . . . , xn)) is equivalent to a
relative tensor product γ(R)⊗γ(k[t1,...,tn])k in CAlg(D(k)). Using compatibility of HHMixed
with relative tensor products, we can thus write HHMixed(γ(R/(x1, . . . , xn))) as a relative
tensor product as well, as we will make explicit in Section 8.1.2.

8.1.1. Certain quotients as relative tensor products
Proposition 8.1.1.1. Let R be a commutative algebra in Ch(k) and let x1, . . . , xn be
elements of R0. We obtain a morphism of commutative algebras in Ch(k)

k[t1, . . . , tn]→ R, ti 7→ xi

that determines a k[t1, . . . , tn]-module structure on R (see Construction E.8.0.4). Assume
that R is cofibrant as an object of RModk[t1,...,tn](Ch(k)) with respect to the model structure
of Theorem 4.2.2.1.

Consider the commutative diagram

k[t1, . . . , tn] R

k R/(x1, . . . , xn)

ti 7→xi

ti 7→0 (8.1)

in CAlg(Ch(k)), where the right vertical morphism is the canonical quotient morphism.
Then the following hold.

(1) Diagram (8.1) is a pushout diagram in CAlg(Ch(k)).

(2) All four objects in diagram (8.1) have cofibrant underlying chain complex.
2Roughly, x1, . . . , xn need to act sufficiently nicely on R by multiplication.

490



8.1. Hochschild homology of certain quotients as relative tensor products

(3) The functor
CAlg(γ) : CAlg

(
Ch(k)cof

)
→ CAlg

(
D(k)

)

maps diagram (8.1) to a pushout diagram in CAlg(D(k)).

(4) There is an equivalence

CAlg(γ)(R/(x1, . . . , xn)) ≃ CAlg(γ)(R)⊗CAlg(γ)(k[t1,...,tn]) k

in CAlg(D(k)), where the module structures used for the relative tensor product
arise from the morphisms k[t1, . . . , tn] → R and k[t1, . . . , tn] → k in (8.1) by
applying CAlg(γ), Construction E.8.0.4, and identifying CAlg(γ)(k) with k. ♥

Proof. Proof of claim (1): This is well-known and can be shown by repeatedly applying
the n = 1 case3, which can be shown using Proposition E.8.0.54.

3For this one decomposes the (transposed) square (8.1) as

k[t1, . . . , tn] k[t2, . . . , tn] · · · k

R R/(x1) · · · R/(x1, . . . , xn)

ti 7→





0 i=1

ti i>1

ti 7→xi ti 7→xi

so that it suffices to show that for each 1 ≤ j ≤ n the square

k[tj , . . . , tn] k[tj+1, . . . , tn]

R/(x1, . . . , xj−1) R/(x1, . . . , xj)

is a pushout square. The transpose of this square is the right square in the following commutative
diagram.

k[tj ] k[tj , . . . , tn] R/(x1, . . . , xj−1)

k k[tj+1, . . . , tn] R/(x1, . . . , xj)

It thus suffices to show that the outer rectangle and the left square are pushouts, but as
k[tj , . . . , tn]/(tj) ∼= k[tj+1, . . . , tn] and (R/(x1, . . . , xj−1))/(xj) ∼= R/(x1, . . . , xj), this follows from
the n = 1 case.

4Using Proposition E.8.0.5, it suffices to show that the morphism

R→ R⊗k[t1] k

exhibits R ⊗k[t1] k as the quotient R/(x1). As the forgetful functor CAlg(Ch(k)) → Ch(k) is con-
servative and preserves relative tensor products (see Proposition E.8.0.1), we can take the relative
tensor product in Ch(k).

There is a short exact sequence

0 k[t1] k[t1] k 0
1 7→t1 1 7→1

491



Chapter 8. Hochschild homology of certain quotients of commutative algebras

Proof of claim (2): k[t1, . . . , tn] and k are free as k-modules and hence cofibrant
as chain complexes [Hov99, 2.3.6]. We assumed that R is cofibrant as an object of
RModk[t1,...,tn](Ch(k)), and as the underlying chain complex of k[t1, . . . , tn] is cofibrant
as just mentioned, Theorem 4.2.2.1 (8) implies that the underlying chain complex of
R is cofibrant as well. By (1) and Proposition E.8.0.5 the underlying chain complex
of R/(x1, . . . , xn) is isomorphic to the relative tensor product R ⊗k[t1,...,tn] k, which is
cofibrant as a chain complex by Proposition 6.3.3.3.

Proof of claim (3) and (4): Combining (1) and (2) with Proposition E.8.0.5 (applied
to both Ch(k)cof as well as D(k)) we only need to show that CAlg(γ) preserves the
relative tensor product R⊗k[t1,...,tn]k. As the forgetful functors CAlg(Ch(k)cof)→ Ch(k)cof
and CAlg(D(k)) → D(k) are conservative and preserve relative tensor products by
Proposition E.8.0.1 and [HA, 3.2.3.1 (4)], it suffices to show that γ : Ch(k)cof → D(k)
preserves this relative tensor product, which follows from Proposition 6.3.3.35.

8.1.2. Application to Hochschild homology
Combining Proposition 8.1.1.1 with HHMixed preserving relative tensor products by

Proposition 6.2.3.1 we obtain the following result.

Proposition 8.1.2.1. Let R and x1, . . . , xn be as in Proposition 8.1.1.1. Then we can
consider R as an object in RModk[t1,...,tn](Ch(k)cof), with ti acting by multiplication with
xi, and k as an object in LModk[t1,...,tn](Ch(k)cof), with ti acting by multiplication with 0.

As HHMixed is a monoidal functor, HHMixed(R) obtains the structure of an object in
RModHHMixed(k[t1,...,tn])(Mixed) and similarly HHMixed(k) obtains the structure of an object
in LModHHMixed(k[t1,...,tn])(Mixed).

Let Pn be an object of Alg(Mixedcof) coming with an equivalence

Alg(γMixed)(Pn) ≃ HHMixed(k[t1, . . . , tn]) (8.2)

in Alg(Mixed). Let furthermore M be a right-Pn-module and An a left-Pn-module in
Mixedcof such that there are equivalences

RMod(γMixed)(M) ≃ HHMixed(R) and LMod(γMixed)(An) ≃ HHMixed(k) (8.3)

in RMod(Mixed) and LMod(Mixed) such that the underlying equivalences of algebras are
given by equivalence (8.2). Assume that An is cofibrant as an object in6. LModPn(Ch(k)).

of left-k[t1]-modules in Ch(k), so as R ⊗k[t1] − is right exact [Wei94, 2.6.2], we obtain an exact
sequence

R⊗k[t1] k[t1] R⊗k[t1] k[t1] R⊗k[t1] k 0

that can be identified with

R R R⊗k[t1] k 0
x1·−

which shows the claim.
5It is here were we really use the assumption that R is cofibrant as a k[t1, . . . , tn]-module.
6We are using here that the forgetful functor evm : Mixed→ Ch(k) is monoidal.

492



8.2. A sufficiently cofibrant strict model of k

Then the underlying chain complex of the relative tensor product M ⊗Pn An (taken in
Mixed) is cofibrant. Furthermore, there is an equivalence

HHMixed
(
R/(x1, . . . , xn)

)
≃ γMixed(M ⊗Pn An)

in Mixed. ♥

Proof. By Proposition E.8.0.1 the forgetful functor evm : Mixed → Ch(k) preserves rela-
tive tensor products, so cofibrancy of the underlying chain complex of M ⊗Pn An follows
from Proposition 6.3.3.3.

By Proposition 8.1.1.1 (4) there is an equivalence

CAlg(γ)(R/(x1, . . . , xn)) ≃ CAlg(γ)(R)⊗CAlg(γ)(k[t1,...,tn]) k

in CAlg(D(k)). As HHMixed preserves relative tensor products by Proposition 6.2.3.1 we
obtain an equivalence

HHMixed
(
R/(x1, . . . , xn)

)
≃ HHMixed(R)⊗HHMixed(k[t1,...,tn]) HHMixed(k)

in Mixed, and the equivalences (8.2) and (8.3) induce an equivalence in Mixed as follows.

HHMixed(R)⊗HHMixed(k[t1,...,tn]) HHMixed(k) ≃ γMixed(M)⊗γMixed(Pn) γMixed(An)

There is a comparison morphism

γMixed(M)⊗γMixed(Pn) γMixed(An)→ γMixed(M ⊗Pn An)

in Mixed just like in Remark 6.3.3.2, and it suffices to show that this is an equivalence.
As the forgetful functors evm : Mixed→ D(k) and evm : Mixed→ Ch(k) are conservative
and preserve relative tensor products by Proposition E.8.0.1, it suffices to show that the
comparison morphism

γ(M)⊗γ(Pn) γ(An)→ γ(M ⊗Pn An)

in D(k) from Remark 6.3.3.2 is an equivalence. But this is precisely what we obtain from
Proposition 6.3.3.3, as An was assumed to be cofibrant as a left-Pn-module.

8.2. A sufficiently cofibrant strict model of k
Proposition 7.5.4.1 implies that the morphism

Ω•
k[t1,...,tn]/k

→ Ω•
k/k

in Alg(Mixedcof), induced by the morphism of commutative algebras k[t1, . . . , tn] → k

that sends ti to 0, represents the morphism

HHMixed(k[t1, . . . , tn])→ HHMixed(k)

493



Chapter 8. Hochschild homology of certain quotients of commutative algebras

in Alg(Mixed) induced by the same morphism, as long as n ≤ 2. For n > 2 we have
encapsulated this statement as Conjecture C for this morphism, and we will assume that
Conjecture C holds for the results of this chapter.

Unfortunately, we can not directly use Ω•
k/k, as the left-module Pn overAn = Ω•

k[t1,...,tn]/k

as in Proposition 8.1.2.1, as this would require Ω•
k/k to be cofibrant as a module over

Ω•
k[t1,...,tn]/k

in chain complexes, which is not necessarily the case.
The goal of this section is thus to construct a commutative diagram

An

Ω•
k[t1,...,tn]/k

Ω•
k/k

in Alg(Mixedcof) such that the lower morphism is the one discussed above, the vertical
morphism on the right is a quasiisomorphism, and such that An is cofibrant when con-
sidered as an object in LModΩ•

k[t1,...,tn]/k
(Ch(k)). We will construct An and morphisms as

in the diagram above in Section 8.2.1, show that Ak has the required cofibrancy property
in Section 8.2.2, and show that the right vertical morphism is a quasiisomorphism in
Section 8.2.3.

8.2.1. Construction of the strict model
Before we construct An we need a small result on the Leibniz rule and compositions.

Proposition 8.2.1.1. Let R be a commutative differential graded algebra, and let f and
g be two operators of odd degree on R that both satisfy the Leibniz rule. Then f ◦ f as
well as fg + gf satisfy the Leibniz rule as well7. ♥

Proof. Let x and y be two elements in R. Then we can calculate as follows.

f
(
g(x · y)

)
= f

(
g(x)y + (−1)degCh(x)xg(y)

)

= f
(
g(x)

)
y + (−1)degCh(x)+1g(x)f(y) + (−1)degCh(x)f(x)g(y)

+ (−1)degCh(x)+degCh(x)xf
(
g(y)

)

= f
(
g(x)

)
y + xf

(
g(y)

)

− (−1)degCh(x)g(x)f(y) + (−1)degCh(x)f(x)g(y)

Applying this to g = f we immediately obtain the claim for f ◦ f . For fg + gf there is
the following calculation.

(fg + gf)(x · y) = f
(
g(x)

)
y + xf

(
g(y)

)

7Note that f ◦ f and fg + gf will be of even degree, so there will be no sign.

494



8.2. A sufficiently cofibrant strict model of k

− (−1)degCh(x)g(x)f(y) + (−1)degCh(x)f(x)g(y)

+ g
(
f(x)

)
y + xg

(
f(y)

)

− (−1)degCh(x)f(x)g(y) + (−1)degCh(x)g(x)f(y)

= (fg + gf)(x)y + x(fg + gf)(y)

Construction 8.2.1.2. We define P1 and A1 to be the strict commutative graded k-
modules given by8

P1 := k[t]⊗ Λ(d t) and A1 := k[t]⊗ Λ(d t)⊗ Λ(s)⊗ Γ(d s)
degCh(t) = 0, degCh(d t) = 1, degCh(s) = 1, degCh(d s[m]) = 2m

and let g1 : P1 → A1 be the inclusion. Note that there is a commutative triangle of
commutative graded k-modules

A1

P1

k

p1

g1

g′1

(8.4)

where g′1 and p1 map t, d t, s, and d s[m] to 0.
We will now upgrade diagram (8.4) to a commutative diagram in CAlg(Mixed). For

this we define ∂ and d on P1 and A1 by

∂(t) = 0, ∂(d t) = 0, ∂(s) = t, ∂
(

d s[m]
)
= − d t d s[m−1]

d(t) = d t, d(d t) = 0, d(s) = d s[1], d
(

d s[m]
)
= 0

and extending by k-linearity and the Leibniz rule. It is clear that if this equips A1 with
the structure of a commutative algebra in strict mixed complexes, then this structure
restricts to P1 and makes g1 into a morphism in CAlg(Mixed). What we need to show
is that this definition of ∂(d s[m]) and d(d s[m]) is well-defined9 and that d and ∂ satisfy
∂ ◦ ∂ = 0, d ◦ d = 0, and d∂ + ∂d = 0 on A1, see Remark 4.2.1.4 and Remark 4.2.1.12.

But first, let us state the formulas for d and ∂ for a k-linear basis of A1 (obtained by
applying k-linearity and the Leibniz rule), so we may refer to them later10.

tn1 d tϵ1sη1 d s[m1] · tn2 d tϵ2sη2 d s[m2] = (−1)η1·ϵ2
(
m1 +m2

m1

)
tn1+n2 d tϵ1+ϵ2sη1+η2 d s[m1+m2]

d
(
tn d tϵsη d s[m]

)
= n · tn−1 d tϵ+1sη d s[m] + (−1)ϵ · η · (1 +m) · tn d tϵ d s[1+m] (8.5)

8For now d t and d s are just names, but we will in a moment define a strict mixed complex structure
that will justify this notation.

9I. e. compatible with the relation d s[m1] · d s[m2] =
(
m1+m2

m1

)
d s[m1+m2].

10In the formulas, some summands may contain factors that are undefined, such as d s[−1]. Those
summands are to be interpreted as 0.

495



Chapter 8. Hochschild homology of certain quotients of commutative algebras

∂
(
tn d tϵsη d s[m]

)
= (−1)ϵ · η · tn+η d tϵ d s[m] − tn d tϵ+1sη d s[m−1]

For well-definedness, nothing needs to be done for d. For ∂, evaluating on

d s[m1] · d s[m2] =

(
m1 +m2

m1

)
d s[m1+m2]

using the left hand side and the Leibniz rule we obtain
(
− d t d s[m1−1]

)
d s[m2] + d s[m1]

(
− d t d s[m2−1]

)

= − d t
((

m1 +m2 − 1

m1 − 1

)
d s[m1+m2−1] +

(
m1 +m2 − 1

m1

)
d s[m1+m2−1]

)

and using the right hand side we obtain

−

(
m1 +m2

m1

)
d t d s[m1+m2−1]

which are equal by the well-known binomial identity
(
m1+m2−1
m1−1

)
+
(
m1+m2−1

m1

)
=
(
m1+m2

m1

)
.

We now check ∂ ◦ ∂ = 0, d ◦ d = 0, and d∂ + ∂d = 0. Note that Proposition 8.2.1.1
implies that we only need to check this on multiplicative generators. That d ◦ d = 0 on
multiplicative generators is clear from the definition, and for ∂ ◦ ∂ = 0 the only case to
consider is

∂

(
∂
(

d s[m]
))

= ∂
(
− d t d s[m−1]

)
= d t d t d s[m−2]

which is 0 as (d t)2 = 0. Finally, we verify that d∂ + ∂d = 0.

(d∂ + ∂d)(t) = 0 + ∂(d t) = 0

(d∂ + ∂d)(d t) = 0 + 0

(d∂ + ∂d)(s) = d(t) + ∂
(

d s[1]
)
= d t− d t = 0

(d∂ + ∂d)
(

d s[m]
)
= d

(
− d t d s[m−1]

)
= − d(d t) d s[m−1] + d t d

(
d s[m−1]

)
= 0 + 0 = 0

It is clear that the two morphisms to k in diagram (8.4) are compatible with d and ∂,
so (8.4) is a commutative diagram in CAlg(Mixed).

For n a positive integer we denote by

An := A⊗n
1 = k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

the n-fold tensor product of A1 in CAlg(Mixed). We will also let

Pn := P⊗n
1 = k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)

496



8.2. A sufficiently cofibrant strict model of k

be the n-fold tensor product of P1. The n-fold tensor product of diagram (8.4) then
yields a commutative diagram

An

Pn

k

pn

gn

g′n

(8.6)

in CAlg(Mixed). ♦

8.2.2. Cofibrancy
Proposition 8.2.2.1. Let n be a positive integer. Then An from Construction 8.2.1.2
is cofibrant (with respect to the model structure from Theorem 4.2.2.1) as an object in
LModPn(Ch(k)), where the module structure is the one arising from the morphism of
differential graded algebras gn from Construction 8.2.1.2. ♥

Proof. Considered first as just a graded module over the graded algebra Pn, it is clear
that An is a free Pn-module and that

B :=
{
sϵ⃗ d s[⃗i]

∣∣∣ i⃗ ∈ Zn≥0, ϵ⃗ ∈ {0, 1}
n
}

forms a basis.
Let � be the lexicographic11 well-order on (Z≥0 ∪ {∞})

n × {0, 1}n. For an element
(⃗j, η⃗) in (Z≥0 ∪ {∞})

n × {0, 1}n we define

Bj⃗,η⃗
:=
{
sϵ⃗ d s[⃗i]

∣∣∣ i⃗ ∈ Zn≥0, ϵ⃗ ∈ {0, 1}
n, (⃗i, ϵ⃗) � (⃗j, η⃗)

}

and let Xj⃗,η⃗ be the sub-Pn-module (still as just a graded module over a graded algebra)
generated by Bj⃗,η⃗. It is clear from the definition of the differential on An that Xj⃗,η⃗ is
actually a subcomplex of An, and that An = X(∞,...,∞),(1,...,1).

Considering (Z≥0∪{∞})
n×{0, 1}n as a category with a unique morphism (⃗i, ϵ⃗)→ (⃗j, η⃗)

if and only if (⃗i, ϵ⃗) � (⃗j, η⃗), we obtain a functor

(Z≥0 ∪ {∞})
n × {0, 1}n → LModPn

(
Ch(k)

)
(∗)

that sends (⃗j, η⃗) to Xj⃗,η⃗ and the morphisms to the respective inclusions. One can see
that this functor is colimit-preserving, which boils down to the fact that

Bj⃗ ,⃗0 =
⋃

(⃗i,⃗ϵ)≺(⃗j,⃗0)

Bi⃗,⃗ϵ

11In Z≥0∪{∞} we let∞ be greater than any integer. The lexicographic order is then defined such that
(⃗i, ϵ⃗) � (⃗j, η⃗) if and only if there is an index 1 ≤ l ≤ n with i1 = j1, . . . , il−1 = jl−1 and il < jl, or
i⃗ = j⃗ and there is an index 1 ≤ l ≤ n with ϵ1 = η1, . . . , ϵl−1 = ηl−1 and ϵl < ηl.

497



Chapter 8. Hochschild homology of certain quotients of commutative algebras

for every j⃗ in (Z≥0 ∪ {∞})
n such that there is an 1 ≤ l ≤ n with jl =∞ and jl′ = 0 for

l′ > l12. Thus the functor (∗) exhibits An as a transfinite composition, and so to show
that An is cofibrant in LModPn(Ch(k)) it suffices to show that X0⃗,⃗0 is cofibrant, and that
for each (⃗i, ϵ⃗) and (⃗j, η⃗) in (Z≥0 ∪ {∞})

n × {0, 1}n, such that (⃗j, η⃗) is the successor of
(⃗i, ϵ⃗), the inclusion Xi⃗,⃗ϵ → Xj⃗,η⃗ is a cofibration.

As X0⃗,⃗0 is isomorphic to Pn, and hence free on the cofibrant chain complex k[0] as
a Pn-module in Ch(k), it is cofibrant. Furthermore, with (⃗i, ϵ⃗) and (⃗j, η⃗) as above, the
difference Bj⃗,η⃗ \Bi⃗,⃗ϵ consists of precisely the element sη⃗ d s[⃗j]. The diagram

FreeLModPn
(
S2 degCh (⃗j)+degCh(η⃗)−1

)
Xi⃗,⃗ϵ

FreeLModPn
(
D2 degCh (⃗j)+degCh(η⃗)

)
Xj⃗,η⃗

is a pushout, where we use use the notation from [Hov99, 2.3.3]13, the morphism on the
left is induced by the usual inclusion14. The morphism on the top sends the generator
1 in degree 2 degCh(⃗j) + degCh(η⃗) − 1 to ∂

(
sη⃗ d s[⃗j]

)
, and the morphism at the bottom

sends the new generator in degree 2 degCh(⃗j) + degCh(η⃗) to sη⃗ d s[⃗j−η⃗]. It is crucial here
that even though sη⃗ d s[⃗j] is not an element of Xi⃗,⃗ϵ, its boundary is.

8.2.3. Quasiisomorphism
Proposition 8.2.3.1. Let n be a positive integer. Then the morphism

pn : An → k

from Construction 8.2.1.2 is a quasiisomorphism. ♥

Proof. By Proposition 8.2.2.1 and Theorem 4.2.2.1 (8)15, Am is cofibrant as a chain
complex for every positive integer m. By the pushout-product property for Ch(k) (see
Fact 4.1.3.1) and Ken Brown’s lemma [Hov99, 1.1.12], the tensor product of a cofibrant
chain complex with a quasiisomorphism between cofibrant chain complexes is again a
quasiisomorphism. Writing pn : An → k as the composition

A1 ⊗ A
n−1
1

p1⊗id
A
n−1
1−−−−−−→ k ⊗ A1 ⊗ A

n−2
1

idk ⊗p1⊗id
A
n−2
1−−−−−−−−−→ k ⊗ k ⊗ An−2

1 → · · · → kn ∼= k

it suffices to show that p1 : A1 → k is a quasiisomorphism.
12I. e. we consider those (⃗j, η⃗) that are not successors or (⃗0, 0⃗).
13So Sl is the complex with k concentrated in degree l and Dl is the acyclic complex with k in degree

l and l − 1, with boundary operator the identity.
14Which is the identity in degree 2degCh(⃗j) + degCh(η⃗).
15This is applicable because Pm has cofibrant underlying chain complex by [Hov99, 2.3.6], as Pm is

concentrated in nonnegative degrees and free as a graded k-module.

498



8.2. A sufficiently cofibrant strict model of k

As a morphism of chain complexes p1 has a section ι that maps 1 to 1, so it suffices
to give an homotopy ϑ between the idA1 and ι ◦ p1. As a graded abelian group, A1 is
free with basis

{
tn d tϵsη d s[m]

∣∣∣ n,m ∈ Z≥0, ϵ, η ∈ {0, 1}
}

, and we will define ϑ on this
basis. Define

ϑ(tn d tϵsη d s[m]) =





(−1)ϵtn−1 d tϵsη+1 d s[m] if n > 0

− d s[m+1] if n = 0, η = 0, and ϵ = 1

0 otherwise

We now check that ϑ∂ + ∂ϑ = ιp1 on basis elements tn d tϵsη d s[m] by distinguishing a
couple of cases.

Case n > 0, η = 0:

(ϑ∂ + ∂ϑ)(tn d tϵ d s[m]) = ϑ
(
(−1) · (−1)ϵtn d tϵ+1 d s[m−1]

)
+ ∂
(
(−1)ϵtn−1 d tϵs d s[m]

)

= (−1) · (−1)ϵ · (−1)ϵ+1tn−1 d tϵ+1s d s[m−1]

+ (−1)ϵ · (−1)ϵtn d tϵ d s[m]

+ (−1)ϵ · (−1) · (−1)ϵtn−1 d tϵ+1s d s[m−1]

= tn d tϵ d s[m]

Case n > 0, η = 1:

(ϑ∂ + ∂ϑ)(tn d tϵs d s[m]) = ϑ
(
(−1)ϵtn+1 d tϵ d s[m] − tn d tϵ+1s d s[m−1]

)
+ ∂(0)

= (−1)ϵ · (−1)ϵtn d tϵs d s[m] − 0 + 0

= tn d tϵs d s[m]

Case n = 0, η = 0, ϵ = 1:

(ϑ∂ + ∂ϑ)(d t d s[m]) = ϑ(0) + ∂
(
− d s[m+1]

)

= d t d s[m]

Case n = 0, η = 0, ϵ = 0:

(ϑ∂ + ∂ϑ)(d s[m]) = ϑ
(
− d t d s[m−1]

)
+ ∂(0)

=

{
d s[m] if m > 0

0 otherwise

Note that the case n = m = η = ϵ = 0 is special, as 1 is the only basis element on which
ιp is acts as the identity, rather than zero, so this is the expected result.

Case n = 0, η = 1:

(ϑ∂ + ∂ϑ)(d tϵs d s[m]) = ϑ
(
(−1)ϵt d tϵ d s[m] − d tϵ+1s d s[m−1]

)
+ ∂(0)

= (−1)ϵ · (−1)ϵ d tϵs d s[m] + 0

= d tϵs d s[m]

499



Chapter 8. Hochschild homology of certain quotients of commutative algebras

8.3. A formula for Hochschild homology of certain
quotients

In this section we combine Sections 8.1 and 8.2 to obtain a somewhat more concrete
formula for a strict model for HHMixed of certain quotients than in Proposition 8.1.2.1.

Proposition 8.3.0.1. Let n ≥ 1 be an integer and assume16 that Conjecture C holds
for the morphism of commutative k-algebras T : k[t1, . . . , tn]→ k that maps ti to 0, and
fix a commutative square

HHMixed
(
k[t1, . . . , tn]

)
Alg(γMixed)

(
Ω•
k[t1,...,tn]/k

)

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

≃

HHMixed(T ) Alg(γMixed)
(
Ω•
T/k

)

≃

(8.7)

in Alg(Mixed) such that the horizontal morphisms are equivalences.
Let R be a commutative algebra in Ch(k) and let x1, . . . , xn be elements of R0. As-

sume that R is cofibrant as an object of RModk[t1,...,tn](Ch(k)) with respect to the model
structure of Theorem 4.2.2.1, where ti acts by multiplication with xi. Note that as
HHMixed is monoidal, HHMixed(R) obtains an induced structure of a right module over
HHMixed(k[t1, . . . , tn]) in Mixed.

Let Pn = k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn) be as in Construction 8.2.1.2 and M a right-
Pn-module in Mixedcof such that there is an equivalence

RMod(γMixed)(M) ≃ HHMixed(R)

in RMod(Mixed) such that the underlying equivalence of algebras is the composition

Alg(γMixed)(Pn) ≃ Alg(γMixed)
(
Ω•
k[t1,...,tn]/k

)
≃ HHMixed(k[t1, . . . , tn]) (8.8)

in Alg(Mixed), where the first equivalence is induced by the identification

Ω•
k[t1,...,tn]/k

∼= k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)

from the start of Section 7.1 and the second equivalence is the one from (8.7).
Then there is an equivalence

HHMixed
(
R/(x1, . . . , xn)

)
≃ γMixed

(
M ′
)

in Mixed, where M ′ is the strict mixed complex defined as follows. As a graded k-module,
M ′ is given by

M ′ :=M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)
16If n ≤ 2 this holds by Proposition 7.5.4.1, making this result unconditional.

500



8.3. A formula for Hochschild homology of certain quotients

with s1, . . . , sn of degree 1 and d s1, . . . , d sn of degree 2. The boundary operator ∂

and differential d are given by k-linearly extending the following formulas for m ∈ M ,
ϵ⃗ ∈ {0, 1}n, and i⃗ ∈ Zn≥0.

∂
(
m⊗ sϵ⃗ d s[⃗i]

)
=
(
∂M(m)⊗ sϵ⃗ d s[⃗i]

)

+ (−1)degCh(m)

n∑

a=1

(−1)
∑a−1
b=1 ϵb

(
m · ta ⊗ s

ϵ⃗−e⃗a d s[⃗i]
)

− (−1)degCh(m)

n∑

a=1

(
m · d ta ⊗ sϵ⃗ d s[⃗i−e⃗a]

)

d
(
m⊗ sϵ⃗ d s[⃗i]

)
=
(

dM(m)⊗ sϵ⃗ d s[⃗i]
)

+ (−1)degCh(m)

n∑

a=1

(−1)
∑a−1
b=1 ϵb(ia + 1)

(
m⊗ sϵ⃗−e⃗a d s[⃗i+e⃗a]

)

In the above formulas, summands in which a vector occurs with a component that is
negative are to be interpreted as zero. ♥

Proof. We first apply Proposition 8.1.2.1, where we are using the specific model An
constructed in Section 8.2 for HHMixed(k) as a module over HHMixed(k[t1, . . . , tn]). To do
so, we only need to check that An has the properties required of it in Proposition 8.1.2.1.
Concretely, we need an equivalence

LMod(γMixed)(An) ≃ HHMixed(k)

in LMod(Mixed) such that the underlying equivalence of algebras is (8.8), and we need
that An is cofibrant as an object of LModPn(Ch(k)). The latter is precisely Proposi-
tion 8.2.2.1, and for the former we use the following composite equivalence.

LMod(γMixed)(An)
≃
−→ LMod(γMixed)(k) ≃ LMod(γMixed)

(
Ω•
k/k

)
≃ HHMixed(k)

The first morphism is induced by the morphism of Pn-algebras pn : An → k as de-
fined in Construction 8.2.1.2, and lies over the identity morphism of Alg(γMixed)(Pn)
in Alg(Mixed). The second equivalences uses naturality of the isomorphism from Sec-
tion 7.1, which ensures that the underlying equivalence of algebras is the first equivalence
in (8.8). Finally, the third equivalence arises from the commutative square (8.7), and
the underlying equivalence of algebras is the second one in (8.8).

By Proposition 8.1.2.1 we now obtain an equivalence

HHMixed(R/(x1, . . . , xn)) ≃ γMixed(M ⊗Pn An)

in Mixed. It thus remains to evaluate the relative tensor product M ⊗Pn An in Mixed.
As the forgetful functor from strict mixed complexes to graded k-modules is con-

servative, symmetric monoidal, and preserves colimits, we obtain an isomorphism of

501



Chapter 8. Hochschild homology of certain quotients of commutative algebras

underlying graded k-modules17

M ⊗Pn An

=M ⊗k[t1,...,tn]⊗Λ(d t1,...,d tn) k[t1, . . . , tn]⊗ Λ(d t1, . . . , d tn)⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)
∼= M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

where the isomorphism maps an element of the form m⊗ti⃗ d tϵ⃗sη⃗ d[⃗j] to m·(ti⃗ d tϵ⃗)⊗sη⃗ d[⃗j].
We can lift this isomorphism to an isomorphism of strict mixed complex, and it then
remains to determine d and ∂, for which we use the morphism of strict mixed complexes

M ⊗ An →M ⊗Pn An ∼= M ⊗ Λ(s1, . . . , sn)⊗ Γ(d s1, . . . , d sn)

where the first morphism is the canonical one and the isomorphism the one just described.
One can then read off the formulas claimed in the statement using Definition 4.1.2.1,
Remark 4.2.1.10, and Construction 8.2.1.2

17The point is that in graded k-modules, k[t1, . . . , tn]⊗Λ(d t1, . . . , d tn)⊗Λ(s1, . . . , sn)⊗Γ(d s1, . . . , d sn)
really is the tensor product of k[t1, . . . , tn] ⊗ Λ(d t1, . . . , d tn) and Λ(s1, . . . , sn) ⊗ Γ(d s1, . . . , d sn),
whereas this is not the case as chain complexes.

502



Chapter 9.

Hochschild homology of certain
quotients of polynomial algebras

In Chapter 8 we obtained a general result that helps to produce strict mixed complexes
that represent HHMixed of some quotients of commutative algebras. In this chapter we
specialize to quotients of polynomial algebras by a single monic polynomial f of positive
degree. The crucial input that we will need for this is that Conjecture D holds for f .
After verifying the necessary requirements to apply the result, we will in Section 9.2 be
able to specialize Proposition 8.3.0.1 to the case k[x1, . . . , xn]/f for n a positive integer
and f a monic polynomial of positive degree satisfying Conjecture D, obtaining a strict
mixed complex Xf that is a model for HHMixed(k[x1, . . . , xn]/f) as an object of Mixed.
The underlying graded k-module of Xf is of the form

Xf := k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

where xi, d xi, s, and d s are of degree 0, 1, 1, and 2, respectively.
In our goal to obtain a strict mixed complex representing HHMixed(k[x1, . . . , xn]/f)

that is as small as possible, this is already a significant improvement on the standard
Hochschild complex C(k[x1, . . . , xn]/f) that we discussed in Section 6.3.1. To underline
this, note that Xf can be given the structure of a graded k[x1, . . . , xn]-module, with
k[x1, . . . , xn] acting through the leftmost tensor factor. Xf is then degreewise free as
a k[x1, . . . , xn]-module, so we can consider the rank1. We find that rankk[x1,...,xn]((Xf )i)
(where i is an integer) is finite, and furthermore bounded, i. e. there is an integer r such
that

rankk[x1,...,xn]
((
Xf

)
i

)
≤ r

for all integers i. This is very far from the situation for the standard Hochschild complex
C(k[x1, . . . , xn]/f). While k[x1, . . . , xn] doesn’t act freely on the leftmost tensor factor,
k[x1, . . . , xn]/f does, and

rankk[x1,...,xn]/f
(

C
(
k[x1, . . . , xn]/f

)
i

)

= rankk[x1,...,xn]/f
((
k[x1, . . . , xn]/f

)⊗(i+1)
)

1If we wanted to make the following discussion regarding ranks precise, we would define bases for the
various modules and discuss their cardinalities (the modules we consider all have a relatively obvious
basis to use for this). We omit such a detour, as this discussion is only for purpose of motivation.

503



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

= rankk
((
k[x1, . . . , xn]/f

)⊗(i)
)

= rankk
((
k[x1, . . . , xn]/f

))i

for i ≥ 0. For n > 1, rankk
((
k[x1, . . . , xn]/f

))
will already be infinite, and additionally

it would also be reasonable to consider the rank to grow exponentially in the degree i.
So Xf is an improvement over the standard Hochschild complex. It is though certainly

not optimal for specific polynomials. For example, for f = x1 the quotient k[x1]/f is
isomorphic to k, so we can by Corollary 7.4.9.3 use Ω•

k/k
∼= k as a strict model for

HHMixed(k[x1]/f), and k is significantly smaller than Xf = k[x1]⊗Λ(dx1)⊗Λ(s)⊗Γ(d s).
The main goal of this chapter will thus be to improve on the size of Xf while relaxing

what the result covers. This can be done in two directions: Firstly, we can reduce the
amount of structure we consider, which we do by asking only for a sub-chain-complex
of Xf that represents HH(k[x1, . . . , xn]/f) as an object of D(k), rather than as a mixed
complex, which we will do in Section 9.3. Secondly, we can insist on a sub-strict-mixed-
complex representing HHMixed(k[x1, . . . , xn]/f) as an object of Mixed, while reducing
the set of polynomials f that we consider. This will be done in Section 9.5.

The results of this chapter should themselves also only be considered as stepping
stones, just like Proposition 8.3.0.1 and Xf was a stepping stone for the results of
this chapter. So for actual calculations that need a strict mixed complex representing
HHMixed(k[x1, . . . , xn]/f) for specific polynomials f , one would begin with the strict
mixed complex obtained in Section 9.5 (if the relevant result is applicable) and then
simplify it further, making use of the specific form of f . In Chapter 10 we will discuss
the concrete example of f = x21 − x2x3 in details along those lines2.

Let us now say some more on the individual sections of this chapter.
As we stated at the beginning of this introduction, we will consider monic multivari-

able polynomials f to divide out of a polynomial algebra. For polynomials in a single
variable there is precisely one standard definition of what it means to be monic, but
this is not the case for multivariable polynomials, where there are multiple sensible
definitions. What we will mean by monic is monic with respect to a chosen monomial
order, and this notion will be introduced in Section 9.1. It will also be very important
in this chapter to have a good handle of moving back and forth between k[x1, . . . , xn]
and k[x1, . . . , xn]/f , for example by producing canonical representatives in k[x1, . . . , xn]
of elements in the quotient k[x1, . . . , xn]/f . For this we will also discuss division with
remainder for multivariable polynomials in Section 9.1.

In Section 9.2 we will then combine previous results to obtain Xf as a strict model
for HHMixed(k[x1, . . . , xn]/f) as an object of Mixed, assuming that Conjecture D holds
for f . Heavily using constructions discussed in Section 9.1 that are built on top of the
division with remainder for multivariable polynomials, we will also describe a new basis
for Xf as well as calculate some formulas for the boundary operator and differential in
terms of that new basis.

2This polynomial has however so far not been proven to satisfy Conjecture D. The strict mixed complex
Xf can nevertheless be constructed.

504



In Section 9.3 we will discuss HH(k[x1, . . . , xn]/f) as only an object of D(k). A chain
complex representing it has already been obtained in the previous work of the Buenos
Aires Cyclic Homology Group in [BACH]. For k a commutative ring and f an element
of k[x1, . . . , xn] satisfying relatively mild conditions, they give a quite small differential
graded algebra together with a multiplicative inclusion into the normalized standard
Hochschild complex for C(k[x1, . . . , xn]/f), as well as a homotopy inverse to this inclu-
sion, as a morphism of chain complexes. Using the basis for Xf and the formulas for the
boundary operator in this basis obtained in Section 9.2, it will be relatively straightfor-
ward in Section 9.3 to define a subcomplex Xe

f,0 of Xf such that the inclusion into Xf

is a quasiisomorphism, thereby obtaining a smaller chain complex than Xf representing
HH(k[x1, . . . , xn]/f) as an object of D(k). We will also show that Xe

f,0 is isomorphic
to the chain complex described in [BACH]. Assuming that Conjecture D holds for f ,
the rest of the assumptions we need to make for f are the same as in [BACH], so this
amounts to giving a new proof for one of the main results of [BACH], using a quite
different approach, for the range in which Conjecture D has been proven, so n ≤ 2 as
long as 2 is invertible in k by Proposition 7.5.3.1.

Unfortunately the definition of the comparison morphisms used in [BACH] between
the smaller chain complex and the normalized standard Hochschild complex are quite
complicated, making them difficult to unwrap for transferring additional structure. Try-
ing to transfer the strict mixed complex structure to the smaller chain complex from the
normalized standard Hochschild complex additionally runs into the problem that one
does not obtain a strict mixed complex structure; the necessary identities will only be
satisfied up to homotopy for general f , and it is not possible to upgrade either of the
two quasiisomorphisms between the small chain complex and the normalized standard
Hochschild complex to a morphism of strict mixed complexes, as we show in Section 9.6.

However, for some polynomials f , the strict mixed structure on Xf restricts to Xe
f,0, so

that Xe
f,0 even represents HHMixed(k[x1, . . . , xn]/f) as an object of Mixed. To properly

formulate a condition for when the strict mixed structure restricts we introduce the
notions of logarithm and the log dimension for multivariable polynomials in Section 9.4.
In particular, we will prove a criterion that can be easily checked for multivariable
polynomials f and that implies that logdimf (d f) ≤ 1.

In Section 9.5 we will then show that if f satisfies logdimf (d f) ≤ 1, then the strict
mixed structure of Xf restricts to Xe

f,0, making the inclusion of Xe
f,0 into Xf into a

morphism of strict mixed complexes that is a weak equivalence.
Under some stronger assumptions on f a strict mixed complex isomorphic to Xe

f,0 was
already constructed by Larsen in [Lar95]. In the two-variable case Larsen furthermore
constructs a strongly homotopy linear quasiisomorphism3 from this strict mixed complex
into the normalized standard Hochschild complex. The result in Section 9.5 can thus be
seen as a generalization of one of the main results of [Lar95].4 A number of constructions
relating to polynomials that we use in order to simplify Xf are inspired by their use in

3See Definition 4.2.3.1 for a definition. By Remark 4.4.4.2 a strongly homotopy linear quasiisomorphism
induces an equivalence in Mixed.

4However introducing the new assumption that 2 is invertible in k.

505



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

[Lar95].
In Section 9.7 we discuss the relationship between our results and the main result

of [Lar95], as well as how, assuming Conjecture D, our results provide an affirmative
answer to a question posed by Larsen in [Lar95].

9.1. Prerequisites on polynomials and dividing with
remainder

Given the non-zero polynomial f in n variables by which we want to divide the poly-
nomial algebra k[x1, . . . , xn], it will be important for us to define uniquely determined
remainders of dividing an arbitrary polynomial P by f , i. e. we would like to have a
procedure obtain a unique decomposition of P as P = Q · f + R for other polynomials
Q and R. In the one-variable case with f an element of k[x] it is relatively straightfor-
ward to come up with an idea of how this decomposition should look like: We would
like P to uniquely decompose as P = Q · f + R where R has smaller degree than f . It
is not difficult to see that if the leading coefficient of f is not a zero-divisor, then this
determines Q and R uniquely as long as such a decomposition exists. However, such
a decomposition may not exist for all f and P – as a counterexample consider f = 2
and P = 3 for k = Z. However it turns out that such a decomposition does exist if the
polynomial f is monic, that is the leading coefficient is 1. In that case, one can perform
the Euclidean algorithm, iteratively eliminating the highest power of x remaining with
the leading term of f , i. e. if we have given f = xn + f ′ with f ′ of degree less than n,
and P =

∑m
i=0 aix

i with m ≥ n, then the first step will be to write

P = (amx
m−n) · f +







m∑

i=0

aix
i


− (amx

m−n) · f ′




and in this decomposition the term in brackets is of degree less than m, so iterating this
process will eventually come to a stop.

If we wish to generalize this procedure to the multi-variable case, we are confronted
with an obvious question: Which term of P should we start eliminating? What is the
leading term of f that we should use to do so? There is no obviously correct choice
for a definition of leading terms of multivariable polynomials but multiple equally good
competing ones. Thus we will have to codify what we require of such a definition to be
nice enough to allow us to define the kind of decompositions described, and then require
that f be monic with respect to that choice. The results will then also depend on that
choice.

We will start in Section 9.1.1 by discussing monomial orders, which provide a con-
sistent way of determining which of two monomials is to be considered the larger one.
This will allow us to define a notion of degree of a multivariable polynomial in Sec-
tion 9.1.2. Finally, we will discuss division with remainder for multivariable polynomials
in Section 9.1.3.

506



9.1. Prerequisites on polynomials and dividing with remainder

9.1.1. Monomial orders
In this section we introduce the concept of monomial orders and discuss some easy

consequences of the definition. We start in Section 9.1.1.1 by recalling the notions of
partial, total, and well-orders. The important example of the pointwise partial order
on Zn≥0 will be discussed in Section 9.1.1.2, before we define monomial orders in Sec-
tion 9.1.1.3. We end this section by proving some easy properties of monomial orders in
Section 9.1.1.4.

9.1.1.1. Partial, total, and well-orders

We recall the following notions.

Definition 9.1.1.1. Let X be a set and � a binary relation on X. Recall the following
properties that � may have.

Antisymmetry For any a, b ∈ X, if a � b and b � a, then a = b.

Transitivity For any a, b, c ∈ X, if a � b and b � c, then a � c.

Reflexivity For any a ∈ X it holds that a � a.

Connectivity For any a, b ∈ X, it holds that a � b or b � a.

Well-foundedness If X ′ is nonempty subset of X, then X ′ has a least element, that
is an element x ∈ X ′ such that for all y ∈ X ′ it holds that x � y.

Note that connectivity implies reflexivity.
The relation � is called a

partial order if it is antisymmetric, transitive, and reflexive.

total order if it is antisymmetric, transitive, and connected.

well-order if it is antisymmetric, transitive, connected, and well-founded.

A set equipped with a partial order (total order, well-order) on it will be called a
partially ordered set (totally ordered set, well-ordered set). ♦

Notation 9.1.1.2. Let X be a set and � a binary relation on X. If x and y are elements
of X such that x � y and x 6= y, then we will say that x is smaller than y and y is bigger
than x.

We will use the notation x � y to mean y � x. Furthermore, we will use x ≻ y and
y ≺ x to mean y � x and x 6= y. ♦

Remark 9.1.1.3. The important consequence of well-foundedness is that we can prove
statements about every element of X by transfinite induction: If we prove that any
element of X has some property if every smaller element has that property, then it
follows that every element of X has that property5. ♦

5Proof: Let X ′ ⊆ X be the subset of X of elements that do not have the property in question. By

507



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

9.1.1.2. The standard partial order on Zn≥0

We now define an important example of a partial order on Zn≥0.

Definition 9.1.1.4. Let n be a positive integer. We define a relation ≤ on Zn≥0 by letting
a⃗ ≤ b⃗ if and only if ai ≤ bi for all 1 ≤ i ≤ n. ♦

Remark 9.1.1.5. The relation ≤ as defined in Definition 9.1.1.4 is a partial order.
Note that a monomial xi⃗ divides xj⃗ for i⃗, j⃗ ∈ Zn≥0 if and only if i⃗ ≤ j⃗. This is the

reason why the partial order ≤ is of relevance for us. ♦

Proposition 9.1.1.6. Let n be a positive integer. For the partial order ≤ defined on
Zn≥0 as in Definition 9.1.1.4 and a⃗, b⃗, c⃗ ∈ Zn≥0, if a⃗ ≤ b⃗, then a⃗+ c⃗ ≤ b⃗+ c⃗. ♥

Proof. Follows directly from the definition.

9.1.1.3. Definition of monomial orders

The partial order ≤ encodes intuition on how some monomials definitely should com-
pare: Certainly the monomial xj⃗ should be “bigger” than xi⃗ if xi⃗ divides xj⃗, or equiva-
lently if i⃗ ≤ j⃗. But what if neither i⃗ ≤ j⃗ nor j⃗ ≤ i⃗? In order to be able to define notions
such as degrees and leading terms for all elements of k[x1, . . . , xn], we are thus led to ask
for a total order � on Zn≥0 that extends ≤.

A finite subset of a totally ordered set has a maximum element. If we have a total
order � on Zn≥0 given, then we can now provisionally define what the leading term of a
polynomial f ∈ k[x1, . . . , xn] should be: If f is given by

f =
∑

i⃗∈Zn≥0

f⃗ix
i⃗

then we can declare fj⃗xj⃗ to be the leading term of f if j⃗ is the maximal element of{
i⃗ ∈ Zn≥0

∣∣∣ f⃗i 6= 0
}

.
However this is not quite enough to obtain the kind of decomposition we described

in the introduction to Section 9.1. Firstly, in the one-variable case the procedure to
iteratively eliminate the highest degree has to eventually terminate because there is no
infinite strictly decreasing sequence of nonnegative integers. For the multivariable case
we should thus require that � is a well-order. Secondly, in the one-variable case we need
to argue that if f ′ has degree smaller than m, then xl−m · f ′ has degree smaller than l,
and we need an analogue of this in the multivariable case as well. This leads us to the
following definition, which is also used in [BACH, 2.2].

well-foundedness, if X ′ were non-empty, it would need to have a least element x. But this would
mean that every element smaller than x has the property, so x must have had it as well, so X ′ must
have been empty.

508



9.1. Prerequisites on polynomials and dividing with remainder

Definition 9.1.1.7. Let n be a positive integer. A monomial order (for n variables) is
a well-order � on Zn≥0 satisfying the following property: For every a⃗, b⃗, c⃗ ∈ Zn≥0 such that
a⃗ � b⃗ it also holds that a⃗+ c⃗ � b⃗+ c⃗. ♦

That a monomial order indeed extends ≤ will follow from this, and is shown below in
Proposition 9.1.1.8.

9.1.1.4. Properties of monomial orders

Proposition 9.1.1.8. Let n be a positive integer and � a monomial order for n variables.
Then the following hold.

(1) Let a⃗, b⃗, c⃗ ∈ Zn≥0 such that a⃗+ c⃗ � b⃗+ c⃗. Then it also holds that a⃗ � b⃗.

(2) 0⃗ is minimal in Zn≥0 with respect to �, i. e. for every a⃗ ∈ Zn≥0 it holds that 0⃗ � a⃗.

(3) � extends ≤, i. e. if a⃗, b⃗ ∈ Zn≥0 such that a⃗ ≤ b⃗, then a⃗ � b⃗. ♥

Proof. Proof of claim (1): If it is not true that a⃗ � b⃗, then we must have a⃗ � b⃗ by
connectivity, and so a⃗+ c⃗ � b⃗+ c⃗ as � is a monomial order. But by antisymmetry this
implies that a⃗+ c⃗ = b⃗+ c⃗ and so a⃗ = b⃗, from which a⃗ � b⃗ follows by reflexivity.

Proof of claim (2): Let m⃗ be an element of Zn≥0. We need to show that 0⃗ � m⃗, but
by connectivity and reflexivity it suffices to show that if 0⃗ � m⃗, then m⃗ = 0⃗. So assume
that 0⃗ � m⃗. By adding l · m⃗ to this inequality we obtain l · m⃗ � (l + 1) · m⃗, so that we
obtain an infinite descending chain

0⃗ � m⃗ � 2 · m⃗ � · · ·

in Zn≥0. Well-foundedness of � implies that this chain must eventually stabilize, so there
must be an l ≥ 0 with (l + 1) · m⃗ = l · m⃗, which implies m⃗ = 0.

Proof of (3): a⃗ ≤ b⃗ implies that b⃗− a⃗ still lies in Zn≥0. Applying (2) we obtain 0⃗ � b⃗− a⃗,
and adding a⃗ to this inequality we conclude that a⃗ � b⃗.

Remark 9.1.1.9. If � is a monomial order for 1 variable, then Proposition 9.1.1.8 (3)
implies that � is equal to ≤. ♦

Remark 9.1.1.10. Let n be a positive integer. The assumptions made on the binary
relation ≤T on Zn≥0 considered in [BACH, 2.2] are that ≤T is a monomial order in the
sense of Definition 9.1.1.7, and that ≤T extends ≤. Proposition 9.1.1.8 (3) shows that
the latter assumption is unnecessary. ♦

Construction 9.1.1.11. Let n be a positive integer and � a monomial order for n
variables. Let m ≤ n be another positive integer and φ : {1, . . . ,m} → {1, . . . , n} an
injection. Then we can define an additive injection Zm≥0 → Zn≥0 as follows.

ψ : Zm≥0 → Zn≥0 , ψ(⃗a)i :=
{
aj if ψ(j) = i

0 if i is not in the image of ψ

509



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

For example if φ is the inclusion of {1} into {1, 2}, then ψ maps (a) to (a, 0).
We can then define a binary relation � on Zm≥0 as follows. For a⃗, b⃗ ∈ Zm≥0 we let a⃗ � b⃗ if

and only if ψ(⃗a) � ψ(⃗b). It follows immediately from ψ being additive and injective that
this defines a monomial order for m variables, which we will call the restricted monomial
order.

Let {i1, . . . , in−m} be the elements of {1, . . . , n} that are not in the image of φ. Define
k′ to be the commutative k-algebra k′ = k[xi1 , . . . , xin−m ]. Then there is an isomorphism
of k-algebras

k′[y1, . . . , ym]
∼=
−→ k[x1, . . . , xn]

that maps xij to xij and yj to xφ(j). Note that this morphism then maps yj⃗ to xψ(⃗j). We
will make use of this isomorphism on some occasions when inducting on the number of
variables. ♦

9.1.2. Degrees for multivariable polynomials
In this section we define a notation of degree of multivariable polynomials, dependent

on a monomial order.

Definition 9.1.2.1. Let n be a positive integer, � a monomial order for n variables,
and f ∈ k[x1, . . . , xn] a polynomial. We define

deg�(f) =





max
{
i⃗ ∈ Zn≥0

∣∣∣f⃗i 6= 0
}

if f 6= 0

−∞ if f = 0

where the maximum is taken with respect to the order �. We call deg�(f) the degree of
f (with respect to the monomial order �). We call fdeg⪯(f)x

deg⪯(f) the leading term and
fdeg⪯(f) the leading coefficient of f (with respect to the monomial order �).

If f, g ∈ k[x1, . . . , xn], then we write f � g if deg�(f) � deg�(g). ♦

Remark 9.1.2.2. It follows from Remark 9.1.1.9 and the definition that the degree as
defined in Definition 9.1.2.1 recovers the usual notion in the case n = 1. ♦

The degree of multivariable polynomials as defined above satisfies the usual properties
with respect to addition and multiplication of polynomials, as we record below.

Proposition 9.1.2.3. Let n be a positive integer, � a monomial order for n variables,
and f, g ∈ k[x1, . . . , xn]. Then the following hold.

(1) deg�(f + g) � max
{

deg�(f), deg�(g)
}

.

(2) If deg�(f) ≻ deg�(g), then deg�(f + g) = deg�(f).

(3) deg�(f · g) � deg�(f) + deg�(g).

510



9.1. Prerequisites on polynomials and dividing with remainder

(4) If at least one of f or g is zero, or both are nonzero and fdeg⪯(f) · gdeg⪯(g) 6= 0, then
deg�(f · g) = deg�(f) + deg�(g).

With respect to max we interpret −∞ as smaller than all elements of Zn≥0, and we
interpret the sum of −∞ with −∞ or an integer to be −∞ again. ♥

Proof. Proof of claim (1): By definition

fdeg⪯(f+g) + gdeg⪯(f+g) = (f + g)deg⪯(f+g) 6= 0

holds, so one of fdeg⪯(f+g) and gdeg⪯(f+g) must be non-zero, which directly implies that
deg�(f) � deg�(f + g) or deg�(g) � deg�(f + g).

Proof of claim (2): In this case max{deg�(f), deg�(g)} = deg�(f), so using (1) it
suffices to show that deg�(f + g) � deg�(f). The assumption deg�(f) ≻ deg�(g) also
implies gdeg⪯(f) = 0 and thus (f + g)deg⪯(f) = fdeg⪯(f) + gdeg⪯(f) = fdeg⪯(f) 6= 0, from
which deg�(f + g) � deg�(f) follows.

Proof of claim (3) and (4): We can write

f =
∑

i⃗�deg⪯(f)

f⃗ix
i⃗ and g =

∑

j⃗�deg⪯(g)

gj⃗x
j⃗

and thus obtain the following description of the product fg.

f · g =
∑

i⃗�deg⪯(f)

j⃗�deg⪯(g)

f⃗ifj⃗x
i⃗+j⃗

As � is not just a well-order, but a monomial order, it follows from i⃗ � deg�(f) and
j⃗ � deg�(g) that i⃗ + j⃗ � deg�(f) + deg�(g), and if one (or both) of the former two
inequalities is strict, then so is the latter inequality. This implies both claims.

Proposition 9.1.2.4. Assume we are in the situation of Construction 9.1.1.11. Let f
be an element of k[x1, . . . , xn], and assume that deg�(f) is in the image of ψ. Let f ′ be
the element of k′[y1, . . . , ym] corresponding to f under the isomorphism from Construc-
tion 9.1.1.11. Then

deg�(f) = ψ
(

deg�(f
′)
)

where on the right hand side � refers to the restricted monomial order as defined in Con-
struction 9.1.1.11. Furthermore, f ′

deg⪯(f ′) is an element of k and the leading coefficients
of f and f ′ agree, i. e. f ′

deg⪯(f ′) = fdeg⪯(f). ♥

Proof. Let j⃗ ∈ Zm≥0 be such that ψ(⃗j) = deg�(f). Then fψ(⃗j) 6= 0 implies that f ′
j⃗
6= 0

and hence deg�(f
′) � j⃗, from which we can conclude that ψ(deg�(f

′)) � deg�(f). On
the other hand, f ′

deg⪯(f ′) 6= 0, so there must be some i⃗ ∈ Zn≥0 with il = 0 for l in the
image of φ such that

f
ψ(deg⪯(f ′))+⃗i = (f ′

deg⪯(f ′))⃗i 6= 0

511



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

from which
deg�(f) � ψ

(
deg�(f

′)
)
+ i⃗ � ψ

(
deg�(f

′)
)

(∗)

follows. Antisymmetry now implies that deg�(f) = ψ
(

deg�(f
′)
)

.
Furthermore, this implies that if i⃗ ∈ Zn≥0 with il = 0 for l in the image of φ such that

(f ′
deg⪯(f ′))⃗i 6= 0, then i⃗ must actually be 0⃗, as otherwise the inequality (∗) would by strict

by Proposition 9.1.1.8 ((2)). It follows that f ′
deg⪯(f ′) is in k and that f ′

deg⪯(f ′) = fdeg⪯(f)

as elements of k.

9.1.3. Dividing multivariable polynomials with remainder
In this section we discuss a generalization of division with remainder of polynomials

from the one-variable case as discussed in the introduction to Section 9.1 to the mul-
tivariable case. If we want to have a chance of dividing polynomials P with remainder
by some polynomial f , then we should require that f is monic, and we discuss the
multivariable notion of monic polynomials that we will use in Section 9.1.3.1. If f is
a monic polynomial, then division with remainder will yield a decomposition of P as
P = Qf+R, where R is in some sense “small” with respect to f . In the one-variable case,
R will have smaller degree than f . In the multivariable case, R will be f -reduced, and we
discuss what this means in Section 9.1.3.2. We will then be able to tackle division with
remainder for multivariable polynomials in Section 9.1.3.3, and discuss decomposing P
as P =

∑
i≥0 r

i
f (P )f

i with rif (P ) being f -reduced polynomials in Section 9.1.3.4.

9.1.3.1. Monic polynomials

After the discussions in Sections 9.1.1 and 9.1.2, we can now give a definition of monic
polynomials that generalizes the usual definition for the univariable case.

Definition 9.1.3.1. Let n be a positive integer, � a monomial order for n variables,
and f ∈ k[x1, . . . , xn] a polynomial. Then f is monic with respect to � if fdeg⪯(f) = 1. In
particular a monic polynomial is nonzero. ♦

Convention 9.1.3.2. From here on we will introduce a monomial order � in statements
which depend on one, but will drop reference to � when this will not cause confusion.
For example we will write “Let f be a monic polynomial.” rather than “Let f be a
monic polynomial with respect to �.” when there is only one polynomial degree order
in context. ♦

Remark 9.1.3.3. If n = 1, then f is monic as defined in Definition 9.1.3.1 if and only
if it is monic in the usual sense. See Remarks 9.1.1.9 and 9.1.2.2. ♦

Proposition 9.1.3.4. Let n be a positive integer, � a monomial order for n variables,
and f, g ∈ k[x1, . . . , xn] monic polynomials. Then f · g is also monic. ♥

Proof. Follows immediately from Proposition 9.1.2.3 (4).

512



9.1. Prerequisites on polynomials and dividing with remainder

Proposition 9.1.3.5. Assume we are in the situation of Construction 9.1.1.11, and that
f and f ′ are as in Proposition 9.1.2.4. Then f is monic with respect to the monomial
order on Zn≥0 if and only if f ′ is monic with respect to the restricted monomial order on
Zm≥0. ♥

Proof. Follows immediately from Proposition 9.1.2.4.

We end this section with a useful statement we will use later.
Proposition 9.1.3.6. Let n be a positive integer, � a monomial order for n variables,
f ∈ k[x1, . . . , xn] a monic polynomial, and g ∈ k[x1, . . . , xn] any polynomial. Then g = 0
if and only if fg = 0. ♥

Proof. It is clear that g = 0 implies fg = 0, so it remains to show that g 6= 0 implies
fg 6= 0. But if g 6= 0, then we can apply Proposition 9.1.2.3 (4)6, to conclude that

deg�(fg) = deg�(f) + deg�(g)

where the right hand side, and thus also the left hand side, is a nonnegative integer.
Thus fg must be nonzero.

9.1.3.2. Reduced polynomials

Let f be a monic polynomial in a single variable, i. e. an element of k[x]. Then we can
write any polynomial P ∈ k[x] as P = Q · f +R for Q,R ∈ k[x] such that the degree of
R is smaller than the degree of f . If we want to generalize this to the multivariable case
we should find an analogous condition for R. A first guess might be to use the condition
that deg�(R) ≺ deg�(f), but this turns out not to work. Consider for example the case
of two variables and the lexicographic order, so where (a1, a2) � (b1, b2) if a1 < b1 or if
a1 = b1 and a2 ≤ b2. If we then consider f = x1x2 and P = x21, then it is impossible to
find a decomposition P = Q·f+R such that deg�(R) ≺ deg�(f). So this condition is too
strong. The reason is that we can only eliminate the lead term of P if deg�(f) ≤ deg�(P ).
We should thus ask R to be f -reduced in the following sense.
Definition 9.1.3.7. Let n be a positive integer, � a monomial order for n variables,
j⃗ ∈ Zn≥0, and P ∈ k[x1, . . . , xn] a polynomial. P is called j⃗-reduced if P⃗i = 0 for all i⃗ ≥ j⃗.

If f ∈ k[x1, . . . , xn] is a nonzero polynomial, then P is called f -reduced if and only if
P is deg�(f)-reduced. ♦

Remark 9.1.3.8. If f 6= 0 and P are elements of k[x], then P is f -reduced in the sense
of Definition 9.1.3.7 if and only if the degree of P is smaller than the degree of f . ♦

Remark 9.1.3.9. Assume that we are in the situation of Construction 9.1.1.11. Let f
and P be elements of k[x1, . . . , xn] and assume that deg�(f) is in the image of ψ. Let f ′

and P ′ be the elements of k′[y1, . . . , ym] corresponding to f and P under the isomorphism
from Construction 9.1.1.11.

Then P is f -reduced if and only if P ′ is f ′-reduced. This can be seen by combining
Proposition 9.1.2.4 with arguments very similar to those used in the proof of Proposi-
tion 9.1.2.4. ♦

6Both f and g are nonzero, and as f is monic we also have fdeg⪯(f) · gdeg⪯(g) = gdeg⪯(g) 6= 0.

513



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

9.1.3.3. Division with remainder

We are now ready to discuss division with remainders for multivariable polynomials.

Proposition 9.1.3.10. Let n be a positive integer, � a monomial order for n variables,
and f ∈ k[x1, . . . , xn] a monic polynomial. Let P ∈ k[x1, . . . , xn] be another polynomial.
Then there exist unique polynomials Q,R ∈ k[x1, . . . , xn] such that P = Q · f +R and R
is f -reduced. ♥

Proof. We first prove uniqueness. Assume that

P = Q1 · f +R1 and P = Q2 · f +R2

are two such decompositions. Then the equation

(Q1 −Q2) · f = R2 −R1 (∗)

holds. We have to show that Q1 = Q2 and R1 = R2, but applying Proposition 9.1.3.6 to
(∗) it suffices to show that R1 = R2.

We show R1 = R2 by contradiction and assume that R1 6= R2. Without loss of
generality we can additionally assume that R1 ≺ R2. By Proposition 9.1.3.6 Q1−Q2 6= 0,
so we can apply Proposition 9.1.2.3 (4) to (∗) and obtain the following formula relating
the degrees.

deg�(R2 −R1) = deg�(Q1 −Q2) + deg�(f)

As we assumed R1 ≺ R2, we can also apply Proposition 9.1.2.3 (2) to obtain

deg�(R2 −R1) = deg�(R2)

which implies that
deg�(R2) = deg�(Q1 −Q2) + deg�(f)

and thus in particular deg�(R2) ≥ deg�(f), contradicting the assumption that R2 is
f -reduced.

It remains to show existence of the claimed decomposition. So for every polynomial
P ∈ k[x1, . . . , xn] we have to prove the following claim.

Claim There exist Q,R ∈ k[x1, . . . , xn] such that R is f -reduced and P = Qf +R.

To do so, we first define the map

Θ: k[x1, . . . , xn]→ Zn≥0 ∪ {−∞}

P 7→ max
{
i⃗ ∈ Zn≥0

∣∣∣ P⃗i 6= 0 and i⃗ ≥ deg�(f)
}

where the maximum is to be interpreted as −∞ if the set is empty, and the set the
maximum is taken over is always finite7, so the maximum exists if the set is nonempty.

7As polynomials only have finitely many nonzero components.

514



9.1. Prerequisites on polynomials and dividing with remainder

Note that R ∈ k[x1, . . . , xn] is f -reduced if and only if Θ(R) = −∞. We can extend the
well-order � on Zn≥0 to Zn≥0 ∪ {−∞} by letting −∞ be the minimal element, and will
prove the claim stated above for every element P of k[x1, . . . , xn] by transfinite induction
on Θ(P ).

So we let P be an element of k[x1, . . . , xn] and assume that the claim holds for any
P ′ ∈ k[x1, . . . , xn] with Θ(P ′) � Θ(P ). We have to show that then P also satisfies the
claim.

If Θ(P ) = −∞, then P itself is reduced and so we can take Q = 0, R = P and are
done.

So assume now that Θ(P ) 6= −∞. Note that the definition of Θ(P ) and the as-
sumption that Θ(P ) 6= −∞ together imply that Θ(P ) ≥ deg�(f), so that in particular
Θ(P )−deg�(f) is an element of Zn≥0. We can thus define a new polynomial P ′ as follows.

P ′ = P − PΘ(P ) · x
Θ(P )−deg⪯(f) · f (∗∗)

We claim that Θ(P ′) ≺ Θ(P ). Let us for the moment assume this and explain how the
claim for P follows. As Θ(P ′) ≺ Θ(P ) we can use the induction hypothesis and obtain
Q′, R′ ∈ k[x1, . . . , xn] such that R′ is f -reduced and P ′ = Q′f +R′. Combining this with
(∗∗) we obtain

P =
(
Q′ + PΘ(P )x

Θ(P )−deg⪯(f)
)
· f +R′

so that setting Q = Q′ + PΘ(P )x
Θ(P )−deg⪯(f) and R = R′ shows the claim for P .

We are left to show that Θ(P ′) ≺ Θ(P ). Note that (∗∗) implies that for i⃗ ∈ Zn≥0 we
have

P ′
i⃗
= P⃗i − PΘ(P ) · f⃗i+det⪯(f)−Θ(P ) (∗ ∗ ∗)

where f⃗i+det⪯(f)−Θ(P ) is to be interpreted as 0 if i⃗+det�(f)−Θ(P ) is not in Zn≥0. Plugging
in i⃗ = Θ(P ) we obtain

P ′
Θ(P ) = PΘ(P ) − PΘ(P ) · fdet⪯(f) = PΘ(P ) − PΘ(P ) = 0

so if Θ(P ′) � Θ(P ) then we actually must have Θ(P ′) ≻ Θ(P ). So now assume that i⃗ is
an element of Zn≥0 such that the following holds.

(1) i⃗ ≥ deg�(f)

(2) i⃗ ≻ Θ(P )

What we have to show is that then P ′
i⃗
= 0. The two assumptions imply that P⃗i = 0, so

if i⃗+det�(f)−Θ(P ) is not in Zn≥0, then equation (∗ ∗ ∗) implies P ′
i⃗
= 0. So assume that

i⃗+ det�(f)−Θ(P ) is in Zn≥0. (2) implies that

i⃗+ deg�(f) ≻ Θ(P ) + deg�(f)

515



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

which – using that i⃗+ det�(f)−Θ(P ) is in Zn≥0 – implies that

i⃗+ deg�(f)−Θ(P ) ≻ deg�(f)

from which we can deduce that f⃗i+deg⪯(f)−Θ(P ) = 0. It again follows from equation (∗ ∗ ∗)
that P ′

i⃗
= 0.

Remark 9.1.3.11. Assume that we are in the situation of Construction 9.1.1.11. Let f
and P be elements of k[x1, . . . , xn] and assume that deg�(f) is in the image of ψ. Let f ′

and P ′ be the elements of k′[y1, . . . , ym] corresponding to f and P under the isomorphism
from Construction 9.1.1.11. Then the decompositions of P and P ′ with respect to f

and f ′ correspond to each other under the isomorphism from Construction 9.1.1.11.
Concretely, ifQ,R are elements of k[x1, . . . , xn] such that P = Qf+R and R is f -reduced,
and Q′ and R′ are the elements of k′[y1, . . . , ym] corresponding to Q and R under the
isomorphism from Construction 9.1.1.11, then P ′ = Q′f + R as the isomorphism is an
isomorphism of R-algebras, and R′ is f ′-reduced by Remark 9.1.3.9. ♦

9.1.3.4. Full sum decomposition

If f is a monic polynomial and P any polynomial, we saw in Proposition 9.1.3.10
that we can divide P by f with remainder to obtain a decomposition P = Qf + R0

for polynomials Q and R0 such that R0 is f -reduced. We can then also divide Q by
f with remainder and obtain a decomposition of Q as Q = Q′f + R1, so that we can
write P as P = Q′f 2 + R1f + R0. We would like this process to eventually stop (i. e.
eventually arrive at an Ri that is already f -reduced), to obtain a decomposition of P
as P =

∑
i≥0Ri · f

i, such that each Ri is f -reduced and all but finitely many are zero.
For this we however need one extra assumption: If f = 1, then the decomposition from
Proposition 9.1.3.10 will be P = P · 1 + 0, so iterating this process will never yield an
f -reduced Ri unless P = 0. We thus arrive at the following proposition.

Proposition 9.1.3.12. Let n be a positive integer, � a monomial order for n variables,
and f ∈ k[x1, . . . , xn] a monic polynomial with deg�(f) > 0⃗ (equivalently, f 6= 1). Let
P ∈ k[x1, . . . , xn] be another polynomial. Then there exist unique Ri ∈ k[x1, . . . , xn] for
i ∈ Z≥0 of which all but finitely many are zero such that

P =
∑

i≥0

Ri · f
i

and all Ri are f -reduced. ♥

Proof. We first show uniqueness. So assume we are given two such decompositions as
follows.

P =
∑

i≥0

Ri · f
i and P =

∑

i≥0

R′
i · f

i

516



9.1. Prerequisites on polynomials and dividing with remainder

We can rewrite this as

∑

i≥1

Ri · f
i−1


 · f +R0 =


∑

i≥1

R′
i · f

i−1


 · f +R′

0

and hence by Proposition 9.1.3.10 we can conclude that R0 = R′
0 and

∑

i≥1

Ri · f
i−1 =

∑

i≥1

R′
i · f

i−1

as well. Iterating this argument now yields R1 = R′
1, R2 = R′

2, and so on.
We prove existence by transfinite induction on deg�(P ) and assume that the state-

ment has already been proven for all polynomials P ′ with deg�(P
′) ≺ deg�(P ). By

Proposition 9.1.3.10 there are polynomials Q and R0 such that P = Qf +R0 and R0 is
f -reduced. If Q = 0 we are already done, so assume that Q 6= 0. As R0 is f -reduced we
must have (R0)deg⪯(Q)+deg⪯(f) = 0 and hence, using Proposition 9.1.2.3 (4),

Pdeg⪯(Q)+deg⪯(f) = (Qf)deg⪯(Q)+deg⪯(f) 6= 0

so that we can conclude that deg�(P ) � deg�(Q)+deg�(f). As we assumed 0⃗ ≺ deg�(f)
this implies the following inequality.

deg�(Q) ≺ deg�(Q) + deg�(f) � deg�(P )

By the induction hypothesis we can thus find f -reduced polynomials Ri for i ≥ 1, all
but finitely many zero, such that

Q =
∑

i≥1

Rif
i−1

which implies that

P = Q · f +R0 =


∑

i≥1

Rif
i−1


 · f +R0 =

∑

i≥0

Rif
i

and thus proves the claim.

The assumptions made in Proposition 9.1.3.12 will be used a lot in the rest of this
chapter. To improve readability and reduce unnecessary repetitions, we thus package
them together.

Assumption MonOrdMonicPoly. Wherever we invoke this assumption, we let n be
a positive integer, � a monomial order for n variables, and f ∈ k[x1, . . . , xn] a monic
polynomial with deg�(f) > 0. ♦

We next introduce some notation to help us refer to the polynomials Ri occurring in
the decomposition from Proposition 9.1.3.12.

517



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Definition 9.1.3.14. Assume MonOrdMonicPoly. We define maps

r
j
f , r

≤j
f , r

<j
f , q

j
f : k[x1, . . . , xn]→ k[x1, . . . , xn]

for each integer j in the following way.
For P ∈ k[x1, . . . , xn], let

P =
∑

i≥0

Rif
i

be the decomposition from Proposition 9.1.3.12, i. e. Ri is an f -reduced element of
k[x1, . . . , xn] for each i ≥ 0. We then define rjf , r

≤j
f , r<jf , and q

j
f for j ≥ 0 as follows.

r
j
f (P ) := Rj r

≤j
f (P ) :=

j∑

i=0

rif (P )f
i r

<j
f (P ) :=

j−1∑

i=0

rif (P )f
i

q
j
f (P ) :=

∑

i≥j

rif (P ) · f
i−j ♦

If j < 0, then we define rjf , r
≤j
f , and r

<j
f to map P to 0, and define qjf (P ) := P · f−j.

9.1.3.5. Properties of remainders

We collect a number of useful properties of the maps from Definition 9.1.3.14.
Proposition 9.1.3.15. Assume MonOrdMonicPoly. Then the following hold for each
i, j ≥ 0 and P,Q ∈ k[x1, . . . , xn].

(1) r
j
f (P ) is f -reduced.

(2) P = q
j
f (P ) · f

j + r
<j
f (P ).

(3) r
j
f , r

≤j
f , r<jf , and qjf are k-linear.

(4) r
j
f (P · f

i) = r
j−i
f (P ) and qjf (P · f i) = q

j−i
f (P ).

(5) r
j
f (P ·Q) =

∑
a+b+c=j r

a
f

(
rbf (P ) · r

c
f (Q)

)
.

(6) qif

(
q
j
f (P )

)
= q

i+j
f (P ). ♥

Proof. Proof of claims (1), (2), and (4): Clear by definition.
Proof of claim (3): Follows immediately from uniqueness of the decomposition in

Proposition 9.1.3.12, as k-linear combinations of f -reduced polynomials are again f -
reduced.

Proof of claim (5): First note that both sides are k-linear in both P and Q. It hence
suffices to consider the case P = R · f e, Q = R′ · f e

′ with f -reduced polynomials R and
R′ and nonnegative integers e and e′. In this case we can read off

rbf (P ) =

{
R if b = e

0 otherwise
and rcf (Q) =

{
R′ if c = e′

0 otherwise

518



9.2. A strict model for HHMixed of medium size

so that we obtain ∑

a+b+c=j

raf

(
rbf (P ) · r

c
f (Q)

)
= r

j−e−e′

f

(
RR′

)

which is equal to rjf (P ·Q) = r
j
f (RR

′f e+e
′
) by (4).

Proof of claim (6): This follows from the previous claims, as in the following calcula-
tion.

q
i+j
f (P ) = q

i+j
f

(
q
j
f (P )f

j + r
<j
f (P )

)

= q
i+j
f

(
q
j
f (P )f

j
)
+ q

i+j
f

(
r
<j
f (P )

)

= qif

(
q
j
f (P )

)
+ 0

As rjf , r
≤j
f , r<jf , and q

j
f are k-linear by Proposition 9.1.3.15 (3), we can extend their

definitions as follows.
Convention 9.1.3.16. Assume MonOrdMonicPoly. Let M be a (graded) k-module.
Then for any integer j we obtain a morphism of (graded) k-modules

r
j
f ⊗k idM : k[x1, . . . , xn]⊗k M → k[x1, . . . , xn]⊗k M (9.1)

which we will also call rjf . Similarly for r≤jf , r
<j
f , and q

j
f . ♦

9.2. A strict model for HHMixed of medium size
In this section we will give a description of a strict mixed complex that represents

HHMixed(k[x1, . . . , xn]/f) as an object of Mixed under assumptions MonOrdMonicPoly
and Conjecture D for f .

We will start in Section 9.2.1 by showing that k[x1, . . . , xn] satisfies the necessary condi-
tions as a module over k[t] in order to apply the more general result Proposition 8.3.0.1
on a strict mixed complex representing HHMixed of quotients. We will then spell out
Proposition 8.3.0.1 specialized to HHMixed(k[x1, . . . , xn]/f) in Section 9.2.2. While there
is an obvious basis of the resulting strict mixed complex, that basis is not well adapted
to further simplification steps that we will want to do in later sections. We thus describe
a new, more useful, basis in Section 9.2.3.

9.2.1. k[x1, . . . , xn] as a module over k[t]
In this short section we show that multiplication with f acts on k[x1, . . . , xn] in a way

that satisfies the requirements to apply Proposition 8.3.0.1.
Proposition 9.2.1.1. Assume MonOrdMonicPoly. Then the subset

{
xi⃗
∣∣∣ i⃗ ∈ Zn≥0, i⃗ � deg�(f)

}
(9.2)

of k[x1, . . . , xn] is a basis of k[x1, . . . , xn] as a right-k[t]-module, where t acts by multi-
plication with f . In particular, k[x1, . . . , xn] is free as a right-k[t]-module. ♥

519



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Proof. The sub-k-module of k[x1, . . . , xn] spanned by xi⃗ for i⃗ � deg�(f) is a basis of
the sub-k-module of f -reduced polynomials, so it follows from Proposition 9.1.3.12 that
(9.2) generates k[x1, . . . , xn] as a right-k[t]-module.

For linear independence, assume that p⃗i are elements of k[t] for each i⃗ ∈ Zn≥0 such that
i⃗ � deg�(f), with all but finitely many p⃗i zero. We can write p⃗i as p⃗i =

∑
j≥0 a⃗i,jt

j, with
a⃗i,j elements of k, all but finitely many (for fixed i⃗) zero. Furthermore, assume that the
following holds.

∑

i⃗∈Zn≥0,

i⃗�deg⪯(f)

xi⃗ ·


∑

j≥0

a⃗i,jf
j


 = 0

Then the uniqueness part of Proposition 9.1.3.12 implies
∑

i⃗∈Zn≥0,

i⃗�deg⪯(f)

a⃗i,jx
i⃗ = 0

for every j ≥ 0, but as the xi⃗ are k-linearly independent, this implies that all a⃗i,j are
zero.

Proposition 9.2.1.2. Assume MonOrdMonicPoly. Then k[x1, . . . , xn] is cofibrant as an
object in RModk[t](Ch(k)), where t acts by multiplication with f . ♥

Proof. As k[x1, . . . , xn] is free as a right-k[t]-module by Proposition 9.2.1.1, this follows
from Theorem 4.2.2.1 (5) and [Hov99, 2.3.6].

9.2.2. A strict model for HHMixed

We can now specialize Proposition 8.3.0.1 to obtain a first strict mixed complex Xf

that represents HHMixed(k[x1, . . . , xn]/f). While the result is conditional on Conjecture D
holding for f , we can construct Xf in greater generality.

Construction 9.2.2.1. Assume MonOrdMonicPoly. We will construct a strict mixed
complex Xf . As a Z-graded k-module8, Xf is given by

Xf := k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

with x1, . . . , xn of degree 0, d x1, . . . , dxn and s of degree 1 and d s of degree 2. The
boundary operator ∂ and differential d are given by k-linearly extending the following
formulas for i⃗ ∈ Zn≥0, ϵ⃗ ∈ {0, 1}n, and m ≥ 0.

∂
(
xi⃗ dxϵ⃗s d s[m]

)
= (−1)|⃗ϵ|xi⃗f dxϵ⃗ d s[m] − (−1)|⃗ϵ|xi⃗ dxϵ⃗ d f · s d s[m−1]

8We will use the structure of a commutative Z-graded k-algebra on Xf to write down elements, but
Xf itself is only considered as a strict mixed complex.

520



9.2. A strict model for HHMixed of medium size

∂
(
xi⃗ dxϵ⃗ d s[m]

)
= −(−1)|⃗ϵ|xi⃗ dxϵ⃗ d f d s[m−1]

d
(
xi⃗ dxϵ⃗s d s[m]

)
= d

(
xi⃗
)

dxϵ⃗s d s[m] + (−1)|⃗ϵ|(m+ 1)xi⃗ dxϵ⃗ d s[m+1]

d
(
xi⃗ dxϵ⃗ d s[m]

)
= d

(
xi⃗
)

dxϵ⃗ d s[m]

In the formulas above, d applied to elements of k[x1, . . . , xn]⊗Λ(dx1, . . . , dxn) is defined
as in Ω•

k[x1,...,xn]/k
9, and d s[−1] is to be interpreted as zero.

To see that ∂ and d as defined really upgrade Xf to a strict mixed complex we need
to check that ∂ and d square to 0, and that ∂ ◦d+d ◦ ∂ = 0 holds. We check all of these
on basis elements. Using that d f · d f = 0 in the Z-graded k-algebra underlying Xf we
obtain the following calculations for i⃗ ∈ Zn≥0, ϵ⃗ ∈ {0, 1}n, and m ≥ 0.

∂

(
∂
(
xi⃗ dxϵ⃗s d s[m]

))

= ∂
(
(−1)|⃗ϵ|xi⃗f dxϵ⃗ d s[m] − (−1)|⃗ϵ|xi⃗ dxϵ⃗ d f · s d s[m−1]

)

= −(−1)|⃗ϵ|(−1)|⃗ϵ|xi⃗f dxϵ⃗ d f d s[m−1]

− (−1)|⃗ϵ|
(
(−1)|⃗ϵ|+1xi⃗f dxϵ⃗ d f d s[m−1] − (−1)|⃗ϵ|+1xi⃗ dxϵ⃗ d f · d f · s d s[m−1]

)

= −xi⃗f dxϵ⃗ d f d s[m−1] + xi⃗f dxϵ⃗ d f d s[m−1] − 0

= 0

∂

(
∂
(
xi⃗ dxϵ⃗ d s[m]

))

= ∂
(
−(−1)|⃗ϵ|xi⃗ dxϵ⃗ d f d s[m−1]

)

=
(
−(−1)|⃗ϵ|

)
·
(
−(−1)|⃗ϵ|+1

)
· xi⃗ dxϵ⃗ d f d f d s[m−2]

= 0

Using that d squares to 0 in Ω•
k[x1,...,xn]/k

we obtain the following calculations.

d
(

d
(
xi⃗ dxϵ⃗s d s[m]

))

= d
(

d
(
xi⃗
)

dxϵ⃗s d s[m] + (−1)|⃗ϵ|(m+ 1)xi⃗ dxϵ⃗ d s[m+1]

)

= d
(

d
(
xi⃗
))

dxϵ⃗s d s[m] + (−1)|⃗ϵ|+1(m+ 1) d
(
xi⃗
)

dxϵ⃗ d s[m+1]

+ (−1)|⃗ϵ|(m+ 1) d
(
xi⃗
)

dxϵ⃗ d s[m+1]

= 0

9So extending from d(xi) := dxi using k-linearity and the Leibniz rule.

521



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

d
(

d
(
xi⃗ dxϵ⃗ d s[m]

))

= d
(

d
(
xi⃗
)

dxϵ⃗ d s[m]

)

= d
(

d
(
xi⃗
))

dxϵ⃗ d s[m]

= 0

Finally, using that d satisfies the Leibniz rule on Ω•
k[x1,...,xn]/k

we can carry out the
following calculations showing that ∂ ◦ d + d ◦ ∂ = 0.

∂

(
d
(
xi⃗ dxϵ⃗s d s[m]

))
+ d
(
∂
(
xi⃗ dxϵ⃗s d s[m]

))

= ∂

(
d
(
xi⃗
)

dxϵ⃗s d s[m] + (−1)|⃗ϵ|(m+ 1)xi⃗ dxϵ⃗ d s[m+1]

)

+ d
(
(−1)|⃗ϵ|xi⃗f dxϵ⃗ d s[m] − (−1)|⃗ϵ|xi⃗ dxϵ⃗ d f · s d s[m−1]

)

= (−1)|⃗ϵ|+1 d
(
xi⃗
)
f dxϵ⃗ d s[m] − (−1)|⃗ϵ|+1 d

(
xi⃗
)

dxϵ⃗ d f · s d s[m−1]

− (−1)|⃗ϵ|(−1)|⃗ϵ|(m+ 1)xi⃗ dxϵ⃗ d f d s[m]

+ (−1)|⃗ϵ| d
(
xi⃗ · f

)
dxϵ⃗ d s[m]

− (−1)|⃗ϵ|
(

d
(
xi⃗ dxϵ⃗ d f

)
· s d s[m−1] + (−1)|⃗ϵ|+1 ·m · xi⃗ dxϵ⃗ d f d s[m]

)

= −(−1)|⃗ϵ| d
(
xi⃗
)
f dxϵ⃗ d s[m] + (−1)|⃗ϵ| d

(
xi⃗
)

dxϵ⃗ d f · s d s[m−1]

− (m+ 1)xi⃗ dxϵ⃗ d f d s[m]

+ (−1)|⃗ϵ| d
(
xi⃗
)
· f dxϵ⃗ d s[m] + (−1)|⃗ϵ|xi⃗ · d(f) dxϵ⃗ d s[m]

− (−1)|⃗ϵ| d
(
xi⃗
)

dxϵ⃗ d f · s d s[m−1] +mxi⃗ dxϵ⃗ d f d s[m]

= −(m+ 1)xi⃗ dxϵ⃗ d f d s[m] + (−1)|⃗ϵ|xi⃗ · d(f) dxϵ⃗ d s[m] +mxi⃗ dxϵ⃗ d f d s[m]

= −(m+ 1)xi⃗ dxϵ⃗ d f d s[m] + xi⃗ dxϵ⃗ d f d s[m] +mxi⃗ dxϵ⃗ d f d s[m]

= 0

∂

(
d
(
xi⃗ dxϵ⃗ d s[m]

))
+ d
(
∂
(
xi⃗ dxϵ⃗ d s[m]

))

= ∂

(
d
(
xi⃗
)

dxϵ⃗ d s[m]

)
− (−1)|⃗ϵ| d

(
xi⃗ dxϵ⃗ d f d s[m−1]

)

= −(−1)|⃗ϵ|+1 d
(
xi⃗
)

dxϵ⃗ d f d s[m−1] − (−1)|⃗ϵ| d
(
xi⃗
)

dxϵ⃗ d f d s[m−1]

= 0

522



9.2. A strict model for HHMixed of medium size

Note that as Xf is free as a Z-graded k-module, it follows from [Hov99, 2.3.6] that
the underlying chain complex of Xf is cofibrant. ♦

Proposition 9.2.2.2. Assume MonOrdMonicPoly and that Conjecture D10 holds for f .
Then there is an equivalence

HHMixed(k[x1, . . . , xn]/(f)) ≃ γMixed
(
Xf

)

in Mixed, where Xf is as in Construction 9.2.2.1. ♥

Proof. This is a specialization of Proposition 8.3.0.1 for R = k[x1, . . . , xn], the x1 from
Proposition 8.3.0.1 being f and the n from Proposition 8.3.0.1 being 1. The requirement
on R was verified with Proposition 9.2.1.2. That Conjecture D holds for f yields a
commutative diagram

HHMixed(k) Alg(γMixed)
(
Ω•
k/k

)

HHMixed
(
k[t]
)

Alg(γMixed)
(
Ω•
k[t]/k

)

HHMixed
(
k[X]

)
Alg(γMixed)

(
Ω•
k[X]/k

)

≃

≃

HHMixed(F )

HHMixed(G)

Alg(γMixed)
(
Ω•
F/k

)

Alg(γMixed)
(
Ω•
G/k

)

≃

(∗)

in Alg(Mixed) such that the horizontal morphisms are equivalences. We can use the top
square as the one witnessing Conjecture C for Proposition 8.3.0.1.

Naturality of the identification at the start of Section 7.1 yields a commutative diagram

k[t]⊗ Λ(d t) k[x1, . . . , xn]⊗ Λ(dx1, . . . dxn)

Ω•
k[t]/k Ω•

k[x1,...,xn]/k

∼= ∼=

in Alg(Mixedcof) with the vertical morphisms the isomorphisms from Section 7.1 and
the horizontal morphisms induced by t 7→ f . Combining this with the bottom square in

10Note that Conjecture D holds if n = 1 or n = 2 with 2 invertible in k by Proposition 7.5.3.1.

523



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

diagram (∗), we obtain a commutative diagram as follows in Alg(Mixed)

Alg(γMixed)
(
k[t]⊗ Λ(d t)

)
Alg(γMixed)

(
k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)

)

Alg(γMixed)
(
Ω•
k[t]/k

)
Alg(γMixed)

(
Ω•
k[x1,...,xn]/k

)

HHMixed(k[t]) HHMixed(k[x1, . . . , xn])

≃ ≃

≃ ≃

where the left column is precisely (8.8), and the horizontal morphisms are all induced by
t 7→ f . Letting M be k[x1, . . . , xn] ⊗ Λ(dx1, . . . dxn), as a right-k[t] ⊗ Λ(d t)-module in
Mixedcof, with the module action arising from the above morphism of algebras, M thus
satisfies the requirements for applying Proposition 8.3.0.1.

9.2.3. A basis for the strict model
In this section we describe a new basis for k[x1, . . . , xn]⊗Λ(dx1, . . . , dxn)⊗Λ(s)⊗Γ(d s)

in which the formulas for ∂ and d will take a form that will make it easier to construct
smaller strict models in later sections.

9.2.3.1. Interaction of q1f with d and multiplication

We will need two small results on the interaction of q1f and q2f with products and the
differentiation.

Proposition 9.2.3.1. Assume MonOrdMonicPoly. Then the following hold for P and
Q elements of the strict mixed complex k[x1, . . . , xn]⊗Λ(dx1, . . . , dxn) (see Section 7.1).

(1) If P is f -reduced, then dP is f -reduced as well.

(2) −q1f (d f · dP ) = q1f

(
d f · q1f (d f · P )

)
+ d
(
q1f (d f · P )

)

(3) q2f (PQ) = q1f

(
P · q1f (Q)

)
+ q2f

(
P · r0f (Q)

)
♥

Proof. Proof of claim (1): It suffices to consider the case P = xi⃗ for i⃗ ∈ Zn≥0. In this
case, dP =

∑n
j=1 ijx

i⃗−e⃗j , and the claim follows from i⃗− e⃗j ≤ i⃗.
Proof of claim (2): By definition we have

d f · P = f · q1f (d f · P ) + r0f (d f · P )

so that applying d yields the following.

− d f · dP = d f · q1f (d f · P ) + f d
(
q1f (d f · P )

)
+ d
(
r0f (d f · P )

)

524



9.2. A strict model for HHMixed of medium size

We can now apply q1f , to obtain the following.

−q1f (d f · dP ) = q1f

(
d f · q1f (d f · P )

)
+ q1f

(
f d
(
q1f (d f · P )

))
+ q1f

(
d
(
r0f (d f · P )

))

r0f (d f · P ) is f -reduced, so the third summand is zero by (1). We use Proposition 9.1.3.15
(4) for the second summand.

= q1f

(
d f · q1f (d f · P )

)
+ d
(
q1f (d f · P )

)

Proof of claim (3): By definition of q1f and r0f , the following holds.

Q = q1f (Q) · f + r0f (Q)

We can now multiply with P on the left.

PQ = P · q1f (Q) · f + P · r0f (Q)

Applying q2f and using Proposition 9.1.3.15 (4) on the first summand on the right hand
side we obtain the following.

q2f (PQ) = q1f

(
P · q1f (Q)

)
+ q2f

(
P · r0f (Q)

)

9.2.3.2. The basis

Definition 9.2.3.2. Assume MonOrdMonicPoly and let m be an integer. We define two
k-linear maps

C [m] : k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)→ k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)
and
E [m] : k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)→ k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

as follows. If m < 0, then we let C [m] and E [m] be constant with value 0. If m ≥ 0, then
we define them as follows.

C [m](g) := sg d s[m]

E [m](g) := g d s[m] + sq1f (d f · g) d s[m−1] = g d s[m] + C [m−1]
(
q1f (d f · g)

)

In the formulas above, we interpret d s[−1] as zero.
Let J be the defined as

J :=
{ (

i⃗, l, ϵ⃗, m
)
∈ Zn≥0 × Z≥0 × {0, 1}

n × Z≥0

∣∣∣∣ i⃗ � deg�(f)

}

and for (⃗i, l, ϵ⃗, m) ∈ J, define c⃗i,l,⃗ϵ,m and e⃗i,l,⃗ϵ,m as follows.

c⃗i,l,⃗ϵ,m := C [m]
(
xi⃗f l dxϵ⃗

)
= sxi⃗f l dxϵ⃗ d s[m]

e⃗i,l,⃗ϵ,m := E [m]
(
xi⃗f l dxϵ⃗

)
= xi⃗f l dxϵ⃗ d s[m] + C [m−1]

(
q1f

(
d f · xi⃗f l dxϵ⃗

))
♦

525



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Proposition 9.2.3.3. Assume MonOrdMonicPoly. Then
{
c⃗i,l,⃗ϵ,m

∣∣∣∣
(
i⃗, l, ϵ⃗, m

)
∈ J

}
∪

{
e⃗i,l,⃗ϵ,m

∣∣∣∣
(
i⃗, l, ϵ⃗, m

)
∈ J

}

is a k-basis for the graded k-module k[x1, . . . , xn]⊗Λ(dx1, . . . , dxn)⊗Λ(s)⊗Γ(d s). ♥

Proof. The set {
d s[m]

∣∣∣ m ∈ Z≥0

}
∪
{
s d s[m]

∣∣∣ m ∈ Z≥0

}

is a k-basis for Λ(s)⊗ Γ(d s), so there is a sum decomposition as follows.

k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s) ∼=
⊕

m≥0

Im
(
C [m]

)
⊕
⊕

m≥0

Im
(
E [m]

)

As C [m] and E [m] are clearly injective for m ≥ 0, it thus suffices to show that
{
xi⃗f l dxϵ⃗

∣∣∣ i⃗ ∈ Zn≥0, i⃗ � deg�(f), l ∈ Z≥0, ϵ⃗ ∈ {0, 1}
n
}

is a k-basis of k[x1, . . . , xn]⊗Λ(dx1, . . . , dxn), which follows from Proposition 9.2.1.1.

9.2.3.3. Description of boundary and differential

Proposition 9.2.3.4. Assume MonOrdMonicPoly, recall the notation from Defini-
tion 9.2.3.2, and let (⃗i, l, ϵ⃗, m) ∈ J. Then the following formulas hold in the strict mixed
complex Xf from Construction 9.2.2.1.

∂
(
c⃗i,l,⃗ϵ,m

)
= e⃗i,l+1,⃗ϵ,m

∂
(
e⃗i,l,⃗ϵ,m

)
=




−E [m−1]

(
r0f

(
d f · xi⃗ dxϵ⃗

))
if l = 0

0 if l > 0

d
(
e⃗i,l,⃗ϵ,m

)
= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

+ (m− 1)C [m−1]

(
q2f

(
d f · r0f

(
d f · xi⃗f l dxϵ⃗

)))
♥

Proof. We start with ∂
(
c⃗i,l,⃗ϵ,m

)
and obtain the following by reordering the factors and

applying the formula from Construction 9.2.2.1.

∂
(
c⃗i,l,⃗ϵ,m

)
= ∂

(
sxi⃗f l dxϵ⃗ d s[m]

)

= ∂
(
(−1)|⃗ϵ|xi⃗f l dxϵ⃗s d s[m]

)

= (−1)|⃗ϵ|
(
(−1)|⃗ϵ|xi⃗f l+1 dxϵ⃗ d s[m] − (−1)|⃗ϵ|xi⃗f l dxϵ⃗ d f · s d s[m−1]

)

526



9.2. A strict model for HHMixed of medium size

= xi⃗f l+1 dxϵ⃗ d s[m] − xi⃗f l dxϵ⃗ d f · s d s[m−1]

= xi⃗f l+1 dxϵ⃗ d s[m] + s d fxi⃗f l dxϵ⃗ d s[m−1]

If follows from Proposition 9.1.3.15 (4) that

q1f (d fxi⃗f l+1 dxϵ⃗) = q0f (d fxi⃗f l dxϵ⃗) = d fxi⃗f l dxϵ⃗

so that we obtain the following (continuing for ∂(c⃗i,l,⃗ϵ,m)).

= xi⃗f l+1 dxϵ⃗ d s[m] + sq1f

(
d fxi⃗f l+1 dxϵ⃗

)
d s[m−1]

= e⃗i,l+1,⃗ϵ,m

We next consider ∂(e⃗i,l,⃗ϵ,m).

∂
(
e⃗i,l,⃗ϵ,m

)

= ∂

(
xi⃗f l dxϵ⃗ d s[m] + sq1f

(
d f · xi⃗f l dxϵ⃗

)
d s[m−1]

)

= −(−1)|⃗ϵ|xi⃗f l dxϵ⃗ d f d s[m−1]

+ (−1)1+|⃗ϵ|∂

(
q1f

(
d f · xi⃗f l dxϵ⃗

)
s d s[m−1]

)

= −(−1)|⃗ϵ|xi⃗f l dxϵ⃗ d f d s[m−1]

+ (−1)2(1+|⃗ϵ|)

(
q1f

(
d f · xi⃗f l dxϵ⃗

)
f d s[m−1] − q1f

(
d f · xi⃗f l dxϵ⃗

)
d f · s · d s[m−2]

)

=

(
− d f · xi⃗f l dxϵ⃗ + q1f

(
d f · xi⃗f l dxϵ⃗

)
f

)
· d s[m−1]

+ s d fq1f
(

d f · xi⃗f l dxϵ⃗
)

d s[m−2]

Before we continue with ∂(e⃗i,l,⃗ϵ,m), we carry out the following small calculation.

q1f

(
d f ·

(
− d f · xi⃗f l dxϵ⃗ + q1f

(
d f · xi⃗f l dxϵ⃗

)
f

))

Using that d f squares to 0.

= q1f

(
d f · q1f

(
d f · xi⃗f l dxϵ⃗

)
f

)

Applying Proposition 9.1.3.15 (4) to the outer q1f .

= d f · q1f
(

d f · xi⃗f l dxϵ⃗
)

Note that by definition we also have the following equality.

− d f · xi⃗f l dxϵ⃗ + q1f

(
d f · xi⃗f l dxϵ⃗

)
f = −r0f

(
d f · xi⃗f l dxϵ⃗

)

527



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Continuing with ∂(e⃗i,l,⃗ϵ,m), we can plug in the above two calculations to obtain the
following.

∂(e⃗i,l,⃗ϵ,m)

= −r0f

(
d f · xi⃗f l dxϵ⃗

)
d s[m−1] − sq1f

(
d f · r0f

(
d f · xi⃗f l dxϵ⃗

))
d s[m−2]

= −E [m−1]

(
r0f

(
d f · xi⃗f l dxϵ⃗

))

It follows from Proposition 9.1.3.15 (4) that this is zero for l > 0.
We now turn towards the mixed structure.

d
(
e⃗i,l,⃗ϵ,m

)

= d
(
xi⃗f l dxϵ⃗ d s[m] + sq1f

(
d f · xi⃗f l dxϵ⃗

)
d s[m−1]

)

= d
(
xi⃗f l dxϵ⃗ d s[m]

)

+ (−1)1+|⃗ϵ| d
(
q1f

(
d f · xi⃗f l dxϵ⃗

)
s d s[m−1]

)

Applying the definition in Construction 9.2.2.1.
= d

(
xi⃗f l

)
dxϵ⃗ d s[m]

+ (−1)1+|⃗ϵ| d
(
q1f

(
d f · xi⃗f l dxϵ⃗

))
s d s[m−1] +mq1f

(
d f · xi⃗f l dxϵ⃗

)
d s[m]

=

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)
d s[m]

− s d
(
q1f

(
d f · xi⃗f l dxϵ⃗

))
d s[m−1]

Replacing the first summand by E [m]−C [m−1](q1f (d f · −)) and the second summand by
C [m−1].

= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

− C [m−1]

(
q1f

(
d f · d

(
xi⃗f l

)
dxϵ⃗ +m d f · q1f

(
d f · xi⃗f l

)
dxϵ⃗

))

− C [m−1]

(
d
(
q1f

(
d f · xi⃗f l dxϵ⃗

)))

= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

− C [m−1]

(
q1f

(
d f · d

(
xi⃗f l dxϵ⃗

)))

528



9.3. A smaller strict model for the underlying complex

− C [m−1]

(
q1f

(
m d f · q1f

(
d f · xi⃗f l

)
dxϵ⃗

))
− C [m−1]

(
d
(
q1f

(
d f · xi⃗f l dxϵ⃗

)))

We now apply Proposition 9.2.3.1 (2) to the second summand, for P = xi⃗f l dxϵ⃗.

= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

+ C [m−1]

(
q1f

(
d f · q1f

(
d f · xi⃗f l dxϵ⃗

)))
+ C [m−1]

(
d
(
q1f

(
d f · xi⃗f l dxϵ⃗

)))

− C [m−1]

(
q1f

(
m d f · q1f

(
d f · xi⃗f l

)
dxϵ⃗

))
− C [m−1]

(
d
(
q1f

(
d f · xi⃗f l dxϵ⃗

)))

= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

− (m− 1)C [m−1]

(
q1f

(
d f · q1f

(
d f · xi⃗f l dxϵ⃗

)))

We apply Proposition 9.2.3.1 (3) to the second summand for P = d f and Q = xi⃗f l dxϵ⃗

= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

− (m− 1)C [m−1]

(
q2f

(
d f · d f · xi⃗f l dxϵ⃗

))

+ (m− 1)C [m−1]

(
q2f

(
d f · r0f

(
d f · xi⃗f l dxϵ⃗

)))

Finally, we use that d f squares to 0.

= E [m]

(
d
(
xi⃗f l

)
dxϵ⃗ +mq1f

(
d f · xi⃗f l

)
dxϵ⃗

)

+ (m− 1)C [m−1]

(
q2f

(
d f · r0f

(
d f · xi⃗f l dxϵ⃗

)))

9.3. A smaller strict model for the underlying
complex

Assume MonOrdMonicPoly and that Conjecture D holds for the polynomial f . Then
Proposition 9.2.2.2 shows that the strict mixed complex Xf constructed in Construc-
tion 9.2.2.1 represents the Hochschild homology HHMixed(k[x1, . . . , xn]/f). This strict
mixed model is significantly “smaller” than the standard Hochschild complex that we
discussed in Section 6.3.1, but we would nevertheless like to obtain an even smaller
model.

There are two ways in which we can relax the problem in the hope of being able to
make progress on this. We could impose stronger conditions on f (so make the result less

529



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

general), or we could consider less structure. It is the latter that we do in this section.
Instead of asking for a strict mixed complex representing HHMixed(k[x1, . . . , xn]/f) as an
object in Mixed, we merely ask for a chain complex representing HH(k[x1, . . . , xn]/f) as
an object in D(k).

Such a chain complex was already given in [BACH], obtained by identifying a decom-
position of the normalized standard Hochschild complex11 as a sum of a small chain
complex with a very large acyclic chain complex.

We will instead start from the chain complex Xf from Construction 9.2.2.1 and Propo-
sitions 9.2.2.2 and 9.2.3.4, and similarly show that a chain complex isomorphic to the
one obtained in [BACH] is a subcomplex and that the inclusion is a quasiisomorphism.
This gives a new, different proof of the result in [BACH] (albeit requiring the additional
assumption of Conjecture D, which we only showed for n = 1 and n = 2, additionally
assuming that 2 is invertible in k, in Proposition 7.5.3.1).

We will describe the smaller model as a subcomplex of the complex Xf from Con-
struction 9.2.2.1 in Section 9.3.1, and then show that this subcomplex is isomorphic to
the one described in [BACH] in Section 9.3.2.

9.3.1. The smaller strict model as a subcomplex
In this section we define a subcomplex of Xf from Construction 9.2.2.1 and show that

the inclusion of this subcomplex is a quasiisomorphism.

Definition 9.3.1.1. Assume MonOrdMonicPoly. Let

Xf := k[x1, . . . , xn]⊗ Λ(dx1, . . . , dxn)⊗ Λ(s)⊗ Γ(d s)

be the strict mixed complex from Construction 9.2.2.1.
We then define the following sub-graded-k-modules of Xf for every integer l ≥ 0,

where c⃗i,l′ ,⃗ϵ,m and e⃗i,l′ ,⃗ϵ,m are the basis elements defined in Definition 9.2.3.2.

Xc
f,l :=

⊕

(⃗i,l′ ,⃗ϵ,m)∈J
l′=l

k · c⃗i,l′ ,⃗ϵ,m Xc
f,≥l :=

⊕

l′≥l

Xc
f,l′ Xc

f,≤l :=
⊕

l′≤l

Xc
f,l′

Xe
f,l :=

⊕

(⃗i,l′ ,⃗ϵ,m)∈J
l′=l

k · e⃗i,l′ ,⃗ϵ,m Xe
f,≥l :=

⊕

l′≥l

Xe
f,l′ Xe

f,≤l :=
⊕

l′≤l

Xe
f,l′ ♦

Proposition 9.3.1.2. Assume MonOrdMonicPoly and let l ≥ 0. Then the following hold
for the sub-graded-k-modules of the strict mixed complex Xf from Construction 9.2.2.1
that were defined in Definition 9.3.1.1.

∂
(
Xc
f,l

)
⊆ Xe

f,l+1

11See Section 6.3.1.5.

530



9.3. A smaller strict model for the underlying complex

∂
(
Xe
f,0

)
⊆ Xe

f,0

∂
(
Xe
f,l

)
⊆ 0 if l > 0

In particular, Xe
f,0 as well as the sum

Xc
f,≥l ⊕X

e
f,≥l+1

are closed under the boundary operator and hence subcomplexes of Xf . Both of these
chain complexes are cofibrant, and Xc

f,≥l ⊕X
e
f,≥l+1 is acyclic. ♥

Proof. The statement about the images of the differential follow immediately from the
description of ∂ in Proposition 9.2.3.4.

That Xe
f,0 and Xc

f,≥l ⊕X
e
f,≥l+1 are cofibrant as chain complexes follows from [Hov99,

2.3.6], as they are concentrated in nonnegative degree and by definition free as graded
k-modules.

Finally, that Xc
f,≥l ⊕X

e
f,≥l+1 is acyclic also immediately follows from the description

of ∂ in Proposition 9.2.3.4;

e⃗i,l′ ,⃗ϵ,m 7→ c⃗i,l′−1,⃗ϵ,m for
(
i⃗, l′, ϵ⃗,m

)
∈ J, l′ ≥ l + 1

c⃗i,l′ ,⃗ϵ,m 7→ 0 for
(
i⃗, l′, ϵ⃗,m

)
∈ J, l′ ≥ l

defines a contracting homotopy, see Definition 9.2.3.2 and Propositions 9.2.3.3 and 9.2.3.4.

Proposition 9.3.1.3. Assume MonOrdMonicPoly and that Conjecture D12 holds for f .
Then there is an equivalence

HH
(
k[x1, . . . , xn]/f

)
≃ γ

(
Xe
f,0

)

in D(k), where Xe
f,0 is the cofibrant chain complex defined in Definition 9.3.1.1 and Propo-

sition 9.3.1.2. ♥

Proof. It follows from Proposition 9.2.3.3 that, as a graded k-module, Xf decomposes as
the direct sum of Xe

f,0 and Xc
f,≥0⊕X

e
f,≥1. As both summands are subcomplexes of Xf by

Proposition 9.3.1.2, with the latter chain complex acyclic, it follows that the inclusion

Xe
f,0 → Xf

is a quasiisomorphism. We hence obtain equivalences

γ
(
Xe
f,0

)
≃ γ

(
Xf

)
≃ HH

(
k[x1, . . . , xn]/f

)

in D(k), where the first equivalence is induced by the just mentioned quasiisomorphism,
and the second equivalence is the one from Proposition 9.2.2.2.
12Note that Conjecture D holds if n = 1 or n = 2 with 2 invertible in k by Proposition 7.5.3.1.

531



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

9.3.2. A different description of the smaller model
In Proposition 9.3.1.3 we showed that the chain complex Xe

f,0 defined in Defini-
tion 9.3.1.1 is a model for HH(k[x1, . . . , xn]/f) as an object in D(k), assuming some
conditions on f . As Xe

f,0 was defined as a subcomplex of Xf generated by some basis
elements, it is slightly unexplicit, and in this section we give a somewhat more direct
description of this complex. In particular, our description will be nearly the same as the
one in [BACH, 2.3 and 3.2]13.

Construction 9.3.2.1. Assume MonOrdMonicPoly.
We let

p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f

be the canonical quotient map. Note that p is a morphism of k-algebras. If M is a graded
k-module, then we will also denote the morphism of graded k-modules

p⊗ idM : k[x1, . . . , xn]⊗M → k[x1, . . . , xn]/f ⊗M

by p again.
Consider the commutative graded k-algebra

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

with xi of degree 0, d xi of degree 1 and t of degree 2. We define an operator ∂ decreasing
degree by 1 by extending the following formulas by k-linearity and the Leibniz rule, where
P ∈ k[x1, . . . , xn]/f , 1 ≤ i ≤ n, and m ≥ 0.

∂(P ) = 0, ∂(dxi) = 0, ∂
(
t[m]
)
= −p(d f)t[m−1]

To show that ∂ is well-defined we need to verify that the formula for ∂(t[m]) is compatible
with the Leibniz rule, so as for m,m′ ≥ 0 we have

t[m] · t[m
′] =

(
m+m′

m

)
t[m+m′]

we have to show that the following equality holds.

− p(d f)t[m−1] · t[m
′] − t[m] · p(d f)t[m′−1] = −

(
m+m′

m

)
p(d f)t[m+m′−1] (∗)

The left hand side is given by

− p(d f)t[m−1] · t[m
′] − t[m] · p(d f)t[m′−1]

13The complex constructed here differs from the one in [BACH] in the very minor detail that our
external generators are the the additive inverses of the external generators they consider. We do this
because we will in Section 9.5 also define a mixed structure on this complex, and prefer the exterior
generators to be given by dxi rather than − dxi.

532



9.3. A smaller strict model for the underlying complex

= −p(d f)
(
t[m−1] · t[m

′] + t[m] · t[m
′−1]
)

= −p(d f)
((

m+m′ − 1

m− 1

)
t[m+m′−1] +

(
m+m′ − 1

m

)
t[m+m′−1]

)

so (∗) follows from
(
m+m′−1
m−1

)
+
(
m+m′−1

m

)
=
(
m+m′

m

)
.

As d f · d f = 0, the operator ∂ squares to zero, and thus makes

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

into a commutative differential graded k-algebra. It is isomorphic to the one considered
in [BACH, 2.3 and 3.2]14, where it is shown that this complex is quasiisomorphic to the
normalized standard Hochschild complex for k[x1, . . . , xn]/f .

Now let
φ : Xe

f,0 → k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

be the morphism of graded k-modules defined on basis elements as follows.

φ
(
e⃗i,0,⃗ϵ,m

)
:= p

(
xi⃗
)

dxϵ⃗t[m] for
(
i⃗, 0, ϵ⃗,m

)
∈ J ♦

Proposition 9.3.2.2. Assume MonOrdMonicPoly. Then the morphism of graded k-
modules φ from Construction 9.3.2.1 is an isomorphism of chain complexes. ♥

Proof. We first check that φ is compatible with the differential, letting (⃗i, 0, ϵ⃗,m) ∈ J.

φ

(
∂
(
e⃗i,0,⃗ϵ,m

))

We first use Proposition 9.2.3.4.

= φ

(
−E [m−1]

(
r0f

(
d f · xi⃗ dxϵ⃗

)))
= −p

(
r0f

(
d f · xi⃗

))
dxϵ⃗t[m−1]

We can now use that p sends the ideal generated by f to 0 and hence satisfies p ◦ r0f = p,
and furthermore that p is multiplicative.

= −p
(

d f · xi⃗
)

dxϵ⃗t[m−1] = −p(d f)p
(
xi⃗
)

dxϵ⃗t[m−1]

= ∂

(
p
(
xi⃗
)

dxϵ⃗t[m]

)
= ∂

(
φ
(
e⃗i,0,⃗ϵ,m

))

It now remains to show that φ is an isomorphism of graded k-modules. For this it is
enough to show that the restriction of the quotient map

p : k[x1, . . . , xn]→ k[x1, . . . , xn]/f

14As noted before, our description deviates in the signs of the external generators, but this does not
change the fact that the differential graded k-algebras themselves are isomorphic, via an isomorphism
from our complex to the one in [BACH, 2.3 and 3.2] mapping xi to Xi, dxi to −ei, and t[m] to t(m).
.

533



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

to the sub-graded-k-module of f -reduced polynomials is an isomorphism. But this follows
immediately from Proposition 9.1.3.10, which shows that every element of k[x1, . . . , xn]/f
has a unique f -reduced representative in k[x1, . . . , xn].

The following corollary alternatively follows easily from the main result of [BACH],
without requiring the assumption that Conjecture D holds for f . Our approach gives a
different, independent, proof for those cases in which Conjecture D holds for f .

Corollary 9.3.2.3. Assume MonOrdMonicPoly and that Conjecture D15 holds for f .
Then there is an equivalence

HH
(
k[x1, . . . , xn]/f

)
≃ γ

(
k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

)

in D(k), where
k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

is the cofibrant chain complex defined in Construction 9.3.2.1. ♥

Proof. Combine Proposition 9.3.1.3 with Proposition 9.3.2.2.

9.4. Logarithmic dimension of polynomials
Assume MonOrdMonicPoly and that Conjecture D holds for f . In Section 9.3.1 we

constructed a subcomplex Xe
f,0 of the strict mixed complex Xf from Construction 9.2.2.1

such that the inclusion is a quasiisomorphism, which implied that Xe
f,0 represents the

Hochschild homology HH(k[x1, . . . , xn]/f) as an object of D(k).
We would like to show that the strict mixed structure on Xf restricts to Xe

f,0, which
would allow us to conclude that Xe

f,0 even represents HHMixed(k[x1, . . . , xn]/f) as an
object of Mixed.

Unfortunately the formula for d we obtained in Proposition 9.2.3.4 is somewhat more
complicated than those we obtained for ∂ and it is not obvious that Xe

f,0 is closed under
d. In particular, there is a term of the form

C [m−1]

(
q2f

(
d f · r0f

(
d f · xi⃗ dxϵ⃗

)))
(9.3)

that we would need to vanish, and there is no reason to assume this is always the case.
Indeed, the following example shows that this term can be nonzero.

Example 9.4.0.1. Let k = Z, n = 2, and consider the polynomial f = x1x2 − x
2
2. If we

let � be the lexicographic monomial order16, then f is monic and of degree (1, 1).
We claim that

q2f

(
d f · r0f

(
d f · x21

))

15Note that Conjecture D holds if n = 1 or n = 2 and 2 is invertible in k by Proposition 7.5.3.1.
16So (i1, i2) � (j1, j2) if i1 < j1 or i1 = j1 and i2 < j2.

534



9.4. Logarithmic dimension of polynomials

is nonzero, even though x21 is f -reduced. Let us calculate this step by step.

r0f
(
d f · x21

)
= r0f

(
x21x2 dx1 + x31 dx2 − 2x21x2 dx2

)

To calculate for example r0f (x
2
1x2) we start by writing x21x2 = x1f + x1x

2
2 and then

continue with x1x
2
2 = x2f + x32.

= x32 dx1 + x31 dx2 − 2x32 dx2

We next need to multiply by d f , and obtain the following.

d f · r0f
(
d f · x21

)
=
(
x31x2 − 2x42 − x1x

3
2 + 2x42

)
dx1 dx2

Applying q2f amounts to applying q1f twice by Proposition 9.1.3.15 (6), so we obtain the
following.

q2f

(
d f · r0f

(
d f · x21

))

= q1f

(
q1f
(
x31x2 − 2x42 − x1x

3
2 + 2x42

))
dx1 dx2

= q1f

((
x21 + x1x2 + x22

)
− 2 · (0)−

(
x22
)
+ 2 · (0)

)
dx1 dx2

= q1f
(
x21 + x1x2

)
dx1 dx2

= (0 + 1) dx1 dx2 = dx1 dx2 6= 0 ♦

The goal of this section is to describe a criterion for f that is easy to check and that
implies that terms of the form (9.3) that need to be zero for Xe

f,0 to be closed under
d are indeed zero. For this we will generalize r0f (d f · xi⃗ dxϵ⃗) to an arbitrary f -reduced
polynomial R and ask what the largest integer i is such that qif (d f ·R) can be nonzero
for an f -reduced polynomial R (with f fixed). We will call this number the log dimension
of d f to basis f and will give an easy to check criterion that implies that this number
is at most 1 in Proposition 9.4.2.5 and Corollary 9.4.2.6.

We will start this section with Section 9.4.1, where we discuss the logarithm for poly-
nomials, before we turn towards the log dimension in Section 9.4.2.

9.4.1. Logarithm for polynomials
In this section we introduce a notion of logarithm for multivariable polynomials and

point out some basic properties and consistency results.

Definition 9.4.1.1. Assume MonOrdMonicPoly. We define a map

logf : k[x1, . . . , xn]→ Z≥0

as follows. For P an element of k[x1, . . . , xn], we let

logf (P ) := max
({

i ∈ Z≥0

∣∣∣ rif (P ) 6= 0
})

535



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

and call logf (P ) the logarithm to base f of P (with respect to the monomial order
�). Note that the set over which we take the maximum is finite, as all but finitely
many summands in the decomposition from Proposition 9.1.3.12 are zero, so attains a
maximum in Z≥0. ♦

Remark 9.4.1.2. Assume MonOrdMonicPoly and let P be an element of k[x1, . . . , xn].
Then P is f -reduced if and only if logf (P ) = 0. ♦

Remark 9.4.1.3. Assume MonOrdMonicPoly and that we are in the situation of Con-
struction 9.1.1.11 and that deg�(f) is in the image of ψ. Let P be an element of
k[x1, . . . , xn] and let f ′ and P ′ be the elements of k′[y1, . . . , ym] corresponding to f and
P under the isomorphism of Construction 9.1.1.11. It then follows from Remark 9.1.3.11
that logf ′(P ′) = logf (P ). ♦

Proposition 9.4.1.4. Assume MonOrdMonicPoly and let P and Q be elements of
k[x1, . . . , xn]. Then the following holds.

logf (P +Q) ≤ max
({

logf (P ), logf (Q)
})

♥

Proof. By Proposition 9.1.3.15 (3), rif is additive for every i ≥ 0, so if rif (P + Q) 6= 0
for some i ≥ 0, then at least one of rif (P ) and rif (Q) must be nonzero as well.

9.4.2. Logarithmic dimension for polynomials
Let f be an element of R>1, i. e. a real number bigger than 1, and let us for a moment

consider the logarithm function
logf : R>0 → R

for the real numbers. This function satisfies a compatibility relation with multiplication;
if P and Q are positive real numbers, then logf (P · Q) = logf (P ) + logf (Q). In Sec-
tion 9.4.1 we defined a logarithm for (multivariable) polynomials, and we would like to
better understand how the logarithm of products relates to the individual logarithms as
well. The logarithm for polynomials does not take real values, so to improve the analogy
we should first replace logf with the function

log′
f : R>0 → Z≥0, x 7→





⌊
logf (x)

⌋
if logf (x) ≥ 0

0 otherwise

so we round down the logarithm, but set it to 0 should it be negative. The rounding
destroys the precise property of the logarithm of a product being the sum of the loga-
rithms, but as for any real number x it holds that x − 1 < ⌊x⌋ ≤ x, we still obtain an
inequality

log′
f (P ) + log′

f (Q) ≤ log′
f (P ·Q) ≤ log′

f (P ) + log′
f (Q) + 1 (9.4)

for every P and Q in R>0.

536



9.4. Logarithmic dimension of polynomials

If we now let f be an element of k[x1] that is a monic polynomial of positive degree,
and P and Q any elements of k[x1], then the analogue of (9.4) holds, at least as long k
is an integral domain. Indeed, for one-variable polynomials, it is actually not difficult to
see that

logf (P ) =
⌊

deg(P )
deg(f)

⌋

from which the inequality

logf (P ) + logf (Q) ≤ logf (P ·Q) ≤ logf (P ) + logf (Q) + 1

follows as long as k is an integral domain. The inequality

logf (P ·Q) ≤ logf (P ) + logf (Q) + 1

holds for any commutative ring k. We can restate this as saying that the expression

logf (P ·Q)− logf (P )− logf (Q) (9.5)

is bounded above by 1 as we let f , P , and Q vary.
Let us now consider multivariable polynomials and assume MonOrdMonicPoly. The

first question we can then ask is whether (9.5) is still bounded above while letting f , P ,
and Q range over k[x1, . . . , xn] with f satisfying the assumptions in MonOrdMonicPoly.

Unfortunately, this is not the case as soon as n ≥ 2. Consider the example f = x1x2,
P = xm1 , Q = xm2 , where m ≥ 1. In this case, logf (P ) = logf (Q) = 0, but logf (P ·Q) = m,
so the value of (9.5) is unbounded if we let f , P , and Q vary.

However, if we fix f , then it is not difficult to find examples where the value of (9.5)
is bounded while letting P and Q range over k[x1, . . . , xn]. For example consider f = x1.
In this case the value of logf (P ) is given by the highest exponent of x1 appearing in the
monomials of P , and the value of (9.5) is bounded above by 0.

So we can instead ask, given fixed f , whether the value of (9.5), as P and Q range
over the elements of k[x1, . . . , xn], is bounded above, and if so, what the maximum value
is. In this section we go one step further, and fix both f as well as P , and consider
the supremum of (9.5) when varying Q, calling it the log dimension to base f of P .
In particular, we will establish a condition that ensures that the log dimension of a
polynomial is at most 1.
Definition 9.4.2.1. Assume MonOrdMonicPoly. For P an element of k[x1, . . . , xn] we
let logdimf (P ) be the element of Z≥0 ∪ {∞} defined as

logdimf (P ) := sup
({

logf (P ·Q)− logf (P )− logf (Q)
∣∣∣ Q ∈ k[x1, . . . , xn]

})

and call logdimf (P ) the log dimension to base f of P . ♦

Remark 9.4.2.2. Assume MonOrdMonicPoly, that we are in the situation of Construc-
tion 9.1.1.11, and that deg�(f) is in the image of ψ. Let P be an element of k[x1, . . . , xn]
and let f ′ and P ′ be the elements of k′[y1, . . . , ym] corresponding to f and P under
the isomorphism of Construction 9.1.1.11. It then follows from Remark 9.4.1.3 and Re-
mark 9.1.3.9 that logdimf ′(P

′) = logdimf (P ). ♦

537



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Proposition 9.4.2.3. Assume MonOrdMonicPoly and let P ∈ k[x1, . . . , xn] be a polyno-
mial. Then it suffices to consider f -reduced polynomials Q in the definition of logdimf (P ),
i. e. there is an equality as follows.

logdimf (P ) = sup
({

logf (P ·R)− logf (P )
∣∣∣ R ∈ k[x1, . . . , xn], R is f -reduced

})
♥

Proof. For the moment let us denote the right hand side of the equality in the statement
by logdimred

f (P ). The inequality logdimred
f (P ) ≤ logdimf (P ) is clear, so it suffices to

show that logdimf (P ) ≤ logdimred
f (P ) also holds.

So let Q be any element of k[x1, . . . , xn]. It suffices to find an f -reduced polynomial
R such that

logf (P ·Q)− logf (P )− logf (Q) ≤ logf (P ·R)− logf (P )

holds, which is equivalent to the following inequality.

logf (P ·Q)− logf (Q) ≤ logf (P ·R)

For this, let us write Q as

Q =

logf (Q)∑

i=0

rif (Q)f
i

so that we obtain the following chain of inequalities.

logf (P ·Q)− logf (Q)

= logf




logf (Q)∑

i=0

P · rif (Q) · f
i


− logf (Q)

Using Proposition 9.4.1.4.

≤ max
({

logf
(
P · rif (Q) · f

i
) ∣∣∣∣ 0 ≤ i ≤ logf (Q)

})
− logf (Q)

Using Proposition 9.1.3.15 (4).

≤ max
({

logf
(
P · rif (Q)

)
+ i

∣∣∣∣ 0 ≤ i ≤ logf (Q)
})
− logf (Q)

≤ max
({

logf
(
P · rif (Q)

) ∣∣∣∣ 0 ≤ i ≤ logf (Q)
})

+ logf (Q)− logf (Q)

= max
({

logf
(
P · rif (Q)

) ∣∣∣∣ 0 ≤ i ≤ logf (Q)
})

We can thus take R to be the f -reduced polynomial rif (Q), where 0 ≤ i ≤ logf (Q) is
chosen to maximize logf

(
P · rif (Q)

)
.

538



9.4. Logarithmic dimension of polynomials

Proposition 9.4.2.4. Assume MonOrdMonicPoly, and assume furthermore that the
degree of f satisfies deg�(f) ≥ (1, . . . , 1) and that f⃗i = 0 for any i⃗ ∈ Zn≥0 such that
i⃗ � deg�(f), i. e. every variable divides the leading monomial of f and every monomial
appearing in f divides the leading monomial.

Let P ∈ k[x1, . . . , xn] be an f -reduced polynomial such that P⃗i = 0 for every i⃗ ∈ Zn≥0

such that i⃗ � deg�(f), i. e. every monomial in P divides the lead monomial of f .
Then logdimf (P ) ≤ 1. ♥

Proof. By Proposition 9.4.2.3, it suffices to show that for any f -reduced polynomial Q
the inequality logf (P ·Q) ≤ 1 holds. Using Proposition 9.4.1.4 we can furthermore reduce
to the case P = xj⃗ with j⃗ < deg�(f) and Q = xi⃗ with i⃗ � deg�(f).

By Proposition 9.1.3.12 we can write the product P ·Q = xj⃗+⃗i as

xj⃗+⃗i = R2f
2 +R1f +R0 (∗)

such that R1 and R0 are f -reduced polynomials, and R2 is any polynomial. What we
have to show is then that R2 = 0. We prove this by contradiction and assume that
R2 6= 0. It then follows from Proposition 9.1.2.3 (4) that

(
R2f

2
)
deg⪯(R2)+2 deg⪯(f)

6= 0

so that it suffices to show that
(
xj⃗+⃗i

)
deg⪯(R2)+2 deg⪯(f)

= (R1f)deg⪯(R2)+2 deg⪯(f) = (R0)deg⪯(R2)+2 deg⪯(f) = 0

in contradiction to (∗).
We start with (xj⃗+⃗i)deg⪯(R2)+2 deg⪯(f), which could only be nonzero if the following

equation would hold.
j⃗ + i⃗ = deg�(R2) + 2 deg�(f)

However, as j⃗ < deg�(f) we would then obtain

i⃗ =
(
j⃗ + i⃗

)
− j⃗

>
(

deg�(R2) + 2 deg�(f)
)
− deg�(f)

≥ deg�(f)

which would contradict i⃗ � deg�(f). Thus (xj⃗+⃗i)deg⪯(R2)+2 deg⪯(f) = 0 must hold.
Next, if (R1f)deg⪯(R2)+2 deg⪯(f) were nonzero, then there would exist a⃗, b⃗ ∈ Zn≥0 such

that (R1)a⃗ 6= 0 and f⃗b 6= 0 and such that the equation

a⃗+ b⃗ = deg�(R2) + 2 deg�(f)

539



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

holds. Using that, by assumption on f , the inequality b⃗ ≤ deg�(f) must hold, we obtain
completely like in the previous case, with b⃗ taking the place of j⃗, that

a⃗ ≥ deg�(f)

which contradicts the assumption that R2 is f -reduced.
Finally, that

(R0)deg⪯(R2)+2 deg⪯(f) = 0

follows directly from R0 being f -reduced.

Proposition 9.4.2.5. Assume MonOrdMonicPoly, and let P ∈ k[x1, . . . , xn] be an f -
reduced polynomial. Assume that for every i⃗ ∈ Zn≥0 such that f⃗i 6= 0 or P⃗i 6= 0 the
following property holds: If 1 ≤ j ≤ n and deg�(f)j 6= 0, then i⃗j ≤ deg�(f)j. In other
words, we require that every monomial appearing in f or P divides the leading monomial
of f after setting those variables that do not appear in the leading monomial of f to 1.

Then logdimf (P ) ≤ 1. ♥

Proof. Let {i′1, . . . , i′r} be the subset of {1, . . . , n} of elements for which deg�(f)i′j = 0,
let {i1, . . . , il} be the complement, and let φ : {i1, . . . , il} → {1, . . . , n} be the inclu-
sion. Note that deg�(f) is then in the image of ψ from Construction 9.1.1.11. Denote
by f ′ and P ′ the elements of (k[xi′1 , . . . , xi′r ])[xi1 , . . . , xil ] corresponding to f and P un-
der the isomorphism of Construction 9.1.1.11. Note that by Proposition 9.1.3.5, f ′ is
monic and deg�(f) = ψ

(
deg�(f

′)
)

by Proposition 9.1.2.4. Then the assumptions on
f and P then translate to f ′ and P ′ satisfying the assumptions required in Proposi-
tion 9.4.2.4. We can thus conclude that logdimf ′(P

′) ≤ 1. As by Remark 9.4.2.2 we also
have logdimf (P ) = logdimf ′(P

′), we are done.

Corollary 9.4.2.6. Assume MonOrdMonicPoly, and assume that f satisfies the property
required in Proposition 9.4.2.5.

Then for every 1 ≤ i ≤ n the partial derivative ∂f

∂xj
satisfies the property required of

P in Proposition 9.4.2.5, and so logdimf

(
∂f

∂xj

)
≤ 1. In particular, q2f (d f · P ) = 0 for

every f -reduced polynomial P . ♥

Proof. Every monomial in ∂f

∂xj
divides a monomial in f .

Notation 9.4.2.7. Assume MonOrdMonicPoly. Then we define logdimf (d f) as follows.

logdimf (d f) := max



{

logdimf

(
∂f

∂xi

) ∣∣∣∣∣ 1 ≤ i ≤ n

}


In particular, the conclusion of Corollary 9.4.2.6 can be phrased as logdimf (d f) ≤ 1,
and logdimf (d f) ≤ 1 implies q2f (d f · P ) = 0 for every f -reduced polynomial P . ♦

540



9.5. A smaller strict model for the mixed complex

9.5. A smaller strict model for the mixed complex
Assume MonOrdMonicPoly and that Conjecture D holds for f . As was already dis-

cussed in the introduction of Section 9.4, we would like to show that the strict mixed
structure on Xf from Construction 9.2.2.1 restricts to the subcomplex Xe

f,0 that we con-
structed in Section 9.3.1, which would allow us to conclude that Xe

f,0 even represents
HHMixed(k[x1, . . . , xn]/f) as an object of Mixed.

The work of Section 9.4 now allows us to concisely state a condition on f that implies
that the strict mixed structure restricts like that, namely the condition logdimf (d f) ≤ 1.
We show that this indeed implies that the strict mixed structure of Xf restricts to Xe

f,0

in the short section Section 9.5.1.
In continuation to Section 9.3.2, in which we gave a different (independent from Xf )

description of the chain complex Xe
f,0 by constructing an isomorphism between Xe

f,0 and
a chain complex with underlying graded k-module

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t) (9.6)

we will upgrade that isomorphism to an isomorphism of strict mixed complexes in Sec-
tion 9.5.2.

9.5.1. Restricting the strict mixed structure
Proposition 9.5.1.1. Assume MonOrdMonicPoly and that logdimf (d f) ≤ 1.

Then the strict mixed structure of Xf from Construction 9.2.2.1 restricts to the sub-
complex17 Xe

f,0. Thus the inclusion Xe
f,0 → Xf is a quasiisomorphism of strict mixed

complexes. ♥

Proof. That the inclusion Xe
f,0 → Xf is a quasiisomorphism was already shown in Propo-

sition 9.3.1.3, so it suffices to show that Xe
f,0 is closed under d. Unpacking the definition

of Xe
f,0 and using the formula for d obtained in Proposition 9.2.3.4 this means that we

need to show that for i⃗ � deg�(f), ϵ⃗ ∈ {0, 1}n and m ≥ 0 the element

d
(
e⃗i,0,⃗ϵ,m

)
= E [m]

(
d
(
xi⃗
)

dxϵ⃗ +mq1f

(
d f · xi⃗

)
dxϵ⃗

)

+ (m− 1)C [m−1]

(
q2f

(
d f · r0f

(
d f · xi⃗ dxϵ⃗

)))

is again in Xe
f,0. For this it suffices to show the following.

(1) d
(
xi⃗
)

is f -reduced.

(2) q1f

(
d f · xi⃗

)
is f -reduced.

17See Definition 9.3.1.1 for the definition and Proposition 9.3.1.2 for being a subcomplex.

541



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

(3) q2f (d f ·R) = 0 if R is f -reduced.

(1) follows immediately from Proposition 9.2.3.1 (1), (2) follows from logdimf (d f) ≤ 1
with Proposition 9.1.3.15 (6), and (3) follows from logdimf (d f) ≤ 1.

9.5.2. An alternative description of the smaller strict mixed
model

We can now transfer the strict mixed structure on Xe
f,0 via the isomorphism of chain

complexes φ from Construction 9.3.2.1 and Proposition 9.3.2.2. We first describe the
resulting d, and then show that φ is compatible with it.

Construction 9.5.2.1. Assume MonOrdMonicPoly and that logdimf (d f) ≤ 1.
Recall the commutative differential graded k-algebra

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t) (9.7)

as well as the morphisms p defined in Construction 9.3.2.1.
We will define a k-linear operator18 d that increases degree by 1 on (9.7) by

d
(
p(P ) dxϵ⃗t[m]

)
:=
(
p

(
d
(
r0f (P )

))
+mp

(
q1f

(
d f · r0f (P )

)))
dxϵ⃗t[m] (9.8)

for P ∈ k[x1, . . . , xn], ϵ⃗ ∈ {0, 1}n, and m ≥ 0. Note that r0f is zero on the ideal generated
by f , so d as defined above is well-defined. ♦

Proposition 9.5.2.2. Assume MonOrdMonicPoly and that logdimf (d f) ≤ 1. Then the
isomorphism

φ : Xe
f,0 → k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

of chain complexes from Construction 9.3.2.1 and Proposition 9.3.2.2 is compatible with
the operators d defined on either side. In particular, d as defined in Construction 9.5.2.1
on the codomain defines a strict mixed complex structure on

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

and this strict mixed complex is isomorphic as a mixed complex to Xe
f,0. ♥

Proof. Using the description for d on Xe
f,0 obtained in the proof of Proposition 9.5.1.1,

we obtain for i⃗ � deg�(f), ϵ⃗ ∈ {0, 1}n and m ≥ 0 the following calculation.

φ

(
d
(
e⃗i,0,⃗ϵ,m

))
= φ

(
E [m]

(
d
(
xi⃗
)

dxϵ⃗ +mq1f

(
d f · xi⃗

)
dxϵ⃗

))

18We will later show that under the isomorphism φ this operator agrees with the d that is part of the
strict mixed complex structure on Xe

f,0, so that the operator d defined here defines a strict mixed
complex structure will then be automatic.

542



9.6. On the quasiisomorphisms constructed by BACH

=

(
p

(
d
(
xi⃗
))

+mp

(
q1f

(
d f · xi⃗

)))
dxϵ⃗t[m]

=


p
(

d
(
r0f

(
xi⃗
)))

+mp

(
q1f

(
d f · r0f

(
xi⃗
)))


 dxϵ⃗t[m]

= d
(
p
(
xi⃗
)

dxϵ⃗t[m]

)

= d
(
φ
(
e⃗i,0,⃗ϵ,m

))

We can now put everything together to obtain the main result.

Proposition 9.5.2.3. Assume MonOrdMonicPoly, that Conjecture D19 holds for f , and
that logdimf (d f) ≤ 120.

Then there is an equivalence

HHMixed
(
k[x1, . . . , xn]/f

)
≃ γMixed

(
k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

)

in Mixed, where
k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

is the mixed complex described in Construction 9.3.2.1, Construction 9.5.2.1, and Propo-
sition 9.5.2.2. ♥

Proof. Combine Proposition 9.2.2.2 with Proposition 9.5.1.1 and Proposition 9.5.2.2.

Proposition 9.5.2.3 is the last missing piece to prove Theorem A that was stated in
the introduction.

Proof of Theorem A. Combine Proposition 9.5.2.3 with Proposition 7.5.3.1 and Corol-
lary 9.4.2.6.

9.6. On the quasiisomorphisms constructed by the
Buenos Aires Cyclic Homology Group

Assume MonOrdMonicPoly and let A := k[x1, . . . , xn]/f . In [BACH], an A ⊗ A-free
resolution Rs(A) of A is constructed, together with morphisms of A⊗A-chain complexes

h : Rs(A)→ CBar
(A) and g : CBar

(A)→ Rs(A)

where CBar
(A) refers to the normalized bar construction that relates to the bar construc-

tion defined in Construction 6.3.2.1 as the normalized standard Hochschild complex
19Note that Conjecture D holds if n = 1 or n = 2 and 2 is invertible in k by Proposition 7.5.3.1.
20Recall from Corollary 9.4.2.6 and Proposition 9.4.2.5 that this holds in particular if for every i⃗ ∈ Zn≥0

such that f⃗i 6= 0 the following property holds: If 1 ≤ j ≤ n and deg�(f)j 6= 0, then i⃗j ≤ deg�(f)j .

543



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

relates to the standard Hochschild complex; in chain degree n ≥ 0 the complex CBar
(A)

is given by A ⊗ (A/k · {1})⊗n ⊗ A. It it shown in [BACH, 2.5.11] that g and h are
mutual homotopy inverses. Tensoring over A⊗A from the left with A one then obtains
quasiisomorphisms21

h : Rs(A)→ C(A) and g : C(A)→ Rs(A)

so that γ(Rs(A)) ≃ γ(C(A)) in D(k). By Propositions 6.3.1.10 and 6.3.4.1 the chain
complex Rs(A) is thus a strict model for HH(A) as an object of D(k). As was re-
marked in Section 9.3.2, the chain complex Rs(A) is isomorphic to the chain com-
plex k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn) ⊗ Γ(t) described in Construction 9.3.2.1. Corol-
lary 9.3.2.3 could thus also be deduced directly from the results of [BACH].

The question now arises whether one could similarly give an alternative proof of
Proposition 9.5.2.3 and Theorem A, perhaps even without requiring the assumption
that Conjecture D holds for f and that logdimf (d f) ≤ 1, by showing that g or h
can be lifted to a morphism of strict mixed complexes, and using that the normalized
standard Hochschild complex C(A) represents HHMixed(A) even as an object in Mixed
by Propositions 6.3.1.10 and 6.3.4.1.

The following two propositions show that this is in general not possible; there is in
general no strict mixed complex structure on Rs(A) that makes g or h into a morphism of
strict mixed complexes. The counterexamples we use are f = x1x2x3 for g and f = x1x2
for h. Note that both of these polynomials satisfy logdimf (d f) ≤ 1 by Corollary 9.4.2.6.

This leaves open the question of whether it is possible to prove that g or h can
be upgraded to a strongly homotopy linear morphism of strict mixed complexes (see
Section 4.2.3). This is what the author tried originally for f = x1x2x3, but without
succeeding. The amount of data required for the higher homotopies combined with the
complicated definitions of g and h may make this infeasible as n gets large.

In the rest of this section we will assume that the reader is familiar with the definitions
and notation from [BACH]. We will however deviate from the notation from [BACH]
when we have already established notation for the same thing. In particular, if P is an
element of k[x1, . . . , xn], then we will write q1f (P ) rather than P used in [BACH, 2.2.1],
and we denote by P the residue class of P in A/k · {1}, as in Proposition 6.3.1.10. We
will denote by φ the morphism A⊗A⊗A φ, with φ as in [BACH, 2.5.1].
Proposition 9.6.0.1. Let f = x1x2x3 and A := k[x1, x2, x3]/f . Then there is no strict
mixed structure on Rs(A) such that g is a morphism of strict mixed complexes. ♥

Proof. If g were a morphism of strict mixed complexes, then the following equation
would need to hold.

d
(
g(x2x3 ⊗ x1 ⊗ x2)

)
= g
(
d(x2x3 ⊗ x1 ⊗ x2)

)

However, we will show that this is not possible no matter what the strict mixed complex
structure on Rs(A) is, as g(x2x3 ⊗ x1 ⊗ x2) is already zero, making the left hand side
zero, while the right hand side is nonzero.
21Compare with Proposition 6.3.2.4 for the identification C(A) ∼= A⊗A⊗A CBar

(A).

544



9.6. On the quasiisomorphisms constructed by BACH

We begin by showing that g(x2x3 ⊗ x1 ⊗ x2) = 0. We begin with the definition of g
from [BACH, 2.5.4].

g(x2x3 ⊗ x1 ⊗ x2)

= x2x3g2(1⊗ x1 ⊗ x2)

= x2x3 ·


−q1f (x1x2)g0(1)■ t+ (−1)1

∑

i1<i2

φi2i1(1⊗ x1 ⊗ x2)ei1i2




q1f (x1x2) = 0, so the first summand vanishes. We plug in the definition of φ from [BACH,
2.5.1].

= x2x3 ·


−

∑

i1<i2

(
φ0
i2i1

(1⊗ x1 ⊗ x2) + φ1
i2i1

(1⊗ x1 ⊗ x2)
)
ei1i2




= x2x3 ·


−

∑

i1<i2

(
∂x1

∂xi2
·
∂x2

∂xi1
+ φ1

i2i1
(1⊗ x1 ⊗ x2)

)
ei1i2




The first summand can only be nonzero if both i2 = 1 and i1 = 2, but this does not
actually occur as i1 < i2.

= x2x3 ·


−

∑

i1<i2

(
φ1
i2i1

(1⊗ x1 ⊗ x2)
)
ei1i2




= x2x3 ·


−

∑

i1<i2

(
−1 ·

∂q1f (x1x2)

∂xi2
· φ0

i1
(1⊗ f)

)
ei1i2




This is zero as q1f (x1x2) = 0.
It remains to show that g

(
d(x2x3 ⊗ x1 ⊗ x2)

)
is not zero. We begin by evaluating

d(x2x3 ⊗ x1 ⊗ x2) using Proposition 6.3.1.10.

g3
(
d(x2x3 ⊗ x1 ⊗ x2)

)

= g3(1⊗ x2x3 ⊗ x1 ⊗ x2 + 1⊗ x1 ⊗ x2 ⊗ x2x3 + 1⊗ x2 ⊗ x2x3 ⊗ x1)

= −
(
q1f (x1x2x3)g1(1⊗ x2) + q1f (x1x2)g1(1⊗ x2x3) + q1f

(
x22x3

)
g1(1⊗ x1)

)
■ t

+
(
φ321(1⊗ x2x3 ⊗ x1 ⊗ x2) + φ321(1⊗ x1 ⊗ x2 ⊗ x2x3)

+ φ321(1⊗ x2 ⊗ x2x3 ⊗ x1)
)
· e123

We have three elements to which φ321 = φ0
321 + φ1

321 is applied. The φ0
321 component is

zero for all three terms; for the first one because ∂x2
∂x1

= 0, for the second one because
∂x1
∂x3

= 0, and for the last one because ∂x2
∂x3

= 0.
= −g1(1⊗ x2)■ t

+ φ1
321(1⊗ x2x3 ⊗ x1 ⊗ x2) · e123

+ φ1
321(1⊗ x1 ⊗ x2 ⊗ x2x3) · e123

545



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

+ φ1
321(1⊗ x2 ⊗ x2x3 ⊗ x1) · e123

The definition of φ1
321 has a factor that is a partial derivative of q1f of the product of

two neighboring tensor factors. q1f of such a product can only possibly be nonzero if we
multiply the first two tensor factors in 1⊗x2x3⊗x1⊗x2 or the last two in 1⊗x2⊗x2x3⊗x1.
In both cases the product is x1x2x3, so that the value of q1f will be 1. Forming any partial
derivative then yields zero.

= −g1(1⊗ x2)■ t

=
(
φ1(1⊗ x2) · e1 + φ2(1⊗ x2) · e2 + φ3(1⊗ x2) · e3

)
■ t

=

(
∂x2

∂x1
· e1 +

∂x2

∂x2
· e2 +

∂x2

∂x3
· e3

)
■ t

= e2t

Proposition 9.6.0.2. Let f = x1x2 and A := k[x1, x2]/f . Then there is no strict mixed
structure on Rs(A) such that h is a morphism of strict mixed complexes. ♥

Proof. If h were a morphism of strict mixed complexes, then the following equation
would need to hold.

h
(
d(x1t)

)
= d

(
h(x1t)

)

However, we will show that this is not possible no matter what the strict mixed complex
structure on Rs(A) is, as d

(
h(x1t)

)
does not lie in the image of h.

We begin by calculating h(t), for which we have the following by [BACH, After 2.4.5,
2.2.4 (g), and 1.1].

h(t)

= ϵ0

(
−
T1(x1x2)

T (x1)
(1⊗ x1 ⊗ 1)−

T2(x1x2)

T (x2)
(1⊗ x2 ⊗ 1)

)

= ϵ0
(
−(1⊗ x2)(1⊗ x1 ⊗ 1)− (x1 ⊗ 1)(1⊗ x2 ⊗ 1)

)

= ϵ0
(
−(1⊗ x1 ⊗ x2)− (x1 ⊗ x2 ⊗ 1)

)

= −
(
1⊗ 1⊗ x1 ⊗ x2

)
− (1⊗ x1 ⊗ x2 ⊗ 1)

= −(1⊗ x1 ⊗ x2 ⊗ 1)

We can thus conclude the following for h(t).

h(t) = −1⊗ x1 ⊗ x2

We can now evaluate d
(
h(x1t)

)
as follows, using Proposition 6.3.1.10.

d
(
h(x1t)

)

= − d(x1 ⊗ x1 ⊗ x2)
= −1⊗ x1 ⊗ x1 ⊗ x2 − 1⊗ x1 ⊗ x2 ⊗ x1 − 1⊗ x2 ⊗ x1 ⊗ x1

546



9.7. On a question of Larsen

Note that C3(A) is a free k-module that has a basis that is given by elements of the
following form.

xi⃗ ⊗ xj⃗1 ⊗ xj⃗2 ⊗ xj⃗3 for i⃗, j⃗1, j⃗2, j⃗3 ∈ Z2
≥0 such that i⃗, j⃗1, j⃗2, j⃗3 � (1, 1) and j⃗1, j⃗2, j⃗3 6= 0⃗

We can define a submodule J spanned by the basis elements of the above form such
that there exist 1 ≤ a < b ≤ 3 such that j⃗a = (1, 0) and j⃗b = (0, 1). In other words,
J is spanned elements in which two of the last three tensor factors are x1 and x2,
and appearing in that order. Note that d(h(x1t)) is a linear combination of three basis
elements of C3(A), and while the first two lie in J , this is not the case for 1⊗x2⊗x1⊗x1.
This implies that d(h(x1t)) does not lie in J , so it suffices to show that the image of h3
is a submodule of J .
Rs(A)3 is generated by elements of the form xi⃗ejt with i⃗ ∈ Z2

≥0 and j ∈ {1, 2}. The im-
age of h3 is thus generated by elements of the following form, using Propositions 6.3.2.10
and 6.3.2.11.

h3

(
xi⃗ejt

)

= xi⃗ ·
(
−1⊗ xj

)
· (−1⊗ x1 ⊗ x2)

= xi⃗ ⊗ xj ⊗ x1 ⊗ x2 − x
i⃗ ⊗ x1 ⊗ xj ⊗ x2 + xi⃗ ⊗ x1 ⊗ x2 ⊗ xj

This shows that the image of h3 is contained in J .

9.7. On a question of Larsen
Let n be a positive integer and f an element of k[x1, . . . , xn] that is monic and of

positive degree when considered as a polynomial in the single variable x1 with coefficients
in k[x2, . . . , xn]. Then Larsen constructs in [Lar95, 2.11] a strict mixed complex and asks
the question whether it gives the cyclic homology of k[x1, . . . , xn]/f , having answered
this question in the affirmative for n = 2 in [Lar95, 2.10].

In the n = 2 case, what Larsen actually shows is that there is a strongly homotopy
linear22 quasiisomorphism from the strict mixed complex Larsen constructs to the nor-
malized standard Hochschild complex. As the normalized standard Hochschild complex
as well as the strict mixed complex Larsen constructs are bounded below, it follows from
[Kas87, 2.3] using the argument of the proof of [Kas87, 2.6] that this strongly homotopy
linear quasiisomorphism induces an isomorphism of cyclic homology groups.

By Remark 4.4.4.2, the strongly homotopy linear quasiisomorphism constructed by
Larsen induces an equivalence in Mixed, and as the normalized standard Hochschild
complex represents Hochschild homology as a mixed complex by Propositions 6.3.4.1
and 6.3.1.10, this implies that Larsen’s strict mixed complex represents the Hochschild
homology HHMixed(k[x1, x2]/f) as an object of Mixed. Applying [Hoy18, 2.1, 2.2, and
22See Definition 4.2.3.1 for a definition. The definition stated in [Lar95, 1.4.1] differs slightly, likely due

to a mistake, see a discussion in Remark 9.7.0.1.

547



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

2.3] this in turn also implies the statement regarding cyclic homology groups, without
invoking [Kas87, 2.3].

Using Corollary 9.4.2.6 it is easy to see that the conditions stated at the start of
this section for f imply that logdimf (d f) ≤ 1. If we assume that Conjecture D holds
for f , then Proposition 9.5.2.3 will thus provide a strict mixed complex representing
HHMixed(k[x1, . . . , xn]/f) as an object of Mixed.

We claim that the strict mixed complex

k[x1, . . . , xn]/f ⊗ Λ(dx1, . . . , dxn)⊗ Γ(t)

used in Proposition 9.5.2.3 and described in Construction 9.3.2.1, Construction 9.5.2.1,
and Proposition 9.5.2.2 is in fact isomorphic as a strict mixed complex to the strict
mixed complex constructed by Larsen in [Lar95, 2.11], so that proving Conjecture D
will result in an affirmative answer to Larsen’s question. This is essentially clear if one
understands both definitions, but due to the very different notations used, we say some
words about this.

That the underlying commutative graded k-algebras are isomorphic via an isomor-
phism that maps our xi, d xi, and t[m] to Larsen’s xi, dxi, and (−1)mz[m] is clear by
looking at [Lar95, 2.11]. Comparing the formulas for the boundary operator (denoted
by b in [Lar95]) given in Construction 9.3.2.1 and [Lar95, 2.11], it is also clear that this
isomorphism is compatible with the boundary operators.

The differential d is denoted by B in [Lar95], and defined in [Lar95, 2.11] by the
following formula.

B(α) := dα +

[
df, z

∂α

∂z

]
(9.9)

Let α = p(P )dxϵ⃗z[m] for P ∈ k[x1, . . . , xn], ϵ⃗ ∈ {0, 1}n, and m ≥ 0. The summand dα is
then notation for p(d(r0f (P )))dxϵ⃗z[m], so corresponds to the first summand in the formula
(9.8) in Construction 9.5.2.1.

The term z ∂α
∂z

is given by23

z ·
∂p(P )dxϵ⃗z[m]

∂z
= z · p(P )dxϵ⃗z[m−1] = m · p(P )dxϵ⃗z[m]

so that we are left to consider the term
[
df,m · p(P )dxϵ⃗z[m]

]
.

The notation [−,−] is defined in [Lar95, 2.1.1], and in our notation
[
df,m · p(P )dxϵ⃗z[m]

]

corresponds to24

q1f

(
d f · r0f (m · P )dxϵ⃗z[m]

)

so that the second summand in (9.9) corresponds to the second summand in (9.8) in
Construction 9.5.2.1.
23Recall that z[m] is 1

m!z
m.

24We use that d f is f -reduced.

548



9.7. On a question of Larsen

Remark 9.7.0.1. A definition of what we call strongly homotopy linear morphisms
of strict mixed complexes is given around [Lar95, 1.4.1], which however differs in signs
from the one we gave in Definition 4.2.3.1, with a plus sign on the left hand side. It
is noted just after [Lar95, 1.4.1] that the sign conventions differ from those of [Kas87].
However, this changed sign does not seem to be a matter of convention but rather a
mistake, with the definition of [Lar95] leading to a different notion, making the results
of [Kas87] inapplicable. Luckily the inductive method to construct i(2k+2) in [Lar95,
Display between (1.4.1) and (1.4.2)] works with the correct definition (4.15), while the
first step of the induction actually fails when using [Lar95, 1.4.1]. Thus the results of
[Lar95] should hold with the corrected definition.

In the following we will construct a morphism of chain complexes f : X → Y between
strict mixed complexes that can be extended to a strongly homotopy linear morphism
using the definition we gave in Definition 4.2.3.1 and that is also used in [Kas87, 2.2]
and [Lod98, 2.5.14], but that can not be extended using the definition of [Lar95, 1.4.1],
thereby showing that the sign difference is not just a matter of conventions.

Let X be the strict mixed complex whose underlying Z-graded k-module is free with
generator x in degree 0 and y in degree 1, with d = 0 and ∂(y) = x. As the underlying
chain complex is cofibrant and acyclic, we should expect that every chain morphism out
of it can be extended to a strongly homotopy linear morphism. Indeed, this is the case
with the definition we give here. Let f : X → Y be a morphism of chain complexes to
any other strict mixed complex Y . Then setting

f (1)(x) := d
(
f(y)

)

f (1)(y) := 0

f (n) := 0 for n > 1

and extending k-linearly defines the necessary data to extend f to a strongly homotopy
linear morphism, as it is easy to check that (4.15) is satisfied.

Let us now consider the strict mixed complex Y whose underlying Z-graded k-module
is free on a in degree 0, on c and e in degree 1, and on g in degree 2, with d and ∂ defined
by extending k-linearly from the following definitions.

∂(a) := 0 ∂(c) := a ∂(e) := 0 ∂(g) := −e
d(a) := e d(c) := g d(e) := 0 d(g) := 0

The following diagram depicts the strict mixed complex Y using the conventions from
Convention 4.2.1.7.

g

c e

a

−11

1 1

549



Chapter 9. Hochschild homology of certain quotients of polynomial algebras

Now define a morphism of chain complexes f : X → Y by k-linearly extending
f(x) := a and f(y) := c. Assume that f (1) were a morphism of Z-graded k-modules
from X to Y increasing degree by 2 and satisfying the following equation.

f (1) ◦ ∂ + ∂ ◦ f (1) = f ◦ d− d ◦ f

Then we obtain

∂
(
f (1)(x)

)
= f

(
d(x)

)
− d
(
f(x)

)
− f (1)

(
∂(x)

)
= f(0)− d(a)− f (1)(0) = −e

which implies that f (1)(x) = g. We then need

∂
(
f (1)(y)

)
= f

(
d(y)

)
− d
(
f(y)

)
− f (1)

(
∂(y)

)
= f(0)− d(c)− f (1)(x) = −g − g = −2g

to hold. However, if 2 6= 0 in k, then this is impossible, as 2g is then not a boundary
in Y . This shows that the notion defined by [Lar95, 1.4.1] is genuinely different to the
notion of strongly homotopy linear morphisms as defined in (4.15) as well as [Kas87, 2.2]
and [Lod98, 2.5.14]. ♦

Remark 9.7.0.2. In [HN20, Theorem 1], a description is given of an object of D(Z)BT

related to HHMixed(k[x1, x2]/f) for f = xa1 − xb2 for a, b ≥ 2 relatively prime integers.
It is stated that this description follows from the results of [Lar95], but as so far there
was no proof in the literature that strongly homotopy linear quasiisomorphisms induce
equivalences in Mixed, this constituted a gap in [HN20], which is filled by Sections 4.2.3
and 4.4.4 and in particular Remark 4.4.4.2.25

If 2 is in invertible in k then one can now also use Proposition 9.5.2.3 in combination
with Proposition 7.5.3.1, which gives a new proof of the statement that the strict mixed
complex constructed by Larsen represents HHMixed(k[x1, x2]/f) in Mixed. However to
use this for [HN20, Theorem 1] slightly more work would be needed to also identify the
decomposition – see Section 1.6 (3). ♦

25However the construction of the higher homotopies of the strongly homotopy linear map constructed
in [Lar95] ultimately depends on the choice of a contracting homotopy Kt in [Lar95, Lemma 1.3].
It is unclear to the author which choice should be used as the canonical one to obtain a canonical
equivalence in [HN20, Theorem 1] as claimed.

550



Chapter 10.

Example: x21 − x2x3
Just like Proposition 8.3.0.1 was a stepping stone for Theorem A, we also view The-

orem A as a stepping stone; for any particular polynomial f of interest one will most
likely want to further simplify the strict mixed complex provided by Theorem A before
using it as input for further calculations.

In this chapter we thus go through one relatively simple but nontrivial example in de-
tail: Conditional on Conjecture D1 holding for for f we describe HHMixed(Z[x1, x2, x3]/f),
where f is the polynomial f = x21 − x2x3 that geometrically defines a cone. We will de-
scribe the process step by step in the order one might proceed in when first working out
the example.

10.1. Applying Theorem A
In order to be able to apply Theorem A, f needs to be in particular monic with

respect to a chosen monomial order. While f is monic with respect to any monomial
order, which one we choose matters with regards to what the degree of f will be – either
x2x3 or x21 could be chosen as the leading term.

We choose � to be the lexicographic monomial ordering on three variables so that x21
is the leading term. We then have deg�(f) = (2, 0, 0), and for i⃗ ∈ Z3

≥0 the monomial xi⃗
is f -reduced if and only if i1 ≤ 1. We can now apply Theorem A to obtain a strict mixed
complex representing HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

)
, conditional on Conjecture D

holding for for f .

Proposition 10.1.0.1. Let f = x21 − x2x3 as an element of Z[x1, x2, x3], and assume
that Conjecture D holds for f . Then there is an equivalence

HHMixed
(
Z[x1, x2, x3]/f

)
≃ γMixed

(
Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3)⊗ Γ(t)

)

in Mixed, where

Y := Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3)⊗ Γ(t)

1That the discussion of the example in this chapter is conditional on a conjecture is of course slightly
unsatisfactory, but allows us to discuss an illustrative example with nontrivial features.

551



Chapter 10. Example: x21 − x2x3

is the strict mixed complex with underlying graded abelian group as indicated, with xi of
degree 0, dxi of degree 1 and t of degree 2, and with boundary operator and differential
given by the following formulas2, for a, b ≥ 0, ϵ⃗ ∈ {0, 1}3, and m ≥ 0.

∂

(
p
(
xa2x

b
3

)
dxϵ⃗t[m]

)

=

(
−2 · p

(
x1x

a
2x

b
3

)
dx1 + p

(
xa2x

b+1
3

)
dx2 + p

(
xa+1
2 xb3

)
dx3

)
dxϵ⃗t[m−1]

∂

(
p
(
x1x

a
2x

b
3

)
dxϵ⃗t[m]

)

=

(
−2 · p

(
xa+1
2 xb+1

3

)
dx1 + p

(
x1x

a
2x

b+1
3

)
dx2 + p

(
x1x

a+1
2 xb3

)
dx3

)
dxϵ⃗t[m−1]

d
(
p
(
xa2x

b
3

)
dxϵ⃗t[m]

)

=

(
a · p

(
xa−1
2 xb3

)
dx2 + b · p

(
xa2x

b−1
3

)
dx3

)
dxϵ⃗t[m]

d
(
p
(
x1x

a
2x

b
3

)
dxϵ⃗t[m]

)

=

(
(1 + 2m) · p

(
xa2x

b
3

)
dx1 + a · p

(
x1x

a−1
2 xb3

)
dx2 + b · p

(
x1x

a
2x

b−1
3

)
dx3

)
dxϵt[m]

In the formulas above, terms involving negative exponents of a variable are to be inter-
preted as 0. ♥

Proof. As x1 is the only variable occurring in the leading term of f and the exponent
of x1 in the other term x2x3 is 0, the assumptions of Theorem A are satisfied, so that it
suffices to check that the formulas for ∂ and d from Theorem A specialize to the ones
given in the statement above. We have

d f = 2x1 dx1 − x3 dx2 − x2 dx3

so the two formulas for ∂ follow directly from their description in Theorem A, where in
the second formula we need only note that p(x21xa2xb3) = p(xa+1

2 xb+1
3 ).

The formula for d from Theorem A is as follows, for η ∈ {0, 1}.

d
(
p
(
x
η
1x

a
2x

b
3

)
dxϵt[m]

)
=

(
p

(
d
(
x
η
1x

a
2x

b
3

))
+m · p

(
q1f

(
d f · xη1xa2xb3

)))
dxϵt[m]

As the maximum exponent of x1 occurring in xa2x
b
3 and d f is 0 and 1, respectively,

d f · xa2xb3 is f -reduced and thus q1f (d f · xa2xb3) = 0, so that the first formula for d follows.

2We use p as notation for the quotient morphism Z[x1, x2, x3] → Z[x1, x2, x3]/(x
2
1 − x2x3), like in

Construction 9.3.2.1

552



10.2. Comparison with the mixed complex of de Rham forms

For the second formula for d, we first note that

d f · x1xa2xb3 = 2x21x
a
2x

b
3 dx1 − x1xa2xb+1

3 dx2 − x1xa+1
2 xb3 dx3

=
(
2xa2x

b
3 dx1

)
· f + 2xa+1

2 xb+1
3 dx1 − x1xa2xb+1

3 dx2 − x1xa+1
2 xb3 dx3

which implies that
q1f

(
d f · x1xa2xb3

)
= 2xa2x

b
3 dx1

The following calculation then shows the second formula for d from the statement.

d
(
p
(
x1x

a
2x

b
3

)
dxϵt[m]

)

=

(
p

(
d
(
x1x

a
2x

b
3

))
+m · p

(
2xa2x

b
3 dx1

))
dxϵt[m]

=

(
p
(
xa2x

b
3

)
dx1 + a · p

(
x1x

a−1
2 xb3

)
dx2 + b · p

(
x1x

a
2x

b−1
3

)
dx3

+2m · p
(
xa2x

b
3

)
dx1

)
dxϵt[m]

=

(
(1 + 2m) · p

(
xa2x

b
3

)
dx1 + a · p

(
x1x

a−1
2 xb3

)
dx2 + b · p

(
x1x

a
2x

b−1
3

)
dx3

)
dxϵt[m]

10.2. Comparison with the mixed complex of de
Rham forms

To describe Y it will be useful to compare it to the mixed complex of de Rham forms.
We first note the following about Ω•

Z[x1,x2,x3]/f /Z.

Remark 10.2.0.1. It follows from [Wei94, 9.2.7] that the identification

Ω•
Z[x1,x2,x3] /Z

∼= Z[x1, x2, x3]⊗ Λ(dx1, dx2, dx3)

from Section 7.1 induces an isomorphism

Ω•
Z[x1,x2,x3]/f /Z

∼=
(
Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3)

)
/ d f

of strict mixed complexes3. ♦

We next define a morphism of strict mixed complexes from Y to Ω•
Z[x1,x2,x3]/f /Z.

Definition 10.2.0.2. Consider the following morphism of graded abelian groups.

φ : Y → Ω•
Z[x1,x2,x3]/f /Z

3The boundary operators are zero, and the differential d maps xi to dxi and satisfies the Leibniz rule.

553



Chapter 10. Example: x21 − x2x3

p
(
xi⃗
)

dxϵ⃗t[m] 7→

{
0 m > 0

p(xi⃗) dxϵ⃗ m = 0
for i⃗ ∈ Z3

≥0, ϵ⃗ ∈ {0, 1}
3,m ≥ 0

It is clear from Proposition 10.1.0.1 that φ is compatible with the chain complex and
mixed structure so that φ is a morphism of strict mixed complexes.

We furthermore define the morphism of strict mixed complexes

ψ : K → Y

to be the kernel of φ. ♦

10.3. Grading
To make it easier to discuss K and Y , we equip them with a Z2

≥0-grading.

Construction 10.3.0.1. We upgrade Z[x1, x2, x3] to a Z2
≥0-graded ring by declaring

deggr(x1) = (1, 1), deggr(x2) = (2, 0), and deggr(x3) = (0, 2). This makes f into a ho-
mogeneous polynomial of grading deggr(f) = (2, 2), so Z[x1, x2, x3]/(f) inherits a grad-
ing where deggr(p(xi⃗)) = deggr(r0f (xi⃗)) (note that f being homogeneous ensures that
r0f (x

i⃗) is homogeneous). Declaring deggr(dxi) = deggr(xi) and deggr(t[m]) = m · (2, 2)
makes Y and Ω•

Z[x1,x2,x3]/f /Z into Z2
≥0-graded strict mixed complexes, as one can eas-

ily see by inspecting the formulas for ∂ and d in Proposition 10.1.0.1. Furthermore,
φ : Y → Ω•

Z[x1,x2,x3]/f /Z clearly respects the grading, so the kernel K obtains an induced
grading, making ψ : K → Y into a morphism of Z2

≥0-graded strict mixed complexes as
well.

Let us denote the sub-mixed-complex of Y (of Ω•
Z[x1,x2,x3]/f /Z, of K) of homogeneous

elements of grading j⃗ ∈ Z2
≥0 by Y (⃗j) (by Ω•

Z[x1,x2,x3]/f /Z(⃗j), by K (⃗j)), so that we obtain
a sum decomposition as a strict mixed complex

Y ∼=
⊕

j⃗∈Z2
≥0

Y
(
j⃗
)

and similarly for Ω•
Z[x1,x2,x3]/f /Z and K. ♦

Remark 10.3.0.2. Note that the additive submonoid of Z2
≥0 generated by (1, 1), (2, 0),

and (0, 2) is not equal to all of Z2
≥0; it contains precisely those elements (a, b) for which

the sum a+ b is even4. It follows that

Y (⃗j) ∼= Ω•
Z[x1,x2,x3]/f /Z(⃗j)

∼= K (⃗j) ∼= 0

if j⃗ ∈ Z2
≥0 such that j1 + j2 is odd.

4This is obviously an additive condition, so as it holds for the three generators it holds for the full
submonoid. On the other hand, if (a, b) ∈ Z2

≥0 with a+ b = 2c even, and without loss of generality
say b > a, then (a, b) = a · (1, 1) + (c− a) · (0, 2).

554



10.4. Non-diagonal pieces

Note that the mixed complexes Y (⃗j) for j⃗ ∈ Z2
≥0 such that j1 + j2 is even might

look different depending on the parity of j1; In the even case, x1 and d x1 must always
“occur together”, while in the odd case they never do. Indeed, one consequence is that
the summand (1+ 2m) · p

(
xa2x

b
3

)
dx1 in the second formula for d in Proposition 10.1.0.1

vanishes in the even case, as d x1 · dx1 = 0. ♦

10.4. Non-diagonal pieces

10.4.1. A first look at Y ((6, 4)) and Y ((7, 5))

We will next look at two illustrative examples to understand the mixed complexes Y (⃗j)
better, one where j1 is even and one where it is odd. We will depict the strict mixed com-
plexes diagrammatically in the manner introduced in Convention 4.2.1.7, with respect
to the basis given by elements of the form p(xi⃗) dxϵ⃗t[m]. In this basis, the components
of ∂ all have absolute value 0, 1, or 2. To make the diagram more readable, we omit
the labels to the respective arrows and instead use a normal arrowhead to indicate an
absolute value of 1, and a double arrowhead to indicate an absolute value of 2, while not
indicating the sign to avoid overloading the diagram. We also omit p from the notation
and write e. g. x32x23 instead of p(x32x23).

We first consider Y ((6, 4)).

dx2t[2]

x2t
[2] x1 dx1 dx2t[1] x2 dx2 dx3t[1]

x1x2 dx1 dx2 dx3 x1x2 dx1t[1] x2x3 dx2t[1] x22 dx3t[1]

x1x2x3 dx1 dx2 x1x
2
2 dx1 dx3 x22x3 dx2 dx3 x22x3t

[1]

x1x
2
2x3 dx1 x22x

2
3 dx2 x32x3 dx3

x32x
2
3

1

−1 −1
2

1
−2

2
1

−2
−1 −2 3

3
2

Next, the following diagram depicts Y ((7, 5)) as representative of the odd case.

555



Chapter 10. Example: x21 − x2x3

dx1 dx2t[2]

x2 dx1t[2] x1 dx2t[2] x2 dx1 dx2 dx3t[1]

x1x2t
[2] x2x3 dx1 dx2t[1] x22 dx1 dx3t[1] x1x2 dx2 dx3t[1]

x22x3 dx1 dx2 dx3 x22x3 dx1t[1] x1x2x3 dx2t[1] x1x
2
2 dx3t[1]

x22x
2
3 dx1 dx2 x22x3 dx1 dx3 x1x

2
2x3 dx2 dx3 x1x

2
2x3t

[1]

x32x
2
3 dx1 x1x

2
2x

2
3 dx2 x1x

3
2x3 dx3

x1x
3
2x

2
3

−1
5

5 1

1

−2
3

−2

−13 −13

2

2 −2 1 3 2
1

−3

−21 −21
3

1 3

2

Looking at these diagrams we can see that in both cases we can split of a large
acyclic subcomplex (ignoring the mixed structure for now). Let us discuss the first case
Y ((6, 4)). Starting from the top, we can first replace the basis element p(x2) dx2 dx3t[1]
with ∂(dx2t[2]) = −p(x2) dx2 dx3t[1]−2·p(x1) dx1 dx2t[1]. Then dx2t[2] and the new basis
element generate a subcomplex that splits off as an acyclic summand. Continuing down-
ward, we can replace p(x22) dx3t[1] with ∂(p(x2)t[2]), and so on. In the end, the only basis
elements that “survive” are p(x32x23), p(x1x22x3) dx1, p(x22x23) dx2, and p(x1x2x3) dx1 dx2.

10.4.2. A new basis
In general, we would like to do the following. For a, ϵ1, ϵ2 ∈ {0, 1} and b, c,m ≥ 0,

we would like to replace the basis element p(xa1xb2xc3) dxϵ11 dxϵ22 dx3t[m] of Y (⃗j) by the
element ∂(p(xa1xb−1

2 xc3) dxϵ11 dxϵ22 t[m+1]). Roughly, we divide by x2 dx3, increase the di-
vided power of t by one, and then take the boundary. This is of course not possible if
b = 0. So when could b = 0 happen? If p(xa1xc3) dxϵ11 dxϵ22 dx3t[m] is in Y (⃗j), then we
have j1 = 2m+ a+ ϵ1 + 2ϵ2 and j2 = 2m+ a+ 2c+ ϵ1 + 2. As ϵ2 ≤ 1 this implies that
such an element can only occur in Y (⃗j) if j1 ≤ j2.

So we are lead to distinguish three cases: For Y (⃗j) with j1 > j2, we can “eliminate”
basis elements divisible by d x3, and for Y (⃗j) with j1 < j2, we can analogously “eliminate”
basis elements divisible by d x2, leaving the case of Y (⃗j) with j1 = j2 to still be analyzed
(and which will indeed turn out to be more interesting).

556



10.4. Non-diagonal pieces

We will now carry out the idea we just sketched and first construct the indicated new
basis for Y (⃗j) for j⃗ ∈ Z2

≥0 with j1 6= j2. We will then be able to use this to show that
K (⃗j) is acyclic.

Definition 10.4.2.1. To ease notation in the following, we make the following definitions
for j⃗ ∈ Z2

≥0.

V = {0, 1} × Z2
≥0 × {0, 1}

3 × Z≥0

V ′ = {0, 1} × Z2
≥0 × {0, 1}

2 × Z≥0

V
(
j⃗
)
=

{
(a, b, c, ϵ1, ϵ2, ϵ3,m) ∈ V

∣∣∣∣∣ deggr
(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 dxϵ33 t[m]

)
= j⃗

}

V2

(
j⃗
)
=

{
(a, b, c, ϵ1, ϵ2,m) ∈ V ′

∣∣∣∣∣ deggr
(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

)
= j⃗

}

V3

(
j⃗
)
=

{
(a, b, c, ϵ1, ϵ3,m) ∈ V ′

∣∣∣∣∣ deggr
(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ33 t[m]

)
= j⃗

}
♦

Proposition 10.4.2.2. Let j⃗ ∈ Z2
≥0 with j1 > j2. Then the set

B2(⃗j) =

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j)

}

∪

{
∂

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

) ∣∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j),m > 0

}

forms a basis of Y (⃗j). Analogously, let j⃗ ∈ Z2
≥0 with j1 < j2. Then the set

B3(⃗j) =

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ33 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ3,m) ∈ V3(⃗j)

}

∪

{
∂

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ33 t[m]

) ∣∣∣∣∣ (a, b, c, ϵ1, ϵ3,m) ∈ V3(⃗j),m > 0

}

forms a basis of Y (⃗j). ♥

Proof. We only discuss the statement for j1 > j2, the other is completely analogous. We
will refer to the basis given by elements of the form p(xi⃗) dxϵ⃗t[m] used up to now as
the monomial basis. We wrote B2(⃗j) as a union, and will call elements of the first set
elements of the first type and elements of the second set elements of the second type.

Note that the monomial basis can be written as follows, following the discussion before
Definition 10.4.2.1 showing that any element of the monomial basis divisible by d x3 must
have x2 as a factor as well.

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j)

}

557



Chapter 10. Example: x21 − x2x3

∪

{
p
(
xa1x

b+1
2 xc3

)
dxϵ11 dxϵ22 dx3t[m−1]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j),m > 0

}

In this subdivision of the basis elements of the monomial basis, the first subset is
exactly equal to the elements of B2(⃗j) of the first type.

For the elements of the second type we note that for (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j) with
m > 0, they have the following form.

∂

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

)

= (−1)ϵ1+ϵ2p
(
xa1x

b+1
2 xc3

)
dxϵ11 dxϵ22 dx3t[m−1]

(−1)ϵ1p
(
xa1x

b
2x

c+1
3

)
dxϵ11 dxϵ2+1

2 t[m−1] − 2p
(
xa+1
1 xb2x

c
3

)
dxϵ1+1

1 dxϵ22 t[m−1]

Note that the first summand is always the negative of the corresponding (also indexed
by (a, b, c, ϵ1, ϵ2,m)) basis element of second type in the monomial basis, while the other
two summands are multiples of elements of the first type. This shows the claim.

10.4.3. Non-diagonal pieces of K are acyclic
Proposition 10.4.3.1. Let j⃗ ∈ Z2

≥0 with j1 6= j2. Then K (⃗j) is acyclic. ♥

Proof. We again only discuss the case j1 > j2, as the other case is completely analogous.
Using Remark 10.2.0.1 and the same kind of argument as in the proof of Proposi-

tion 10.4.2.2 shows that
{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22

∣∣∣∣ (a, b, c, ϵ1, ϵ2, 0) ∈ V2(⃗j)
}

is a basis of Ω•
Z[x1,x2,x3]/f /Z(⃗j). It thus follows immediately from Proposition 10.4.2.2 that
{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j),m > 0

}

∪

{
∂

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

) ∣∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j),m > 0

}

is a basis for K (⃗j). We can thus easily define a contracting homotopy h of K (⃗j) as
follows, where (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j) with m > 0.

h

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

)
:= 0

h

(
∂

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

))
:= p

(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

558



10.5. Diagonal pieces

10.5. Diagonal pieces

10.5.1. A first look at Y ((5, 5)) and Y ((6, 6))

Let us now look at what happens when when j1 = j2. The following is the diagram
for Y ((5, 5)). We use the same conventions as we did for Y ((6, 4)) and Y ((7, 5)) above.

dx1t[2] dx1 dx2 dx3t[1]

x1t
[2] x3 dx1 dx2t[1] x2 dx1 dx3t[1] x1 dx2 dx3t[1]

x2x3dx1dx2dx3 x2x3 dx1t[1] x1x3 dx2t[1] x1x2 dx3t[1]

x2x
2
3 dx1 dx2 x22x3 dx1 dx3 x1x2x3 dx2 dx3 x1x2x3t

[1]

x22x
2
3 dx1 x1x2x

2
3 dx2 x1x

2
2x3 dx3

x1x
2
2x

2
3

5

1

−1
3

−1

−13 −13

1

2 −2 1 3 1
1

−2

−21 −21

2

1
2

2

As mentioned in Remark 10.3.0.2, Y ((j, j)) may differ in character depending on the
parity of j, so let us also look at Y ((6, 6)).

559



Chapter 10. Example: x21 − x2x3

dx2 dx3t[2] t[3]

x1 dx1t[2] x3 dx2t[2] x2 dx3t[2] x1 dx1 dx2 dx3t[1]

x2x3t
[2] x1x3 dx1 dx2t[1] x1x2 dx1 dx3t[1] x2x3 dx2 dx3t[1]

x1x2x3dx1dx2dx3 x1x2x3 dx1t[1] x2x
2
3 dx2t[1] x22x3 dx3t[1]

x1x2x
2
3 dx1 dx2 x1x

2
2x3 dx1 dx3 x22x

2
3 dx2 dx3 x22x

2
3t

[1]

x1x
2
2x

2
3 dx1 x22x

3
3 dx2 x32x

2
3 dx3

x32x
3
3

−1

1

1 1
1 −1

−1 −1 −2
2

2 −2 2 2

−2 −2 −3 3

3
3

We can already see the difference between these two cases as well as Y (⃗j) with j1 6= j2
in these two examples. Indeed, note how in the diagrams for both Y ((5, 5)) and Y ((6, 6))
the upper element in the rightmost column represents a nonzero element in the homology
of K, showing that K (⃗j) is in general not acyclic for j1 = j2, in contrast to the case
j1 6= j2 (see Proposition 10.4.3.1). In Y ((6, 6)) this element in homology is of order 2, in
contrast to Y ((5, 5)), where it is of infinite order.

10.5.2. A new basis
To simplify Y (⃗j) for j1 = j2 we make a similar base change as we did for j1 6= j2. We

again try to eliminate replace basis elements from the monomial basis that are divisible
by d x3, as in Proposition 10.4.2.2. This time, we will not be able to write all of the
relevant elements as boundaries, however the formulas themselves still make sense.

Notation 10.5.2.1. Let j ≥ 0 be an integer and (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j)). We will
define an element b(a,b,c,ϵ1,ϵ2,m) of Y ((j, j)), by distinguishing three cases. If b > 0, then

560



10.5. Diagonal pieces

we define b(a,b,c,ϵ1,ϵ2,m) as follows.

b(a,b,c,ϵ1,ϵ2,m) := ∂

(
p
(
xa1x

b−1
2 xc3

)
dxϵ11 dxϵ22 t[m+1]

)

= (−1)ϵ1+ϵ2p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 dx3t[m]

+ (−1)ϵ1p
(
xa1x

b−1
2 xc+1

3

)
dxϵ11 dx1+ϵ22 t[m]

− 2p
(
xa+1
1 xb−1

2 xc3

)
dx1+ϵ11 dxϵ22 t[m]

If instead b = 0, then note that this implies ϵ2 = 1 and c = 0. We then make the
following definitions.

b(0,0,0,ϵ1,1,m) := (−1)ϵ1+1 dxϵ11 dx2 dx3t[m]

b(1,0,0,ϵ1,1,m) := (−1)ϵ1+1p(x1) dxϵ11 dx2 dx3t[m] − 2p(x3) dx1+ϵ11 dx2t[m] ♦

Proposition 10.5.2.2. Let j ≥ 0. Then the following form a basis for Y ((j, j)).

B((j, j)) =

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j))

}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}

♥

Proof. The proof is very similar to Proposition 10.4.2.2. The monomial basis can be
written as follows.{

p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2(⃗j)

}

∪

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 dx3t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))

}

Again the elements of B((j, j)) of the first type correspond to elements of the monomial
basis of the first type, and the element of the second type indexed by (a, b, c, ϵ1, ϵ2, 1,m)
is – up to sign – the sum of the corresponding element of the second type indexed by
(a, b, c, ϵ1, ϵ2, 1,m) of the monomial basis and a linear combination of elements of the
first type.

We can record the following behavior of the new basis with respect to the boundary
operator.
Proposition 10.5.2.3. Let j ≥ 0. Then the following holds in Y ((j, j)) for elements
(a, b, c, ϵ1, ϵ2,m) of V2((j, j)).

∂

(
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

)
=

{
0 if m = 0

b(a,b+1,c,ϵ1,ϵ2,m−1) if m > 0

Furthermore, the following holds for (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j)).

∂
(
b(a,b,c,ϵ1,ϵ2,m)

)
=

{
2 · b(1,0,0,1,1,m−1) if (a, b, ϵ1) = (0, 0, 0) and m > 0

0 otherwise
♥

561



Chapter 10. Example: x21 − x2x3

Proof. The first formula follows immediately from the definitions in Notation 10.5.2.1.
The second formula follows from ∂2 = 0 if b > 0 and from Proposition 10.1.0.1 if m = 0.
So we can assume that b = 0 and m > 0. We distinguish three cases: first ϵ1 = 1, then
(a, ϵ1) = (0, 0), and finally (a, ϵ1) = (1, 0). In each case the formula follows by writing
out the elements and using Proposition 10.1.0.15.

∂
(
b(a,0,0,1,1,m)

)
= ∂

(
p(xa1) dx1 dx2 dx3t[m]

)
= 0

∂
(
b(0,0,0,0,1,m)

)
= ∂

(
− dx2 dx3t[m]

)

= 2p(x1) dx1 dx2 dx3t[m−1] = 2 · b(1,0,0,1,1,m−1)

∂
(
b(1,0,0,0,1,m)

)
= ∂

(
−p(x1) dx2 dx3t[m] − 2p(x3) dx1 dx2t[m]

)

= 2p(x2x3) dx1 dx2 dx3t[m−1] − 2p(x2x3) dx1 dx2 dx3t[m−1]

= 0

Note that we can see a distinction between the cases of Y ((j, j)) with j odd and even
in Proposition 10.5.2.3; the first (non-zero) case in the formula for ∂

(
b(a,b,c,ϵ1,ϵ2,m)

)
only

occurs if j is even.

10.5.3. Another look at Y ((5, 5))

We can now look at Y ((5, 5)) again, but in this new basis.

dx1t[2] b(0,0,0,1,1,1)

x1t
[2] x3 dx1 dx2t[1] b(0,1,0,1,0,1) b(1,0,0,0,1,1)

b(0,1,1,1,1,0) x2x3 dx1t[1] x1x3 dx2t[1] b(1,1,0,0,0,1)

x2x
2
3 dx1 dx2 b(0,2,1,1,0,0) b(1,1,1,0,1,0) x1x2x3t

[1]

x22x
2
3 dx1 x1x2x

2
3 dx2 b(1,2,1,0,0,0)

x1x
2
2x

2
3

5
1

−5

1 5 1 −5

2 −5

5
1

2 5 2 −5

5 2

(10.1)

5Note that b = 0 implies ϵ2 = 1 and c = 0.

562



10.5. Diagonal pieces

Note that the Z-graded-abelian group generated by the underlined basis elements
is closed under both boundary operator and differential. It is also acyclic, so the the
quotient map from Y ((5, 5)) obtained by dividing out this sub-mixed-complex is a quasi-
isomorphism. The following diagram depicts the resulting strict mixed complex.

b(0,0,0,1,1,1)

x3dx1dx2t
[1] b(1,0,0,0,1,1)

b(0,2,1,1,1,0) x1x3dx2t
[1]

x2x
2
3dx1dx2 b(1,1,1,0,1,0)

x22x
2
3dx1 x1x2x

2
3dx2

x1x
2
2x

2
3

1
−5

5 1

2
−5

5 2

5

From this we can read off that K((5, 5)) will not be acyclic, but rather equivalent to
the strict mixed subcomplex generated by b(1,0,0,0,1,1) and b(0,0,0,1,1,1), which is isomorphic
to D−5[4], where we use notation from Definition 4.2.1.5.

10.5.4. Another look at Y ((6, 6))

Let us now consider the even case. The following diagram depicts Y ((6, 6)) in the
basis from Proposition 10.5.2.2.

563



Chapter 10. Example: x21 − x2x3

b(0,0,0,0,1,2) t[3]

x1 dx1t[2] x3 dx2t[2] b(0,1,0,0,0,2) b(1,0,0,1,1,1)

x2x3t
[2] x1x3 dx1 dx2t[1] b(1,1,0,1,0,1) b(0,1,1,0,1,1)

b(1,1,1,1,1,0) x1x2x3 dx1t[1] x2x
2
3 dx2t[1] b(0,2,1,0,0,1)

x1x2x
2
3 dx1 dx2 b(1,2,1,1,0,0) b(0,2,2,0,1,0) x22x

2
3t

[1]

x1x
2
2x

2
3 dx1 x22x

3
3 dx2 b(0,3,2,0,0,0)

x32x
3
3

−1

2
1

1
−2

1 4 2 −2

2 −4
4

2

2 6 3 −4

6
3

We again underlined basis elements that generate an acyclic sub-mixed-complex that
we can divide out, obtaining the strict mixed complex depicted in the diagram below.

564



10.5. Diagonal pieces

b(0,0,0,0,1,2)

x3 dx2t[2] b(1,0,0,1,1,1)

x1x3 dx1 dx2t[1] b(0,1,1,0,1,1)

b(1,1,1,1,1,0) x2x
2
3 dx2t[1]

x1x2x
2
3 dx1 dx2 b(0,2,2,0,1,0)

x1x
2
2x

2
3 dx1 x22x

3
3 dx2

x32x
3
3

−1

1
−2

4 2

2
−4

6 3

6

This time we see that K((6, 6)) will be equivalent to Z/2[5], generated by b(1,0,0,1,1,1).

10.5.5. A basis for K((j, j))

We will now show how the description above of K((j, j)) generalizes to j ≥ 5 other
than 5 and 6, whereas K((j, j)) for j < 5 is acyclic. We start by describing a basis of
K((j, j)).

Proposition 10.5.5.1. Let j ≥ 5. Then a basis of K((j, j)) is given by the following
set.

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j)),m > 0

}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}

Furthermore, K((0, 0)) ∼= 0, K((1, 1)) ∼= 0, a basis of K((2, 2)) is given by
{
b(0,1,0,0,0,0), t

[1]
}

a basis of K((3, 3)) is given by
{
b(1,1,0,0,0,0), b(0,1,0,1,0,0), x1t

[1], dx1t[1]
}

565



Chapter 10. Example: x21 − x2x3

and a basis of K((4, 4)) is given by the following set.
{
b(0,2,1,0,0,0), b(1,1,0,1,0,0), b(0,1,1,0,1,0), 2 · b(1,0,0,1,1,0)

}

∪
{
p(x2x3)t

[1], p(x1) dx1t[1], p(x3) dx2t[1], b(0,1,0,0,0,1), b(0,0,0,0,1,1), t[2]
}

♥

Proof. We first consider the case j ≥ 5. This assumption implies that if (a, b, c, ϵ1, ϵ2, ϵ3, 0)
is an element of V ((j, j)), then b > 0. In other words, every element of grading (j, j)
of the monomial basis of Z[x1, x2, x3]/f ⊗ Λ(dx1, dx2, dx3) is divisible by x2. Like in
Proposition 10.4.3.1 we can thus conclude that

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22

∣∣∣∣ (a, b, c, ϵ1, ϵ2, 0) ∈ V2((j, j))
}

is a basis of Ω•
Z[x1,x2,x3]/f /Z((j, j)).

By Proposition 10.5.2.2 the set
{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22

∣∣∣∣ (a, b, c, ϵ1, ϵ2, 0) ∈ V2((j, j))
}

∪

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j)),m > 0

}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j))
}

is a basis of Y ((j, j)), and elements of the first type (of this decomposition into three
subsets) are mapped by φ to the corresponding element of Ω•

Z[x1,x2,x3]/f /Z. It thus suffices
to show that elements of the second and third type are mapped to 0 by φ. If m > 0 in
either of the two types of elements, then this is clear. So it remains to consider elements
of the form b(a,b,c,ϵ1,ϵ2,0) for (a, b, c, ϵ1, ϵ2, 1, 0) ∈ V ((j, j)). As mentioned at the start, this
implies b > 0. It thus follows from Proposition 10.5.2.3 that

b(a,b,c,ϵ1,ϵ2,0) = ∂
(
p(xa1x

b−1
2 xc3 dxϵ11 dxϵ22 t[m+1])

)

from which φ(b(a,b,c,ϵ1,ϵ2,0)) = 0 follows from the m > 0 case as φ is a morphism of chain
complexes.

The cases of 0 ≤ j ≤ 4 can be done by inspecting each case individually. The differ-
ence to the case j ≥ 5 is that terms that are divisible by d x3 but not by t need not
automatically be divisible by x2 as well. This means that for example b(1,0,0,1,1,0) is not in
the kernel of φ (but 2 · b(1,0,0,1,1,0) is), whereas the analogous element of Y ((6, 6)), namely
b(1,1,1,1,1,0), does lie in the kernel.

10.5.6. K((j, j)) for j < 5

We can now already finish the case of j < 5.

Proposition 10.5.6.1. Let 0 ≤ j < 5. Then K((j, j)) is acyclic. ♥

Proof. This follows immediately from Proposition 10.5.5.1 in combination with Propo-
sition 10.5.2.3.

566



10.5. Diagonal pieces

10.5.7. Splitting an acyclic summand off of K((j, j)) for j > 5

We now turn back to K((j, j)) for j ≥ 5. We start by splitting off an acyclic summand.
Proposition 10.5.7.1. Let j ≥ 5. Then define Kacyc((j, j)) to be the sub-Z-graded-
abelian-group of K((j, j)) with basis the following set (compare Proposition 10.5.5.1).

{
p
(
xa1x

b
2x

c
3

)
dxϵ11 dxϵ22 t[m]

∣∣∣∣ (a, b, c, ϵ1, ϵ2,m) ∈ V2((j, j)),m > 0

}

∪
{
b(a,b,c,ϵ1,ϵ2,m)

∣∣ (a, b, c, ϵ1, ϵ2, 1,m) ∈ V ((j, j)), b > 0
}

Furthermore, define K ′((j, j)) to be the sub-Z-graded-abelian-group of K((j, j)) with basis
the following set.

{
b(a,0,0,ϵ1,1,m)

∣∣ (a, 0, 0, ϵ1, 1, 1,m) ∈ V ((j, j))
}

Then the following hold.
(1) Kacyc((j, j)) is a subcomplex of K((j, j)).

(2) Kacyc((j, j)) is acyclic.

(3) K ′((j, j)) a subcomplex of K((j, j)).

(4) K((j, j)) is the sum of Kacyc((j, j)) and K ′((j, j)) as chain complexes.

(5) The inclusion of K ′((j, j)) into K((j, j)) is a quasiisomorphism. ♥

Proof. Proof of claims (1), (2) and (3): Follows immediately from Proposition 10.5.2.3.
Proof of claim (4): If (a, 0, c, ϵ1, ϵ2, 1,m) is an element of V ((j, j)), then this implies

that c = 0 and ϵ2 = 1. The claim now follows from Proposition 10.5.5.1.
Proof of claim (5): Immediate consequence of the preceding claims.

10.5.8. Description of the strict mixed structure
We next need to understand how d acts on K ′((j, j)).

Proposition 10.5.8.1. Let j ≥ 5. Then a basis of K ′((j, j)) is given by the following
set. {

b(0,0,0,0,1, j−2
2

), b(1,0,0,1,1, j−4
2

)

}
if 2 | j

{
b(0,0,0,1,1, j−3

2
), b(1,0,0,0,1, j−3

2
)

}
if 2 ∤ j

Furthermore, the following holds for m ≥ 0.
d
(
b(0,0,0,0,1,m)

)
= 0

d
(
b(1,0,0,1,1,m)

)
= 0

d
(
b(0,0,0,1,1,m)

)
= 0

d
(
b(1,0,0,0,1,m)

)
= −(2m+ 3) · b(0,0,0,1,1,m)

♥

567



Chapter 10. Example: x21 − x2x3

Proof. The claim about the basis follows directly from Proposition 10.5.7.1, it merely
involves spelling out what a, ϵ1, and m can be such that (a, 0, 0, ϵ1, 1, 1,m) ∈ V ((j, j)).

For the formulas for d, we use the definition from Notation 10.5.2.1 and then apply
Proposition 10.1.0.1.

d
(
b(0,0,0,0,1,m)

)
= d

(
− dx2 dx3t[m]

)
= 0

d
(
b(1,0,0,1,1,m)

)
= d

(
p(x1) dx1 dx2 dx3t[m]

)
= 0

d
(
b(0,0,0,1,1,m)

)
= d

(
dx1 dx2 dx3t[m]

)
= 0

d
(
b(1,0,0,0,1,m)

)
= d

(
−p(x1) dx2 dx3t[m] − 2 · p(x3) dx1 dx2t[m]

)

= −(1 + 2m) dx1 dx2 dx3t[m] − 2 · dx1 dx2 dx3t[m]

= −(2m+ 3)b(0,0,0,1,1,m)

10.5.9. A smaller model for K((j, j)) for j > 5

Proposition 10.5.8.1 implies that K ′((j, j)) is equivalent as a strict mixed complex to
K((j, j)) for j ≥ 5, as we record next.

Proposition 10.5.9.1. Let j ≥ 5. Then the strict mixed structure of K((j, j)) restricts
to K ′((j, j)) and the inclusion K ′((j, j))→ K((j, j)) is a weak equivalence of strict mixed
complexes.

Furthermore, if j is even, then K ′((j, j)) is isomorphic to the mapping cone of
Z[j − 1]

2·−
−−→ Z[j − 1]. If j is odd, then K ′((j, j)) is isomorphic to Dj[j − 1] (see Defini-

tion 4.2.1.5 for the notation). ♥

Proof. That the strict mixed structure of K((j, j)) restricts to K ′((j, j)) follows directly
from Proposition 10.5.8.1, and that the inclusion is a weak equivalence of strict mixed
complexes then follows from Proposition 10.5.7.1 (5).

The identification of K ′((j, j)) up to isomorphism follows from Proposition 10.5.2.3
and Proposition 10.5.8.1. For the isomorphism to Dj[j − 1], note that Dj

∼= D−j.

10.6. HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
as a non-split

extension
We can now sum up all the results by coming back to Hochschild homology.

Proposition 10.6.0.1. Assume that Conjecture D holds for the polynomial f = x21−x2x3
in Z[x1, x2, x3]. Then there is a cofiber sequence


 ⊕

j≥5,2|j

Z/2[j − 1]


⊕


 ⊕

j≥5,2∤j

γMixed
(
Dj[j − 1]

)



568



10.6. HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
as a non-split extension

→ HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
→ γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

in Mixed that does not split. ♥

Proof. By definition of K we have a pullback square

K Y

0 Ω•
Z[x1,x2,x3]/f /Z

ψ

φ

in Mixed. It is clear from Definition 10.2.0.2 and Remark 10.2.0.1 that φ is levelwise
surjective and hence a fibration in Mixed. As every object in Mixed is fibrant, it follows
from [HTT, A.2.4.4] that the above square is also a homotopy pullback square.

We can apply γMixed(−
cof) (where −cof is the cofibrant replacement functor for Mixed)

to this diagram to obtain a commutative square in Mixed that is a pullback square by
[HA, 1.3.4.23]6 By Proposition 4.4.3.1 Mixed is stable, so said square is also a pushout
square, so we have shown existence of a cofiber sequence as follows.

γMixed

(
Kcof

)
→ γMixed

(
Y cof

)
→ γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

We can identify γMixed(Y
cof) with HHMixed

(
Z[x1, x2, x3]/f

)
along the equivalence from

Proposition 10.1.0.1, and for γMixed(K
cof) we obtain a sequence of equivalences

γMixed

(
Kcof

)

≃ γMixed



⊕

j⃗∈Z2
≥0

K (⃗j)cof




≃
⊕

j⃗∈Z2
≥0

γMixed

(
K (⃗j)cof

)

≃


 ⊕

j≥5,2|j

cofib
(
Z[j − 1]

2·−
−−→ Z[j − 1]

)

⊕


 ⊕

j≥5,2∤j

γMixed
(
Dj[j − 1]

)



where in the first equivalence we used the decomposition from Construction 10.3.0.1 and
that coproducts of quasiisomorphisms are quasiisomorphisms, in the second we used that
coproducts of cofibrant objects are homotopy coproducts and [HA, 1.3.4.24], and in the
third we used Propositions 10.4.3.1, 10.5.6.1 and 10.5.9.17. This shows existence of a
cofiber sequence as claimed.

6See Propositions 4.4.1.7 and 4.4.2.2 for Mixed being the underlying∞-category of the model category
Mixed.

7Note that Dn has cofibrant underlying chain complex.

569



Chapter 10. Example: x21 − x2x3

It remains to show that this cofiber sequence does not split. So suppose that there is
a morphism

γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)
→ HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

)

in Mixed such that postcomposition with the morphism induced by φ is homotopic to the
identity on γMixed((Ω

•
Z[x1,x2,x3]/f /Z)

cof). By Propositions 4.4.1.7 and 4.4.2.2 and [Hov99,
1.2.10 (ii)] we can then lift this section to a triangle

(
Ω•

Z[x1,x2,x3]/f /Z

)cof

Y Ω•
Z[x1,x2,x3]/f /Z

is

φ

in Mixed that commutes up to homotopy, with i a quasiisomorphism. We will denote
(Ω•

Z[x1,x2,x3]/f /Z)
cof by C below. The following argument will use Y ((5, 5)), and it will

likely be helpful to follow along with diagram (10.1). We will in particular read off ∂

and d from that diagram; to verify those formulas one uses the formulas in Proposi-
tion 10.1.0.1 and the definition of the basis elements in Notation 10.5.2.1. The diagram
below provides an overview over the argument; The left column depicts elements of C
and the right column of Y ((5, 5)) In both columns we depict where the elements are
mapped by ∂ and d using the conventions of Convention 4.2.1.7, and the horizontal ar-
rows correspond to application of s followed by the projection Y → Y ((5, 5)) associated
with the decomposition from Construction 10.3.0.1.

δ ?

d β (2− 5d) · b(0,0,0,1,1,1)

β 2 · p(x3) dx1 dx2t[1] + c · b(0,1,0,1,0,1) + d · b(1,0,0,0,1,1)

dα 2 · b(0,1,1,1,1,0)

α p(x2x
2
3) dx1 dx2

As the homology of the fiber of φ is concentrated in degrees above 3 by the already
obtained cofiber sequence, H2(φ) is an isomorphism. From diagram (10.1) we can read
off that p(x2x23) dx1 dx2 is a cycle in Y2 that represents a nontrivial homology class.
There must thus be a cycle α ∈ C2 such that s(α) = p(x2x

2
3) dx1 dx2 + ∂y, with y ∈ Y3.

570



10.7. Non-formality of HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

As α is a cycle, we have
∂(dα) = − d(∂α) = 0

so dα is a cycle. We furthermore obtain

s(dα) = d
(
s(α)

)
= d

(
p(x2x

2
3) dx1 dx2 + ∂y

)

= 2 · b(0,1,1,1,1,0) + d ∂y = ∂
(
p(x3) dx1 dx2t[1] − d y

)

so that s(dα) is a boundary. As H3(s) has to be injective, this implies that dα must be
a boundary. So let β ∈ C4 be such that ∂β = dα.

Using the description of a basis for Y4((5, 5)) from Proposition 10.5.2.2 we can write
s(β) as

s(β) = a · p(x1)t
[2] + b · p(x3) dx1 dx2t[1] + c · b(0,1,0,1,0,1) + d · b(1,0,0,0,1,1) + z

with a, b, c, d ∈ Z, and z ∈
⊕

j⃗∈Z2
≥0 ,⃗j 6=(5,5) Y4(⃗j). It follows that

2 · b(0,1,1,1,1,0) + d ∂y = s(dα) = s(∂β)

= ∂
(
s(β)

)

= a · b(1,1,0,0,0,1) + b · b(0,1,1,1,1,0) + c · 0 + d · 0 + ∂z

where both d ∂y and ∂z are elements of
⊕

j⃗∈Z2
≥0 ,⃗j 6=(5,5) Y3(⃗j), so we can conclude that

a = 0 and b = 2.
We have

∂(d β) = − d(∂β) = − d(dα) = 0

so d β is a cycle. As H5(Ω
•
Z[x1,x2,x3]/f /Z)

∼= 0, it thus follows that d β must be of the form
∂δ for some element δ ∈ C6, and hence d s(β) = s(d β) must be a cycle in Y5 that is also
a boundary. But we can calculate

d s(β) = d
(
2 · p(x3) dx1 dx2t[1] + c · b(0,1,0,1,0,1) + d · b(1,0,0,0,1,1) + z

)

= 2 · b(0,0,0,1,1,1) + 0− 5d · b(0,0,0,1,1,1) + d z
= (2− 5d) · b(0,0,0,1,1,1) + d z

which, as z lies in
⊕

j⃗∈Z2
≥0 ,⃗j 6=(5,5) Y4(⃗j) and (2 − 5d) · b(0,0,0,1,1,1) is a cycle representing a

nontrivial homology class, is in contradiction to d s(β) being a boundary.

10.7. Non-formality of HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

Let M be a strict mixed complex. Then the relation d ◦ ∂ + ∂ ◦ d = 0 ensures that
d : M∗ →M∗+1 maps cycles to cycles, and thus induces an operator increasing degree by
1 on homology. Equipping H•(X) with the zero boundary operator we can then consider
H•(M) again as an object of Mixed.

571



Chapter 10. Example: x21 − x2x3

Now let M be a mixed complex, i. e. an object in the ∞-category Mixed. Then we
can make a similar construction using the functors H∗ : D(k) → LModk(Ab) defined in
Definition 4.3.3.1. From the element d in H1(D) we obtain with Proposition 4.3.2.1 (5)
a morphism k[1]→ D in D(k) which induces a morphism

M [1] ≃ k[1]⊗M → D⊗M →M

in D(k), where the second morphism is the action of D on M . This morphism induces
an operator increasing degree by 1 in H∗, and d2 = 0 in H∗(D) implies that this op-
erator squares to 0. Equipping H•(M) with this operator as d and the zero boundary
operator we again obtain a strict mixed complex. Proposition 4.3.3.2 ensures that the
just discussed two constructions agree, i. e. if M is a strict mixed complex with cofibrant
underlying chain complex, then the strict mixed complexes H•(γMixed(M)) and H•(M)
are naturally isomorphic.

Given an object M of Mixed, we can now ask whether M is formal, i. e. whether there
is an equivalence

M ≃ γMixed

(
H•(M)cof

)

in Mixed. In the next proposition we show that, still assuming that Conjecture D holds
for the polynomial x21 − x2x3 in Z[x1, x2, x3], that HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

)
is

not formal. Note that
H•

(
γMixed

(
H•(M)cof

))
∼= H•(M)

for every mixed complex M . This implies (under the assumption of Conjecture D) that
there are at least two mixed complexes whose homology, as a strict mixed complex, is
isomorphic to

H•

(
HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

))

so the mixed complex HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)
can not be recovered from its

homology (even including the action of d) alone.

Proposition 10.7.0.1. Assume that Conjecture D holds for the polynomial f = x21−x2x3
in Z[x1, x2, x3]. Then there is no equivalence between

HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

and
γMixed

(
H•

(
HHMixed

(
Z[x1, x2, x3]/(x21 − x2x3)

))cof)

in Mixed. ♥

Proof. We will make use of the cofiber sequence constructed in Proposition 10.6.0.1, for
which we will use the following notation.

F → Z
Φ
−→ R

572



10.7. Non-formality of HHMixed
(
Z[x1, x2, x3]/(x21 − x2x3)

)

We show the claim by contradiction and assume that there is an equivalence

Θ: γMixed

(
H•(Z)

cof
)

≃
−→ Z

in Mixed.
Note that F has homology concentrated in degrees ≥ 4, so Φ induces an isomorphism

in homology on degrees ≤ 3. As R has homology concentrated in degrees ≤ 3, it follows
that there is a unique morphism of underlying chain complexes s : H•(R)→ H•(Z) such
that H•(Φ) ◦ s is the identity.

We claim that s is in fact also compatible with d and thus a morphism in Mixed. As
H•(Φ) is an isomorphism in degrees ≤ 3, it automatically follows that d ◦ s = s ◦ d on
elements of degree ≤ 2. What remains to show is that d applied to every element of
H3(Z) is zero. From Proposition 10.6.0.1 and the previous discussion in this chapter we
know that the elements of

H4(Z) ∼= H4(Y )

are precisely represented by the integer multiples of the element b(1,0,0,0,1,1) of Y ((5, 5))
(see in particular Propositions 10.5.8.1 and 10.5.9.1). From the sum decomposition of Y
it follows that it suffices to show that there is no cycle in Y ((5, 5)) that is mapped by
d to a linear combination of basis elements of Y ((5, 5)) with respect to the basis from
Proposition 10.5.2.2, in which b(1,0,0,0,1,1) has nonzero coefficient. But this follows from
Proposition 10.5.2.3 and can be read off of the first diagram in Section 10.5.3.

Note that
R = γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

and that are isomorphisms as follows in Mixed;

H•

(
γMixed

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)
)
∼= H•

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)

as discussed before this proposition,

H•

((
Ω•

Z[x1,x2,x3]/f /Z

)cof)
∼= H•

(
Ω•

Z[x1,x2,x3]/f /Z

)

induced by the cofibrant replacement, and

H•

(
Ω•

Z[x1,x2,x3]/f /Z

)
∼= Ω•

Z[x1,x2,x3]/f /Z

as Ω•
Z[x1,x2,x3]/f /Z has zero boundary operator.

Combining these isomorphisms and applying γMixed(−
cof) we obtain an equivalence

α : R
≃
−→ γMixed

(
H•(R)

cof
)

in Mixed.

573



Chapter 10. Example: x21 − x2x3

We can now consider the composition

λ : R
α
−→ γMixed

(
H•(R)

cof
)

γMixed(scof)
−−−−−−→ γMixed

(
H•(Z)

cof
)

Θ
−→ Z

Φ
−→ R

in Mixed. As α and Θ are equivalences, they induce isomorphisms on homology. The
morphism s induces an isomorphism in homology in degrees ≤ 3, so γMixed(s

cof) does so
too, and we already used above that Φ induces an isomorphism in homology in degrees
≤ 3. It follows that λ induces an isomorphism in degrees ≤ 3. As R has homology
concentrated in those degrees, it follows that λ actually induces an isomorphism on
homology in all degrees and is thus an equivalence.

Now define ϱ to be the composition

R
λ−1

−−→ R
α
−→ γMixed

(
H•(R)

cof
)

γMixed(scof)
−−−−−−→ γMixed

(
H•(Z)

cof
)

Θ
−→ Z

in Mixed. Then it follows that

Φ ◦ ϱ ≃ λ ◦ λ−1 ≃ idZ

so ϱ is a section of Φ. This contradicts the fact that the cofiber sequence from Proposi-
tion 10.6.0.1 does not split.

574



Appendix A.

∞-category theory
This is the first of two appendices in which we collect a number of small results on

various basic staples of ∞-category theory, the second one being Appendix D1.
In Section A.1 we will see that the homotopy category of the underlying ∞-category

of a model category is canonically equivalent to the homotopy category of the model
category. We will then discuss mapping spaces in∞-categories in Section A.2, and collect
some results relating to the (∞, 2)-category of ∞-categories Cat∞ in Section A.3.

A.1. Homotopy categories of model categories
Given a model category C with a class of weak equivalences W , we can form its

homotopy category HoW (C) of C, as discussed for example in [Hov99, Section 1.2]. There
is also another way to produce a 1-category called “homotopy category” from C: We can
first pass to the underlying ∞-category C[W−1] of C (see [HA, 1.3.4.1]), and then take
the homotopy category Ho(C[W−1]) of this ∞-category as explained in [HTT, 1.2.3].
The following proposition shows that these two notions of “homotopy category” are
consistent with each other, i. e. they are canonically equivalent.

Proposition A.1.0.1. Let C be a model category with class of weak equivalences W .
Then there exists an equivalence HoW C ≃ Ho

(
C[W−1]

)
fitting into a commutative dia-

gram as follows
C C[W−1]

HoW C Ho
(
C[W−1]

)
γ

α

β

≃

where HoW C is the homotopy category of the model category C (see [Hov99, 1.2]),
Ho
(
C[W−1]

)
is the homotopy category of the ∞-category C[W−1] (see [HTT, 1.2.3]),

and the functors α, β, and γ are the canonical ones. ♥

Proof. The functor α sends morphisms in W to equivalences2, and β sends all equiva-
lences to isomorphisms as Ho

(
C[W−1]

)
is a 1-category. The universal property of HoW C

1Some parts of Appendix D depend on Appendices B and C.
2See [HA, 1.3.4.1] for a definition of C[W−1].

575



Appendix A. ∞-category theory

(see [Hov99, 1.2.2]) furnishes us with a functor Φ making the following diagram commute.

C C[W−1]

HoW C Ho
(
C[W−1]

)
γ

α

β

Φ

As isomorphisms are in particular equivalences, the universal property of C[W−1] (see
[HA, 1.3.4.1]) provides us with a functor ψ : C[W−1] → HoW C satisfying ψ ◦ α ≃ γ.
Applying Ho we obtain a commuting diagram as follows.

C

C[W−1] HoW C

Ho C[W−1] Ho(HoW C)

α γ

β

ψ

∼=
Ψ

As HoW C already is a 1-category, we can identify Ho(HoW C) with HoW C. Call the
resulting functor Ψ: Ho C[W−1]→ HoW C.

Using the uniqueness part of the universal properties of α, β, and γ one concludes
that the compositions Φ◦Ψ and Ψ◦Φ are naturally isomorphic to the respective identity
functors.

A.2. Mapping spaces
In this section we discuss two results relating to mapping spaces of ∞-categories. In

Proposition A.2.0.1 we show that mapping spaces can be calculated as certain pullbacks
in Cat∞. We will then apply this result in Proposition A.2.0.2 to show that a pullback
diagram in Cat∞ induces pullback diagrams of the respective mapping spaces.

Proposition A.2.0.1. Let C be an ∞-category and X and Y two objects of C. Then
there is a natural (in C) pullback square in Cat∞

MapC(X, Y ) C[1]

{(X, Y )} C × C

where the right vertical functor sends a morphism f : A→ B to (A,B). ♥

Proof. We give a proof for this claim in the setting of quasicategories. The discussion
in [HTT, Discussion after 1.2.2.5 and 4.2.1.8] exhibits the mapping space as a pullback

576



A.2. Mapping spaces

of quasicategories, so we need to argue why this is a homotopy pullback in the Joyal
model structure, and then identify the resulting (iterated) homotopy pullback with the
pullback square we claimed. So let C be a quasicategory modeling the ∞-category C. In
[HTT, 4.2.1.8], a model for MapC(X, Y ) is identified with the pullback in simplicial sets
of the following diagram.

C{X}/ → C← {Y }

Applying [HTT, 4.2.1.6]3 to X = C, S = {Y }, K = {X}, and K0 = ∅, we obtain that

C{X}/ → C∅/ ×{Y }∅/ {Y }
{X}/ ∼= C×{Y } {Y } ∼= C

is a left fibration. By [HTT, 2.4.2.4 and 3.3.1.4] this implies that the pullback of

C{X}/ → C← {Y }

is already a homotopy pullback in the Joyal model structure.
Unpacking the definition of C{X}/ (see [HTT, after 4.2.1.4]) one can write C{X}/ as the

pullback in simplicial sets of the following diagram.

{X} → C{0} ← C∆1

It follows from [HTT, 2.4.7.12] (applied to idC) that C∆1
→ C{0} is a cartesian fibration,

so again by [HTT, 3.3.1.4] the pullback in simplicial sets is already a homotopy pullback
in the Joyal model structure. Together this implies that the ∞-groupoid MapC(X, Y ) is
naturally equivalent to the iterated pullback

(
{X} ×C{0} C[1]

)
×C{1} {Y }

in Cat∞. Using [HTT, 4.4.2.2] one can rewrite this iterated pullback into the form that
was stated in the claim.

Proposition A.2.0.2. Let
C D

E F

F

G H (∗)

be a pullback square in Cat∞, and X, Y two objects in C. Then the commutative diagram
in S induced by (∗) on mapping spaces

MapC(X, Y ) MapD

(
F (X), F (Y )

)

MapE

(
G(X), G(Y )

)
MapF

(
H(F (X)), H(F (Y ))

)

is a pullback diagram. ♥
3C→ {Y } is a categorical fibration by [HTT, 2.4.6.1].

577



Appendix A. ∞-category theory

Proof. As C is given as a pullback in Cat∞ and products as well as Fun([1],−) pre-
serve limits, we can write MapC(X, Y ) as a pullback of pullbacks by applying Proposi-
tion A.2.0.1: The ∞-groupoid MapC(X, Y ) is the pullback of the following diagram.

{(
G(X), G(Y )

)}
×{

(H(F (X)),H(F (Y )))
}
{(
F (X), F (Y )

)}

(E × E)×(F×F) (D ×D)

E [1] ×F [1] D[1]

Commuting the two limits [HTT, 5.5.2.3] and applying Proposition A.2.0.1 again we can
conclude that the commutative square

MapC(X, Y ) MapD

(
F (X), F (Y )

)

MapE

(
G(X), G(Y )

)
MapF

(
H(F (X)), H(F (Y ))

)

induced by (∗) is a pullback diagram in Cat∞, and hence a pullback diagram in S by
[HTT, 1.2.13.7].

A.3. The (∞, 2)-category of ∞-categories
In this section we discuss some results concerning the (∞, 2)-category of∞-categories.

We will characterize pullbacks in the underlying∞-category Cat∞ in Section A.3.1, and
show that checking that a natural transformation is an equivalence can be done pointwise
in Section A.3.2.

A.3.1. Pullbacks in Cat∞
Proposition A.3.1.1. Let

C D

E F

F

G H (A.1)

be a commutative diagram in Cat∞. Then diagram (A.1) is a pullback diagram if and
only if the induced diagram on ∞-groupoid cores

C≃ D≃

E≃ F≃

(A.2)

578



A.3. The (∞, 2)-category of ∞-categories

as well as the induced diagram on mapping spaces

MapC(X, Y ) MapD

(
F (X), F (Y )

)

MapE

(
G(X), G(Y )

)
MapF

(
H
(
F (X)

)
, H
(
F (Y )

))
(A.3)

for every pair of objects X and Y in C are pullback diagrams in S. ♥

Proof. The functor (−)≃ : Cat∞ → S is right adjoint to the inclusion (see [HTT, 1.2.5])
and thus preserves pullbacks, which together with Proposition A.2.0.2 shows the “only
if”-direction.

For the “if”-direction, consider the following commutative diagram in Cat∞ induced
by (A.1), where the small square is to be a pullback diagram.

C

C D

E F

Φ

It suffices to show that Φ is an equivalence. The already proven “only if”-direction and
the assumption that (A.2) is a pullback diagram imply that Φ≃ is an equivalence of
spaces, which implies that Φ is essentially surjective (see [HTT, 1.2.10.1]). Analogously
we deduce from (A.3) that Φ is fully faithful (see [HTT, 1.2.10.1] and Definition B.2.0.1
below). Thus Φ is an equivalence.

Remark A.3.1.2. In Proposition A.3.1.1, if diagrams (A.3) are pullback diagrams, then
it follows immediately from the proof that we can replace the condition that diagram
(A.2) is a pullback diagram with the a-priori weaker claim that the map Φ≃ constructed
in the proof is induces a surjection on π0. As (−)≃ preserves pullbacks we can identify
Φ≃ with the induced functor C≃ → D≃ ×E≃ F≃. ♦

A.3.2. Natural transformations
Proposition A.3.2.1 ([Lur21, Theorem 01DK]). Let C and D be∞-categories, F and G
two functors C → D, and Φ: F → G a natural transformation. Then Φ is an equivalence
in Fun(C,D) if and only if ΦX : F (X) → F (X) is an equivalence in D for every object
X of C. ♥

Proof. Equivalences can be described via colimits; A morphism f in some ∞-category
E is an equivalence if and only if the corresponding functor [0]▷ ≃ [1] → E is a colimit
diagram, see [HTT, 4.4.1 and 1.2.4.1]. The claim now follows from the fact that colimits
in functor categories can be detected pointwise by [HTT, 5.1.2.3 (2)].

579



Appendix B.

(Fully) faithful functors and
monomorphisms in Cat∞

In this appendix we discuss three important classes of functors of ∞-categories that
are all in some sense analogues to the notion of injections of sets. These are the faithful
functors, fully faithful functors, as well as monomorphisms in Cat∞.

The notion of monomorphism can be defined in any∞-category, not just Cat∞, so we
begin by discussing monomorphisms in this greater generality in Section B.1. We then
define (fully) faithful functors Section B.2 and discuss some immediate consequences of
the definitions. Before discussing these three classes of functors of ∞-categories further,
we will need to show an intermediate result in Section B.3, stability of (fully) faith-
ful functors under Fun(I,−) for an ∞-category I. We will then be ready to discuss
monomorphisms in Cat∞ in detail in Section B.4. In Section B.5 we will cover a number
of stability results, including descriptions of replete images, for (fully) faithful functors
and monomorphisms in Cat∞, under Fun(I,−), pullbacks along another functor, and
pullbacks. We will end this section with Section B.6, in which we will discuss the corre-
spondence between monomorphisms in Cat∞ with codomain a fixed ∞-category C and
replete subcategories of Ho C.

B.1. Monomorphisms
Let C be an∞-category and f : X → Y a morphism in C. Then f is called a monomor-

phism1 if the morphism

f∗ : MapC(Z,X)→ MapC(Z, Y )

is a monomorphism in S for every object Z of C.
In Section B.1.1 we will give a number of equivalent characterizations for monomor-

phisms in S, before discussing the interaction of monomorphisms with compositions in
Section B.1.2 and with limits in Section B.1.3.

B.1.1. Monomorphisms in the ∞-category S

The following proposition recalls the notion of monomorphisms in the ∞-category S.
1See the definition given in [HTT, Between 5.5.6.13 and 5.5.6.14] as well as [HTT, 5.5.6.8].

580



B.1. Monomorphisms

Proposition B.1.1.1. Let f : X → Y be a morphism in S. Then the following are
equivalent.

(1) f is a monomorphism in the sense of [HTT, Directly after 5.5.6.13], i. e. if f is
(−1)-truncated in the sense of [HTT, 5.5.6.8].

(2) For every point y in Y the fiber of f over y is (−1)-truncated, i. e. empty or
contractible.

(3) For every point x in X the fiber of f over f(x) is (−2)-truncated, i. e. contractible.

(4) For every point x in X the morphism induced by f

πn(X, x)→ πn
(
Y, f(x)

)
(B.1)

is a bijection for n > 0 and an injection for n = 0.

(5) The induced morphism on path components π0(f) is injective and the commutative
diagram

X Y

π0(X) π0(Y )

f

π0(f)

is a pullback diagram in S.

(6) Considering f as a functor of ∞-categories (via the inclusion of ∞-groupoids into
Cat∞) the induced map on mapping spaces2

MapX
(
x, x′

)
→ MapY

(
f(x), f(x′)

)
(B.2)

is an equivalence for every pair of points x and x′ in X.

♥

Proof. Proof that (1) is equivalent to (2): This is [HTT, 5.5.6.9].
Proof that (2) is equivalent to (3): Follows from the fact that points in Y are equivalent

to f(x) for a point x in X if and only if the fiber of f over y is not empty.
Proof that (5) implies (1): As any injective morphism of discrete spaces satisfies (3)

and hence (1), and monomorphisms are stable under taking pullbacks by [HTT, 5.5.6.12],
(5) implies (1).

Proof that (3) is equivalent to (4): Follows immediately from the long exact sequence
of homotopy groups.

2These are the path spaces if we think of X and Y as spaces.

581



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

Proof that (3) implies (5): That π0(f) is injective is part of (4). Now consider the
following diagram, where the small square is a pullback square.

X

P Y

π0(X) π0(Y )

f

φ

ψ

π0(f)

It suffices to show that φ is an equivalence. By the long exact sequence of homotopy
groups, it suffices for this to show that π0(φ) is surjective and the fiber of φ over every
point in P is contractible. As Y → π0(Y ) is 1-connective (see [HTT, 6.5.1.10] for a
definition) we obtain that P → π0(X) is 1-connective by [HTT, 6.5.1.16 (6)], and as
X → π0(X) is 1-connective as well it follows that π0(φ) must be an isomorphism.

Now let p be a point in P . Consider the following diagram of pullback squares.

fibp(φ) {p}

fibψ(p)(f) fibψ(p)(ψ) {ψ(p)}

X P Y

π0(X) π0(Y )

φ ψ

As π0(φ) is surjective, ψ(p) is equivalent to f(x) for some point x in X, so it follows
from the assumption that fibψ(p)(f) is contractible. Furthermore, as fibψ(p)(ψ) can be
identified as a fiber of a map of discrete spaces, it is discrete as well. It follows, using
the long exact sequence of homotopy groups associated to the fiber sequence

fibp(φ)→ fibψ(p)(f)→ fibψ(p)(ψ)

that fibp(φ) is contractible.
Proof that (6) is equivalent to (4): Let x and x′ be points of X. We distinguish two

cases. If x and x′ are not in the same path component, then MapX(x, x′) is empty, and
so (B.2) is an equivalence if and only if MapY (f(x), f(x′)) is empty. That this is the case
for all points x and x′ in different path components of X is equivalent to π0(f) being
injective.

If x and x′ are two points of X that lie in the same path component, then the map
(B.2) can be identified with the induced map on loop spaces.

Ωx(X)
Ωx(f)
−−−→ Ωf(x)(Y )

582



B.2. (Fully) faithful functors

As πn(Ωx(f)) ∼= πn+1(f) (where on the left we use the constant loop at x as the basepoint,
and at the right the point x) we can conclude that (B.2) being an equivalence for all x
and x′ in the same path component of X is equivalent to (B.1) being an isomorphism
for n > 0.

B.1.2. Monomorphisms and composition
Proposition B.1.2.1. Let C be an ∞-category and f : X → Y and g : Y → Z two
morphisms in C such that g is a monomorphism. Then g ◦ f is a monomorphism if and
only if f is a monomorphism. ♥

Proof. The statement for C = S follows immediately from criterion Proposition B.1.1.1
(4). The claim for general C now follows immediately from the definition.

B.1.3. Monomorphisms and limits
Proposition B.1.3.1. Let I and C be ∞-categories, A,B : I → C two functors, and F
a natural transformation from A to B. Assume that for every object X of I the morphism
F (X) : A(X)→ B(X) in C is a monomorphism. Then the morphism limI A

limI F−−−→ limI B

in C is a monomorphism as well. ♥

Proof. We first prove the claim for C = S. Let y be a point in limI B. We have to
show that fiby(limI F ) is (−1)-truncated. But as limits commute with limits, we have
an equivalence

fiby
(

lim
•∈I

F (•)

)
≃ lim

•∈I

(
fibpr•(y) F (•)

)

so that the claim follows from the closure of (−1)-truncated objects under limits, see
[HTT, 5.5.6.5].

The case of general C now follows from this special case using that for every object X
of C the functor

MapC(X,−) : C → S

preserves limits.

B.2. (Fully) faithful functors
In this section we define the notions of (fully) faithful functors of ∞-categories3 and

record some direct consequences of the definition.

Definition B.2.0.1. Let ι : C ′ → C be a functor of∞-categories. We say that ι is (fully)
faithful if for every pair of objects X and Y of C ′ the morphism in S induced by ι

MapC′(X, Y )→ MapC

(
F (X), F (Y )

)

is a monomorphism (is an equivalence). ♦
3Fully faithful functors are defined in [HTT, 1.2.10.1].

583



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

Remark B.2.0.2. It is clear from the definition, that the notions of (fully) faithful-
ness agree with the classical definitions on 1-categories. Furthermore, as π0 : S → Set
sends equivalences to isomorphisms and monomorphisms to monomorphisms (see Propo-
sition B.1.1.1), if a functor ι of ∞-categories is (fully) faithful, then the same is true for
the functor Ho ι of ordinary categories. ♦

Proposition B.2.0.3. Let ι : C ′ → C be a faithful functor of ∞-categories. Then the
commutative diagram

C ′ C

Ho(C ′) Ho(C)

ι

Ho ι

(B.3)

is a pullback diagram in Cat∞. ♥

Proof. We use Proposition A.3.1.1 and Remark A.3.1.2. Let X and Y be two object of
C ′. Diagram (B.3) induces the following diagram of mapping spaces.

MapC′(X, Y ) MapC(ιX, ιY )

π0
(
MapC′(X, Y )

)
π0
(
MapC(ιX, ιY )

)

That this square is a pullback square in S follows now from Proposition B.1.1.1.
It now remains to show that

C ′≃ → C≃ ×Ho(C)≃ Ho
(
C ′
)≃

induces a surjection on π0. The map4

C ′≃ → Ho(C ′)≃ ≃ Ho(C ′≃) ≃ τ≤1(C
′≃)

is 2-connective. Similarly, C≃ → Ho(C)≃ is 2-connective, so by [HTT, 6.5.1.16 (6)] the
projection pr2 : C≃ ×Ho(C)≃ Ho(C ′)≃ → Ho(C ′)≃ is 2-connective as well. We thus have a

4That Ho(C)≃ ≃ Ho(C≃) can be seen directly using the definitions, it boils down to the sub-
space of MapC′(X,Y ) spanned by the equivalences consisting exactly of the path components
that as elements of π0(MapC′(X,Y )) = MorHo C′(X,Y ) correspond to isomorphisms in Ho C′. That
Ho(C′≃) ≃ τ≤1(C

′≃) amounts to the fact that the diagram of inclusions

S≤1 S

Cat Cat∞

is left adjointable in the sense of [HTT, 7.3.1.1]. However, in this situation this follows from the
horizontal functors being fully faithful.

584



B.3. (Fully) Faithful functors and Fun

commuting triangle

C ′≃ C≃ ×Ho(C)≃ Ho(C ′)≃

Ho(C ′)≃
pr2

where the two non-horizontal maps are 2-connective, so the horizontal map must in
particular induce a surjection on π0.

Proposition B.2.0.4. Let ι : C ′ → C be a faithful functor. Then for any objects X and
Y of C ′, the induced map

MapC′≃(X, Y )→ MapC≃(ιX, ιY ) (B.4)

is a monomorphism in S. ♥

Proof. The map in question is by definition the induced vertical map by taking limits
of the horizontal diagrams in the following commutative diagram

MapC′(X, Y ) π0
(
MapC′(X, Y )

)
π0
(
MapC′≃(X, Y )

)

MapC(X, Y ) π0
(
MapC(X, Y )

)
π0
(
MapC≃(X, Y )

)

where the vertical maps are induced by ι, the horizontal maps from the left to the middle
are the canonical ones, and the horizontal maps from the right to the middle are the
inclusions of the path components spanned by invertible morphisms.

As all vertical maps are monomorphisms, it follows from Proposition B.1.3.1 that (B.4)
is a monomorphism as well.

B.3. (Fully) Faithful functors and Fun
When we discuss monomorphisms in Cat∞ in Section B.4, we will need to use a first

stability result for (fully) faithful functors that we prove in this section; for an∞-category
I, the functor Fun(I,−) : Cat∞ → Cat∞ preserves (fully) faithful functors.

Proposition B.3.0.1. Let ι : C ′ → C be a (fully) faithful functor of ∞-categories and
let I be some ∞-category. Then the induced functor

ι∗ : Fun(I, C ′)→ Fun(I, C)

is (fully) faithful as well. ♥

585



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

Proof. Let F and G be two objects of Fun(C,D′). Mapping spaces in functor categories
can be written as ends, see [Gla16, 2.3]. Concretely, the map induced by ι∗ on mapping
spaces

MapFun(C,D′)(F,G)→ MapFun(C,D)(ι ◦ F, ι ◦G)

can be identified with the following map of ends, induced by the maps induced by ι on
mapping spaces MapD′(•, •)→ MapD(ι(•), ι(•)).

∫

•∈C

MapD′

(
F (•), G(•)

)
−→

∫

•∈C

MapD

(
ι(F (•), ι(G(•))

)

If ι is fully faithful, then this is an equivalence as ends, like other limits, are invariant
under equivalences, so ι∗ is fully faithful as well.

If ι is faithful, then we can use that limits commute with limits, so for φ : F → G a
morphism in Fun(C,D′) we obtain

fibφ
(

MapFun(C,D′)(F,G)→ MapFun(C,D)(ι ◦ F, ι ◦G)
)

≃

∫

•∈C

fibφ•

(
MapD′

(
F (•), G(•)

)
→ MapD

(
ι(F (•), ι(G(•))

))

≃

∫

•∈C

∗ ≃ ∗

where in the second-to-last step we use that ι is faithful in combination with criterion
(3) of Proposition B.1.1.1, and in the last step we use that a limit of a diagram that is
pointwise a terminal object (which is a limit over the empty diagram) is the terminal
object (as limits commute with limits). Thus ι∗ is again faithful.

B.4. Monomorphisms in Cat∞
In this section we discuss monomorphisms in Cat∞. We start in Section B.4.1 by giving

several equivalent characterizations of monomorphisms in Cat∞, that will be crucial for
later results. In Section B.4.2 we will then discuss the analogue of monomorphism in
Cat∞ for 1-categories, the notion of pseudomonic functors, as well as the relation between
monomorphisms in Cat∞ and pseudomonic functors in Cat. Section B.4.3 will provide
the important criterion for lifting along monomorphisms in Cat∞. Finally, we end this
section with Section B.4.4, where we show that faithful functors are monomorphisms.

B.4.1. Equivalent characterizations of monomorphisms in Cat∞
In this section we provide a number of equivalent characterizations of monomorphisms

in Cat∞. We also show that monomorphisms in Cat∞ are conservative functors, i. e. reflect
equivalences.

Proposition B.4.1.1. Let ι : C ′ → C be a functor of ∞-categories. Then the following
are equivalent.

586



B.4. Monomorphisms in Cat∞

(1) ι is a monomorphism in Cat∞ in the sense of [HTT, After 5.5.6.13].

(2) For every ∞-category I, the induced map
(ι∗)

≃ : Fun
(
I, C ′

)≃
→ Fun(I, C)≃

is a monomorphism in S.

(3) ι is faithful and the induced functor on ∞-groupoid cores ι≃ : C ′≃ → C≃ is a
monomorphism in S.

(4) ι is faithful and for every two objects X and Y in C ′ and equivalence f : ιX → ιY

there is an equivalence f ′ : X → Y such that ιf ′ is homotopic to f .
♥

Proof. Proof that (1) is equivalent to (2): This follows immediately by unpacking the
definition of monomorphisms and using that MapCat∞(I,−) ≃ Fun(I,−)≃ by definition
[HTT, 3.0.0.1].

Proof that (2) implies (3): Applying the assumption to I = [0], we deduce immediately
that ι≃ is a monomorphism in S. Let X and Y be objects of C ′. Using that (−)≃ preserves
pullbacks as a right adjoint [HTT, 1.2.5] we obtain from Proposition A.2.0.1 that the
map induced by ι

MapC′(X, Y )→ MapC(ιX, ιY ) (∗)
is the map induced on limits of the horizontal diagrams in the following commutative
diagram.

Fun
(
[1], C ′

)≃ Fun
(
{0, 1}, C ′

)≃
{(X, Y )}

Fun
(
[1], C

)≃ Fun
(
{0, 1}, C

)≃
{(ιX, ιY )}

where the vertical maps are induced by ι, the horizontal maps from the left to the middle
are induced by precomposition with the inclusion of {0, 1} into [1] and the horizontal
maps from the right to the middle are the inclusions of the functors sending 0 to the
first component of the tuple and 1 to the second component. The vertical map on the
right is an equivalence and thus a monomorphism, and the other two vertical maps
are monomorphisms by assumption. It follows from Proposition B.1.3.1 that (∗) is a
monomorphism as well.

Proof that (3) implies (4): Follows immediately from description Proposition B.1.1.1
(6) of monomorphisms in S applied to ι≃.

Proof that (4) implies (2): Let I be an ∞-category. As MapCat∞(I,−) ≃ Fun(I,−)≃
preserves limits, we obtain from Proposition B.2.0.3 a pullback diagram of spaces as
follows

Fun(I, C ′)≃ Fun(I, C)≃

Fun(I,Ho C ′)≃ Fun(I,Ho C)≃

(ι∗)
≃

((Ho ι)∗)
≃

587



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

where the vertical maps are induced by postcomposition with the canonical functors. We
have to show that the top map is a monomorphism, so as monomorphisms are stable
under pullback by [HTT, 5.5.6.12], it suffices to show that ((Ho ι)∗)≃ is a monomorphism
in S. Note that as Ho ι is a functor of 1-categories, we can identify ((Ho ι)∗)≃ with the
following functor.

(
(Ho ι)∗

)≃
: Fun

(
Ho I,Ho C ′

)≃
→ Fun(Ho I,Ho C)≃

Let F and G be functors from Ho I to Ho C ′, considered as objects of Fun(Ho I,Ho C ′)≃.
By criterion Proposition B.1.1.1 (6) it suffices to show that postcomposition with Ho ι
induces an equivalence on mapping spaces as follows.

MapFun(Ho I,Ho C′)≃(X, Y )→ MapFun(Ho I,Ho C)≃(ι ◦X, ι ◦ Y ) (∗∗)

By Remark B.2.0.2 together with Proposition B.3.0.1 the functor (Ho ι)∗ is faithful, so
by Proposition B.2.0.4, the map (∗∗) is already a monomorphism, so that it suffices to
show that it induces a surjection on π0. So let Φ: ι◦F → ι◦G be a natural isomorphism
of functors from Ho I to Ho C. We have to show that we can lift Φ to a natural transfor-
mation from F to G. Let X be an object of Ho I. Then we can apply the assumption
on ι and lift the isomorphism ΦX : ι(F (X)) → ι(G(X)) in Ho C ′ to an isomorphism
Φ′
X : F (X)→ G(X) in Ho C such that ι(Φ′

X) = ΦX . It remains to check that Φ′ defines
a natural transformation from F to G. As F and G are functors of 1-categories, this is
a property, not data, and it suffices to check that for every morphism f : X → Y in I,
the diagram

F (X) G(X)

F (Y ) G(Y )

Φ′
X

F (f) G(f)

Φ′
Y

commutes. But as Ho ι is faithful, it suffices to check that ι applied to this square yields
a commutative square, which is the case as Φ is a natural transformation.
Proposition B.4.1.2. Let ι : C ′ → C be a monomorphism in Cat∞. Then ι is conserva-
tive, i. e. reflect equivalences. ♥

Proof. Let f : X → Y be a morphism in C ′ such that ι(f) is an equivalence. By Propo-
sition B.4.1.1 (4) we can lift ι(f) to an equivalence f ′ : X → Y in C ′. But faithfulness of
ι implies that π0(MapC′(X, Y )) → π0(MapC(ιX, ιY )) is injective, hence f and f ′ must
be homotopic, so f is an equivalence as well.

B.4.2. Pseudomonic functors and replete images
The notion of monomorphisms in Cat∞ corresponds to the notion of pseudomonic

functors of 1-categories, as we discuss in this section. Like injective maps of sets, pseu-
domonic functors of 1-categories are, up to equivalence, determined by their image. In
the case of pseudomonic functors we will usually consider a more invariant notion of
image, the replete image, which we also introduce below.

588



B.4. Monomorphisms in Cat∞

Remark B.4.2.1. Let ι : C ′ → C be a monomorphism in Cat∞. Then if follows imme-
diately from Proposition B.4.1.1 (4) and Remark B.2.0.2 that Ho ι : Ho C ′ → Ho C is a
pseudomonic functor, i. e. Ho ι satisfies the following two conditions.

(1) Ho ι is faithful.

(2) If X and Y are two objects of Ho C ′ and f : (Ho ι)(X) → (Ho ι)(Y ) is an isomor-
phism in Ho C, then f lifts to an isomorphism f ′ : X → Y in Ho C ′ such that
(Ho ι)(f ′) = f .

If ι : C′ → C is a pseudomonic functor of 1-categories, then it follows similarly that ι
is a monomorphism in Cat∞. ♦

Definition B.4.2.2. Let C′ be a subcategory of the 1-category C. We say that C′ is a
replete subcategory of C if the collection of morphisms in C′ is closed under isomorphisms
in the arrow category Fun([1],C).

If F : C → D is a functor of 1-categories, then the replete image ImF of F is the
replete subcategory of D generated by the image of F , i. e. it consists of those objects
isomorphic to an object of the form F (X) for X in C, and those morphisms isomorphic
in the arrow category of D to a morphism of the form F (f) for f a morphism in C. ♦

Remark B.4.2.3. Let ι : C′ → C be a pseudomonic functor of 1-categories. Then it
follows directly from the definitions that the induced functor ι′ : C′ → Im ι is essentially
surjective as well as fully faithful and thus an equivalence. ♦

B.4.3. Lifting along monomorphisms
We now show that monomorphisms in Cat∞ have the expected property: We can check

whether two functors into the domain of a monomorphism ι are homotopic by checking
their compositions with ι, and any functor into the target of ι can be lifted as long as
its image is contained in the image of ι.

Proposition B.4.3.1. Let ι : D′ → D be a monomorphism in Cat∞ and F : C → D a
functor of ∞-categories.

Then F can be lifted along ι, i. e. there exists a commutative diagram as follows

D′

C D

ιF ′

F

if and only if Im(HoF ) is contained in Im(Ho ι). If this is the case, then the lift is
essentially unique in the sense that the fiber over F of the map

(ι∗)
≃ : Fun

(
C,D′

)≃
→ Fun(C,D)≃

is contractible. ♥

589



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

Proof. Proof of the “only if”-direction: Clear.
Proof of the “if”-direction: By Proposition B.4.1.1 ι is faithful and so the right square

in the following commutative diagram is a pullback square by Proposition B.2.0.3.

D′ HoD′

C D HoD

ι Ho ιF ′

F

It thus suffices to show that the composition F̃ of F with the canonical functorD → HoD
can be lifted along Ho ι. But Ho ι factors by Remark B.4.2.3 as an equivalence composed
with the inclusion Im(Ho ι)→ Ho C, and by assumption F̃ factors over this inclusion.

Proof that the lift is essentially unique if it exists: As we assume a lift exists, the fiber
can not be empty. That it is then contractible follows from Proposition B.4.1.1 (2).

B.4.4. (Fully) faithful functors are monomorphisms
In this short section we show that (fully) faithful functors are monomorphisms.

Proposition B.4.4.1. Fully faithful functors of ∞-categories are monomorphisms in
Cat∞. ♥

Proof. Let ι : C ′ → C be a fully faithful functor. We will use criterion Proposition B.4.1.1
(4). That ι is faithful is clear. Let X and Y be objects of C ′ and f : ιX → ιY an
equivalence in C. Let f−1 be an inverse of f . As ι is fully faithful, we can lift f to a
morphism f ′ : X → Y and f−1 to a morphism f ′′ : Y → X. But as ι also induces an
equivalence MapC′(X,X)→ MapC(ιX, ιX), we can also lift the homotopy f−1 ◦f ≃ idιX
to a homotopy f ′′ ◦f ′ ≃ idX , and similarly f ′ ◦f ′′ ≃ idY , so f ′ : X → Y is an equivalence
with ιf ′ ≃ f .

B.5. Stability properties of (fully) faithful functors
and monomorphisms in Cat∞

In this section we show that monomorphism in Cat∞ as well as (fully) faithful functors
are stable under various constructions. In Section B.5.1 we handle the case of induced
functors on functor ∞-categories, and in Sections B.5.2 and B.5.3 we discuss two types
of stability under taking pullbacks.

Section B.5.2 concerns taking the pullback along an arbitrary other functor, i. e. we
show that if ιD is faithful (fully faithful, a monomorphism), then the functor ιC, defined
via a pullback diagram

C ′ C

D′ D

ιC

F ′ F

ιD

590



B.5. Stability of (fully) faithful functors and monomorphisms in Cat∞

in Cat∞, with F any functor, is so as well.
In Section B.5.3 we instead consider stability under taking pullbacks in the arrow

∞-category; in Proposition B.1.3.1 we already showed that a natural transformation
between two diagrams that is pointwise a monomorphism induces a monomorphism
between the two limits. Section B.5.3 specializes this to the case of pullbacks in Cat∞,
and adds additional information regarding the replete image of the induced functor.

B.5.1. Functor ∞-categories
Proposition B.5.1.1. Let ι : C ′ → C be a monomorphism in Cat∞ and I an∞-category.
Then the induced functor

ι∗ : Fun
(
I, C ′

)
→ Fun(I, C)

is a monomorphism in Cat∞ as well.
Let J be defined to be the replete subcategory of Ho Fun(I, C) where
• a functor F : I → C considered as an object of Ho Fun(I, C) is in J if and only if

Im(HoF ) is contained in Im(Ho ι).

• a natural transformation Φ: F → G of functors I → C, considered as a morphism
from F to G in Ho Fun(I, C), is in J if and only if F and G are objects of J and
ΦX is in Im(Ho ι) for every object X of I.

Then the replete image Im(Ho ι∗) of the functor
Ho(ι∗) : Ho Fun

(
I, C ′

)
→ Ho Fun(I, C)

is equal to J. ♥

Proof. Proof that ι∗ is a monomorphism: Follows from description Proposition B.4.1.1
(2) using that for any ∞-category J there is a natural equivalence as follows.

Fun
(
J ,Fun(I,−)

)
≃ Fun(J × I,−)

Proof that Im(Ho ι∗) is contained in J: Clear
Proof that J is contained in Im(Ho ι∗): It suffices to show an inclusion of the respective

collection of morphisms, as the case of objects is covered by the identity morphisms. So
let Φ: F → G be a natural transformation of functors I → C, considered as a morphism
from F to G in Ho Fun(I, C), and assume that Φ lies in J. What we have to show is
that Φ can be lifted along ι, i. e. that there is a natural transformation Φ′ of functors
I → C ′ such that ι ◦ Φ′ ≃ Φ. But we can encode Φ as a functor Φ̃ : [1] × I → C, and
the assumptions mean precisely that Im(Ho Φ̃) is contained Im(Ho ι). That we can lift
Φ along ι now follows from Proposition B.4.3.1.
Remark B.5.1.2. Let ι : C ′ → C be a fully faithful functor. By B.4.4.1 ι is also a
monomorphism in Cat∞, so we can apply Proposition B.5.1.1. In this case, the replete
subcategory J of Ho Fun(I, C) appearing in the statement of Proposition B.5.1.1 has
a simpler description, using that Ho ι is full: J is the full subcategory of Ho Fun(I, C)
spanned by those functors F : I → C for which F (X) is in the essential image of Ho ι
for every object X of I. ♦

591



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

B.5.2. Pullbacks along another functor
Proposition B.5.2.1. Let

C ′ C

D′ D

ιC

F ′ F

ιD

(B.5)

be a pullback square in Cat∞ and assume that ιD is faithful (fully faithful, a monomor-
phism). Then ιC is faithful (fully faithful, a monomorphism) as well.

Furthermore, if ιD is a monomorphism5, then the induced diagram on homotopy cat-
egories

Ho(C ′) Ho(C)

Ho(D′) Ho(D)

Ho ιC

HoF ′ HoF

Ho ιD

(B.6)

is a pullback6. ♥

Proof. That ιC is a monomorphism in Cat∞ if ιD is follows immediately from pullbacks
of monomorphisms being pullbacks again, see [HTT, 5.5.6.12].

We next show the first statement for (fully) faithful functors. Let X and Y be objects
of C ′. We have to show that the map in S

MapC′(X, Y )→ MapC(ιC(X), ιC(Y ))

induced by ιC is a monomorphism (is an equivalence). By Proposition A.2.0.2 the com-
mutative square induced by (B.5)

MapC′(X, Y ) MapC

(
ιC(X), ιC(Y )

)

MapD′

(
F ′(X), F ′(Y )

)
MapD

(
ιD(F

′(X)), ιD(F
′(Y ))

)

is a pullback diagram in S. As ιD is (fully) faithful the lower horizontal map is a monomor-
phism (equivalence), and hence so is the upper horizontal map (see [HTT, 5.5.6.12] for
monomorphisms being preserved by pullbacks) This shows that ιC is (fully) faithful.

Finally it remains to show that diagram (B.6) is a pullback diagram if ιD is a monomor-
phism in Cat∞. By Remark B.4.2.1, the functors Ho ιD and Ho ιC are pseudomonic, so
this boils down to showing that the replete image of Ho ιC is equal to the HoF -preimage
of the replete image of Ho ιD. It is clear that HoF maps the replete image of Ho ιC to the
replete image of Ho ιD. On the other hand, if f is a morphism in C such that HoF (f) is in
the replete image of Ho ιD, then there must exist a morphism g′ in D and an equivalence

5Recall that by Proposition B.4.4.1 fully faithful functors are automatically monomorphisms in Cat∞.
6We take the pullback in the ∞-category of 1-categories.

592



B.5. Stability of (fully) faithful functors and monomorphisms in Cat∞

ιD(g
′) ≃ F (f) in Fun([1],D). We can interpret the situation as a commuting square as

depicted as the outer square in the following diagram.

[1]

C ′ C

D′ D

constf

constg′

ιC

F ′ F

ιD

As the small square is a pullback square we obtain the dashed functor, which we can
interpret as a morphism in C ′ that is mapped by Ho ιC to a morphism isomorphic to C.
That the objects of the two replete subcategories we are to compare agree can be proven
analogously, or deduced from this by considering identity morphisms.

B.5.3. Pullbacks
Proposition B.5.3.1. Let

C ′ D′

C D

E ′ F ′

E F

FC FD

R′P

Q

FE
S′

FF

S

R
(B.7)

be a commuting cube of∞-categories such that FD, FE , and FF are faithful (fully faithful,
monomorphisms) and the front and back squares are pullback squares in Cat∞. Then the
functor FC is faithful (fully faithful, a monomorphism) as well.

Furthermore, if FF is a monomorphism7 in Cat∞, then an object (morphism) in Ho C
is in Im(HoFC) if and only if it is mapped by HoP and HoQ to an object (morphism)
in Im(HoFD) and Im(HoFE), respectively. ♥

Proof. To show that FC is again faithful or fully faithful we apply Proposition A.2.0.2
and use Proposition B.1.3.1 and that the formation of pullbacks is invariant under equiv-
alences. The case of monomorphisms in Cat∞ is even simpler, as it follows directly from
Proposition B.1.3.1.

It remains to show the statement concerning replete images. The “only if”-direction is
clear. We show that a morphism in Ho C satisfying the assumption lies in Im(HoFC), the

7By Proposition B.4.4.1, fully faithful functors are monomorphisms as well.

593



Appendix B. (Fully) faithful functors and monomorphisms in Cat∞

statement for objects follows from this by considering identity morphisms. As the front
of (B.7) is a pullback diagram, a morphism in C satisfying the assumptions corresponds
to a commutative square

[1] D

E F

ΦD

ΦE R

S

such that Im(HoΦD) is contained in Im(FD) and Im(HoΦE) is contained in Im(FE).
What we have to show is that we can extend this square to a commutative cube as
follows.

[1] D′

[1] D

E ′ F ′

E F

id[1]

ΦD′

ΦE′

FD

R′

ΦD

ΦE

FE

S′

FF

S

R
(∗)

The assumptions on Im(HoΦD) and Im(HoΦE) imply that we can fill the dashed ar-
rows together with the top and left squares by Proposition B.4.3.1, as FD and FD are
monomorphisms. We are left to find a filler for the back square and the cube. But this
amounts to lifting the homotopy between FF ◦R

′ ◦ΦD′ and FF ◦S
′ ◦ΦE ′ encoded by the

other sides to a homotopy between R′ ◦ΦD′ and S ′ ◦ΦE ′ . This is possible as the following
map induced by FF

Map(
Fun([1],F ′)

≃
)(R′ ◦ ΦD′ , S ′ ◦ ΦE ′

)
→ Map(

Fun([1],F)
≃
)(FF ◦R

′ ◦ ΦD′ , FF ◦ S
′ ◦ ΦE ′

)

is an equivalence by Proposition B.4.1.1 (2) and Proposition B.1.1.1 (6).

B.6. Subcategories
In this short section we briefly discuss how monomorphisms into a fixed ∞-category

C correspond to replete subcategories of Ho C.

Remark B.6.0.1. Let C be an ∞-category and (Ho C)′ a replete subcategory of Ho C.
Then define ι : C ′ → C as in the following pullback diagram

C ′ C

(Ho C)′ Ho C

ι

ι′

594



B.6. Subcategories

where the right vertical functor is the canonical one. As the inclusion of a replete sub-
category of a 1-category is a pseudomonic functor of 1-categories, it follows from Re-
mark B.4.2.1 that ι′ is a monomorphism in Cat∞. By Proposition B.5.2.1 ι is also a
monomorphism, and furthermore the induced functor Ho(C ′) → Ho(C)′ is an equiva-
lence8, so Im(Ho ι) = (Ho C)′.

By Proposition B.4.3.1, two monomorphisms ι′ : C ′ → C and ι′′ : C ′′ → C are equivalent
as functors to C in the sense that there is a commutative triangle

C ′

C

C ′′

ι′

≃

ι′′

if and only if Im(Ho ι′) = Im(Ho ι′′). This implies that all monomorphisms arise up to
equivalence from the above construction, and that there is a bijection between equiva-
lence classes of monomorphisms with target C and replete subcategories of Ho C. ♦

8As Ho C → Ho(Ho C) is.

595



Appendix C.

(Co)Cartesian Fibrations
For many technical parts of this thesis, (co)cartesian fibrations play a crucial role.

For a very readable model-independent introduction [Maz19a] can be recommended.
For a full introduction to (co)cartesian fibrations and their properties in the setting
of quasicategories see [HTT, 2.4]. We will follow [Maz19a] in deviating somewhat from
Lurie’s terminology by using a more model-independent definition: For us, a cartesian
fibration is a morphism in Cat∞ that can be represented by a morphism of quasicategories
that is a cartesian fibration in Lurie’s sense (see [HTT, 2.4.2.1]). Equivalently, those
are the functors of ∞-categories which satisfy condition [HTT, 2.4.1.1 (2)], with the
pullback in the definition of cartesian morphisms in [HTT, 2.4.1.1] replaced by the
homotopy pullback in Cat∞. For a definition along these lines, see [Maz19a, 3]. It is
shown in [Maz19a, 4.3 and 4.4] that these two descriptions coincide, and we can thus
use the latter model-independent definition while still making use of all the properties
of (co)cartesian fibrations proved in [HTT].

In this appendix we collect some statements relating to (co)cartesian fibrations that
we need; in Section C.1 we will show a number of stability statements, and in Section C.2
we will discuss compatibility of cocartesian fibrations with products.

C.1. Stability properties of (co)cartesian fibrations
In this section we discuss stability of (co)cartesian fibrations under some constructions.

Concretely, in Section C.1.1 we consider pullbacks of cartesian fibrations along any other
functor, in Section C.1.2 we discuss a condition under which restrictions of cartesian
fibrations along fully faithful functors are again cartesian fibrations, and in Section C.1.3
we show that if p : C → D and q : D → E are cartesian fibrations, then p is also a
morphism of cartesian fibrations from qp to q, i. e. maps qp-cartesian morphisms to
q-cartesian morphisms.

Remark C.1.0.1. The definitions of cocartesian and cartesian fibrations are dual to
each other: p : C → D is a cocartesian fibration if and only if pop : Cop → Dop is a
cartesian fibration [HTT, 2.4.2.1]. Because of this it suffices to prove many statements
for only one of the two (usually cartesian fibrations), the other case following by passing
to opposite ∞-categories. To avoid overly long statements we will not state the dual
versions in the propositions below, but use them without further comment. ♦

596



C.1. Stability properties of (co)cartesian fibrations

C.1.1. Pullbacks
We record the following fact, that is clear from [HTT, 2.4.1 and 2.4.2], but not stated

like this.

Proposition C.1.1.1. Let
C ′ C

D′ D

F

p′ p

be a pullback diagram of ∞-categories where p is a cartesian fibration.
Then p′ is also a cartesian fibration and a morphism φ : X → Y in C ′ is p′-cartesian

if and only if F (φ) is p-cartesian. ♥

Proof. That p′ is also a cartesian fibration is [HTT, 2.4.2.3 (2)], which follows from
[HTT, 2.4.1.3 (2)], which also covers the “if”-direction. For the “only if”-direction, let
φ : X → Y be a p′-cartesian morphism in C ′. Then φ is in particular locally p′-cartesian1,
so we can apply [HTT, 2.4.1.12] to conclude that F (φ) is locally p-cartesian. As p is
a cartesian fibration we can then apply [HTT, 2.4.2.13] to show that F (φ) is in fact
p-cartesian.

C.1.2. Restriction along fully faithful functors
Proposition C.1.2.1. Let p′ : C ′ → D be a cartesian fibration of ∞-categories and
ι : C → C ′ a fully faithful functor. Assume that for every object Y in C and every
p′-cartesian morphism f ′ : X ′ → ι(Y ) in C ′ there is an object X in C with ι(X) ≃ X ′.

Let p = p′ι. Then p is also a cartesian fibration, and a morphism f in C is p-cartesian
if and only if ι(f) is p′-cartesian. ♥

Proof. We start by noting that the “if”-direction, i. e. the criterion for checking when a
morphism of C is p-cartesian, follows immediately from [HTT, 2.4.4.3].

We can now use this criterion to show that p has a sufficient supply of cartesian lifts to
be a cartesian fibration. So let Y be an object in C and g : X → p(Y ) a morphism in D.
Then there exists a p′-cartesian lift g′ : X ′

→ ι(Y ) in C ′, as p′ is a cartesian fibration.
By the assumption on ι, there exists an object X of C such that ι(X) ≃ X

′. As ι is also
fully faithful, there exists a morphism g : X → Y in C such that ι(g) ≃ g′ and hence
p(g) ≃ g. We can now use the already proven criterion to deduce that g is p-cartesian
from g′ being p′-cartesian. This finishes the proof that p is a cartesian fibration.

Finally, let f : X → Z be a p-cartesian morphism in C. We want to show that ι(f) is
p′-cartesian. In C ′ we can factor ι(f) as ι(f) = ψ′ ◦ φ′, where ψ′ is p′-cartesian and φ′ is

1This follows from the already proved “if”-direction. See [HTT, 2.4.1.11] for a definition of locally
p′-cartesian morphisms.

597



Appendix C. (Co)Cartesian Fibrations

a morphism in C ′p(X), as depicted in the following commutative diagram

ι(X) Y ′

ι(Z)

φ′

ι(f)
ψ′

lying over the following commutative diagram in D.

p(X) p(X)

p(Z)

idp(X)

p(f)
p(f)

Using the assumptions on ι, we can find an object Y in C together with an equivalence
ϑ : Y ′ ≃

−→ ι(Y ), as well as a commuting diagram

X Y

Z

φ

f ψ

in C which maps to the following composite commutative diagram in C ′.

ι(X) ι(Y )

Y ′

ι(Z)

ι(φ)

ι(f)

φ′

ι(ψ)

ψ′

ϑ

As ϑ is an equivalence and ψ′ is p′-cartesian, also ι(ψ) is p′-cartesian, so that we can
conclude that ψ is p-cartesian by the already proven “if”-direction. If follows from [HTT,
2.4.1.7] that φ is also p-cartesian. Furthermore, p(φ) is an equivalence as the composition
of the two equivalences idp(X) and p′(ϑ), so by [HTT, 2.4.1.5] φ itself is an equivalence.
Thus ι(φ) is an equivalence and hence by [HTT, 2.4.1.5] p′-cartesian, and so ι(f) is
p′-cartesian by [HTT, 2.4.1.7].

598



C.2. Cocartesian fibrations and products

C.1.3. Morphisms of cartesian fibrations
Proposition C.1.3.1. Let

C D

E

p

s q

be a commutative diagram of ∞-categories such that p, q, and s are cartesian fibrations.
Then p is a morphism of cartesian fibrations over E , i. e. maps s-cartesian morphisms

to q-cartesian morphisms. ♥

Proof. Let f : X → Y be an s-cartesian morphism in C. As q is a cartesian fibration,
there exists a q-cartesian lift g : Z → p(Y ) in D of s(f). As p is a cartesian fibration,
we can further lift g to a p-cartesian morphism f ′ : X ′ → Y in C. By [HTT, 2.4.1.3 (3)]
f ′ is even s-cartesian, so by uniqueness of cartesian lifts (see [HTT, 2.4.1.9]) f ′ and f

are equivalent as morphisms in C and hence p(f) ≃ p(f ′) ≃ g is q-cartesian because g
is.

C.2. Cocartesian fibrations and products
Let D be an ∞-category and F : D → Cat∞ a functor. Let O be an ∞-operad. By

[HA, 2.4.2.4] the ∞-category MonO(Cat∞) of O-monoids in Cat∞ can be identified with
the∞-category of O-monoidal∞-categories. If F preserves products, then we obtain an
induced functor on O-monoids, which we can thus interpret as functorially producing
O-monoidal ∞-categories out of O-monoids in D. We will be very interested in this
situation in this thesis, in particular in Chapter 3. However, it will usually be easier to
construct and work with the cocartesian fibration p : C → D associated to F rather than
with F directly. For this reason we will start this section by describing the property of
F preserving products in terms of the cocartesian fibration p (see Definition C.2.0.1),
and will then prove some consequences of this property, as well as one result (see Propo-
sition C.2.0.4) that can help deduce that a cocartesian fibration has this property.

Definition C.2.0.1. Let p : C → D be a cocartesian fibration. We say that p has fibers
compatible with products if D admits all products and for any set I and collection of
objects Yi in D for i ∈ I, the functor

C∏
i∈I Yi

∏
i∈I(pri)!−−−−−−→

∏

i∈I

CYi ♦

is an equivalence of ∞-categories, where prj :
∏

i∈I Yi → Yj is the projection and (prj)!
is the functor induced by prj on fibers.

Remark C.2.0.2. Let p : C → D be a cocartesian fibration that is classified by a functor
F : D → Cat∞. Then p has fibers compatible with products if and only if D admits all
products and F preserves products. ♦

599



Appendix C. (Co)Cartesian Fibrations

If p : C → D is a cocartesian fibration whose fibers are compatible with products, then
we will see in the next proposition that C admits all products as well, and p preserves
them. In fact we can say more and also describe concretely how to construct products
in C.

Proposition C.2.0.3. Let p : C → D be a cocartesian fibration whose fibers are compat-
ible with products in the sense of Definition C.2.0.1.

Let I be a set and (Xi)i∈I a collection of objects in C. As fibers of p are compatible
with products, we obtain the following equivalence.

C∏
i∈I p(Xi)

∏
i∈I(pri)!−−−−−−→

∏

i∈I

Cp(Xi)

There thus exists an object X in C lying over
∏

i∈I p(Xi) together with p-cocartesian
morphisms pri : X → Xi lying over the projections pri :

∏
i∈I p(Xi)→ p(Xi).

Then the morphisms pri exhibit X as a product of the collection of objects Xi for i ∈ I
in C. In particular, C admits all products and p preserves products. ♥

Proof. We use notation as in the statement. By [HTT, 4.4.1] we need to prove for every
object Z of C that the map

MapC(Z,X)

∏
i∈I(pri◦−)
−−−−−−−→

∏

i∈I

MapC(Z,Xi)

is an equivalence. This map fits into the following commutative square as the left vertical
map, with the horizontal maps being induced by p.

MapC(Z,X) MapD

(
p(Z),

∏

i∈I

p(Xi)
)

∏

i∈I

MapC(Z,Xi)
∏

i∈I

MapD

(
p(Z), p(Xi)

)

∏
i∈I(pri◦−) ∏

i∈I(pri◦−) (∗)

As by definition the projections pri exhibit
∏

i∈I p(Xi) as a product of (Xi)i∈I , it follows
by [HTT, 4.4.1] that the right vertical map is an equivalence. Let f : p(Z)→

∏
i∈I p(Xi)

be a morphism. We can extend diagram (∗) to a morphism of fiber sequences by taking
the fiber of the top horizontal map over f and of the lower horizontal map over (pri ◦f)i∈I .
By the five lemma it will then suffice to show that for every such f the induced map on
fibers is an equivalence.

To identify this induced map on fibers, we let f : Z → f!Z be a p-cocartesian lift of f ,
let prj ′ : f!Z → prj !(f!Z) be a p-cocartesian lift of prj :

∏
i∈I p(Xi)→ p(Xj), and ponder

600



C.2. Cocartesian fibrations and products

the following diagram.

MapC∏
i∈I p(Xi)

(f!Z,X) MapC(Z,X) MapD

(
p(Z),

∏

i∈I

p(Xi)
)

MapCp(Xj)

(
prj !(f!Z), Xj

)
MapC

(
Z,Xj

)
MapD

(
p(Z), p(Xj)

)

−◦f

pr!

p

prj◦− prj◦−

−◦(prj ′◦f) p

(∗∗)

The top and bottom rows come with homotopies of the composition to constf and
constprj◦f , respectively. For the top horizontal sequence this homotopy is indicated in
the following diagram, the case for the lower horizontal diagram is analogous.

MapC∏
i∈I p(Xi)

(f!Z,X)

MapC(Z,X) MapC(f!Z,X)

MapD

(∏

i∈I

p(Xi),
∏

i∈I

p(Xi)
)

MapD

(
p(Z),

∏

i∈I

p(Xi)
)

−◦f

constid

constfp

−◦f

p

−◦f

By [HTT, 2.4.4.2 and the discussion preceding it], this homotopy upgrades the top row
of diagram (∗∗) into a fiber sequence, and analogously for the bottom row.

Unpacking the various definitions we can also upgrade the vertical morphisms in di-
agram (∗∗) into a morphism of fiber sequences. For example commutativity of the left
square essentially boils down to the functor prj : C∏ p(Xi) → CXj by definition sending a
morphism g : f!Z → X to the essentially unique morphism pri!g that fits in a commuta-
tive diagram

f!Z pri!f!Z

X pri!X

g pri!g

where the horizontal morphisms are p-cocartesian lifts of pri, see [HTT, 5.2.1].
We have thus shown that the induced morphism on fibers (which we have to show is

an equivalence) can be identified with the morphism
∏

i∈I

(
pri!
)
: MapC∏

i∈I p(Xi)
(f!Z,X)→

∏

i∈I

MapCp(Xj)

(
prj !(f!Z), Xj

)

601



Appendix C. (Co)Cartesian Fibrations

But that this is an equivalence follows immediately from
∏

i∈I

(
pri!
)
: C∏

i∈I p(Xi)
→
∏

i∈I

Cp(Xj)

being an equivalence and mapping spaces in products of ∞-categories being equivalent
to the respective product of mapping spaces.

The following proposition will be key to show that some cocartesian fibrations we are
interested in have fibers that are compatible with products.

Proposition C.2.0.4. Let
C ′ C

D

p′

F

p

be a morphism of cocartesian fibrations over D and assume that p′ and p have fibers that
are compatible with products in the sense of Definition C.2.0.1.

If F is also a cocartesian fibration, then its fibers are also compatible with products. ♥

Proof. Let I be a set and (Xi)i∈I a collection of objects in C. Proposition C.2.0.3 provides
us with an object X in C∏

i∈I p(Xi)
together with, for every element j of I, p-cocartesian

lifts pri : X → Xj of the projections prj :
∏

i∈I p(Xi) → p(Xj), such that the collection
of morphisms (pri)i∈I exhibits X as the product of (Xi)i∈I in C.

As F is a morphism of cocartesian fibrations, we obtain a commutative square as
depicted as the right hand square in the following diagram.

C ′X C ′∏
i∈I p(Xi)

C∏
i∈I p(Xi)

∏

i∈I

C ′Xi

∏

i∈I

C ′p(Xi)
∏

i∈I

Cp(Xi)

F∏
i∈I p(Xi)

∏
i∈I

(
(pri)

p′

!

) ∏
i∈I

(
(pri)

p

!

)

∏
i∈I Fp(Xi)

(∗)

Taking fibers in the horizontal direction, over X in the top line, and over (Xi)i∈I in
the bottom line, we obtain the induced commutative square depicted on the left. As
by assumption both p′ and p have fibers that are compatible with products, the middle
and right vertical functors are equivalences, and hence so is the induced left vertical
functor. We are not quite done however, as a priori this functor is the induced functor
constructed from p′-cocartesian morphisms, whereas we need to show that the functor

∏

i∈I

(pri)
F
! : C

′
X →

∏

i∈I

C ′Xi (∗∗)

is an equivalence, which is constructed from F -cocartesian morphisms.

602



C.2. Cocartesian fibrations and products

So let Y be an object in C ′X and let pri′ : X → pri!(X) be an F -cocartesian lift of
pri. As pri′ maps under F to the p-cocartesian morphism pri, we can conclude by [HTT,
2.4.1.3 (3)] that pri′ is in fact also an p′-cocartesian lift of pri. We can thus identify the
functor (∗∗) with the left vertical functor in diagram (∗).

If p : C → D is a cocartesian fibration whose fibers are compatible with products,
then by Proposition C.2.0.3 C admits products and p preserves products, so we obtain
an induced symmetric monoidal functor p× : C× → D× with respect to the cartesian
symmetric monoidal structures, see [HA, 2.4.1.8]. It will be useful for us to know that
p× is again a cocartesian fibration, so we will show this as Proposition C.2.0.6 below,
after the following technical prerequisite.

Proposition C.2.0.5. Let p : C → D be a cocartesian fibration with fibers compatible
with products in the sense of Definition C.2.0.1. Then products of p-cocartesian mor-
phisms are again p-cocartesian. ♥

Proof. Let I be a set and let fi : Ci → C ′
i be a p-cocartesian morphism in C for every

element i of I. We have to show that the product f :=
∏

i∈I fi :
∏

i∈I Ci →
∏

i∈I C
′
i is

p-cocartesian. By Proposition C.2.0.3, p preserves products, so f lies over the morphism∏
i∈I p(fi). We can then factor f as indicated in the following diagram

φ!

(∏
i∈I Ci

)

∏

i∈I

Ci
∏

i∈I

C ′
i

ψ

f

φ

where φ is a p-cocartesian lift of
∏

i∈I p(fi) and ψ lies over id∏
i∈I p(C

′
i)

. It then suffices to
show that ψ is an equivalence.

Let i be an element of I, and let pri : φ!(
∏

i∈I Ci) → C ′′
i be a p-cocartesian lift of

pri :
∏

i∈I p(C
′
i) → p(C ′

i). It then follows from Proposition C.2.0.3 that the collection
(pri)i∈I exhibits φ!(

∏
i∈I Ci) as a product

∏
i∈I C

′′
i . Furthermore, ψ induces morphisms

ψj : C
′′
j → C ′

j for every element j of I as in the following diagram, and ψ can thus be
identified with the product

∏
i∈I ψi.

∏

i∈I

C ′′
i

∏

i∈I

C ′
i

C ′′
j C ′

j

ψ

prj prj
ψj

603



Appendix C. (Co)Cartesian Fibrations

The following commuting diagram depicts the situation:

∏

i∈I

Ci
∏

i∈I

C ′
i

∏

i∈I

C ′′
i

Cj C ′
j C ′′

j

f

prj

φ

prj

∏
i∈I ψi

prj

fj ψj

In the outer commuting diagram, all morphisms except possibly ψj are p-cocartesian,
so by [HTT, 2.4.1.7] also ψj is p-cocartesian. It then follows from [HTT, 2.4.1.5] and
p(ψj) = idp(Cj) that ψj is even an equivalence. Hence ψ =

∏
i∈I ψi is an equivalence, and

thus f is p-cocartesian as it is equivalent to the p-cocartesian morphism φ.

Proposition C.2.0.6. Let p : C → D be a cocartesian fibration whose fibers are compat-
ible with products in the sense of Definition C.2.0.1. Let p× : C× → D× be the induced
symmetric monoidal functor between the respective cartesian symmetric monoidal struc-
tures on C and D as in [HA, 2.4.1.8] (using that C has all products and p preserves
products by Proposition C.2.0.3).

Then p× is also a cocartesian fibration. ♥

Proof. We will apply [GHN15, 9.6]2 to the commutative triangle

C× D×

Fin∗

q

p×

r

where q and r are the cocartesian fibrations that are part of the structure of a symmetric
monoidal∞-category. In this situation (the dual version of) [GHN15, 9.6] states that p×
is a cocartesian fibration if the following hold:

(a) q and r are cocartesian fibrations.

(b) p× sends q-cocartesian morphisms to r-cocartesian morphisms.

(c) For each object 〈n〉 in Fin∗, the induced functor on fibers p×〈n〉 : C
×
〈n〉 → D

×
〈n〉 is a

cocartesian fibration.

(d) Let n,m ≥ 0, let f1, . . . , fn, g1, . . . , gm be morphisms in C (with fi : Xi → X ′
i and

gi : Yi → Y ′
i ), and let φ and ψ be morphisms in C× such that the following square

2[GHN17] is the published version of [GHN15], but does not contain [GHN15, 9.6].

604



C.2. Cocartesian fibrations and products

in C× commutes3

X1 ⊕ · · · ⊕Xn Y1 ⊕ · · · ⊕ Ym

X ′
1 ⊕ · · · ⊕X

′
n Y ′

1 ⊕ · · · ⊕ Y
′
m

φ

f1⊕···⊕fn g1⊕···⊕gm

ψ

(∗)

and lies over a commuting square of the following form in Fin∗, with α : 〈n〉 → 〈m〉
some morphism.

〈n〉 〈m〉

〈n〉 〈m〉

id

α

id

α

Assume that φ and ψ are q-cocartesian and f1 ⊕ · · · ⊕ fn is
(
p×
)
〈n〉

-cocartesian.
Then g1 ⊕ · · · ⊕ gm is

(
p×
)
〈m〉

-cocartesian.

Condition (a) holds by definition, and (b) holds as p× is a symmetric monoidal functor
from C× to D× (see the definition in [HA, 2.1.3.7]). The functor p×〈n〉 can be identified
with p×n : C×n → D×n, so (c) follows from the fact that products of cocartesian fibrations
are again cocartesian fibrations (which follows from [HTT, 2.4.2.3]).

So now suppose we are in the situation of condition (d). We have to show that
g1 ⊕ · · · ⊕ gm is p×〈m〉-cocartesian. Unpacking the data of the commutative square (∗)
we see that it corresponds to the data of a commutative square

∏

α(i)=j

Xi Yj

∏

α(i)=j

X ′
i Y ′

j

∏
α(i)=j fi

φj

gj

ψj

in C for every 1 ≤ j ≤ m. That φ and ψ are q-cocartesian implies that φj and ψj are
equivalences, so we can conclude that gj is equivalent to

∏
α(i)=j fi in C. As f1⊕· · ·⊕fn is

p×〈n〉-cocartesian, it follows from the identification p×〈n〉 ≃ p×n in combination with [HTT,
3.1.2.1] that fi is p-cocartesian for each 1 ≤ i ≤ n. Applying Proposition C.2.0.5 we can
then conclude that

∏
α(i)=j fi is also p-cocartesian, so gj is equivalent to a p-cocartesian

morphism and thus p-cocartesian as well. Applying the equivalence p×〈m〉 ≃ p×m and
[HTT, 3.1.2.1] again we conclude that g1 ⊕ · · · ⊕ gm is p×〈m〉-cocartesian.

3We are using the notation from [HA, 2.1.1.15]: For f1, . . . , fn : C → C we denote by f1 ⊕ · · · ⊕ fn the
morphism in C〈n〉 which under the equivalence C〈n〉 ≃ Cn corresponds to the tuple (f1, . . . , fn).

605



Appendix D.

More ∞-category theory
This appendix is really a continuation of Appendix A and collects some facts about

more basic concepts of ∞-category theory: Undercategories in Section D.1 and adjunc-
tions in Section D.2.

D.1. Undercategories
In this section we discuss undercategories. [HTT, 1.2.9.5] gives a definition in terms of

quasicategories, so we start in Section D.1.1 by providing a model independent construc-
tion that can be carried out in Cat∞. We then show in Section D.1.2 that the property
of a functor being (fully) faithful or a monomorphism is preserved by passing to induced
functors on undercategories. Finally, in Section D.1.3 we describe mapping spaces in an
overcategory CX/ as pullbacks of mapping spaces in C.

D.1.1. Model independent construction
Proposition D.1.1.1. Let C be an ∞-category and X an object of C. Let C be a
quasicategory representing C and X an object of C representing X.

Then the undercategory CX/ defined as in [HTT, 1.2.9.5], together with its projection
functor CX/ → C represent the functor

ev1 ◦ pr1 : Fun
(
[1], C

)
×C {X} → C

in Cat∞, where the pullback is taken with respect to the functor ev0 and the inclusion of
{X} into C. ♥

Proof. The inclusion of {0} into [1] is a cofibration of simplicial sets, so the functor

ev0 : sSet
(
[1], C

)
→ C

is a Kan fibration by [Hov99, 4.2.8 and 4.2.2]. In particular, using [HTT, 3.3.1.4 and
2.4.2.4], the pullback (along morphisms like in the statement) sSet

(
[1], C

)
×C {X} is a

homotopy pullback in the Joyal model structure, and thus represents Fun
(
[1], C

)
×C {X}.

The claim now follows from checking that sSet
(
[1], C

)
satisfied the defining universal

property of CX/ (see [HTT, 1.2.9.5 and 1.2.9.2]).

606



D.1. Undercategories

D.1.2. Undercategories and (fully) faithful functors,
monomorphisms

Proposition D.1.2.1. Let F : C → D be a monomorphism (faithful functor, fully faithful
functor) in Cat∞ and X an object of C. Then the induced functor on undercategories
CX/ → DF (X)/ is a monomorphism (faithful functor, fully faithful functor) as well. ♥

Proof. Using the description of undercategories from Proposition D.1.1.1, this follows
immediately from Proposition B.5.1.1, Proposition B.3.0.1, and Proposition B.5.3.1.

D.1.3. Mapping spaces in undercategories
In this section we show that mapping spaces in undercategories can be calculated

through the expected pullback diagram. Before we can show this, we need the following
small result on how initial objects interact with functors which are retractions.
Proposition D.1.3.1. Let ι : C → D and r : D → C be functors of ∞-categories and
assume that r ◦ ι is homotopic to the identity functor.

Let X be an initial object of D. As X is initial, there is an essentially unique morphism
f : X → ιrX in D. Assume that rf : rX → rιrX is an equivalence. Then rX is an initial
object of C. ♥

Proof. Let Y be an object of C and consider the following commutative diagram of
mapping spaces.

MapC(rX, Y )

MapD(ιrX, ιY ) MapD(X, ιY )

MapC(rιrX, rιY ) MapC(rX, rιY )

ι

r

f∗

r

r(f)∗

The left vertical composite is homotopic to the identity by the assumption that rι ≃ idC

and the bottom horizontal functor is an equivalence as r(f) is an equivalence by as-
sumption. As the mapping space in the middle right is contractible by the assumption
that X is initial, it thus follows that the top left mapping space MapC(rX, Y ) is also
contractible1, which is what we need to show.
Proposition D.1.3.2. Let C be an ∞-category, X an object of C, and f : X → Y and
g : X → Z morphisms in C. Let p : CX/ → C be the projection functor.

Then the commutative diagram in S

MapCX/
(f, g) {g}

MapC(Y, Z) MapC(X,Z)

p

f∗

1As a retract of a contractible space.

607



Appendix D. More ∞-category theory

is a pullback diagram. ♥

Proof. Note that there is a degenerate commutative triangle

X

X Y

idX f

f

in C that we interpret as a morphism idX → f in CX/, which we will call f ′.
By [HTT, 2.1.2.2], p : CX/ → C is a left fibration, and hence by (the dual of) [HTT,

2.4.2.4] a cocartesian fibration such that every morphism of CX/ is p-cocartesian. Apply-
ing (the dual of) [HTT, 2.4.4.3] to the p-cocartesian morphism f ′ : idX → f , we obtain
the following pullback diagram in S.

MapCX/
(f, g) MapCX/

(idX , g)

MapC(Y, Z) MapC(X,Z)

f ′∗

p p

f∗

Note that
X

X Z

idX g

g

is a point in MapCX/
(idX , g) that maps to g under p, so it suffices to show that the

mapping space MapCX/
(idX , g) is contractible, i. e. that idX is an initial object in CX/.

We provide a quick proof for this fact here in the setting of quasicategories. So let C
be a quasicategory and X an object of C. To show that idX is an initial object of CX/ it
suffices by Proposition D.1.3.12 to provide a retraction r of the inclusion CX/ → {i}⋆CX/

that sends the unique morphism i→ idX in {i} ⋆ CX/ to an equivalence.
Using the universal property of CX/ (see [HTT, 1.2.9.2]) it suffices for this to give a

morphism3

φ :
(
{x} ⋆ {i}

)
⋆ CX/ → C

such that the restriction of φ to {x} ⋆ CX/ → C is adjoint to the identity of CX/ (this
corresponds to r being a retraction of the inclusion) and such that the unique 2-simplex

x

idX

i

2The idea for this argument is from the proof of [HTT, 1.2.12.5].
3We are using associativity of the join operation ⋆, see [HTT, 1.2.8].

608



D.2. Adjunctions

in
(
{x} ⋆ {i}

)
⋆ CX/ is mapped by φ to the degenerate 2-simplex

X

X

X

idX

idX

idX

which covers the condition of the unique morphism i→ idX being sent to an equivalence.
We can define such a morphism as follows: Let q : {x} ⋆ {i} → {x} be the unique

morphism. Then we take the composite

(
{x} ⋆ {i}

)
⋆ CX/

q⋆idCX/
−−−−−−→ {x} ⋆ CX/ −→ C

where the second morphism is adjoint to idCX/
.

D.2. Adjunctions
In this section we discuss adjunctions of ∞-categories. In Section D.2.1 we briefly

recall the two equivalent descriptions of adjunctions that are explicitly given in [HTT]
and prove that they are equivalent to a third characterization. In Section D.2.2 we discuss
the interaction of adjunctions with Fun(C,−) for some ∞-category C.

D.2.1. Equivalent characterizations of adjoints
There are several ways to define adjunctions of ∞-categories. The definition used in

[HTT] describes adjunctions as cocartesian and cartesian fibrations over [1] (see [HTT,
5.2.2.1]). Lurie also shows that adjunctions are equivalently given by pairs of functors
F : C → D and G : D → C together with a unit transformation u : idC → G◦F satisfying
the usual property for mapping spaces (see [HTT, 5.2.2.7 and 5.2.2.8]). We will use both
descriptions and refer to [HTT, 5.2.2] for full definitions and how to translate between
the two descriptions. We will also need a related third description, which we prove in
the next proposition.

Proposition D.2.1.1. Let F : C → D and G : D → C be functors of ∞-categories, and
η : idC → G ◦ F a natural transformation. Then the following are equivalent.

(1) There exists a natural transformation ϵ : F ◦ G → idD and the composite natural
transformations

F
Fη
−→ FGF

ϵF
−→ F

and
G

ηG
−→ GFG

Gϵ
−→ G

are homotopic to idF and idG.

609



Appendix D. More ∞-category theory

(2) η is a unit transformation for (F,G) in the sense of [HTT, 5.2.2.7]. ♥

Proof. Let us first assume (2). The proof of (1) is really an extension of what is shown
in the proof of [HTT, 5.2.2.8], so we will assume the reader is familiar with that proof
and sketch the additions that need to be made.

In [HTT, 5.2.2.8], assuming (2), an adjunction q : M → [1] in the sense of [HTT,
5.2.2.1] associated to F and G is constructed from η. Let Φ: [1] × C → M be the
pointwise (in C) q-cocartesian natural transformation from the inclusion4 of C into M
to F exhibiting F as associated to q and similarly Ψ for G.

It is clear from unpacking the definitions, that the unit transformation extracted from
q in the other direction of [HTT, 5.2.2.8] can be identified with η. One can extract a
natural transformation ϵ : F ◦ G → idD in a completely analogous manner, as we will
also explain in more detail now.

Both natural transformations η and ϵ are obtained are by combining [HTT, 3.1.2.1]5
and [HTT, 2.4.1.4] to lift find fillers in certain diagrams of natural transformations. For
example, for ϵ we consider the following diagram of functors D →M

idD

G

FG

Ψ

ΦG

ϵ

where a filler for the dashed arrow and the triangle can be found as the bottom left
arrow is cocartesian.

To show that
F

Fη
−→ FGF

ϵF
−→ F

is homotopic to the identity, we can now ponder the following diagram of functors
C →M.

F

GF FGF

idC F

ΨF

ΦGF

ΨF

ϵF

Φ

η Fη

4We identify C with M0 and D with M1.
5That induced functors q∗ : Fun(J ,M) → Fun(J , [1]) are again (co)cartesian fibrations and natural

transformations are q∗-(co)cartesian if and only if they are pointwise q-(co)cartesian.

610



D.2. Adjunctions

The dashed arrow on the left comes with a filler for the triangle at the bottom left and
uses that ΨF is q∗-cartesian. The dashed arrow on the bottom right then comes with a
filler for the lower square and uses that Φ is q∗-cocartesian. The dashed arrow on the
upper right comes with a filler for the upper triangle and uses that ΦGF is q∗-cocartesian.
We can thus conclude that ϵF ◦ Fη is a filler in the following diagram.

GF F

idC F

ΨF

Φ

η ϵF◦Fη

But by definition of η (see the lower left triangle in the previous diagram), one such filler
is idF , so it follows that ϵF ◦ Fη ≃ idF . The other case is completely analogous. This
shows (1).

We now assume (1) and show that η is a unit transformation for (F,G). For this we
have to show that for every object C in C and object D in D, the composition

MapD

(
F (C), D

) G
−→ MapC

(
GF (C), G(D)

) (ηC)
∗

−−−→ MapC

(
C,G(D)

)

is an equivalence. Using ϵ we can define a map in the opposite direction as

MapC

(
C,G(D)

) F
−→ MapD

(
F (C), FG(D)

) (ϵD)∗
−−−→ MapD

(
F (C), D

)

and it follows immediately from (1) that these two maps are inverse equivalences.

D.2.2. Adjunctions and Fun
In this short section we show that for C an∞-category, the functor Fun(C,−) preserves

adjunctions in a manner made precise in the next proposition.

Proposition D.2.2.1. Let p : M → [1] be a cartesian and cocartesian functor, and
F : M0 → M1 the corresponding left adjoint, G : M1 → M0 the corresponding right
adjoint, and u : idM0 → G ◦ F the corresponding unit transformation.

Let C be an∞-category. Then the functor p′ :M′ → [1] that is defined by the following
pullback diagram

M′ Fun(C,M)

[1] Fun
(
C, [1]

)
p′ p∗

const

is also a cartesian and cocartesian fibration and hence defines an adjunction. Furthermore,
the fibers M′

0 and M′
1 can be identified with Fun(C,M0) and Fun(C,M1), and under

this identification the encoded left adjoint can be identified with F∗, the encoded right
adjoint with G∗, and the corresponding unit transformation with u∗. ♥

611



Appendix D. More ∞-category theory

Proof. That p′ is again a cartesian and cocartesian fibration follows from [HTT, 3.1.2.1]
and Proposition C.1.1.1. Using composability of pullback diagrams and Fun(C,−) pre-
serving pullbacks we obtain the following chain of equivalences with which we can iden-
tify M′

i as stated.

M′
i ≃ Fun(C,M)×Fun(C,[1]) {consti}

≃ Fun(C,M)×Fun(C,[1]) Fun
(
C, {i}

)

≃ Fun
(
C,M×[1] {i}

)

≃ Fun(C,Mi)

Let the commuting diagram

M0 × [1] M

[1]

F ′

pr2 p

exhibit F as the left adjoint to p (see [HA, 5.2.1.1 and 5.2.2.1]). We can then construct
a diagram exhibiting F∗ as the left adjoint to p′ as indicated in the following diagram

Fun(C,M0)× [1] Fun
(
C,M0 × [1]

)

M′ Fun(C,M)

[1] Fun
(
C, [1]

)

pr2

(F∗)
′

F ′
∗

(pr2)∗

p′ p∗

const

where the top horizontal functor is the composition

Fun(C,M0)× [1]
id× const
−−−−−→ Fun(C,M0)× Fun

(
C, [1]

) ≃
−→ Fun

(
C,M0 × [1]

)

That (F∗)
′ as constructed in the above diagram indeed exhibits F∗ as the left adjoint

associated to p′ follows from the description of cocartesian morphisms in [HTT, 3.1.2.1]
and Proposition C.1.1.1.

The statements regarding G∗ and u∗ can be proven analogously.

612



Appendix E.

∞-operads and algebras

This appendix collects various results concerning ∞-operads and their ∞-categories
of algebras.

We begin in Section E.1 with generic facts on (morphisms of) ∞-operads. For most
of the remaining sections we then turn towards ∞-categories of algebras. In Section E.2
we will look into the relationship between ∞-categories of algebras and base changes of
∞-operads, and in Section E.3 we show that passing from morphisms of ∞-operads to
functors between the respective ∞-categories of algebras preserves various properties.

If O is an∞-operad and C is a symmetric monoidal∞-category, then AlgO(C) inherits
an induced symmetric monoidal structure, which will be discussed in Section E.4. If O′

is another ∞-operad, then the symmetric monoidal structure on AlgO(C) allows us to
take O′-algebras in AlgO(C). In Section E.5 we will show that there is another way to
describe O′-algebras in O-algebras in C, namely as O⊗O′-algebras in C. In Section E.6
we then discuss the commutative ∞-operad Comm and show that the tensor product of
∞-operads of any ∞-operad O with Comm is equivalent to Comm again.

In Section E.7 we discuss colimits of algebras as well as free algebras, and in partic-
ular when they are preserved by induced functors on algebra ∞-categories. Finally, in
Section E.8 we discuss relative tensor products and when monoidal functors preserve
them. We also show that pushouts of commutative algebras are given by relative tensor
products.

E.1. ∞-operads

In this section we collect three statements relating to properties of morphisms of
∞-operads or helpful for showing that a functor is a morphism of ∞-operads or a
symmetric monoidal functor. Concretely, Section E.1.1 helps showing that a morphism
of ∞-operads between symmetric monoidal ∞-categories is symmetric monoidal, Sec-
tion E.1.2 is about consequences of a morphism of ∞-operads being conservative, and
Section E.1.3 discusses functors that are pullbacks of a morphism of ∞-operads along a
cocartesian fibration of ∞-operads and vice versa.

613



Appendix E. ∞-operads and algebras

E.1.1. Symmetric monoidal functors
By definition1, a morphism of ∞-operads between symmetric monoidal ∞-categories

is symmetric monoidal if it is a morphism of cocartesian fibrations, so preserves all
cocartesian morphisms2. In the following proposition, we show that it suffices to check
cocartesian lifts of two select morphisms in Fin∗: The multiplication µ : 〈2〉 → 〈1〉 and
unit ϵ : 〈0〉 → 〈1〉. This is an analogue of [HA, 2.1.2.9] which similarly reduces the amount
of inert morphisms that need to be checked to verify a functor over Fin∗ is a morphism
of ∞-operads.

Proposition E.1.1.1. Let

C⊗ D⊗

Fin∗

F⊗

pC pD

be a commutative diagram of morphisms of∞-operads, and assume that pC and pD exhibit
C⊗ and D⊗ as symmetric monoidal ∞-categories. Then the following two conditions are
equivalent.

(1) F⊗ is symmetric monoidal, i. e. maps pC-cocartesian morphisms to pD-cocartesian
morphisms.

(2) F⊗ maps pC-cocartesian lifts of the active morphism3 µ : 〈2〉 → 〈1〉 and pC-
cocartesian lifts of the unique morphism ϵ : 〈0〉 → 〈1〉 to pD-cocartesian mor-
phisms. ♥

Proof. It is clear that (1) implies (2), so it remains to show the converse direction.
Morphisms in Fin∗ are generated (by composition) by morphisms of the following forms
(compare [HA, 2.1.2.2]).

(A) Inert morphisms4.

(B) For every n ≥ 1 the morphism µn : 〈n+1〉 → 〈n〉 that sends an element i of 〈n+1〉◦

to i if i ≤ n, and to n otherwise5.

(C) For every n ≥ 0 the inclusion ϵn : 〈n〉 → 〈n+ 1〉 (i. e. sending i to i).

As the collection of cocartesian morphisms is closed under composition [HTT, 2.4.1.7]
and cocartesian lifts with fixed source object are unique up to equivalence [HTT, 2.4.1.9],
it suffices to prove that F⊗ maps pC-cocartesian lifts of morphisms of type (A), (B),

1See [HA, 2.1.3.7].
2With respect to the respective canonical cocartesian fibrations of ∞-operads to Fin∗.
3So this is the morphism that sends 1 and 2 to 1.
4Note that in particular all isomorphisms are inert.
5So n is the unique element of the target that has two preimages, n and n+ 1.

614



E.1. ∞-operads

and (C) to pD-cocartesian morphisms. By assumption we already know that F⊗ is a
morphism of ∞-operads and hence preserves inert morphisms, so this covers type (A).

We now show that F⊗ maps pC-cocartesian lifts of morphisms of type (B) to pD-
cocartesian morphisms. So let n ≥ 1, let µn be the morphism of Fin∗ defined in (B), and
let f : X → Y be a pC-cocartesian lift of µn. As pD is a cocartesian fibration, we can lift
µn to a pD-cocartesian morphism f : F⊗(X) → (µn)!(F

⊗(X)), and obtain an induced
morphism g lying over id〈n〉, such that there is a commutative diagram as follows.

(µn)!
(
F⊗(X)

)

F⊗(X) F⊗(Y )

g
f

F⊗(f)

By [HTT, 2.4.1.7 and 2.4.1.5], F⊗(f) is pD-cocartesian if and only if g is an equivalence,
so we prove the latter.

Let us first consider ρj! (g) for 1 ≤ j < n. This is the induced morphism indicated in
the following diagram, where r and r are pD-cocartesian lifts of ρj.

(µn)!
(
F⊗(X)

)
(ρj ◦ µn)!

(
F⊗(X)

)

F⊗(X) F⊗(Y ) ρ
j
!

(
F⊗(Y )

)
g

r

ρ
j
! (g)

f

F⊗(f) r

But note that for 1 ≤ j < n the composition ρj ◦ µn is equal to ρj. The morphism
ρ
j
! (g) is thus also equivalent to the morphism gj : ρ

j
! (F

⊗(X)) → ρ
j
!

(
F⊗(Y )

)
induced by

r ◦ F⊗(f). Now let
Y ρ

j
! (Y )

X Y ρ
j
! (Y )

id

s

ρ
j
! (id)

f

f s

be the diagram constructed completely analogously from f in C⊗, with s a pC-cocartesian
lift of ρj. In this case we can use f itself as a pC-cocartesian lift of µn, and the identity
morphism can play the role of g. In particular, the morphism fj : ρ

j
! (Y )→ ρ

j
! (Y ) induced

by s◦f is an equivalence. As F⊗ preserves inert morphisms F⊗(s) can be identified with r,
and F⊗(s◦f) with r◦f . This implies that F⊗(fj) ≃ gj, and as F⊗ preserves equivalences,
gj must be an equivalence.

Let us now consider ρn(g). In this case ρn ◦ µn is not ρn, but µ ◦ ρn,n+1, where
ρn,n+1 : 〈n + 1〉 → 〈2〉 maps i to ∗ if i < n, maps n to 1, and maps n + 1 to 2. We
can argue completely analogously to the previous case, but have to additionally use that
F⊗ maps pC-cocartesian lifts of µ to pD-cocartesian morphisms, which is the case by
assumption (2).

615



Appendix E. ∞-operads and algebras

As the functor
D〈n〉

∏
1≤j≤n ρ

j
!

−−−−−−→ D×n
〈1〉

is an equivalence and we showed that ρj! (g) is an equivalence for every 1 ≤ j ≤ n, we
can conclude that g is an equivalence. Thus we have shown that F⊗ maps pC-cocartesian
lifts of morphisms of type (B) to pD-cocartesian morphisms.

The case of morphisms of type (C) is similar, in this case we will need to use the
assumption regarding ϵ.

E.1.2. Conservative morphisms of ∞-operads
In the following proposition we record a very useful consequence of a morphism of

∞-operads being conservative.
Proposition E.1.2.1. Let

C⊗ D⊗

Fin∗

F⊗

pC pD

be a commutative diagram of morphisms of ∞-operads, and assume that F⊗ is a conser-
vative functor, i. e. reflects equivalences. Then the following hold.

(1) A morphism f in C⊗ is inert if and only if F⊗(f) is inert.

(2) Assume that pC and pD exhibit C⊗ and D⊗ as symmetric monoidal ∞-categories,
and that F⊗ is symmetric monoidal. Then a morphism f in C⊗ is pC-cocartesian
if and only if F⊗(f) is pD-cocartesian. ♥

Proof. In both cases the “only if”-direction is handled directly by the assumption that
F⊗ is a morphism of ∞-operads, and that F⊗ is even symmetric monoidal in the case
of (2).

We will prove the “if”-direction of both (1) and (2) at the same time. So let f : X → Y

be a morphism in C⊗ that lies over a morphism φ in Fin∗ and is mapped by F⊗ to a
pD-cocartesian morphism in D⊗. For (1) assume additionally that φ is inert. We have
to show that f is pD-cocartesian.

We can factor f as indicated in the following commutative diagram in C⊗

φ!X

X

Y

f ′′

f ′

f

such that f ′ is pC-cocartesian and f ′′ lies over an identity morphism in Fin∗. Both F⊗(f ′)
and F⊗(f) are pD-cocartesian morphisms, so by [HTT, 2.4.1.7 and 2.4.1.5] F⊗(f ′′) is an
equivalence. As F⊗ is conservative, it follows that f ′′ is also an equivalence, which by
[HTT, 2.4.1.7 and 2.4.1.5] implies that f is pC-cocartesian.

616



E.1. ∞-operads

E.1.3. Base changes of cocartesian fibrations of ∞-operads
By Proposition C.1.1.1 a pullback of a cocartesian fibration along any functor is again

a cocartesian fibration. The next proposition can be considered an upgrade of this state-
ment to the situation in which both functors are morphisms of ∞-operads.

Proposition E.1.3.1. Let

C ′⊗ C⊗

O′⊗ O⊗ Fin∗

q

p′ p

r pO

be a commutative diagram in Cat∞ such that the square is a pullback square, pO and r

are morphisms of ∞-operads, and p is a cocartesian fibration of ∞-operads.
Then p′ is a cocartesian fibration of ∞-operads and q is a morphism of ∞-operads.

Furthermore, a morphism f in C ′⊗ is inert if and only if q(f) and p′(f) are inert. ♥

Proof. By Proposition C.1.1.1 p′ is a cocartesian fibration, and the description of p′-
cocartesian morphisms also implies that if n ≥ 0 and Xi are objects in O′ for 1 ≤ i ≤ n,
and fi : X1⊕· · ·⊕Xn → Xi are the canonical inert morphisms in O′⊗, then the induced
functor on fibers

C ′⊗X1⊕···⊕Xn

∏
1≤i≤n fi!
−−−−−−→ C ′⊗Xi (∗)

can be identified with the following functor that is induced on the fibers of p.

C⊗
r(X1⊕···⊕Xn)

∏
1≤i≤n r(fi)!
−−−−−−−−→ C⊗

r(Xi)

As r is a morphism of∞-operads we can for each 1 ≤ i ≤ n identify r(fi) with the inert
morphism r(X1)⊕ · · · ⊕ r(Xn)→ r(Xi). As p is a cocartesian fibration of ∞-operads, it
thus follows that (∗) is an equivalence, so p′ is a cocartesian fibration of ∞-operads6.

Let f be a morphism in C ′⊗. It remains to show that f is inert if and only if q(f)
and p′(f) are inert. Denote the compositions from the four ∞-categories in the square
to Fin∗ by p with subscript the name of the underlying ∞-category.

Assume that f is inert. Then f is by definition pC′-cocartesian, and as p′ preserves
inert morphisms, p′(f) is inert, so pO′-cocartesian. It follows from [HTT, 2.4.1.3 (3)] that
f is p′-cocartesian. By Proposition C.1.1.1 we then obtain that q(f) is p-cocartesian.
Furthermore, p(q(f)) = r(p′(f)) is inert, i. e. pO-cocartesian, as r is a morphism of
∞-operads. We can again use [HTT, 2.4.1.3 (3)] to conclude that q(f) is pC-cocartesian,
so inert.

Now assume that q(f) and p′(f) are inert. Again, as r is a morphism of ∞-operads,
p(q(f)) = r(p′(f)) is inert, so by [HTT, 2.4.1.3 (3)] q(f) is p-cocartesian, which by
Proposition C.1.1.1 implies that f is p′-cocartesian, from which we can deduce with
another application of [HTT, 2.4.1.3 (3)] that f is pC′-cocartesian, so inert.

6See [HA, 2.1.2.13 and 2.1.2.12].

617



Appendix E. ∞-operads and algebras

E.2. Alg and base change
This section concerns the interaction of Alg with base changes, with the upshot being

the following. Given a commutative diagram

C ′⊗ C⊗

O′′⊗ O′⊗ O⊗

F⊗

p′ p

α β

of ∞-operads such that the square is a pullback diagram in Cat∞, we will obtain an
induced pullback diagram

AlgO′′/O′(C ′) AlgO′′(C)

{β ◦ α} AlgO′′(O)

AlgO′′ (p)

in Cat∞ of ∞-categories of algebras.
Construction E.2.0.1. Let

C ′⊗ C⊗

O′′⊗ O′⊗ O⊗

F⊗

p′ p

α β

be a commutative diagram of ∞-operads such that the square is a pullback diagram in
Cat∞.

Applying Fun(O′′⊗,−) to the pullback square we obtain the pullback on the right in
the following diagram, with the left square a pullback square as well, by definition.

FunO′⊗

(
O′′⊗, C ′⊗

)
Fun

(
O′′⊗, C ′⊗

)
Fun

(
O′′⊗, C⊗

)

{α} Fun
(
O′′⊗,O′⊗

)
Fun

(
O′′⊗,O⊗

)

F⊗
∗

p′∗ p∗

β∗

Comparing the combined outer pullback square [HTT, 4.4.2.1] to the pullback square

FunO⊗

(
O′′⊗, C⊗

)
Fun

(
O′′⊗, C⊗

)

{β ◦ α} Fun
(
O′′⊗,O⊗

)
p∗

we obtain a canonical equivalence
FunO′⊗

(
O′′⊗, C ′⊗

)
≃ FunO⊗

(
O′′⊗, C⊗

)

of ∞-categories. ♦

618



E.2. Alg and base change

Proposition E.2.0.2. In the situation of Construction E.2.0.1 the equivalence

FunO′⊗

(
O′′⊗, C ′⊗

)
≃ FunO⊗

(
O′′⊗, C⊗

)

restricts to an equivalence on the full subcategories of algebras as follows.

AlgO′′/O′

(
C ′
)
≃ AlgO′′/O(C) ♥

Proof. Unpacking the definitions the statement boils down to the following: Let

O′′⊗ C ′⊗

O′⊗

A

α p′

be a commuting diagram and let f be an inert morphism inO′′⊗. Denote by q : O⊗ → Fin∗

the unique morphism of ∞-operads. We have to show that A(f) is qβp′-cocartesian if
and only if F⊗(A(f)) is qp-cocartesian.

As α is a morphism of∞-operads, it preserves inert morphisms, so α(f) = p′(A(f)) is
qβ-cocartesian. Then [HTT, 2.4.1.3 (3)] implies that A(f) is qβp′-cocartesian if and
only if A(f) is p′-cocartesian. By Proposition C.1.1.1 A(f) is p′-cocartesian if and
only if F⊗(A(f)) is p-cocartesian. But as β ◦ α preserves inert morphisms, β(α(f))
is q-cocartesian, so again by [HTT, 2.4.1.3 (3)] F⊗(A(f)) is p-cocartesian if and only if
F⊗(A(f)) is qp-cocartesian.

Proposition E.2.0.3 ([HA, 2.1.3.1]). Let γ : O′⊗ → O⊗ and p : C⊗ → O⊗ be morphisms
of ∞-operads. Then the pullback diagram of ∞-categories

FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

{γ} Fun(O′⊗,O⊗)

p∗

induces on full subcategories a pullback diagram

AlgO′/O(C) AlgO′(C)

{γ} AlgO′(O)

AlgO′ (p)

of ∞-categories7. ♥

7We are using the the definition given in [HA, 2.1.3.1] for AlgO′/O(C) as a full subcategory of
FunO⊗(O′⊗, C⊗). The alternative description as the pullback given in this statement is also men-
tioned in [HA, 2.1.3.1].

619



Appendix E. ∞-operads and algebras

Proof. There is a commutative cube in Cat∞

AlgO′/O(C) AlgO′(C)

FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

{γ} AlgO′(O)

{γ} Fun(O′⊗,O⊗)

with all functors from the back to the front inclusions of full subcategories. One can use
Proposition B.5.2.1 to show that the top and bottom squares are pullback squares as
follows: For the top square, consider the induced diagram

AlgO′/O(C)

D AlgO′(C)

FunO⊗(O′⊗, C⊗) Fun(O′⊗, C⊗)

θ

where D is constructed as a pullback of the square. The right vertical functor is fully
faithful, so by Proposition B.5.2.1 the left vertical functor is fully faithful as well. As
we also know that the functor AlgO′/O(C) → FunO⊗(O′⊗, C⊗) is also fully faithful, it
follows that the induced functor θ is fully faithful too. To show that θ is an equivalence
it thus suffices to show essential surjectivity [HTT, 1.2.10]. As D → FunO⊗(O′⊗, C⊗) is
fully faithful, an object in D can be thought of as an object in FunO⊗(O′⊗, C⊗), i. e. a
commutative triangle

O′⊗ C⊗

O⊗

A

γ p
(E.1)

such that the corresponding object in Fun(O′⊗, C⊗), i. e. A, lies in AlgO′(C), i. e. A
must be a morphism of ∞-operads. But this is precisely the condition for an object of
FunO⊗(O′⊗, C⊗) to lie in AlgO′/O(C), so θ is essentially surjective and hence an equiv-
alence, which implies that the top square of the cube is a pullback diagram. That the
bottom square is a pullback diagram can be proven analogously.

As the top and front of the cube are pullback diagrams, the composite of those two
squares is a pullback diagram as well by [HTT, 4.4.2.1]. This composite is equivalent to

620



E.3. Properties preserved by Alg

the composite formed by the back and bottom squares, so using that the bottom square
is a pullback and the other direction of [HTT, 4.4.2.1] we can conclude that the back
square is a pullback as well.

Remark E.2.0.4. Combining Proposition E.2.0.2 and Proposition E.2.0.3 in the situa-
tion of Construction E.2.0.1, we obtain the following pullback diagram

AlgO′′/O′(C ′) AlgO′′(C)

{β ◦ α} AlgO′′(O)

AlgO′′ (p)

in Cat∞. Tracing through the definitions is is not difficult to see that this square is also
natural in C (with O,O′, and O′′ staying fixed and C ′ changing with C as a pullback). ♦

E.3. Properties preserved by Alg
In this section we show that passing to ∞-categories of algebras preserves several

properties of functors. Specifically, we discuss pullbacks in Section E.3.1, cocartesian
fibrations in Section E.3.2, adjoints in Section E.3.3, the property of a functor being
conservative in Section E.3.4, and fully faithfulness in Section E.3.5.

E.3.1. Pullbacks
Proposition E.3.1.1. Let

C⊗ D⊗ O′⊗

E⊗ F⊗ O⊗

F⊗

G⊗ H⊗ α⊗

K⊗ pF

be a commutative diagram of ∞-operads such that the square is a pullback diagram in
Cat∞. Assume furthermore that a morphism f in C⊗ is inert if and only if F⊗(f) and
G⊗(f) are inert.

Then the induced commutative diagram

AlgO′/O(C) AlgO′/O(D)

AlgO′/O(E) AlgO′/O(F)

AlgO′/O(F )

AlgO′/O(G) AlgO′/O(H)

AlgO′/O(K)

is a pullback diagram in Cat∞. ♥

621



Appendix E. ∞-operads and algebras

Proof. As Fun
(
O′⊗,−

)
preserves pullbacks and limits commute with each other, we first

obtain an induced pullback square as follows.

FunO⊗

(
O′⊗, C⊗

)
FunO⊗

(
O′⊗,D⊗

)

FunO⊗

(
O′⊗, E⊗

)
FunO⊗

(
O′⊗,F⊗

)

F⊗
∗

G⊗
∗ H⊗

∗

K⊗
∗

Let P be defined to be the pullback in the square in the following diagram

AlgO′/O(C)

P AlgO′/O(D)

FunO⊗

(
O′⊗, C⊗

)
AlgO′/O(E) AlgO′/O(F)

AlgO′/O(F )

AlgO′/O(G)

φ

ι

ψ AlgO′/O(H)

AlgO′/O(K)

where φ and ψ are the induced functors, and ι is the canonical fully faithful inclusion. It
suffices to show that φ is an equivalence. By Proposition B.5.3.1, ψ is fully faithful with
essential image spanned by those functors A : O′⊗ → C⊗ over O⊗ whose compositions
with F⊗ and G⊗ send inert morphisms to inert morphisms. But by the assumptions on
inert morphisms in C⊗, this means that the essential image of ψ is exactly the essential
image of ι. It now follows from Proposition B.4.4.1 and Proposition B.4.3.1 that φ is an
equivalence.

E.3.2. Cocartesian fibrations
Proposition E.3.2.1. Let

C⊗ D⊗

O⊗

F⊗

p q

be a commuting diagram of maps of ∞-operads, and let α : O′⊗ → O⊗ be another map
of ∞-operads.

If F⊗ is a cocartesian fibration, then the induced functor

AlgO′/O(F ) : AlgO′/O(C)→ AlgO′/O(D)

is a cocartesian fibration as well. ♥

622



E.3. Properties preserved by Alg

Proof. Consider the following commutative diagram induced by F⊗

AlgO′/O(C)

E FunO⊗

(
O′⊗, C⊗

)
Fun

(
O′⊗, C⊗

)

AlgO′/O(D) FunO⊗

(
O′⊗,D⊗

)
Fun

(
O′⊗,D⊗

)
AlgO′/O(F )

φ

ιC

ιE

p F⊗
∗ F⊗

∗

ιD

where E is defined to be the pullback of the middle square, ιC , ιD, and the two right
horizontal functors are the canonical ones, and φ is the induced functor into the pullback.

By [HTT, 3.1.2.1], the right vertical morphism F⊗
∗ = Fun

(
idO′⊗ , F⊗

)
is a cocartesian

fibration, so as both squares are pullback squares we can apply Proposition C.1.1.1 to
conclude that p is also a cocartesian fibration. As cocartesian fibrations are closed under
composition [HTT, 2.4.2.3 (3)], it thus suffices to show that φ is a cocartesian fibration.

By definition, ιD and ιC are inclusions of full subcategories and hence fully faithful,
and as a pullback of ιD, Proposition B.5.2.1 implies that ιE is fully faithful as well. It
follows that φ is also fully faithful, so by Proposition C.1.2.1 it suffices to show that for
any object A in AlgO′/O(C) and p-cocartesian morphism θ : φ(A)→ B′ in E there exists
an object B in AlgO′/O(C) such that φ(B) is equivalent to B′.

Unpacking definitions, this means the following. Assume we have given a morphism
θ : A→ B in FunO⊗(O′⊗, C⊗), which we can think of as a natural transformation between
two commuting triangles as in the following diagram.

O′⊗ C⊗

O⊗

A

B

α

θ

p

We furthermore assume that:

(a) A preserves inert morphisms. This corresponds to A lying in the full subcategory
AlgO′/O(C) of FunO⊗(O′⊗, C⊗).

(b) F⊗ ◦B : O′⊗ → D⊗ preserves inert morphisms. This corresponds to B lying in the
full subcategory E of FunO⊗(O′⊗, C⊗).

(c) For every object O in O′⊗, the morphism θO : A(O)→ B(O) in C is F⊗-cocartesian.
This corresponds to θ (considered as a morphism in E) being p-cocartesian.

We then have to show that B preserves inert morphisms.
In the following we let qC : C⊗ → Fin∗ and qD : D⊗ → Fin∗ be the canonical maps of

∞-operads. Let f : U → V be an inert morphism in O⊗. We have to show that B(f) is

623



Appendix E. ∞-operads and algebras

qC-cocartesian. The natural transformation θ induces the following commuting square in
C⊗.

A(U) B(U)

A(V ) B(V )

A(f)

θU

B(f)

θV

By (a), A preserves inert morphisms, so A(f) is inert, hence qC-cocartesian. As F⊗ is a
map of∞-operads it also preserves inert morphism, and thus F⊗(A(f)) is qD-cocartesian.
It then follows from [HTT, 2.4.1.3 (3)] that A(f) is F⊗-cocartesian. By (c) both θU and
θV are also F⊗-cocartesian, so it follows from [HTT, 2.4.1.7] that B(f) is F⊗-cocartesian
as well. Finally, F⊗(B(f)) is qD-cocartesian by (b), so by applying [HTT, 2.4.1.3 (3)] in
the other direction we can conclude that B(f) is qC-cocartesian.

E.3.3. Adjoints
Proposition E.3.3.1. Let pC : C⊗ → O⊗, pD : D⊗ → O⊗, and α : O′⊗ → O⊗ be maps
of ∞-operads and let F⊗ : C⊗ → D⊗ and G⊗ : D⊗ → C⊗ be maps of ∞-operads over O⊗.
Let u : idC⊗ → G⊗ ◦ F⊗ be a natural transformation exhibiting F⊗ as left adjoint to G⊗

and assume that pC maps u to the identity natural transformation of pC (in other words,
u is a unit for an adjunction between F⊗ and G⊗ relative to O⊗ in the sense of [HA,
7.3.2.3]).

Then the induced natural transformation AlgO′/O(u) : idAlgO′/O(C) → AlgO′/O(G ◦ F )

exhibits AlgO′/O(F ) as left adjoint to AlgO′/O(G). ♥

Proof. Applying Fun
(
O′⊗,−

)
we obtain two commuting triangles as indicated in the

following diagram

Fun
(
O′⊗, C⊗

)
Fun

(
O′⊗,D⊗

)

Fun
(
O′⊗,O⊗

)
pC∗

F⊗
∗

pD∗

G⊗
∗

as well as a natural transformation u∗ : idFun(O′⊗,C⊗) → G⊗
∗ ◦F

⊗
∗ . By Proposition D.2.2.1,

u∗ exhibits F⊗
∗ as left adjoint to G⊗

∗ . As pC∗ maps u∗ to the identity natural transforma-
tion of pC∗, this makes u∗ into the unit for an adjunction between F⊗

∗ and G⊗
∗ relative to

Fun
(
O′⊗,O⊗

)
in the sense of [HA, 7.3.2.3]. Taking the pullback of this adjunction along

{α} → Fun
(
O′⊗,O⊗

)
and applying [HA, 7.3.2.5] yields an induced adjunction between

FunO⊗

(
O′⊗, C⊗

)
and FunO⊗

(
O′⊗,D⊗

)
. The claim now follows by restricting the relevant

functors and natural transformation to the full subcategories of ∞-operad maps [HA,
2.1.2.7].

624



E.3. Properties preserved by Alg

E.3.4. Reflecting equivalences
Proposition E.3.4.1. Let C and D be symmetric monoidal∞-categories and F : C → D
a symmetric monoidal functor. Let O be an ∞-operad.

Assume that F is conservative, i. e. reflects equivalences. Then AlgO(F ) is conservative
as well. ♥

Proof. There is a commutative diagram as follows for every object X in O.

AlgO(C) AlgO(D)

C D

AlgO(F )

evX evX

F

Now suppose that φ is a morphism in AlgO(C) such that AlgO(F )(φ) is an equivalence.
By [HA, 3.2.2.6] evX preserves equivalences, so the morphism

evX
(
AlgO(F )(φ)

)
= F (evX(φ))

is an equivalence for every object X of O. As F is conservative, this implies that evX(φ)
is an equivalence for every object X of O, which by another application of [HA, 3.2.2.6]
implies that φ is an equivalence.

E.3.5. Fully faithfulness
Proposition E.3.5.1. Let

C ′⊗ C⊗

O′⊗ O⊗

ι⊗

pC′ pC

α⊗

be a commutative diagram of ∞-operads and assume that ι is fully faithful.
Then the functor

AlgO′/O(ι) : AlgO′/O

(
C ′
)
→ AlgO′/O(C)

is fully faithful. Furthermore, an object A of AlgO′/O(C) lies in the essential image of
AlgO′/O(ι) if and only if for every object X of O′ the evaluation evX(A) of A at X lies
in the essential image of ι. ♥

Proof. Combining Proposition B.3.0.1, Proposition B.5.1.1, and Proposition B.5.3.1 we
obtain that

ι⊗∗ : FunO⊗

(
O′⊗, C ′⊗

)
→ FunO⊗

(
O′⊗, C⊗

)

is fully faithful with essential image spanned by those functors F⊗ : O′⊗ → C⊗ over O⊗

for which F⊗(X) lies in the essential image of ι⊗ for every object X of O′⊗. There is a

625



Appendix E. ∞-operads and algebras

commutative diagram

FunO⊗

(
O′⊗, C ′⊗

)
FunO⊗

(
O′⊗, C⊗

)

AlgO′/O(C) AlgO′/O(C
′)

ι⊗∗

AlgO′/O(ι)

where the the vertical functors are the canonical inclusions and thus by definition fully
faithful, so it follows that AlgO′/O(ι) is also fully faithful, with essential image spanned
by those algebras whose associated functors F⊗ : O′⊗ → C⊗ are such that F⊗(X) lies in
the essential image of ι⊗ for every object X of O′⊗.

As F⊗ and α⊗ are morphisms of ∞-operads, we obtain a commutative diagram

O′⊗
〈n〉 C⊗〈n〉 C ′⊗〈n〉

O′×n C×n C ′×n

F⊗
⟨n⟩

≃ ≃

α⊗
⟨n⟩

≃

F×n α×n

for every n ≥ 0 that shows that F⊗(X) lying in the essential image of ι⊗ for every object
X of O′⊗ is equivalent to F (X) lying in the essential image of ι for every object X of
O.

E.4. Induced ∞-operad structures on Alg
Let C be a symmetric monoidal ∞-category and O an ∞-operad. Then the tensor

product on C induces a symmetric monoidal structure on AlgO(C) such that the for-
getful functor AlgO(C) → C can be upgraded to a symmetric monoidal functor. In
the setting of quasicategories, this structure is constructed in [HA, 3.2.4.1, 3.2.4.2, and
3.2.4.3]. However, it is not immediately obvious from the definition that this construc-
tion does not depend on the choice of representatives (or in other words, whether it
is invariant under categorical equivalences). In Section E.4.1 we will give a description
of the construction that can be performed entirely in Cat∞, i. e. without the help of
models like quasicategories, and show that it agrees with the one given by Lurie. Apart
from the aesthetic gain from being able to work as model independently as possible, the
reformulated description will also be helpful in some results we will prove later.

In Section E.4.2 we will then collect a number of properties that the induced∞-operad
structure has, deducing most of them from the results of [HA, 3.2.4]. It would also be
possible to prove these statements without referring back to the quasicategorical model.
However, we need to show agreement of the two approaches anyway, as throughout the
text we will need to make use of several other results from [HA] using the induced
∞-operad structure on algebras, so giving an independent, more model-independent
proof of the statements discussed in Section E.4.2 would not save us from having to go
through the comparison in Section E.4.1.

626



E.4. Induced ∞-operad structures on Alg

E.4.1. The quasicategorical model
In this section we discuss Lurie’s quasicategorical model for induced ∞-operad struc-

tures on ∞-categories of algebras, and compare it to a more model-independent defini-
tion.

We will make use of the following convention during our discussion.

Convention E.4.1.1. In contrast with the rest of the text, wherever we explicitly invoke
this convention every notion should be taken to refer to the respective quasicategorical
notion as defined in [HTT] and [HA]. So for example the claim that a diagram of qua-
sicategories commutes means that it is a strictly commuting diagram of simplicial sets,
and an ∞-operad is a map of simplicial sets O⊗ → Fin∗ where O is a quasicategory and
such that the map satisfies some properties, rather than a morphism O⊗ → Fin∗ in Cat∞
satisfying some properties. ♦

We start by reviewing the construction given in [HA, 3.2.4.1].

Definition E.4.1.2 ([HA, 3.2.4.1]). We make use of Convention E.4.1.1 in this con-
struction. Let pO : O⊗ → Fin∗, pO′ : O′⊗ → Fin∗, and pO′′ : O′′⊗ → Fin∗ be ∞-operads, and
let q : C⊗ → O′′⊗ be a fibration of ∞-operads, i. e. a map of ∞-operads where q is also a
categorical fibration of quasicategories (see [HA, 2.1.2.10]). Let f : O⊗ × O′⊗ → O′′⊗ be a
bifunctor of ∞-operads, i. e. a functor of quasicategories such that the diagram

O⊗ × O′⊗ O′′⊗

Fin∗ × Fin∗ Fin∗

f

pO×pO′ pO′′

∧

commutes and such that f sends pairs of inert morphisms to inert morphisms, see [HA,
2.2.5.3].

Define Φ̃ to be the functor sSet/O⊗ → Set that sends g : K→ O⊗ to the set of commu-
tative diagrams as indicated below.

K× O′⊗ C⊗

O⊗ × O′⊗ O′′⊗

F

g×idO′⊗ r

f

(E.2)

Furthermore, define Φ: sSet/O⊗ → Set to be the functor which sends g : K → O⊗ to the
subset of Φ̃(g) of commutative diagrams (E.2) which have the property that F(idk, α) is
inert for every vertex k of K and every inert morphism α in O′′⊗.

We say that an object r in sSet/O⊗ is a quasicategorical model (a quasicategorical
pre-model) for the ∞-operad structure on algebras with respect to f, q, etc. as in-
troduced above, if there exists a natural bijection of functors sSet/O⊗ → Set between
MorsSet/O⊗

(−, r) and Φ (between MorsSet/O⊗
(−, r) and Φ̃).

627



Appendix E. ∞-operads and algebras

Note that the Yoneda lemma implies that if a quasicategorical (pre-)model for the
∞-operad structure on algebras exists, then it is unique up to isomorphism in sSet/O⊗ .
We will give a more concrete construction of a quasicategorical (pre-)model for the
∞-operad structure on algebras below. ♦

Remark E.4.1.3. In this remark we make use of Convention E.4.1.1, and assume that
we are in the situation of Definition E.4.1.2. Let r̃ : ÃlgO′/O′′(C)⊗ → O⊗ be a quasicategor-
ical pre-model for the ∞-operad structure on algebras, and let ϕ be a natural bijection
MorsSet/O⊗

(−, r̃) ∼= Φ̃. We then define a sub-simplicial set AlgO′/O′′(C)⊗ of ÃlgO′/O′′(C)⊗ as
the sub-simplicial set spanned by those vertices A which correspond under ϕ to maps

O′⊗ ∼= {A} × O′⊗ F
−→ C⊗

that preserve inert morphisms.
Let r : AlgO′/O′′(C)⊗ → O⊗ be the restriction of r̃ to AlgO′/O′′(C)⊗. As the condition

defining the natural subset Φ of Φ̃ can be checked vertex-wise (in K, where we use the
notation from (E.2)), it is clear that ϕ restricts to a bijection between MorsSet/O⊗

(−, r)
and Φ. We conclude that r is a quasicategorical model for the ∞-operad structure on
algebras. ♦

Proposition E.4.1.4. In this proposition Convention E.4.1.1 applies. Assume we are
in the situation of Definition E.4.1.2. Let r̃ be the functor

r̃ : Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗ pr2−−→ O⊗

where the functor Fun
(
O′⊗, C⊗

)
→ Fun

(
O′⊗, O′′⊗

)
that is part of the pullback is q∗, and

the functor O⊗ → Fun
(
O′⊗, O′′⊗

)
is the adjoint functor to f. Let r be the restriction

of r̃ to Fun
(
O′⊗, C⊗

)′
×Fun(O′⊗,O′′⊗) O⊗, where Fun

(
O′⊗, C⊗

)′ is the sub-simplicial set of
Fun

(
O′⊗, C⊗

)
spanned by the vertices which are functors O′⊗ → C⊗ that preserve inert

morphisms.
Then r̃ is a quasicategorical pre-model for the ∞-operad structure on algebras and r

is a quasicategorical model for the ∞-operad structure on algebras. ♥

Proof. Let g : K → O⊗ be an object in sSet/O⊗ . There is a chain of bijections which are
natural in g as follows.

MorsSet/O⊗
(g, r̃)

∼= MorsSet

(
K,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗

)
×MorsSet(K,O⊗) {g}

∼= MorsSet
(
K× O′⊗, C⊗

)
×MorsSet(K×O′×,O′′⊗) MorsSet

(
K, O⊗

)
×MorsSet(K,O⊗) {g}

∼= MorsSet
(
K× O′⊗, C⊗

)
×MorsSet(K×O′×,O′′⊗) {f ◦ (g× idO′⊗)}

∼= Φ̃(g)

628



E.4. Induced ∞-operad structures on Alg

This shows the claim about r̃. The claim for r follows using Remark E.4.1.3 after noting
that for a vertex A of Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗ considered as a functor

a : {A} → Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O⊗

the composition of the chain of bijections above with the projection to

MorsSet
(
{A} × O′⊗, C⊗

)
∼= MorsSet

(
O′⊗, C⊗

)

sends a to pr1(A).

We can now state the construction of the induced∞-operad structure on∞-categories
of algebras without referring to quasicategories.

Proposition E.4.1.5. Let pO : O⊗ → Fin∗, pO′ : O′⊗ → Fin∗, and pO′′ : O′′⊗ → Fin∗ be
∞-operads and let q : C⊗ → O′′⊗ be a morphism of ∞-operads. Let f : O⊗×O′⊗ → O′′⊗

be a bifunctor of ∞-operads.
Let pO : O⊗ → Fin∗, pO′ : O′⊗ → Fin∗, and pO′′ : O′′⊗ → Fin∗ be functors of quasicategories

which represent pO, pO′, and pO′′, respectively. Let q : C⊗ → O′′⊗ be a categorical fibration
of quasicategories representing q and let f : O⊗×O′⊗ → O′′⊗ be a functor of quasicategories
representing f .

Define AlgO′/O′′(C), ÃlgO′/O′′(C), r̃, r, s′, and s via the following diagram, where the
two squares are to be pullback diagrams, f̂ is adjoint to f, and iFun is the inclusion of
the full sub-simplicial set spanned by those vertices which correspond to functors that
preserve inert morphisms.

AlgO′/O′′(C)
⊗ ÃlgO′/O′′(C)

⊗ O⊗

Fun
(
O′⊗, C⊗

)′ Fun
(
O′⊗, C⊗

)
Fun

(
O′⊗, O′′⊗

)

iAlg

s

r

r̃

s′ f̂

iFun q∗

(E.3)

Then the above diagram represents the following diagram in Cat∞, were both squares
are pullback diagrams as well, f̂ is adjoint to f , and ιFun is the inclusion of the full
subcategory spanned by those functors that preserve inert morphisms.

AlgO′/O′′(C)
⊗ ÃlgO′/O′′(C)

⊗ O⊗

Fun
(
O′⊗, C⊗

)′ Fun
(
O′⊗, C⊗

)
Fun

(
O′⊗,O′′⊗

)

ιAlg

s

r

r̃

s′ f̂

ιFun q∗

♥

629



Appendix E. ∞-operads and algebras

Proof. What we have to show is that both squares in diagram (E.3) are homotopy
pullback diagrams with respect to the Joyal model structure. We begin by showing that
q∗ and iFun are categorical fibrations.

By assumption q : C⊗ → O′′⊗ is a categorical fibration of quasicategories. A map of
simplicial sets is a categorical fibration if and only if it has the right lifting property
with respect to maps of simplicial sets which are monomorphisms as well as categorical
equivalences (see [HTT, 2.2.5.1]). By adjoining the lifting problems we need to solve to
show that q∗ is a categorical fibration we are reduced to showing that if j is a map
of simplicial sets which is a monomorphism as well as a categorical equivalence, then
j × idO′⊗ is so as well. That j × idO′⊗ is again a monomorphism is clear, and that it is
also a categorical equivalence is [HTT, 2.2.5.4].

We next argue that iFun is also a categorical fibration. As Fun
(
O′⊗, C⊗

)
is a quasi-

category by [HTT, 1.2.7.3 (1)], we can apply [HTT, 2.4.6.5] so that it suffices to show
that iFun is an inner fibration and that for any natural equivalence φ : g → g′ of func-
tors O′⊗ → C⊗ such that g preserves inert morphisms it follows that g′ preserves inert
morphisms as well. The latter property follows immediately from the fact that cocarte-
sian morphisms are closed under equivalences. It remains to show that iFun is an inner
fibration. But note that every horn inclusion Λni ⊆ ∆n for 0 < i < n is an isomorphism
on 0-simplices, and as iFun is the inclusion of a full sub-simplicial set lifting positive
dimensional simplices is always possible, so iFun is an inner fibration.

We have now shown that q∗ and iFun are both categorical fibrations. By assumption
O⊗ is a quasicategory and Fun

(
O′⊗, O′′⊗

)
is a quasicategory by [HTT, 1.2.7.3 (1)], so it

follows from [HTT, A.2.4.4, variant (i) and A.2.4.5] that the right square in diagram
(E.3) is a homotopy pullback square with respect to the Joyal model structure. As a
pullback of the categorical fibration q∗ is the functor r̃ a categorical fibration as well,
so as O⊗ is a quasicategory, ÃlgO′/O′′(C)

⊗ is also a quasicategory [HTT, 2.4.6.1]. It was
already mentioned that Fun

(
O′⊗, C⊗

)
is a quasicategory, so we can apply [HTT, A.2.4.4,

variant (i) and A.2.4.5] again to conclude that the left square in diagram (E.3) is also a
homotopy pullback square with respect to the Joyal model structure.

E.4.2. Properties of the induced ∞-operad structure
In Proposition E.4.1.5 we gave a construction of the induced ∞-operad structure on

∞-categories of algebras that could be formulated without referring back to quasicate-
gorical models. In this section we collect the properties of this construction.

Remark E.4.2.1. In the situation of Proposition E.4.1.5, Proposition B.5.2.1 shows
that as ιFun is a fully faithful functor, so is ιAlg. We can thus identify

ιAlg : AlgO′/O′′(C)⊗ → Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

with the inclusion of the full subcategory spanned by those objects whose projection to
the first factor is a functor O′⊗ → C⊗ that preserves inert morphisms. ♦

630



E.4. Induced ∞-operad structures on Alg

Remark E.4.2.2. Let O, O′, and O′′ be ∞-operads, let

C⊗ D⊗

O′′⊗

F⊗

qC qD

be a commutative diagram of ∞-operads, and let f : O⊗ × O′⊗ → O′′⊗ be a bifunctor
of ∞-operads. Then the functor indicated as the right vertical functor in the following
diagram induces a functor AlgO′/O′′(F )⊗ on algebras that makes the diagram commute

AlgO′/O′′(C)⊗ Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

AlgO′/O′′(D)⊗ Fun
(
O′⊗,D⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

AlgO′/O′′ (F )⊗

ιCAlg

(F⊗)
∗
×idid

ιDAlg

where ιCAlg and ιDAlg are as in Remark E.4.2.1. This follows immediately from the descrip-
tion in Remark E.4.2.1, as F preserves inert morphisms as a morphism of ∞-operads.
From the definition it is also clear that AlgO′/O′′(F )⊗ is compatible with the projections
to O⊗. ♦

In light of Proposition E.4.1.4 and Proposition E.4.1.5, all the properties listed in [HA,
3.2.4.2 and 3.2.4.3] apply to r : AlgO′/O′′(C)

⊗ → O⊗. We re-state them as the proposition
below for easier reference.

Proposition E.4.2.3 ([HA, 3.2.4.2 and 3.2.4.3]). Let O, O′, and O′′ be ∞-operads, let
qC : C

⊗ → O′′⊗ be a morphism of ∞-operads, and let f : O⊗×O′⊗ → O′′⊗ be a bifunctor
of ∞-operads.

Let
ιCAlg : AlgO′/O′′(C)⊗ → Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

be as in Proposition E.4.1.5 and Remark E.4.2.1 and denote by rC the composition
pr2 ◦ιCAlg. Then the following hold:

(0) Let X be an object of O. Then AlgO′/O′′(C)⊗X can be identified with AlgO′/O′′(C),
where the latter ∞-category of algebras is taken with respect to the following mor-
phism of ∞-operads.

fX : O′⊗ ≃ {X} × O′⊗ → O⊗ ×O′⊗ f
−→ O′′⊗

This identification is compatible with the respective inclusions into the following
∞-categories.
(

Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) O

⊗

)
×O⊗ {X} ≃ Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,O′′⊗) {fX}

631



Appendix E. ∞-operads and algebras

(1) The functor rC is a morphism of ∞-operads.

(2) A morphism α in AlgO′/O′′(C)⊗ lying over an inert morphism in O⊗ is inert if and
only if for every object X of O′, the morphism evX

(
pr1(ιCAlg(α))

)
in C⊗ is inert.

(3) If qC is a cocartesian fibration of ∞-operads, then so is rC.

(4) Assume that qC is a cocartesian fibration of ∞-operads. Then a morphism α in
AlgO′/O′′(C)⊗ is rC-cocartesian if and only if for every object X of O′, the morphism
obtained by evaluating at X, i. e. evX

(
pr1(ιCAlg(α))

)
, is qC-cocartesian.

(5) Let X be an object of O′. Then the functor evX ◦ pr1 ◦ ιCAlg is a morphism of
∞-operads and fits into a commutative diagram

AlgO′/O′′(C)⊗ C⊗

O⊗ O′′⊗

evX◦pr1◦ιCAlg

rC
qC

where the bottom horizontal functor is the following composition.

O⊗ ≃ O⊗ × {X}
f
−→ O′′⊗

Furthermore, if qC is a cocartesian fibration of ∞-operads, then evX ◦ pr1 ◦ ιCAlg
sends rC-cocartesian morphisms to qC-cocartesian morphisms.

We can also consider how the above properties behave under induced functors as in
Remark E.4.2.2. So let

C⊗ D⊗

O′′⊗

F⊗

qC qD

be a commutative diagram of ∞-categories, and let ιDAlg and rD be defined analogously to
ιCAlg and rC. Then the following hold.

(6) Let X be an object of O. Then there is a commutative diagram

AlgO′/O′′(C)⊗X AlgO′/O′′(C)

AlgO′/O′′(D)⊗X AlgO′/O′′(D)

AlgO′/O′′ (F )⊗X

≃

AlgO′/O′′ (F )

≃

where the horizontal functors are the equivalences from (0).

632



E.4. Induced ∞-operad structures on Alg

(7) The functor
AlgO′/O′′(F )⊗ : AlgO′/O′′(C)⊗ → AlgO′/O′′(D)⊗

is a morphism of ∞-operads.

(8) If qC and qD are cocartesian fibrations of ∞-operads, and F is an O′′-monoidal
functor, then the functor

AlgO′/O′′(F )⊗ : AlgO′/O′′(C)⊗ → AlgO′/O′′(D)⊗

is O-monoidal.

(9) Let X be an object of O′. Then there is a commutative diagram

AlgO′/O′′(C)⊗ AlgO′/O′′(D)⊗

C⊗ D⊗

AlgO′/O′′ (F )⊗

evX◦pr1◦ιCAlg evX◦pr1◦ιDAlg

F⊗

of ∞-operads. ♥

Proof. Claims (0) to (4) are just restatements of [HA, 3.2.4.2 and 3.2.4.3] which applies
in this form due to Proposition E.4.1.4 and Proposition E.4.1.5.

Claim (5) follows directly from (2) and (4). Claim (6) follows immediately from Re-
mark E.4.2.2 and (0). Combining that F is a morphism of∞-operads with the description
of inert morphisms in (2) implies (7), and if F is a O′′-monoidal, then combining this
with (4) implies (8). Finally, (9) is immediate from the definitions.

Remark E.4.2.4. Let OL, O′
L, OR, and O′ be ∞-operads, let qC : C⊗ → O′⊗ be a

morphism of ∞-operads, let
f : O⊗

L ×O
⊗
R → O

′⊗

be a bifunctor of ∞-operads, and let α⊗ : O′
L → OL be a morphism of ∞-operads.

We obtain another bifunctor of ∞-categories f ′ as the following composition.

f ′ : O′⊗
L ×O

⊗
R

α⊗×id
−−−−→ O⊗

L ×O
⊗
R

f
−→ O′⊗

We obtain a pullback diagram as follows

Fun
(
O⊗
R , C

⊗
)
×Fun(O⊗

R ,O
′⊗) O

′⊗
L O′⊗

L

Fun
(
O⊗
R , C

⊗
)
×Fun(O⊗

R ,O
′⊗) O

⊗
L O⊗

L

id×idα⊗

pr2

α⊗

pr2

633



Appendix E. ∞-operads and algebras

where the pullbacks on the left are take with respect to the morphisms as in Proposi-
tion E.4.1.5, on the top with respect to f ′ and the bottom with respect to f .

It is clear from the definition of ιAlg (see Remark E.4.2.1) that an object lies in the
essential image of the functor ιAlg associated to the bifunctor f ′ if and only if id×id α

⊗

maps that object to the essential image of the functor ιAlg associated to the bifunctor f .
It thus follows from Proposition B.5.3.1, Proposition B.4.4.1, and Proposition B.4.3.1

that the above pullback diagram induces another pullback diagram as follows, where the
AlgOR/O′(C)

⊗ at the top left is the one with respect to the bifunctor f ′ and the one at
the bottom left is with respect to the bifunctor f .

AlgOR/O′(C)
⊗ O′⊗

L

AlgOR/O′(C)
⊗ O⊗

L

pr2◦ιAlg

α⊗

pr2◦ιAlg

By Proposition E.4.2.3 (7), the horizontal functors are morphisms of ∞-operads, α⊗ is
by assumption a morphism of ∞-operads, and it then follows from Proposition E.4.2.3
(2) that the left vertical functor is also a morphism of ∞-operads. ♦

E.5. Iterating Alg
Proposition E.4.2.3 allows us to “iterate” passing to the ∞-category of algebras. In

this section we show that there is an alternative description of algebras of algebras: There
is an equivalence of ∞-categories between the ∞-category of O-algebras in O′-algebras
AlgO(AlgO′(C)) and the ∞-category of O ⊗ O′-algebras AlgO⊗O′(C). This equivalence
goes through an intermediate step, the ∞-category BiFunc(O,O′, C) of bifunctors of
∞-operads.
Proposition E.5.0.1. Let pO : O⊗ → Fin∗, p′O : O′⊗ → Fin∗, and pC : C

⊗ → Fin∗ be
∞-operads.

Then there is a commutative diagram as follows8

BiFunc(O,O′; C) Fun
(
O⊗ ×O′⊗, C⊗

)

AlgO

(
AlgO′(C)

)
Fun

(
O⊗,Fun

(
O′⊗, C⊗

))
Φ2 ≃ (̂−)

where AlgO′(C) carries the∞-operad structure from Proposition E.4.2.3, see [HA, 3.2.4.4]
9, the horizontal functors are the canonical ones, and the functor (̂−) sends a functor G
to its adjoint Ĝ. The functor Φ2 is an equivalence. ♥

8See [HA, 2.2.5.3] for a definition of BiFunc.
9There is a bifunctor of ∞-operads Fin∗×O

′⊗ id ×pO′

−−−−−→ Fin∗× Fin∗
−∧−
−−−→ Fin∗ and it is with respect to

this bifunctor that we apply Proposition E.4.2.3.

634



E.5. Iterating Alg

Proof. We consider the following diagram, in which the outer square corresponds to the
square from the statement. We will explain the individual functors in the text below.

BiFunc(O,O′; C) AlgO

(
AlgO′(C)

)

FunFin∗

(
O⊗,AlgO′(C)⊗

)

E := FunFin∗

(
O⊗,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

)

FunFin∗

(
O⊗ ×O′⊗, C⊗

)
FunFun(O′⊗,Fin∗)

(
O⊗,Fun

(
O′⊗, C⊗

))

Fun
(
O⊗ ×O′⊗, C⊗

)
Fun

(
O⊗,Fun

(
O′⊗, C⊗

))

Φ2

≃

j

i

(ιAlg)∗

P3V

≃

P1

W≃

P2

(̂−)

≃

}(−)

Functors P1, P2, and P3 are constructed from the relevant projection and forgetful func-
tors: P1 forgets that the functor was over Fin∗, and similarly for P2. The functor P3

additionally postcomposes with the projection to the first factor. Functors }(−) and (̂−)
send functors to their respective adjoints, both are equivalences.

We use notation from Proposition E.4.2.3, so ιAlg is the inclusion of the full subcat-
egory AlgO′(C)⊗ of Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗ of those objects whose projection

to the first factor is a functor O′⊗ → C⊗ preserving inert morphisms. It follows from
Proposition B.3.0.1 that (ιAlg)∗ is also fully faithful, and applying Proposition B.5.3.1
and Remark B.5.1.2 we can further conclude that the functor ιAlg∗ in the diagram is fully
faithful, with essential image spanned by precisely those objects of E which are mapped
by P3 to functors

O⊗ → Fun
(
O′⊗, C⊗

)

which evaluated at every object of O⊗ yield a functor O′⊗ → C⊗ that preserves inert
morphisms.

The functor i is the canonical inclusion of the full subcategory of those functors
O⊗ → AlgO′(C)⊗ over Fin∗ which send inert morphisms to inert morphisms. Using Propo-
sition C.1.2.1, Proposition C.1.1.1, and [HTT, 3.1.2.1] we can reformulate this condition:
i is the inclusion of the full subcategory of objects who are mapped by P3 ◦ (ιAlg)∗ to
functors

O⊗ → Fun
(
O′⊗, C⊗

)

which send an inert morphism in O⊗ to a natural transformation for which every com-
ponent is an inert morphism in C⊗.

635



Appendix E. ∞-operads and algebras

We can summarize the above discussion as follows: The composition (ιAlg)∗ ◦ i is fully
faithful, and an object E of E is in the essential image of (ιAlg)∗ ◦ i precisely when P3(E)
is a functor O⊗ ×O′⊗ → C⊗ that preserves inert morphisms separately in each variable.
As identity morphism in O⊗ and O′⊗ are inert [HTT, 2.4.1.5] and cocartesian morphisms
are closed under composition [HTT, 2.4.1.7], this condition is equivalent to the functor
sending pairs of inert morphisms to inert morphisms in C⊗.

The functor W is an equivalence and constructed using compatibility of Fun with
pullbacks, the ×−Fun-adjunction, as well as the pasting law for pullbacks [HTT, 4.4.2.1];
It is the following composition.

FunFun(O′⊗,Fin∗)

(
O⊗,Fun

(
O′⊗, C⊗

))

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
×Fun

(
O⊗,Fun(O′⊗,Fin∗)

) { ̂(pO ∧ pO′)}

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
×Fun

(
O⊗,Fun(O′⊗,Fin∗)

) Fun
(
O⊗, Fin∗

)

×Fun(O⊗,Fin∗) {
̂(pO ∧ pO′)}

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

)
×Fun(O⊗,Fin∗) {

̂(pO ∧ pO′)}

≃ FunFin∗

(
O⊗,Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

)

It is clear that W defined like this satisfies P3 ◦W ≃ P2.
The equivalence V is defined using quite similar manipulations, as indicated below.

FunFin∗

(
O⊗ ×O′⊗, C⊗

)

≃ Fun
(
O⊗ ×O′⊗, C⊗

)
×Fun(O⊗×O′⊗,Fin∗) {pO ∧ pO′}

≃ Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
×Fun

(
O⊗,Fun(O′⊗,Fin∗)

) { ˜pO ∧ pO′}

≃ FunFun(O′⊗,Fin∗)

(
O⊗,Fun

(
O′⊗, C⊗

))

It is clear that then P2 ◦ V ≃ (̂−) ◦ P1.
The description obtained above of the essential image of the fully faithful functor

(ιAlg)∗ ◦ i now implies that the composition V −1 ◦W−1 ◦ (ιAlg)∗ ◦ i is fully faithful with
essential image spanned by those functors O⊗ ×O′⊗ → C⊗ that map pairs of inert mor-
phisms to inert morphisms. But this is by definition [HA, 2.2.5.3] precisely the essential
image of the fully faithful functor j. This shows that an induced functor Φ2 making the
diagram commute exists and that Φ2 is an equivalence.

Proposition E.5.0.2. Let pO : O⊗ → Fin∗, p′O : O′⊗ → Fin∗, and pC : C
⊗ → Fin∗ be

∞-operads, and let F : O⊗×O′⊗ → O′′⊗ be a bifunctor of∞-operads (see [HA, 2.2.5.3]).

636



E.6. The commutative ∞-operad

Then there exists a commutative diagram as follows

AlgO′′(C) Fun
(
O′′⊗, C⊗

)

BiFunc(O,O′; C) Fun
(
O⊗ ×O′⊗, C⊗

)
Φ1 F ∗

where the horizontal functors are the canonical ones.
By definition [HA, 2.2.5.3] F exhibits O′′⊗ as a tensor product of O⊗ and O′⊗ if and

only if Φ1 is an equivalence for every ∞-operad C. ♥

Proof. The existence of the induced dashed functor Φ1 on full subcategories in the fol-
lowing diagram follows immediately from the fact that F maps pairs of inert morphisms
to inert morphisms.

AlgO′′(C) BiFunc(O,O′;O′′)

FunFin∗

(
O′′⊗, C⊗

)
FunFin∗

(
O⊗ ×O′⊗,O′′⊗

)

Φ1

≃

F ∗

E.6. The commutative ∞-operad
Let O be an ∞-operad. In the next proposition we show that the ∞-operad Comm

has the property that the tensor product of O and Comm is given by Comm again.

Proposition E.6.0.1. Let pO : O⊗ → Fin∗ be a reduced10 ∞-operad and denote the
essentially unique object in O by o.

Then the bifunctor of ∞-operads11

α : O⊗ × Comm⊗ pO×id
−−−→ Comm⊗ × Comm⊗ −∧−

−−−→ Comm⊗

exhibits Comm as a tensor product of O and Comm.
Let pC : C⊗ → Fin∗ be an∞-operad. By applying Proposition E.4.2.3 to the bifunctor of

∞-operads −∧− we obtain an induced∞-operad AlgComm(C)
⊗, and the forgetful functor

ev〈1〉 : AlgComm(C) → C can by Proposition E.4.2.3 (5) be upgraded to a morphism of
∞-operads.

10See [HA, 2.3.4.1] for a definition. It means that O is a unital ∞-operad and that the underlying
∞-category O is a contractible ∞-groupoid.

11See [HA, 2.2.5.1] for − ∧−.

637



Appendix E. ∞-operads and algebras

Then there is a commutative diagram as follows.

AlgO

(
AlgComm(C)

)

AlgComm(C) AlgO(C)

AlgO(ev⟨1⟩)evo
≃

p∗O

(E.4)

Furthermore, the forgetful functor evo is an equivalence. In particular, if pO = idFin∗,
then AlgComm(ev〈1〉) is homotopic to ev〈1〉 and an equivalence. ♥

Proof. Let pC : C⊗ → Fin∗ be an ∞-operad. What we have to show for the first part of
the claim is that the functor

Φ1 : AlgComm(C)→ BiFunc(O,Comm; C)

from Proposition E.5.0.2 is an equivalence. Note that by Proposition E.5.0.1, the functor

Φ2 : BiFunc(O,Comm; C)→ AlgO(AlgComm(C))

is an equivalence. We consider the following diagram of commutative squares that sum-
marizes the situation.

AlgComm(C) Fun
(
Fin∗, C

⊗
)

BiFunc(O,Comm; C) Fun
(
O⊗ × Fin∗, C

⊗
)

AlgO

(
AlgComm(C)

)
Fun

(
O⊗,Fun

(
Fin∗, C

⊗
))

AlgComm(C) Fun
(
Fin∗, C

⊗
)

Φ1 (α)∗

Φ2 ≃ (̂−)

evo evo

(∗)

Define Φ′
C to be the left vertical composition Φ′

C := evo ◦ Φ2 ◦ Φ1. As the ∞-operad
AlgComm(C)

⊗ is cocartesian by [HA, 3.2.4.10], we can apply [HA, 2.4.3.9], which states
that the forgetful functor evo is an equivalence. To show that α exhibits Comm as a
tensor product of O and Comm it thus suffices to show that Φ′

C is an equivalence.
Using naturality of (̂−) we can identify the right vertical composition with precompo-

sition with the following functor.

Fin∗
consto×idFin∗−−−−−−−→ O⊗ × Fin∗

pO×idFin∗−−−−−→ Fin∗ × Fin∗
−∧−
−−−→ Fin∗

This functor is naturally equivalent to idFin∗ , so we conclude that the vertical composition
on the right in diagram (∗) is naturally equivalent to the identity.

638



E.6. The commutative ∞-operad

Diagram (∗) is natural in C12, so the morphism of ∞-operads pC : C⊗ → Fin∗ induces
a commutative cubes as follows.

AlgComm(C) Fun
(
Fin∗, C

⊗
)

AlgComm(Comm) Fun(Fin∗, Fin∗)

AlgComm(C) Fun
(
Fin∗, C

⊗
)

AlgComm(Comm) Fun(Fin∗, Fin∗)

Φ′
C

id

Φ′
Comm

id

Note that the functor AlgComm(Comm) → Fun(Fin∗, Fin∗) can be identified with the
inclusion of {idFin∗}, from which it also follows that Φ′

Comm can be identified with the
identity. Passing to the induced functors from AlgComm(C) into the pullbacks of the top
and bottom squares we conclude that there is a commutative squares as indicated below

AlgComm(C) FunFin∗

(
Fin∗, C

⊗
)

AlgComm(C) FunFin∗

(
Fin∗, C

⊗
)

Φ′
C id

where the horizontal functors are the canonical inclusions. As both horizontal functors
are by definition the same inclusion of a full subcategory, it follows13 that Φ′

C is homotopic
to the identity functor and hence an equivalence.

It remains to show that there exists a commutative diagram (E.4). For this we can
proceed very analogously. As we now know that Φ1 in diagram (∗) is an equivalence, it
suffices to construct a homotopy between p∗O ◦ evo ◦ Φ2 ◦ Φ1 and AlgO(ev〈1〉) ◦ Φ2 ◦ Φ1.
Completely analogously to the arguments above, this time using that the compositions

O⊗ pO−→ Fin∗
consto×idFin∗−−−−−−−→ O⊗ × Fin∗

pO×idFin∗−−−−−→ Fin∗ × Fin∗
−∧−
−−−→ Fin∗

and
O⊗ idO⊗×const⟨1⟩
−−−−−−−−→ O⊗ × Fin∗

pO×idFin∗−−−−−→ Fin∗ × Fin∗
−∧−
−−−→ Fin∗

are both naturally equivalent to pO, one can obtain commutative diagrams

AlgComm(C) FunFin∗

(
Fin∗, C

⊗
)

AlgO(C) FunFin∗

(
O⊗, C⊗

)
p∗O

12One can check that the two squares involving Φ1 and Φ2 are natural in C by going through their
definitions. This is also discussed in Remark F.3.0.4 below.

13See Proposition B.4.4.1 and Proposition B.4.3.1.

639



Appendix E. ∞-operads and algebras

for both p∗O ◦ evo ◦Φ2 ◦Φ1 as well as AlgO(ev〈1〉) ◦Φ2 ◦Φ1 as the left vertical functor. We
thus obtain a homotopy between p∗O ◦ evo ◦ Φ2 ◦ Φ1 and AlgO(ev〈1〉) ◦ Φ2 ◦ Φ1 by using
that the bottom horizontal functor is the inclusion of a full subcategory and applying
Proposition B.4.4.1 and Proposition B.4.3.1.

E.7. Colimits and free algebras
In this section we discuss (operadic) colimits and free algebras, as well as compatibility

of functors
AlgO(F ) : AlgO(C)→ AlgO(D)

induced by a symmetric monoidal functor F : C → D, with free algebras and colimits.
We start in Section E.7.1 by discussing operadic colimits, which will be an ingredient

for the later sections. In Section E.7.2 we then discuss free algebras, and in analogy we
will also briefly show that induced functors on∞-categories of left modules preserve free
modules in Section E.7.4. In Section E.7.3 we provide a result for AlgO(F ) preserving
small colimits.

E.7.1. Operadic colimits
In this section we discuss some helpful results regarding operadic colimit diagrams. Sec-

tion E.7.1.1 covers a criterion that simplifies checking whether certain types of diagrams
in a symmetric monoidal∞-category are operadic colimit diagrams, and Section E.7.1.2
applies this to show that colimit-preserving symmetric monoidal functors also preserve
operadic colimits. Both statements as well as their proofs are essentially taken from
[GH15, A.2.9]14.

E.7.1.1. A criterion for operadic colimits

We record the following proposition whose proof is essentially given in the proof of
[GH15, A.2.9].

Proposition E.7.1.1 ([GH15, A.2.9]). Let q : C⊗ → Fin∗ be a symmetric monoidal
∞-category that is compatible with small colimits in the sense of [HA, 3.1.1.18] and let
p : K▷ → C⊗ be a diagram such that q ◦ p is the constant functor with value 〈i〉. Let
m : 〈i〉 → 〈1〉 be the unique active morphism.

Then the following two conditions are equivalent.

(1) p is an operadic q-colimit diagram15.

(2) The composition
K▷ p
−→ C⊗〈i〉

m!−→ C (E.5)
14The paper [GH15] is however concerned with the theory of non-symmetric ∞-operads, rather than

the symmetric ∞-operads used in [HA], which is why we do not merely cite [GH15, A.2.9].
15See [HA, 3.1.1.2] for the definition.

640



E.7. Colimits and free algebras

is a colimit diagram. ♥

Proof. By [HA, 3.1.1.16] the condition (1) is equivalent to the following condition.

(3) For every object Y of C⊗ the composition

K▷ p
−→ C⊗〈i〉

−⊕Y
−−−→ C⊗〈i〉⊕q(Y )

m′
!−→ C (∗)

is a colimit diagram, where m′ : 〈i〉 ⊕ q(Y )→ 〈1〉 is the unique active morphism.

Note that given an object Y of C⊗, we can write the unique active morphism

m′ : 〈i〉 ⊕ q(Y )→ 〈1〉

as the composition
m′ = µ ◦

(
m⊕m′′

)

with m′′ : q(Y ) → 〈1〉 and µ : 〈2〉 → 〈1〉 the unique active morphisms. By [HA, 2.2.4.8],
we can identify (m⊕m′′)! with m!⊕m

′′
! , so that the composition in (∗) can be identified

with
K▷ p
−→ C⊗〈i〉

−⊕Y
−−−→ C⊗〈i〉⊕q(Y )

m!⊕m
′′
!−−−−→ C⊗〈2〉

µ!−→ C

which can be further identified, using the functoriality of ⊕, with the composition

K▷ p
−→ C⊗〈i〉

m!−→ C⊗〈1〉
−⊕m′′

! (Y )
−−−−−−→ C⊗〈2〉

µ!−→ C

which finally can be identified with the following composition.

K▷ p
−→ C⊗〈i〉

m!−→ C
−⊗m′′

! (Y )
−−−−−−→ C (∗∗)

As we assumed that the symmetric monoidal structure on C is compatible with small
colimits, (∗∗) is a colimit diagram for all objects Y of C⊗ if and only if (E.5) is a colimit
diagram16.

E.7.1.2. Symmetric monoidal functors and operadic colimits

The following statement is given in [GH15, A.2.9] with the same proof as given below.

Proposition E.7.1.2 ([GH15, A.2.9]). Let q : C⊗ → Fin∗ and q′ : C ′⊗ → Fin∗ be symmet-
ric monoidal ∞-categories that are compatible with small colimits in the sense of [HA,
3.1.1.18] and let F⊗ : C⊗ → C ′⊗ be a symmetric monoidal functor such that F preserves
colimits.

Let p : K▷ → C⊗act be a operadic q-colimit diagram. Then F⊗ ◦p is a operadic q′-colimit
diagram. ♥

16The composition (E.5) can be identified with (∗∗) in the special case of Y = 1C .

641



Appendix E. ∞-operads and algebras

Proof. Let p0 = q ◦ p and let r0 be the constant functor K▷ → Fin∗ with image p0(∞)17.
Then there is a unique natural transformation α0 : p0 → r0. By [HTT, 3.1.2.1] we can lift
this natural transformation to a natural transformation α : p→ r of functors K▷ → C⊗

such that for each object k of K the morphism αk : p(k)→ r(k) is q-cocartesian.
Note that by construction of α0 the functor α factors through C⊗act. Furthermore, α∞

is q-cocartesian and lies over the equivalence idp0(∞) and is thus an equivalence by [HTT,
2.4.1.5]. Hence all the assumptions for [HA, 3.1.1.15 (2)] are satisfied and we can conclude
that as p is an operadic q-colimit diagram, so is r.

As F⊗ maps q-cocartesian morphisms to q′-cocartesian morphisms and preserves equiv-
alences, we can apply [HA, 3.1.1.15 (2)] also to F⊗◦α to conclude that F ◦p is an operadic
q′-colimit diagram if and only if F ◦r is, so it now suffices to show that F ◦r is an operadic
q′-colimit diagram.

Let m : p0(∞)→ 〈1〉 be the unique active morphism. Then by Proposition E.7.1.1 the
composite

K▷ r
−→ C⊗

p0(∞)

m!−→ C (∗)
is a colimit diagram, and it suffices to show that

K▷ r
−→ C⊗

p0(∞)

F⊗

−−→ C ′⊗
p0(∞)

m!−→ C ′ (∗∗)

is a colimit diagram.
But as F is symmetric monoidal, composition (∗∗) can be identified with

K▷ r
−→ C⊗

p0(∞)

m!−→ C
F
−→ C ′

so that this is a colimit diagram follows from (∗) being a colimit diagram and F preserv-
ing colimit diagrams by assumption.

E.7.2. Free algebras
In this section we discuss free algebras; existence of free algebras in Section E.7.2.1

and compatibility of induced functors on ∞-categories of algebras with free algebras in
Section E.7.2.2.

E.7.2.1. Detection of free algebras

Let C be a symmetric monoidal ∞-category, O an ∞-operad, and X an object of the
underlying ∞-category of O. We can then ask whether the forgetful functor

evX : AlgO(C)→ C

has a left adjoint, i. e. a free algebra functor18. In a more general setting, [HA, 3.1.3.4]
shows existence of a free algebra functor, under some assumptions. However, those as-
sumptions, requiring existence of certain operadic colimit diagrams, are not a priori easy
17∞ denotes the cone point of K▷.
18See [HA, 3.1].

642



E.7. Colimits and free algebras

to verify19. In the next proposition we thus provide easier to check conditions for C in the
case that O is either Assoc or E0 that imply the existence of free algebras, and discuss
descriptions of the free algebra generated by a an object of C.

Proposition E.7.2.1 ([HA, 4.1.1.18 and 4.1.1.19]). Let q : C⊗ → Fin∗ be a symmetric
monoidal ∞-category. Let O be either Assoc or E0. Furthermore, assume the following.

• If O = Assoc, assume that C admits countable coproducts and that the tensor
product preserves countable coproducts in each variable.

• If O = E0, assume that C admits finite coproducts and that the tensor product
preserves finite coproducts in each variable.

Then the forgetful functor ev〈1〉 : AlgO(C)→ C admits a left adjoint FreeAlgO and for
every object X of C, the unit

X → ev〈1〉

(
FreeAlgO(X)

)

of the adjunction exhibits FreeAlgO(X) as a q-free O-algebra generated by X20.
Let X be an object of C, let A be an object of AlgO(C), and let f : X → ev〈1〉(A) be a

morphism in C. Then the following are equivalent.

(1) f exhibits A as a q-free O-algebra generated by X.

(2) The morphism
FreeAlgO(X)→ A

that is adjoint to f is an equivalence in AlgO(C).

(3) • If O = Assoc: The composition

∐

n≥0

X⊗n

∐
n≥0 f

⊗n

−−−−−−→
∐

n≥0

ev〈1〉(A)
⊗n → ev〈1〉(A)

is an equivalence, where the morphisms ev〈1〉(A)
⊗n → ev〈1〉(A) are those as-

sociated to the evaluation of A at an active morphism 〈n〉 → 〈1〉 in Assoc⊗21.
• If O = E0: The composition

1∐X
id1 ∐f
−−−→ 1∐ ev〈1〉(A)

i∐id
−−→ ev〈1〉(A)

is an equivalence, where i is the morphism associated to the evaluation of A
at the unique morphism 〈0〉 → 〈1〉 in (E0)

⊗. ♥

19Unless much stronger assumptions are available, such as the symmetric monoidal structure on C being
compatible with small colimits. See [HA, 3.1.3.5].

20See [HA, 3.1.3.1 and 3.1.3.12] for a definition.
21Which active morphism is chosen does not change whether the composition is an equivalence or not.

643



Appendix E. ∞-operads and algebras

Proof. For O = Assoc, this is precisely [HA, 4.1.1.18]22, albeit under stronger assump-
tions regarding what colimits C needs to be admit and its tensor product needs to be
compatible with. That countable coproducts suffice is remarked in [HA, 4.4.1.19]. This
follows by tracing through the proof of [HA, 4.1.1.18], where one is ultimately led to [HA,
3.1.3.4], where one needs to ensure that one can construct certain operadic q-colimit di-
agrams. One then notes that in the specific situation we need to apply this the diagram
category is equivalent to

∐
n≥0 P(n), where P(n) are the spaces defined in [HA, 3.1.3.9].

For Assoc these spaces can easily seen to be contractible23, so colimits indexed by this
diagram category are countable coproducts.

The proof for O = E0 is completely analogous; the relevant P(n) are empty for n > 1
rather than contractible.

E.7.2.2. Symmetric monoidal functors and free algebras

Given a symmetric monoidal functor F : C → D, an ∞-operad O, and an object X of
the underlying ∞-category of O, the induced functor on ∞-categories of algebras

AlgO(F ) : AlgO(C)→ AlgO(D)

is compatible with the respective forgetful functors evX . The next proposition gives
conditions for C, D, and F such that AlgO(F ) is also compatible with the respective free
algebra functors.

Proposition E.7.2.2. Let α⊗ : O⊗ → O′⊗ be a morphism of ∞-operads, qC : C⊗ → Fin∗

and qD : D⊗ → Fin∗ symmetric monoidal ∞-categories, and F⊗ : C⊗ → D⊗ a symmetric
monoidal functor.

Assume one of the following sets of assumptions.

(1) • C and D admit small colimits.
• The tensor product functors of C and D preserve small colimits separately in

each variable.
• F : C → D preserves small colimits.

(2) • O⊗ = Triv⊗ and O′⊗ = Assoc.
• C and D admit countable coproducts.
• The tensor product functors of C and D preserve countable coproducts sepa-

rately in each variable.
• F : C → D preserves countable coproducts.

(3) • O⊗ = Triv⊗ and O′⊗ = E0.
• C and D admit finite coproducts.

22The proof can be found above the statement.
23See [HA, above 4.1.1.18].

644



E.7. Colimits and free algebras

• The tensor product functors of C and D preserve finite coproducts separately
in each variable.

• F : C → D preserves finite coproducts.

Then the following commutative diagram induced by F (where the two horizontal
functors are the forgetful functors given by precomposition with α)

AlgO′(C) AlgO(C)

AlgO′(D) AlgO(D)

AlgO′ (F )

UC

AlgO(F )

UD

(E.6)

is left adjointable24, i. e. UC and UD have left adjoints FreeAlgO′ (C)

AlgO(C) and FreeAlgO′ (D)

AlgO(D) , and
the associated push-pull transformation

FreeAlgO′ (D)

AlgO(D) ◦ AlgO(F )→ AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

is a natural equivalence. ♥

Proof. By [HA, 3.1.3.5] in case (1) and Proposition E.7.2.1 in cases (2) and (3), the left
adjoints exist and for A an object of AlgO(C) the unit

ηCA : A→ UC

(
FreeAlgO′ (C)

AlgO(C) (A)
)

of the adjunction exhibits FreeAlgO′ (C)

AlgO(C) (A) as the free O′-algebra generated by A, and
completely analogously for the other adjunction, whose unit we denote by ηD.

Let A be an object in AlgO(C). We have to show25 that the morphism
(

FreeAlgO′ (D)

AlgO(D) ◦ AlgO(F )
)
(A)→

(
AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

that is adjoint to the following composition26

(
AlgO(F )

)
(A)

AlgO(F )(ηCA)
−−−−−−−−→

(
AlgO(F ) ◦ UC ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

≃
−→
(
UD ◦ AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

is an equivalence (see [HTT, beginning of 7.3.1]).
24See [HTT, 7.3.1.1] for the definition.
25By Proposition A.3.2.1 a natural transformation is a natural equivalence if and only if it is a pointwise

equivalence.
26The equivalence used is to be the one obtained from the equivalence AlgO(F ) ◦ UC ≃ UD ◦AlgO′(F )

encoded in the commutative diagram (E.6).

645



Appendix E. ∞-operads and algebras

But by definition of FreeAlgO′ (D)

AlgO(D) (see [HA, 3.1.3.5 and 3.1.3.1] in case (1) and see
Proposition E.7.2.1 in cases (2) and (3)), the former morphism is an equivalence if and
only if the latter morphism exhibits

(
AlgO′(F ) ◦ FreeAlgO′ (C)

AlgO(C)

)
(A) as a qD-free O′-algebra

generated by
(
AlgO(F )

)
(A) – so this is what we need to show.

Similarly, by definition of FreeAlgO′ (C)

AlgO(C) , the morphism

ηCA : A→
(
UC ◦ FreeAlgO′ (C)

AlgO(C)

)
(A)

exhibits FreeAlgO′ (C)

AlgO(C) (A) as a qC-free O′-algebra generated by A.
Proof in case (1): Unpacking the definitions of free algebras (see [HA, 3.1.3.1]) one

sees that the claim boils down to showing that F⊗ preserves certain operadic colimit
diagrams, so the claim follows from Proposition E.7.1.2.

Proof in cases (2) and (3): In these cases we can use the criteria from Proposi-
tion E.7.2.1 and thus the claim follows from F being symmetric monoidal and preserving
countable/finite colimits.

E.7.3. Induced functors on Alg and colimits
In the following proposition we show that a colimit preserving symmetric monoidal

functor induces a colimit preserving functor on ∞-categories of algebras.

Proposition E.7.3.1. Let C and D be symmetric monoidal∞-categories and F : C → D
a symmetric monoidal functor. Assume that C and D admit all small colimits, that the
tensor product functors of C and D preserve small colimits separately in each variable,
and that F preserves small colimits.

Let O be an ∞-operad. Then AlgO(F ) preserves small colimits as well. ♥

Proof. Consider the commutative diagram

AlgO(C) AlgO(D)

Fun(O, C) Fun(O,D)

AlgO(F)

UC UD

F∗

(∗)

where UC and UD are the forgetful functors.
To show that AlgO(F) preserves colimits it suffices by combining [HTT, 4.2.3.12] with

[HA, 1.3.3.10 (2)] to show that AlgO(F) preserves sifted colimits as well as coproducts.
By [HA, 3.2.3.1]27 together with [HTT, 5.1.2.3 (2)], the two vertical functors in di-

agram (∗) detects sifted colimits. As F preserves all small colimits by assumption, we
obtain with [HTT, 5.1.2.3 (2)] that the bottom horizontal functor in diagram (∗) pre-
serves all small, so in particular all sifted, colimits. We can thus conclude that AlgO(F)
preserves sifted colimits.
27 Which is applicable to our situation by Proposition E.2.0.2.

646



E.7. Colimits and free algebras

It then follows from the proof of [HA, 3.2.3.3]27 that AlgO(F) also preserves coproducts
if the composition with the left adjoint FreeC of UC does. But by Proposition E.7.2.2
there is a commutative diagram

AlgO(C) AlgO(D)

Fun(O, C) Fun(O,D)

AlgO(F)

F∗

FreeC FreeD

where FreeD is the left adjoint of UD. That the composition from the bottom left to
the top right in this diagram preserves coproducts now follows immediately from F∗

preserving small colimits as mentioned above and FreeD preserving colimits as a left
adjoint [HTT, 5.2.3.5].

E.7.4. Free modules
Similarly to Proposition E.7.2.2, which dealt with compatibility of induced functors on

∞-categories of algebras with free algebras, the next propositions discusses compatibility
of induced functors on ∞-categories of left modules with free modules.

Proposition E.7.4.1. Let F : C → D be a monoidal functor of monoidal ∞-categories
and let R be an (associative) algebra in C. Then the commutative diagram

LModR(C) C

LModF (R)(D) D

evm

LModR(F ) F

evm

(E.7)

induced by F is left adjointable in the sense of [HTT, 7.3.1.1], i. e. the associated push-
pull transformation

FreeD ◦ F → LModR(F ) ◦ FreeC
is an equivalence, where FreeC and FreeD are the free module functors for C and D,
respectively (see [HA, 4.2.4.8]).

In other words, F preserves free left-R-modules. The analogous statement is true for
right-R-modules. ♥

Proof. Let X be an object of C. By Proposition A.3.2.1 it suffices to show that the
push-pull morphism

(FreeD ◦ F )(X)→
(
LModR(F ) ◦ FreeC

)
(X)

is an equivalence, and as evm is conservative by [HA, 4.2.3.3], we actually only need to
show that evm of that morphism is an equivalence.

647



Appendix E. ∞-operads and algebras

Consider the following commutative diagram that will be explained below.

F (R)⊗ F (X) F (R)⊗ (evm ◦ FreeD ◦ F )(X) (evm ◦ FreeD ◦ F )(X)

F (R)⊗
(
evm ◦ LModR(F ) ◦ FreeC

)
(X)

(
evm ◦ LModR(F ) ◦ FreeC

)
(X)

F (R)⊗ F (X) F (R)⊗ F
(
(evm ◦ FreeC)(X)

)
F
(
(evm ◦ FreeC)(X)

)

F (R⊗X) F
(
R⊗ (evm ◦ FreeC)(X)

)
F
(
(evm) ◦ FreeC(X)

)

The left horizontal morphisms are induced by the units of the adjunctions FreeD ⊣ evm

and FreeC ⊣ evm, and the right horizontal morphisms are (induced by) the action mor-
phism of the respective modules. The top vertical morphisms on the left and the bottom
vertical morphism on the right are the identity morphisms, and the bottom vertical mor-
phism in the left and middle column are the equivalences arising from monoidality of F .
In the middle and right column, the top vertical morphism is induced by the push-pull-
transformation, and the middle vertical morphisms arise are the equivalences that arise
from commutativity of (E.7).

The composition of the top two horizontal morphisms is an equivalence by the defini-
tion of free modules [HA, 4.2.4.1], and so is the composition of the bottom two horizontal
morphisms. The two left vertical morphisms as well as the bottom and middle vertical
morphism on the right are equivalences as well, so it follows that the vertical morphism
at the top right is an equivalence, which is what needed to be shown.

E.8. Relative tensor products
Let C be a monoidal category and R, S, and T associative algebras in C. If M is an

R-S-bimodule and N an S-T -bimodule, then we can form the relative tensor product of
M with N over S, denoted by M ⊗S N , which yields an R-T -bimodule.

This construction is generalized to the∞-categorical setting in [HA, 4.4]28, and can be
(very) roughly summarized as follows. If C is a monoidal ∞-category that is compatible
with ∆

op-indexed colimits, R an associative algebra in C, M a right-R-module, and N

a left-R-module, then there exists a simplicial object in C denoted by BarR(M,N) that
28Unfortunately there seems to be a mistake in the definition of Tens⊗ in [HA, 4.4.1.1]. For morphisms

one should additionally require for any element j of 〈n′〉◦ such that c′−(j) 6= c′+(j) that the preimage
of j under α is non-empty. One can think of it like this: Any nontrivial step from c′−(j) to c′+(j)
needs to come from a step in the preimages.

The same mistake occurs in the description [HA, 4.3.1.5] of the ∞-operad encoding bimodules.
Here one needs to make the same correction. Without this correction algebras over this operad would
not consist of triples (R,M,S) with R and S associative algebras and M an R-S-bimodule, but such
triples together with an additional unit morphism 1 → M for M , encoded by the morphism from
the unique object ∅ over 〈0〉 to m.

648



E.8. Relative tensor products

is given in level n by29 M ⊗ R⊗n ⊗ N and has structure morphisms constructed from
the unit morphism of R, the multiplication of R, and the action of R on M and N . The
relative tensor product M ⊗R N is then the geometric realization of BarR(M,N). See
[HA, 4.4.2.8].

In this section we will record some properties of relative tensor products that we will
need.

Proposition E.8.0.1. Let C and D be monoidal∞-categories and F : C → D a monoidal
functor. Assume that C and D admit ∆op-indexed colimits, their tensor product functors
commute with ∆

op-indexed colimits in each variable separately, and F preserves ∆
op-

indexed colimits.
Then F preserves relative tensor products. ♥

Remark E.8.0.2. Let us clarify what the statement of Proposition E.8.0.1 actually
means at a more concrete or technical level. Let pC : C⊗ → Assoc⊗ and pD : D⊗ → Assoc⊗
be the cocartesian fibrations of∞-operads that exhibit C andD as monoidal∞-categories.
Suppose we have given a morphism of generalized∞-operads φ fitting into the following
commutative diagram

C⊗ D⊗

Tens⊗
�

Assoc⊗

pC

F⊗

pD

φ

where the bottom horizontal functor is the forgetful functor. Then the statement of
Proposition E.8.0.1 is that if φ is an operadic pC-colimit diagram, then F⊗ ◦ φ is an
operadic pD-colimit diagram, see [HA, 4.4.2.3].

From this the various other, perhaps more concrete, formulations of what it means
for a monoidal functor to preserve relative tensor products follow. For example we then
have a commutative square

BiMod(C)×Alg(C) BiMod(C) BiMod(D)×Alg(D) BiMod(D)

BiMod(C) BiMod(D)

where the horizontal functors are those induced by F and the vertical functors are the
relative tensor product functors of [HA, 4.4.2.11]. ♦

Proof of Proposition E.8.0.1. We use the notation and setup from Remark E.8.0.2. Let
the restriction of φ to Tens⊗[2] correspond to a quintuple (R,M, S,N, T ), with R, S, and

29That this is really how the bar construction looks like in level n can be seen by digging through and
unpacking the definition [HA, 4.4.2.7], but it is a bit tedious.

649



Appendix E. ∞-operads and algebras

T associative algebras in C, with M an R,S-bialgebra, and N an S,T -bialgebra, see [HA,
4.4.2.2]. Similarly, let the restriction to Tens⊗[1] correspond to a triple (R′, X, T ′) with R′

and T ′ associative algebras and X an R′,T ′-bialgebra.
By [HA, 4.4.2.8], the morphisms R→ R′ and T → T ′ induced by φ are equivalences30

and the comparison morphism
∣∣BarS(M,N)

∣∣→ evm(X)

is an equivalence. What we have to show is that then the morphisms F (R)→ F (R′) and
F (T )→ F (T ′) induced by F⊗ ◦ φ are equivalences and that the comparison morphism

∣∣BarF (S)(F (M), F (N))
∣∣→ F (evm(X)) (∗)

is an equivalence.
The former is clear because these morphisms are just given by F applied to the

analogous morphisms R→ R′ and T → T ′ in C.
As F⊗ maps pC-cocartesian morphisms to pD-cocartesian morphisms, it follows from

the definition that
BarF (S)(F (M), F (N)) ≃ F ◦ BarS(M,N)

see [HA, 4.4.2.7]. That (∗) is an equivalence now follows from combining this with F

preserving ∆
op-indexed colimits by assumption.

Proposition E.8.0.3. Let C be a cocartesian symmetric monoidal structure31 such that
the underlying ∞-category of C admits ∆

op-indexed colimits as well as pushouts
Then the tensor product of C is compatible with ∆

op-indexed colimits as well as
pushouts in the sense of [HA, 3.1.1.18].

Let R, S, and T be associative algebras in C. Let f : M → M ′ be a morphism in
BiModR,S(C) and g : N → N ′ a morphism in BiModS,T (C). We obtain a commutative
diagram

M ⊗S N M ⊗S N
′

M ′ ⊗S N M ′ ⊗S N
′

idM⊗idS g

f⊗idS idN f⊗idS idN′

idM′⊗idS g

in BiModR,T (C). Then this diagram is a pushout square. ♥

Proof. We first show that the symmetric monoidal structure on C is compatible with
pushouts and ∆

op-indexed colimits. So let X be an object of C. Let I be either ∆
op

or Λ2
0 = (• ← • → •) and F : I → C a functor. It suffices to show that the canonical

comparison morphism
colim(X ∐ F )→ X ∐ colimF

30Condition (i) boils down to this, as Assoc is reduced, see [HA, 4.4.2.6].
31See [HA, 2.4.0.1] for a definition.

650



E.8. Relative tensor products

is an equivalence. As colimits commute with colimits [HTT, 5.5.2.3] this morphism
factors as an equivalence colim(X ∐ F ) ≃ (colim constX) ∐ (colimF ) and the canoni-
cal morphism (colim constX) ∐ (colimF ) → X ∐ colimF . It thus suffices to show that
(colim constX)→ X is an equivalence, which follows from [HTT, 4.4.4.10], as I is weakly
contractible32.

We can now apply [HA, 4.3.3.9] to conclude that pushouts are detected by the forgetful
functor evm : BiModR,T (C)→ C, so combining this with the description of relative tensor
products from [HA, 4.4.2.8] it suffices to show that the commutative diagram

∣∣BarS(M,N)
∣∣ ∣∣BarS(M,N ′)

∣∣

∣∣BarS(M ′, N)
∣∣ ∣∣BarS(M ′, N ′)

∣∣

|BaridS (idM ,g)|

|BaridS (f,idN )|
∣∣∣BaridS(f,idN′)

∣∣∣

∣∣∣BaridS(idM′ ,g)
∣∣∣

is a pushout square in C.
Using compatibility of colimits with colimits again it suffices to show for every n ≥ 0

that the commutative square

M ∐
(∐n

i=1 S
)
∐N M ∐

(∐n
i=1 S

)
∐N ′

M ′ ∐
(∐n

i=1 S
)
∐N M ′ ∐

(∐n
i=1 S

)
∐N ′

idM∐id∐g

f∐id∐idN f∐id∐idN′

idM′∐id∐g

is a pushout square in C, which yet again follows from colimits commuting with colimits,
as this is evidently a coproduct of pushout diagrams.

Construction E.8.0.4. Let C be a symmetric monoidal ∞-category, and assume that
the underlying ∞-category admits ∆

op-indexed colimits, and that the tensor product
functor preserves ∆

op-indexed colimits separately in each variable.
Let f : R → S and g : R → T be morphisms in CAlg(C). We can upgrade f and g to

morphisms in right-R-modules and left-R-modules in CAlg(C), as we now explain for g,
the case for f being completely analogous.

By [HA, 3.2.4.7] the induced symmetric monoidal structure on CAlg(C) is cocartesian,
so by [HA, 2.4.3.9] the forgetful functor

eva : Alg
(
CAlg(C)

)
→ CAlg(C)

is an equivalence, and so we can upgrade g to a morphism g in Alg
(
CAlg(C)

)
with

eva(g) ≃ g.
By applying the section Alg

(
CAlg(C)

)
→ LMod

(
CAlg(C)

)
discussed in [HA, 4.2.1.17]

we obtain a morphism g̃ : (R,R) → (T, T ) in LMod(CAlg(C)) with eva(g̃) ≃ g and
32This means that the ∞-groupoid completion of I is contractible as a space.

651



Appendix E. ∞-operads and algebras

evm(g̃) ≃ g. The forgetful functor LMod(CAlg(C)) → Alg(CAlg(C)) is a cartesian fibra-
tion by [HA, 4.2.3.2] and a cartesian lift of g with target (T, T ) lies over an equivalence
in CAlg(C). This cartesian lift can be interpreted as the restriction of the T -action on
T to R along g. We obtain an induced morphism of left-R-modules g′ : R → T with
evm(g

′) ≃ g.
By [HA, 3.2.3.2] the ∞-category CAlg(C) admits ∆

op-indexed colimits, and as the
forgetful functor ev〈1〉 : CAlg(C)→ C is both symmetric monoidal by Proposition E.4.2.3
(5) as well as preserves and detects ∆op-indexed colimits by [HA, 3.2.3.2], it follows that
the induced tensor product on CAlg(C) is compatible with ∆

op-indexed colimits as well.
We thus obtain a commutative diagram in CAlg(C) as follows

R T

R⊗R R R⊗R T

S S ⊗R R S ⊗R T

≃

g

f

≃

idR⊗idRg
′

f ′⊗idR idR f ′⊗idR idT

≃ idS⊗idRg
′

(E.8)

where the unlabeled equivalences are the unitality equivalences of the relative tensor
product discussed in [HA, 4.4.3.16], see also [HA, 4.4.3.18]. ♦

Proposition E.8.0.5. Assume we are in the situation of Construction E.8.0.4, and that
C additionally admits small colimits and that the tensor product preserves small colimits
separately in each variable.

Then the commutative square

R T

S S ⊗R T

g

f

from (E.8) is a pushout square in CAlg(C). ♥

Proof. It suffices to show that the smaller square on the lower right in diagram (E.8) is
a pushout square.

Note that by [HA, 3.2.3.3] CAlg(C) again admits small colimits. We can thus apply
Proposition E.8.0.3, which shows the claim.

652



Appendix F.

Cartesian symmetric monoidal
∞-categories

In this appendix we collect some results relating to cartesian symmetric monoidal
∞-categories. In Section F.1 we discuss how cocartesian fibrations whose fibers are com-
patible with products in the sense of Definition C.2.0.1 interact with cartesian symmetric
monoidal structures. The short section Section F.2 describes limits in ∞-categories of
monoids. The main part of this section is Section F.3, in which we discuss how to re-
late AlgO⊗O′(C), MonO⊗O′(C), MonO(MonO′(C)), and AlgO(AlgO′(C)), where C is an
∞-category admitting finite products that is equipped with the cartesian symmetric
monoidal structure, and O and O′ are ∞-operads.

F.1. Cocartesian fibrations and cartesian symmetric
monoidal structures

Let p : C → D be a cocartesian fibration whose fibers are compatible with products in
the sense of Definition C.2.0.1, and let πD : D× → D be the cartesian structure on the
cartesian symmetric monoidal structure on C (see [HA, 2.4.1]). By Proposition C.2.0.3,
p preserves products. The goal of this section is to show that the induced functor
p× : C× → D× can be obtained as a pullback of p along πD. Before we can prove this, we
first show the following statement regarding how cocartesian morphisms interact with
weak cartesian structures.

Proposition F.1.0.1. Let q : C⊗ → Fin∗ be a symmetric monoidal ∞-category and
π : C⊗ → D a weak cartesian structure1 on C⊗.

Let C ≃ C1 ⊕ · · · ⊕ Cn be an object of C〈n〉 with Ci an object of C for 1 ≤ i ≤ n. Let
φ : 〈n〉 → 〈m〉 be a morphism in Fin∗ and let f : C → C ′ be a q-cocartesian lift of φ.

1See [HA, 2.4.1.1] for a definition

653



Appendix F. Cartesian symmetric monoidal ∞-categories

Then there exists a commutative diagram

π(C) π(C ′)

∏

1≤i≤n

π(Ci)
∏

1≤i≤n,
φ(i) 6=∗

π(Ci)

π(f)

≃ ≃

where the bottom horizontal morphism is the projection to the subproduct, the right
vertical morphism is an equivalence, and the left vertical morphism is induced by the
canonical morphisms π(C) → π(Ci) (which are induced by inert morphisms lying over
ρi), and thus an equivalence as π is a lax cartesian structure. ♥

Proof. We first consider the case in which φ is inert. Then we can identify f with the
following canonical projection morphism.

⊕

1≤i≤n

Ci →
⊕

1≤i≤n,
φ(i) 6=∗

Ci

Let
gj :

⊕

1≤i≤n,
φ(i) 6=∗

Ci → Cj

be the canonical projection morphism for 1 ≤ j ≤ n with φ(j) 6= ∗ and define hj similarly
to be the projection

⊕
1≤i≤nCi → Cj for 1 ≤ j ≤ n. That π is lax cartesian means that

the morphism

π


⊕

1≤i≤n

Ci




∏
1≤i≤n hi
−−−−−−→

∏

1≤i≤n

π(Ci)

is an equivalence, and similarly for
⊕

1≤i≤n,φ(i) 6=∗Ci. The claim now follows from the fact
that for 1 ≤ i ≤ n with φ(i) 6= ∗ the composition gi ◦ f can be identified with hi.

Let us now consider the general case. Let g : C ′ → C ′′ be a q-cocartesian lift of the
active morphism 〈m〉 → 〈1〉. As π is a weak cartesian structure, π(g) is an equivalence.
It thus suffices to consider the case where m = 1. We can factor φ as a composition
φ = α ◦ β where β is inert and α active (see [HA, 2.1.2.2]). Lifting β and α to a
commuting triangle f ≃ g ◦ h of q-cocartesian morphisms, with h a lift of β and g a lift
of α, we can again use the fact that π is a weak cartesian structure (and that m = 1) to
conclude that π(g) is an equivalence. We are thus reduced to the case of inert morphisms,
which we have already proven.

Proposition F.1.0.2. Let p : C → D be a cocartesian fibration whose fibers are compati-
ble with products in the sense of Definition C.2.0.1, and let πC : C× → C and πD : D× → D
be the cartesian structures on the cartesian symmetric monoidal structures on C and D,
respectively (see [HA, 2.4.1.5 (5)]).

654



F.1. Cocartesian fibrations and cartesian symmetric monoidal structures

Then the square induced via [HA, 2.4.1.8 and 2.4.1.6] by the product preserving functor
p (see Proposition C.2.0.3)

C× C

D× D

πC

p× p

πD

is a pullback in Cat∞. ♥

Proof. Consider the following commutative diagram, where the square is a pullback
square.

C×

C⊗ C

D× D

θ⊗

πC

p×

π

p⊗ p

πD

It suffices to show that θ⊗ is an equivalence.
The ∞-category D× comes with a cocartesian fibration, which we will denote by

q : D× → Fin∗, that makes D× into a symmetric monoidal ∞-category with underlying
∞-category D (see [HA, 2.4.1.5 (4)]). With this we can now state the three claims
through which the proof will proceed:

(A) p⊗ is a cocartesian fibration of ∞-operads2.

It follows from (A) that the functor q ◦ p⊗ : C⊗ → Fin∗ upgrades C⊗ to a symmetric
monoidal ∞-category. Note that by construction p× : C× → D× arises as a symmetric
monoidal functor between symmetric monoidal ∞-categories, so in particular p× can be
lifted to a functor over Fin∗. It then follows that also θ⊗ can be lifted to a functor over
Fin∗. This gives meaning to the next claim.

(B) The functor θ⊗ can be upgraded to a symmetric monoidal functor.

(C) The functor θ = θ⊗〈1〉 is an equivalence.

Once we have proven these three claims, the statement follows immediately from [HA,
2.1.3.8], which states that as a symmetric monoidal functor (by (B)), θ⊗ is already an
equivalence if θ is is an equivalence (which it is by (C)).

Proof of (A): As p is a cocartesian fibration we can apply Proposition C.1.1.1 and
conclude that p⊗ is also a cocartesian fibration. We will use [HA, 2.1.2.12] to show that
p⊗ is even a cocartesian fibration of ∞-operads. So let D ≃ D1 ⊕ · · · ⊕Dn be an object

2See [HA, 2.1.2.13] for the definition.

655



Appendix F. Cartesian symmetric monoidal ∞-categories

in D×
〈n〉 with Di objects in D for 1 ≤ i ≤ n, and let f i : D → Di for 1 ≤ i ≤ n be the

canonical inert morphisms. We have to show that the induced morphism on fibers

C⊗D

∏
1≤i≤n f

i
!

−−−−−−→
∏

1≤i≤n

C⊗Di (F.1)

is an equivalence of ∞-categories. The fiber of p⊗ over some object D′ can be identified
with the fiber of p over πD(D′), and it follows from the description of p⊗-cocartesian
morphisms in Proposition C.1.1.1 that this identification is compatible with the respec-
tive induced morphisms on fibers. We can thus identify functor (F.1) with the following
functor.

CπD(D)

∏
1≤i≤n πD(f i)!
−−−−−−−−−→

∏

1≤i≤n

CπD(Di) (F.2)

As πD is a lax cartesian structure (see [HA, 2.4.1.1]) we can identify πD(D) with the
product

∏
1≤i≤n πD(Di) and the morphisms πD(f j) : πD(D) → πD(Dj) for 1 ≤ j ≤ n

with the projection prj. We can thus identify functor (F.2) with the following functor.

C∏
1≤i≤n πD(Di)

∏
1≤i≤n pri!
−−−−−−−→

∏

1≤i≤n

CπD(Di)

But the cocartesian fibration p has by assumption fibers compatible with products, and
this means exactly that functors of this form are equivalences.

Proof of (B): Let f be a q ◦ p⊗ ◦ θ⊗-cocartesian morphism in C×. Then we have
to show that θ⊗(f) is q ◦ p⊗-cocartesian. As p× is symmetric monoidal, the morphism
p×(f) = p⊗(θ⊗(f)) is q-cocartesian, so by [HTT, 2.4.1.3 (3)] it suffices to show that
θ⊗(f) is p⊗-cocartesian. Applying Proposition C.1.1.1 we are further reduced to show-
ing that π(θ⊗(f)) = πC(f) is p-cocartesian. As πC is a weak cartesian structure, Propo-
sition F.1.0.1 shows that πC(f) is a projection from a product to a factor, and by the
description of products in C given in Proposition C.2.0.3, projection morphisms in C are
p-cocartesian.

Proof of (C): Consider the commuting diagram

C×〈1〉 C×

C⊗〈1〉 C⊗ C

D×
〈1〉 D× D

{〈1〉} Fin∗

θ θ⊗
πC

p⊗

π

p

πD

q

656



F.2. Monoids and limits

where the horizontal functors on the left are all the respective inclusions, and the vertical
functors on the left are the functors induced by vertical functors in the middle. All squares
in the diagram are pullback squares. As πD is a cartesian structure, the composition
D×

〈1〉 → D in the third row is an equivalence. As the two squares in the middle row are
pullbacks (and hence so is the outer commuting rectangle in the middle row) it follows
that the composition C⊗〈1〉 → C in the second row is an equivalence as well. As πC is a
cartesian structure, the composition C×〈1〉 → C at the top is also an equivalence. It follows
that θ must also be an equivalence.

Remark F.1.0.3. Let p : C → D be a cocartesian fibration whose fibers are compatible
with products in the sense of Definition C.2.0.1. Then combining Proposition F.1.0.2 with
Proposition C.1.1.1 we obtain another, independent, proof of Proposition C.2.0.6. ♦

F.2. Monoids and limits
In this short section we briefly discuss limits in ∞-categories of monoids.

Proposition F.2.0.1. Let O be an ∞-operad and C an ∞-category.
Let I be a small∞-category and assume that C admits I-indexed limits. Then MonO(C)

(for a definition see [HA, 2.4.2.1]) admits I-indexed limits as well, and they are preserved
and detected by the inclusion functor

ι : MonO(C)→ Fun
(
O⊗, C

)

as well as the composition

MonO(C)
ι
−→ Fun

(
O⊗, C

) j∗

−→ Fun(O, C)

where j : O = O⊗
〈1〉 → O

⊗ is the inclusion. ♥

Proof. As ι is the inclusion of a full subcategory, it follows from [HTT, 1.2.13.7] that
to show that MonO(C) admits I-indexed limits and that ι preserves and detects them
it suffices to show that MonO(C) is closed under I-indexed limits in Fun(O⊗, C). But
this follows immediately from the definition [HA, 2.4.2.1] in combination with the fact
that limits in functor categories are computed pointwise [HTT, 5.1.2.3], and that limits
commute with limits [HTT, 5.5.2.3].

For the composition j∗ ◦ ι, note that there is a commutative diagram as follows

AlgO(C) MonO(C)

FunFin∗

(
O⊗, C×

)
Fun

(
O⊗, C×

)
Fun

(
O⊗, C

)

Fun(O, C) Fun(O, C)

≃

ι

π∗

j∗

id

657



Appendix F. Cartesian symmetric monoidal ∞-categories

where the unlabeled functors are the obvious forgetful functors or inclusions, and the top
horizontal functor is an equivalence by [HA, 2.4.2.5]. That j∗ ◦ ι preserves and detects
I-indexed limits now follows from [HA, 3.2.2.4] in combination with [HTT, 5.1.2.3] and
Proposition E.2.0.2.

F.3. Cartesian symmetric monoidal ∞-categories
and iterating Mon and Alg

Let C be an∞-category admitting finite products and let O and O′ be two∞-operads.
Then C can be upgraded to a symmetric monoidal ∞-category with the cartesian sym-
metric monoidal structure C× (see [HA, 2.4.1.5]). We can then consider the ∞-category
of O ⊗ O′-algebras in C×, denoted by AlgO⊗O′(C). By [HA, 2.4.2.5] this ∞-category is
equivalent to an ∞-category that can be constructed without invoking C×, namely the
∞-category of O ⊗O′-monoids MonO⊗O′(C).

On the other hand, the cartesian symmetric monoidal structure C× induces a symmet-
ric monoidal structure on AlgO′(C), and there is an equivalence

AlgO⊗O′(C) ≃ AlgO

(
AlgO′(C)

)

as we saw in Section E.5. One would expect that the induced symmetric monoidal
structure on AlgO′(C) is again cartesian so that we can identify AlgO′(C)⊗ with AlgO′(C)×

and hence with MonO′(C)×, so that we ultimately obtain further equivalences such as

AlgO⊗O′(C) ≃ AlgO

(
AlgO′(C)

)
≃ MonO

(
MonO′(C)

)

in Cat∞.
In this section we will show that this is indeed the case, and describe the steps involved

in these types of equivalences in detail, as we will need to know not only that such
equivalences exist but also concrete descriptions of the corresponding objects under
those equivalences.

Construction F.3.0.1. Let pO′ : O′⊗ → Fin∗ be an ∞-operad, let pC : C⊗ → NFin∗ a
symmetric monoidal ∞-category, and let π : C⊗ → C be a cartesian structure3.

There is a bifunctor of ∞-operads

f : Fin∗ ×O
′⊗ idFin∗×pO′
−−−−−−→ Fin∗ × Fin∗

∧
−→ Fin∗

where ∧ is the bifunctor of ∞-operads defined in [HA, 2.2.5.1].
Consider the functor45

q : AlgO′(C)⊗
ιAlg
−−→ Fun

(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗

pr2−−→ Fin∗ (F.3)

3See [HA, 2.4.1.1] for the definition.
4We write AlgO′ instead of AlgO′/Fin∗

.
5One should be careful not to confuse the functor Fin∗ → Fun(O′⊗,Fin∗) appearing in the pullback

658



F.3. Cartesian sym. monoidal ∞-categories and iterating Mon and Alg

defined as in Proposition E.4.1.5, which by Proposition E.4.1.5 and [HA, 3.2.4.2 and
3.2.4.3 (3)] defines a symmetric monoidal structure on AlgO′(C).

Finally, define π̃′ as the following composition.

π̃′ : AlgO′(C)
⊗ pr1◦ιAlg
−−−−→ Fun

(
O′⊗, C⊗

) π∗−→ Fun
(
O′⊗, C

)
♦

Proposition F.3.0.2. In the situation of Construction F.3.0.1, the functor π̃′ factors
through MonO′⊗(C), i. e. there exists a functor π̃ fitting into a commuting diagram

AlgO′(C)
⊗ MonO′(C)

Fun
(
O′⊗, C

)π̃′

π̃

where the functor MonO′(C)→ Fun
(
O′⊗, C

)
is the canonical inclusion6.

Furthermore, π̃ is a cartesian structure on AlgO′(C)
⊗. ♥

Proof. Let A be an object of AlgO′(C)⊗, lying over 〈n〉, i. e. q(A) = 〈n〉. What we have
to show is that the functor

π̃′(A) = π ◦
(
pr1(ιAlg(A))

)
: O′⊗ pr1(ιAlg(A))

−−−−−−−→ C⊗
π
−→ C

is an O′-monoid. For ease of notation we will write A′ := pr1(ιAlg(A)).
So let X ≃ X1 ⊕ · · · ⊕Xm be an object of O′⊗

〈m〉, with Xi objects of O′ for 1 ≤ i ≤ m.
For 1 ≤ i ≤ m, let gi : X → Xi be an inert morphism lying over ρi : 〈m〉 → 〈1〉. We have
to show that then

π
(
A′(X)

) ∏
1≤i≤m π(A′(gi))
−−−−−−−−−−→

∏

1≤i≤m

π
(
A′(Xi)

)
(∗)

is an equivalence in C.
By definition, A′ : O′⊗ → C⊗ preserves inert morphisms, so the morphisms A′(gi) are

inert morphisms in C⊗. Furthermore, for 1 ≤ i ≤ m we have

pC
(
A′(gi)

)
= pC

(
pr1
(
ιAlg(A)

)
(gi)
)

=
(
(pC∗ ◦ pr1)

(
ιAlg(A)

))
(gi)

=

((
f̂ ◦ pr2

)(
ιAlg(A)

))
(gi)

with the inclusion of the constant functors. Instead this functor is the one adjoint to the composition

Fin∗ ×O
′⊗ id×pO′

−−−−−→ Fin∗ × Fin∗
∧
−→ Fin∗

In particular, this means that the functors O′⊗ → C⊗ one obtains from objects of AlgO′(C)⊗ by
projecting to the first factor are generally not functors over Fin∗, so even though they preserve inert
morphisms we can not interpret them as maps of ∞-operads.

6MonO′⊗(C) is defined as a full subcategory of Fun
(
O′⊗, C

)
, see [HA, 2.4.2.1]

659



Appendix F. Cartesian symmetric monoidal ∞-categories

= f

(
id(pr2 ◦ιAlg)(A), gi

)

= f
(
idq(A), gi

)

= f
(
id〈n〉, gi

)

= id〈n〉 ∧pO′(gi)

= id〈n〉 ∧ρ
i

where f̂ : Fin∗ → Fun
(
O′⊗, Fin∗

)
is the adjoint of f and thus the functor occurring in

the pullback in (F.3). So for 1 ≤ i ≤ m the morphism A′(gi) in C⊗ is a pC-cocartesian
lift of id〈n〉 ∧ρ

i.
Let Yi be an object in C for each element i in

(
〈n〉 ∧ 〈m〉

)◦ such that there is an
equivalence

A′(X) ≃
⊕

i∈(〈n〉∧〈m〉)
◦

Yi

in C⊗〈n〉∧〈m〉. Applying Proposition F.1.0.1 we have an identification

π(A′(X)) ≃
∏

i∈(〈n〉∧〈m〉)
◦

π(Yi)

such that for each 1 ≤ j ≤ m the morphism π(A′(gj)) corresponds to the following
projection to the subfactor.

∏

i∈(〈n〉∧〈m〉)
◦

π(Yi)→
∏

i∈(〈n〉∧〈m〉)
◦
,

(id⟨n⟩ ∧ρj)(i) 6=∗

π(Yi)

As 〈m〉◦ can be written as the disjoint union
⋃

1≤j≤m

{
i ∈ 〈m〉◦

∣∣ ρj(i) 6= ∗
}

it follows
that we also have a decomposition of

(
〈n〉 ∧ 〈m〉

)◦ as a disjoint union as follows

(
〈n〉 ∧ 〈m〉

)◦
=

⋃

1≤j≤m

{
i ∈
(
〈n〉 ∧ 〈m〉

)◦
∣∣∣∣
(

id〈n〉 ∧ρ
i
)
(i) 6= ∗

}

which implies that the morphism (∗) is an equivalence, and π̃′ thus factors over MonO′(C).
It remains to show that π̃ is a cartesian structure. We start by showing that π̃ is

a lax cartesian structure. So let Ai be objects of AlgO′(C) for 1 ≤ i ≤ n, and let
gi : A := A1 ⊕ · · · ⊕ An → Ai be an inert lift of ρi for each 1 ≤ i ≤ n. We have to show
that

π̃(A)

∏
1≤i≤n π̃(gi)
−−−−−−−→

∏

1≤i≤n

π̃(Ai) (∗∗)

is an equivalence in MonO′(C). As the inclusion MonO′(C)→ Fun(O′⊗, C) is fully faithful
and equivalences in functor categories are detected pointwise (see Proposition A.3.2.1),

660



F.3. Cartesian sym. monoidal ∞-categories and iterating Mon and Alg

it suffices to check that for every m ≥ 0 and every object X of O′⊗
〈m〉 evaluation at

X of morphism (∗∗) is an equivalence in C. As by Proposition F.2.0.1 the inclusion
MonO′(C)→ Fun(O′⊗, C) preserves products, and as products in functor categories are
detected pointwise [HA, 5.1.2.3] we can thus identify the evaluation atX of the morphism
(∗∗) with the morphism

π̃′(A)(X)

∏
1≤i≤n(π̃′(gi)(X))
−−−−−−−−−−−→

∏

1≤i≤n

π̃′(Ai)(X)

in C, which by using the definition of π̃ is the following morphism

π
((

pr1 ◦ ιAlg
)
(A)(X)

) ∏
1≤i≤n(π(hi))
−−−−−−−−−→

∏

1≤i≤n

π
((

pr1 ◦ ιAlg
)
(Ai)(X)

)
(∗ ∗ ∗)

where we use the notation hi :=
(
pr1 ◦ ιAlg

)
(gi)(X).

Let 1 ≤ j ≤ n. By assumption, gi is q-cocartesian, which by [HA, 3.2.4.3 (4)] implies
that hj is pC-cocartesian. Unwrapping the definition completely analogously to when we
showed that π̃′ factors over monoids we find that pC(hi) = ρi ∧ id〈m〉. That (∗ ∗ ∗) is an
equivalence can now be shown completely analogously to before.

We next need to show that π̃ is in fact a weak cartesian structure. So assume that
g : A → A′ is a q-cocartesian morphism lying over the active morphism α : 〈n〉 → 〈1〉.
We have to show that π̃(g) is an equivalence in MonO′(C). Similarly to before it suffices
to check that for each m ≥ 0 and object X ∈ O′⊗

〈m〉 the morphism π(h) is an equivalence,
where h :=

(
pr1 ◦ ιAlg

)
(g)(X). Also analogously to the case above, we find that h is a

pC-cocartesian lift of α ∧ id〈m〉, which is an active morphism as α is active. That π(h) is
an equivalence now follows from Proposition F.1.0.1.

Finally, it remains to show that the weak cartesian structure π̃ is a cartesian structure.
Consider the following commutative diagram, where the two top squares and the square
on the right are pullback squares.

AlgO′(C)⊗〈1〉 FunFin∗

(
O′⊗, C⊗

)
{〈1〉}

AlgO′(C)⊗ Fun
(
O′⊗, C⊗

)
×Fun(O′⊗,Fin∗) Fin∗ Fin∗

Fun
(
O′⊗, C⊗

)
Fun

(
O′⊗, Fin∗

)

MonO′(C) Fun
(
O′⊗, C

)

k

j r

ιAlg

π̃

pr2

pr1 f̂

pC∗

π∗

The ∞-category of functors FunFin∗

(
O′⊗, C⊗

)
over Fin∗ is to be taken with respect to

pO′ and pC – this description uses that as 〈1〉 ∧− is naturally isomorphic to the identity
functor on Fin∗ we can identify f̂(〈1〉) with pO′ .

661



Appendix F. Cartesian symmetric monoidal ∞-categories

What we need to show is that π̃ ◦ j is an equivalence. As ιAlg is the inclusion of the
full subcategory of objects A such that pr1(A) preserves inert morphisms, we can apply
Proposition B.5.2.1 to conclude that k is the inclusion of the full subcategory of objects
A such that (pr1 ◦r)(A) preserves inert morphisms. This implies that the composite π̃◦j
can be identified with the functor AlgO′(C)→ MonO′(C) that is an equivalence by [HA,
2.4.2.5].
Proposition F.3.0.3. Let pO : O⊗ → Fin∗ and p′O : O′⊗ → Fin∗ be ∞-operads, let
pC : C

⊗ → Fin∗ be a symmetric monoidal ∞-category, and let π : C⊗ → C be a cartesian
structure. Let F : O⊗ ×O′⊗ → O′′⊗ be a bifunctor of ∞-operads (see [HA, 2.2.5.3]).

Then there is a commutative diagram as follows such Ψ, Φ2, Φ3 and Ψ′ are equivalences.
If F exhibits O′′⊗ as a tensor product of O⊗ and O′⊗, then Φ1 is an equivalence as well.

MonO′′(C) Fun
(
O′′⊗, C

)

AlgO′′(C) Fun
(
O′′⊗, C⊗

)

BiFunc
(
O⊗,O′⊗; C⊗

)
Fun

(
O⊗ ×O′⊗, C⊗

)

AlgO

(
AlgO′(C)

)
Fun

(
O⊗,Fun

(
O′⊗, C⊗

))

MonO

(
MonO′(C)

)
Fun

(
O⊗,Fun

(
O′⊗, C

))

AlgO

(
MonO′(C)

)
Fun

(
O⊗,Fun

(
O′⊗, C

)×)

Ψ ≃

Φ1

π∗

F ∗

Φ2 ≃ (̂−)

Φ3 ≃ (π∗)∗

Ψ′ ≃
(
πFun(O′⊗,C)

)
∗

(F.4)

The symmetric monoidal ∞-category MonO′(C) appearing on the bottom left carries the
cartesian symmetric monoidal structure MonO′(C)× (see [HA, 2.4.1.5]) and AlgO′(C)
appearing on the left in the middle row carries the symmetric monoidal structure from
Construction F.3.0.1. The horizontal functors are all the respective canonical functors
that combine the various inclusions and forgetful functors or projections. The functor −̂
sends a functor G to its adjoint, which we denote by Ĝ. ♥

Proof. The existence of equivalences Ψ and Ψ′ making the topmost and bottommost
square of (F.4) commute is shown in [HA, 2.4.2.5].

Construction of Φ1 and Φ2 fitting into the diagram was handled in Proposition E.5.0.2
and Proposition E.5.0.1.

We are left to construct Φ3. Proposition F.3.0.2 provides us with a cartesian structure

π̃ : AlgO′(C)
⊗ → MonO′(C)

662



F.3. Cartesian sym. monoidal ∞-categories and iterating Mon and Alg

Applying [HA, 2.4.2.5] we obtain Composition with π̃ then induces an equivalence Φ3 as
in the following commuting diagram by

AlgO

(
AlgO′(C)

)
MonO

(
MonO′(C)

)

FunFin∗

(
O⊗,AlgO′(C)

⊗
)

Fun
(
O⊗,MonO′(C)

)

Fun
(
O⊗,Fun

(
O′⊗, C⊗

))
Fun

(
O⊗,Fun

(
O′⊗, C

))

Φ3

≃

π̃∗◦pr

(π∗)∗

where pr denotes the forgetful functor

FunFin∗

(
O⊗,AlgO′(C)

⊗
)
→ Fun

(
O⊗,AlgO′(C)

⊗
)

and the vertical functors are the canonical functors constructed the various forgetful
functors, inclusions, and projections. The bottom square commutes by definition of π̃,
see Construction F.3.0.1.

Remark F.3.0.4. The right column of (F.4) is covariantly functorial in C⊗ (together
with its cartesian structure) and contravariantly functorial in F .

Let

O ×O′ O′′

U × U ′ U ′′

F

α⊗×β⊗ γ⊗

G

be a commutative diagram of functors over Fin∗ with α⊗, β⊗, and γ⊗ morphisms of
∞-operads, and F and G bifunctors of ∞-operads.

Let

C⊗ D⊗

C D

H⊗

πC πD

H

be a commutative diagram of ∞-categories with H⊗ a symmetric monoidal functor of
symmetric monoidal ∞-categories and πC and πD cartesian structures.

Then the induced commutative diagram on the right column of (F.4) restricts to a

663



Appendix F. Cartesian symmetric monoidal ∞-categories

commutative diagram as follows.

MonU ′′(C) MonO′′(D)

AlgU ′′(C) AlgO′′(D)

BiFunc
(
U⊗,U ′⊗; C⊗

)
BiFunc

(
O⊗,O′⊗;D⊗

)

AlgU

(
AlgU ′(C)

)
AlgO

(
AlgO′(D)

)

MonU

(
MonU ′(C)

)
MonO

(
MonO′(D)

)

AlgU

(
MonU ′(C)

)
AlgO

(
MonO′(D)

)

Monγ(H)

Ψ ≃

Algγ(H)

Φ1

Ψ≃

Φ1

BiFunc(α⊗,β⊗;H⊗)

Φ2 ≃ Φ2≃

Algα(Algβ(H))

Φ3 ≃ Φ3≃

Monα(Monβ(H))

Ψ′ ≃

Algα(Monβ(H))
Ψ′≃

One could argue for this by considering the individual constructions, or one could use
that the first, third, fourth, and fifth horizontal functor in (F.4) are monomorphisms78
and apply the uniqueness part of Proposition B.4.3.1. This also implies compatibility
with compositions.

Additionally, note that construction of Φ1 and Φ2 does not need the assumption that
C carries a cartesian symmetric monoidal structure9, so if we only consider the part of
the above diagram involving Φ1 and Φ2, then we can drop this assumption. ♦

7That we only need those horizontal functors to be monomorphisms is because they are the “targets”
in the diagram.

8The first and third horizontal functors are by definition fully faithful, so monomorphisms by Proposi-
tion B.4.4.1. The third and fourth horizontal functors are equivalent, so the fourth one is a monomor-
phism as well. Finally, the fifth horizontal functor is a monomorphism by a combination of the
definitions, Proposition B.4.4.1, Proposition B.5.1.1, and Proposition B.1.2.1.

9See Proposition E.5.0.2 and Proposition E.5.0.1.

664



Bibliography
[AR94] Jiřı́ Adámek and Jiřı́ Rosicky. Locally Presentable and Accessible Categories.

Vol. 189. London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, 1994. doi: 10.1017/CBO9780511600579.

[BACH] Jorge Alberto Guccione, Juan Jose Guccione, Maria Julia Redondo, and Or-
lando Eugenio Villamayor. “Hochschild and Cyclic Homology of Hypersur-
faces”. In: Advances in Mathematics 95.1 (1992), pp. 18–60. issn: 0001-8708.
doi: 10.1016/0001-8708(92)90043-K.

[BP21] Jonathan Beardsley and Maximilien Péroux. Koszul Duality in Higher Topoi.
2021. arXiv: 1909.11724 [math.AT].

[Bre93] Glen E. Bredon. Topology and Geometry. Graduate texts in mathematics.
Springer-Verlag, 1993. isbn: 9783540979265. doi: 10.1007/978-1-4757-
6848-0.

[GH15] David Gepner and Rune Haugseng. “Enriched∞-categories via non-symmetric
∞-operads”. In: Advances in Mathematics 279 (2015), pp. 575–716. issn:
0001-8708. doi: 10.1016/j.aim.2015.02.007.

[GHN15] David Gepner, Rune Haugseng, and Thomas Nikolaus. Lax colimits and free
fibrations in ∞-categories. 2015. arXiv: 1501.02161v2 [math.CT].

[GHN17] David Gepner, Rune Haugseng, and Thomas Nikolaus. “Lax colimits and free
fibrations in∞-categories”. In: Documenta Mathematica 22 (2017), pp. 1225–
1266. doi: 10.25537/dm.2017v22.1225-1266.

[Gla16] Saul Glasman. “A spectrum-level Hodge filtration on topological Hochschild
homology”. In: Selecta Mathematica 22.3 (2016), pp. 1583–1612. doi: 10 .
1007/s00029-016-0228-z.

[HA] Jacob Lurie. Higher Algebra. 2017. url: https://www.math.ias.edu/
~lurie/papers/HA.pdf.

[Hes07] Lars Hesselholt. “On the K-theory of the coordinate axes in the plane”.
In: Nagoya Mathematical Journal 185 (2007), pp. 93–109. doi: 10.1017/
S0027763000025757.

[HM97] Lars Hesselholt and Ib Henning Madsen. “Cyclic polytopes and the K-theory
of truncated polynomial algebras”. In: Inventiones Mathematicae 130.1 (1997),
pp. 73–97. issn: 0020-9910. doi: 10.1007/s002220050178.

665

https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1016/0001-8708(92)90043-K
https://arxiv.org/abs/1909.11724
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1016/j.aim.2015.02.007
https://arxiv.org/abs/1501.02161v2
https://doi.org/10.25537/dm.2017v22.1225-1266
https://doi.org/10.1007/s00029-016-0228-z
https://doi.org/10.1007/s00029-016-0228-z
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://doi.org/10.1017/S0027763000025757
https://doi.org/10.1017/S0027763000025757
https://doi.org/10.1007/s002220050178


Bibliography

[HN20] Lars Hesselholt and Thomas Nikolaus. “Algebraic K-theory of planar cuspi-
dal curves”. In: K-theory in Algebra, Analysis and Topology. Contemporary
Mathematics. United States: American Mathematical Society, 2020, pp. 139–
148. isbn: 978-1-4704-5026-7. doi: 10.1090/conm/749.

[Hov99] Mark Hovey. Model categories. Vol. 63. Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 1999, pp. xii+209.
isbn: 0-8218-1359-5. doi: 10.1090/surv/063.

[Hoy18] Marc Hoyois. The homotopy fixed points of the circle action on Hochschild
homology. 2018. arXiv: 1506.07123 [math.KT].

[HTT] Jacob Lurie. Higher Topos Theory. 2017. url: https://www.math.ias.edu/
~lurie/papers/HTT.pdf.

[Kas87] Christian Kassel. “Cyclic Homology, Comodules, and Mixed Complexes”. In:
Journal of Algebra 107.1 (1987), pp. 195–216. issn: 0021-8693. doi: 10.1016/
0021-8693(87)90086-X.

[Kel64] G. M. Kelly. “On MacLane’s conditions for coherence of natural associativ-
ities, commutativities, etc.” In: Journal of Algebra 1.4 (1964), pp. 397–402.
issn: 0021-8693. doi: https://doi.org/10.1016/0021-8693(64)90018-3.

[Lar95] M. Larsen. “Filtrations, Mixed Complexes, and Cyclic Homology in Mixed
Characteristic”. In:K-Theory 9 (1995), pp. 173–198. doi: 10.1007/BF00961458.

[Lod98] Jean-Louis Loday. Cyclic homology. 2nd ed. Vol. 301. Grundlehren der Math-
ematischen Wissenschaften. Appendix E by Marı́a O. Ronco, Chapter 13 by
the author in collaboration with Teimuraz Pirashvili. Springer-Verlag, Berlin,
1998, pp. xx+513. isbn: 3-540-63074-0. doi: 10.1007/978-3-662-11389-9.

[Lur18] Jacob Lurie. Elliptic Cohomology I: Spectral Abelian Varieties. 2018. url:
https://www.math.ias.edu/~lurie/papers/Elliptic-I.pdf.

[Lur21] Jacob Lurie. Kerodon. 2021. url: https://kerodon.net.
[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed. New

York, NY: Springer, 1998, pp. xii + 314. isbn: 0-387-98403-8/hbk. doi: 10.
1007/978-1-4612-9839-7.

[Maz19a] Aaron Mazel-Gee. “A user’s guide to co/cartesian fibrations”. In: The Grad-
uate Journal of Mathematics 4.1 (2019), pp. 42–53.

[Maz19b] Aaron Mazel-Gee. “On the Grothendieck construction for ∞-categories”. In:
Journal of Pure and Applied Algebra 223.11 (2019), pp. 4602–4651. issn:
0022-4049. doi: 10.1016/j.jpaa.2019.02.007.

[Nee01] Amnon Neeman. Triangulated categories. Vol. 148. Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2001, pp. viii+449. isbn:
0-691-08685-0; 0-691-08686-9. doi: 10.1515/9781400837212.

[NikSch] Thomas Nikolaus and Peter Scholze. “On topological cyclic homology”. In:
Acta Mathematica 221.2 (Dec. 2018), pp. 203–409. doi: 10.4310/ACTA.2018.
v221.n2.a1.

666

https://doi.org/10.1090/conm/749
https://doi.org/10.1090/surv/063
https://arxiv.org/abs/1506.07123
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://www.math.ias.edu/~lurie/papers/HTT.pdf
https://doi.org/10.1016/0021-8693(87)90086-X
https://doi.org/10.1016/0021-8693(87)90086-X
https://doi.org/https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.1007/BF00961458
https://doi.org/10.1007/978-3-662-11389-9
https://www.math.ias.edu/~lurie/papers/Elliptic-I.pdf
https://kerodon.net
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1016/j.jpaa.2019.02.007
https://doi.org/10.1515/9781400837212
https://doi.org/10.4310/ACTA.2018.v221.n2.a1
https://doi.org/10.4310/ACTA.2018.v221.n2.a1


Bibliography

[Rak20] Arpon Raksit. Hochschild homology and the derived de Rham complex revis-
ited. 2020. arXiv: 2007.02576 [math.AG].

[Rie14] Emily Riehl. Categorical Homotopy Theory. New Mathematical Monographs.
Cambridge University Press, 2014. doi: 10.1017/CBO9781107261457.

[Rot08] Joseph J. Rotman. An Introduction to Homological Algebra. Universitext.
Springer New York, 2008. isbn: 9780387683249. doi: 10.1007/978-0-387-
68324-9.

[RSV21] Nima Rasekh, Bruno Stonek, and Gabriel Valenzuela. Thom spectra, higher
THH and tensors in ∞-categories. 2021. arXiv: 1911.04345 [math.AT].

[Spe18] Martin Speirs. “On the algebraic K-theory of coordinate axes and truncated
polynomial algebras”. PhD thesis. University of Copenhagen, 2018.

[Spe20] Martin Speirs. “On the K-theory of truncated polynomial algebras, revisited”.
In: Advances in Mathematics 366.107083 (June 2020). doi: 10.1016/j.aim.
2020.107083.

[Spe21] Martin Speirs. “On the K–theory of coordinate axes in affine space”. In:
Algebraic & Geometric Topology 21.1 (2021), pp. 137–171. doi: 10.2140/
agt.2021.21.137.

[SS00] Stefan Schwede and Brooke E. Shipley. “Algebras and Modules in Monoidal
Model Categories”. In: Proceedings of the London Mathematical Society 80.2
(2000), pp. 491–511. issn: 0024-6115. doi: 10.1112/S002461150001220X.

[Wei94] Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, 1994. doi: 10.
1017/CBO9781139644136.

667

https://arxiv.org/abs/2007.02576
https://doi.org/10.1017/CBO9781107261457
https://doi.org/10.1007/978-0-387-68324-9
https://doi.org/10.1007/978-0-387-68324-9
https://arxiv.org/abs/1911.04345
https://doi.org/10.1016/j.aim.2020.107083
https://doi.org/10.1016/j.aim.2020.107083
https://doi.org/10.2140/agt.2021.21.137
https://doi.org/10.2140/agt.2021.21.137
https://doi.org/10.1112/S002461150001220X
https://doi.org/10.1017/CBO9781139644136
https://doi.org/10.1017/CBO9781139644136

	Abstract
	Resumé
	Introduction
	Motivation
	Hochschild homology as a mixed complex
	Hochschild homology as an object with circle action
	Mixed complexes

	The first step in the proof of the main result
	The second step in the proof of the main result
	Overview over the chapters of this thesis
	Future directions
	Acknowledgments

	Notation and conventions
	Prerequisites
	On how this thesis is structured
	Various notations and conventions
	Size issues

	Bialgebras and modules over them
	Modules over algebras
	Cocartesian families of monoidal ∞-categories
	Definition
	The universal family
	Compatibility of fibers with products

	Algebras in cocartesian families
	Definition
	Comparison with Lurie's definition
	Functoriality when varying families
	Functoriality when varying the operad
	Functoriality encoded by families
	Algebras in cocartesian families and products

	Functorial construction of ∞-categories of left modules
	Review of the relevant operads
	Construction of LMod
	LMod and colimits


	LMod and monoidality
	LMod and products
	AlgOpPr as a symmetric monoidal ∞-category
	The symmetric monoidal structure on Prᴸ
	The symmetric monoidal structure on Monᴾʳ
	The symmetric monoidal structure on AlgOpPr

	LMod as a symmetric monoidal functor

	Bialgebras
	Bialgebras in (co)cartesian symmetric monoidal ∞-categories

	Modules over bialgebras
	Algebras in AlgOp
	LMod as a functor from BiAlgOp


	Mixed complexes
	Chain complexes
	Ch as a 1-category
	Ch as a closed symmetric monoidal 1-category
	Ch as a model category
	Homotopies in Ch
	Extension of scalars

	Strict mixed complexes
	Mixed as a closed symmetric monoidal 1-category
	The bialgebra D
	Definition of Mixed
	Diagrams depicting strict mixed complexes
	The symmetric monoidal structure on Mixed
	Algebras in Mixed
	The closed symmetric monoidal structure on Mixed

	Mixed and Alg(Mixed) as model categories
	Model categories of algebras and modules
	The model structure on Mixed
	The model structure on Alg(Mixed)
	Homotopies in Mixed
	Homotopies in Alg(Ch(k))
	Homotopies in Alg(Mixed)

	Strongly homotopy linear morphisms of strict mixed complexes
	Definition of strongly homotopy linear morphisms
	Strongly homotopy linear morphisms as zigzags


	The derived category of k
	Semiadditive ∞-categories
	Properties of D(k)
	Homology
	Properties of the truncation functors

	The ∞-category of mixed complexes
	Construction of comparison functors
	The comparison functors are equivalences
	Mixed is stable
	Strongly homotopy linear morphisms


	Mixed complexes and circle actions
	Formality of certain E∞,E1-bialgebras
	Duality
	Construction of a resolution
	Notation for freely generated dgas
	Construction of A as a directed colimit
	Homology of A
	Construction of An+1 from An
	Identification of Bn up to quasiisomorphism
	The resolution in D(k)
	Free generation of certain associative algebras

	Formality of certain associative algebras
	Group homology
	Formality of certain commutative algebras
	Identification of some mapping spaces
	Identification of a mapping space in an overcategory
	The homology of a pushout of commutative algebras
	On a mapping space of commutative algebras

	Formality of certain E∞,E1-bialgebras

	The k-linear circle as an E∞,E1-bialgebra
	The circle group
	The linearization functor
	Definition of the k-linear circle
	Formality of the k-linear circle as an E∞,E1-bialgebra

	Group actions and modules over group rings
	The monoidal equivalence D(k)^BT ≃ Mixed

	Hochschild homology
	The cyclic bar construction and geometric realization of cyclic objects
	Connes' cyclic category Λ
	The simplex category Δ
	Definition of Λ via posets
	Definition of Λ via generators and relations
	Comparison of the two definitions of Λ
	Cyclic objects
	Self-duality of Λ

	The cyclic bar construction as a cyclic object
	The symmetric monoidal envelope
	From associative algebras to active diagrams
	Tensoring active diagrams together
	The functor V from the cyclic category to the active part of Assoc
	The definition of the cyclic bar construction as a cyclic object
	The cyclic bar construction for cocartesian symmetric monoidal ∞-categories
	The cyclic bar construction and sifted colimits

	Geometric realization of cyclic objects
	The ∞-groupoid completion of Λ^op
	Definition of the geometric realization
	Monoidality


	Hochschild homology
	Definition of Hochschild homology
	Hochschild homology and commutative algebras
	HH for commutative algebras
	Circle actions on tensor products with T
	HH of commutative algebras as a tensor product with T
	HH of commutative algebras as a pushout
	HH of commutative algebras as a relative tensor product

	Hochschild homology and relative tensor products

	The standard Hochschild complex
	The standard Hochschild complex for associative algebras
	The cyclic bar construction for chain complexes
	Geometric realization of cyclic chain complexes
	The standard Hochschild complex
	The standard Hochschild complex for algebras concentrated in degree 0
	The normalized standard Hochschild complex

	The standard Hochschild complex for commutative algebras
	The bar resolution
	The standard Hochschild complex as a relative tensor product
	The shuffle product
	The standard Hochschild complex for commutative algebras
	The normalized standard Hochschild complex for commutative algebras concentrated in degree 0

	Relative tensor products in Ch(k) and D(k)
	The standard Hochschild complex as a model for HH
	The mixed case
	The commutative case



	Hochschild homology of polynomial algebras
	The mixed complex of de Rham forms
	De Rham forms as a strict model in CAlg(Ch)
	A smaller replacement for the bar complex
	Construction of the quasiisomorphism

	De Rham forms as a strict model in Mixed
	Definition of the higher homotopies
	Simplification of the boundary
	Identification of summands of e(̂l-1) o d of a first type
	Reindexing of summands of e(̂l-1) o d of a second type
	A first look at d o e(̂l-1)
	Progress so far
	Reindexing remaining summands from the boundary
	Subdivisions of the remaining indexing sets
	Canceling of some summands of e(̂l-1) o d
	Matching up of the remaining summands
	Conclusion

	De Rham forms as a strict model in Alg(Mixed)
	A first cofibrant model
	An improved cofibrant model
	Comparing the algebra and mixed structure separately
	Compatibility of Φ with d in the case of a single variable
	A free resolution for de Rham forms
	The general construction
	Specific choices for Y0,Y1, and Y2
	Proof that the construction is a cofibrant resolution

	Naturality of ε
	Naturality of Φ
	Compatibility of Φ with d in degree 0
	Proof of Conjecture B for sets of cardinality at most 2

	De Rham forms as a strict model in Alg(Mixed) and morphisms
	Conjecture C for zero variables in the domain
	Conjecture C for one variable in the domain
	Morphisms and homotopies out of Ω'_k[t]
	Construction of Ω'_F
	Conclusion

	Conjecture D
	Conjecture C for two variables in the domain


	Hochschild homology of certain quotients of commutative algebras
	Hochschild homology of certain quotients as relative tensor products
	Certain quotients as relative tensor products
	Application to Hochschild homology

	A sufficiently cofibrant strict model of k
	Construction of the strict model
	Cofibrancy
	Quasiisomorphism

	A formula for Hochschild homology of certain quotients

	Hochschild homology of certain quotients of polynomial algebras
	Prerequisites on polynomials and dividing with remainder
	Monomial orders
	Partial, total, and well-orders
	The standard partial order on Z^n
	Definition of monomial orders
	Properties of monomial orders

	Degrees for multivariable polynomials
	Dividing multivariable polynomials with remainder
	Monic polynomials
	Reduced polynomials
	Division with remainder
	Full sum decomposition
	Properties of remainders


	A strict model for HH of medium size
	k[x1,...,xn] as a module over k[t]
	A strict model for HH
	A basis for the strict model
	Interaction of division by f with the differential and multiplication
	The basis
	Description of boundary and differential


	A smaller strict model for the underlying complex
	The smaller strict model as a subcomplex
	A different description of the smaller model

	Logarithmic dimension of polynomials
	Logarithm for polynomials
	Logarithmic dimension for polynomials

	A smaller strict model for the mixed complex
	Restricting the strict mixed structure
	An alternative description of the smaller strict mixed model

	On the quasiisomorphisms constructed by BACH
	On a question of Larsen

	Example: z^2-xy
	Applying Theorem A
	Comparison with the mixed complex of de Rham forms
	Grading
	Non-diagonal pieces
	A first look at Y((6,4)) and Y((7,5))
	A new basis
	Non-diagonal pieces of K are acyclic

	Diagonal pieces
	A first look at Y((5,5)) and Y((6,6))
	A new basis
	Another look at Y((5,5))
	Another look at Y((6,6))
	A basis for K((j,j))
	K((j,j)) for j<5
	Splitting an acyclic summand off of K((j,j)) for j>5
	Description of the strict mixed structure
	A smaller model for K((j,j)) for j>5

	HH(Z[x,y,z]/(z^2-xy)) as a non-split extension
	Non-formality of HH(Z[x,y,z]/(z^2-xy))

	∞-category theory
	Homotopy categories of model categories
	Mapping spaces
	The (∞,2)-category of ∞-categories
	Pullbacks in the ∞-category of ∞-categories
	Natural transformations


	(Fully) faithful functors and monomorphisms in the ∞-category of ∞-categories
	Monomorphisms
	Monomorphisms in the ∞-category of spaces
	Monomorphisms and composition
	Monomorphisms and limits

	(Fully) faithful functors
	(Fully) Faithful functors and Fun
	Monomorphisms in the ∞-category of ∞-categories
	Equivalent characterizations of monomorphisms in the ∞-category of ∞-categories
	Pseudomonic functors and replete images
	Lifting along monomorphisms
	(Fully) faithful functors are monomorphisms

	Stability properties of (fully) faithful functors and monomorphisms in the ∞-category of ∞-categories
	Functor ∞-categories
	Pullbacks along another functor
	Pullbacks

	Subcategories

	(Co)Cartesian Fibrations
	Stability properties of (co)cartesian fibrations
	Pullbacks
	Restriction along fully faithful functors
	Morphisms of cartesian fibrations

	Cocartesian fibrations and products

	More ∞-category theory
	Undercategories
	Model independent construction
	Undercategories and (fully) faithful functors, monomorphisms
	Mapping spaces in undercategories

	Adjunctions
	Equivalent characterizations of adjoints
	Adjunctions and Fun


	∞-operads and algebras
	∞-operads
	Symmetric monoidal functors
	Conservative morphisms of ∞-operads
	Base changes of cocartesian fibrations of ∞-operads

	Alg and base change
	Properties preserved by Alg
	Pullbacks
	Cocartesian fibrations
	Adjoints
	Reflecting equivalences
	Fully faithfulness

	Induced ∞-operad structures on Alg
	The quasicategorical model
	Properties of the induced ∞-operad structure

	Iterating Alg
	The commutative ∞-operad
	Colimits and free algebras
	Operadic colimits
	A criterion for operadic colimits
	Symmetric monoidal functors and operadic colimits

	Free algebras
	Detection of free algebras
	Symmetric monoidal functors and free algebras

	Induced functors on Alg and colimits
	Free modules

	Relative tensor products

	Cartesian symmetric monoidal ∞-categories
	Cocartesian fibrations and cartesian symmetric monoidal structures
	Monoids and limits
	Cartesian symmetric monoidal ∞-categories and iterating Mon and Alg

	Bibliography

